The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/ufs/ffs/ffs_softdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright 1998, 2000 Marshall Kirk McKusick.
    5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
    6  * All rights reserved.
    7  *
    8  * The soft updates code is derived from the appendix of a University
    9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
   10  * "Soft Updates: A Solution to the Metadata Update Problem in File
   11  * Systems", CSE-TR-254-95, August 1995).
   12  *
   13  * Further information about soft updates can be obtained from:
   14  *
   15  *      Marshall Kirk McKusick          http://www.mckusick.com/softdep/
   16  *      1614 Oxford Street              mckusick@mckusick.com
   17  *      Berkeley, CA 94709-1608         +1-510-843-9542
   18  *      USA
   19  *
   20  * Redistribution and use in source and binary forms, with or without
   21  * modification, are permitted provided that the following conditions
   22  * are met:
   23  *
   24  * 1. Redistributions of source code must retain the above copyright
   25  *    notice, this list of conditions and the following disclaimer.
   26  * 2. Redistributions in binary form must reproduce the above copyright
   27  *    notice, this list of conditions and the following disclaimer in the
   28  *    documentation and/or other materials provided with the distribution.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
   31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
   36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
   38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
   39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   40  *
   41  *      from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
   42  */
   43 
   44 #include <sys/cdefs.h>
   45 __FBSDID("$FreeBSD$");
   46 
   47 #include "opt_ffs.h"
   48 #include "opt_quota.h"
   49 #include "opt_ddb.h"
   50 
   51 #include <sys/param.h>
   52 #include <sys/kernel.h>
   53 #include <sys/systm.h>
   54 #include <sys/bio.h>
   55 #include <sys/buf.h>
   56 #include <sys/kdb.h>
   57 #include <sys/kthread.h>
   58 #include <sys/ktr.h>
   59 #include <sys/limits.h>
   60 #include <sys/lock.h>
   61 #include <sys/malloc.h>
   62 #include <sys/mount.h>
   63 #include <sys/mutex.h>
   64 #include <sys/namei.h>
   65 #include <sys/priv.h>
   66 #include <sys/proc.h>
   67 #include <sys/racct.h>
   68 #include <sys/rwlock.h>
   69 #include <sys/stat.h>
   70 #include <sys/sysctl.h>
   71 #include <sys/syslog.h>
   72 #include <sys/vnode.h>
   73 #include <sys/conf.h>
   74 
   75 #include <ufs/ufs/dir.h>
   76 #include <ufs/ufs/extattr.h>
   77 #include <ufs/ufs/quota.h>
   78 #include <ufs/ufs/inode.h>
   79 #include <ufs/ufs/ufsmount.h>
   80 #include <ufs/ffs/fs.h>
   81 #include <ufs/ffs/softdep.h>
   82 #include <ufs/ffs/ffs_extern.h>
   83 #include <ufs/ufs/ufs_extern.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_extern.h>
   87 #include <vm/vm_object.h>
   88 
   89 #include <geom/geom.h>
   90 #include <geom/geom_vfs.h>
   91 
   92 #include <ddb/ddb.h>
   93 
   94 #define KTR_SUJ 0       /* Define to KTR_SPARE. */
   95 
   96 #ifndef SOFTUPDATES
   97 
   98 int
   99 softdep_flushfiles(struct mount *oldmnt,
  100         int flags,
  101         struct thread *td)
  102 {
  103 
  104         panic("softdep_flushfiles called");
  105 }
  106 
  107 int
  108 softdep_mount(struct vnode *devvp,
  109         struct mount *mp,
  110         struct fs *fs,
  111         struct ucred *cred)
  112 {
  113 
  114         return (0);
  115 }
  116 
  117 void
  118 softdep_initialize(void)
  119 {
  120 
  121         return;
  122 }
  123 
  124 void
  125 softdep_uninitialize(void)
  126 {
  127 
  128         return;
  129 }
  130 
  131 void
  132 softdep_unmount(struct mount *mp)
  133 {
  134 
  135         panic("softdep_unmount called");
  136 }
  137 
  138 void
  139 softdep_setup_sbupdate(struct ufsmount *ump,
  140         struct fs *fs,
  141         struct buf *bp)
  142 {
  143 
  144         panic("softdep_setup_sbupdate called");
  145 }
  146 
  147 void
  148 softdep_setup_inomapdep(struct buf *bp,
  149         struct inode *ip,
  150         ino_t newinum,
  151         int mode)
  152 {
  153 
  154         panic("softdep_setup_inomapdep called");
  155 }
  156 
  157 void
  158 softdep_setup_blkmapdep(struct buf *bp,
  159         struct mount *mp,
  160         ufs2_daddr_t newblkno,
  161         int frags,
  162         int oldfrags)
  163 {
  164 
  165         panic("softdep_setup_blkmapdep called");
  166 }
  167 
  168 void
  169 softdep_setup_allocdirect(struct inode *ip,
  170         ufs_lbn_t lbn,
  171         ufs2_daddr_t newblkno,
  172         ufs2_daddr_t oldblkno,
  173         long newsize,
  174         long oldsize,
  175         struct buf *bp)
  176 {
  177 
  178         panic("softdep_setup_allocdirect called");
  179 }
  180 
  181 void
  182 softdep_setup_allocext(struct inode *ip,
  183         ufs_lbn_t lbn,
  184         ufs2_daddr_t newblkno,
  185         ufs2_daddr_t oldblkno,
  186         long newsize,
  187         long oldsize,
  188         struct buf *bp)
  189 {
  190 
  191         panic("softdep_setup_allocext called");
  192 }
  193 
  194 void
  195 softdep_setup_allocindir_page(struct inode *ip,
  196         ufs_lbn_t lbn,
  197         struct buf *bp,
  198         int ptrno,
  199         ufs2_daddr_t newblkno,
  200         ufs2_daddr_t oldblkno,
  201         struct buf *nbp)
  202 {
  203 
  204         panic("softdep_setup_allocindir_page called");
  205 }
  206 
  207 void
  208 softdep_setup_allocindir_meta(struct buf *nbp,
  209         struct inode *ip,
  210         struct buf *bp,
  211         int ptrno,
  212         ufs2_daddr_t newblkno)
  213 {
  214 
  215         panic("softdep_setup_allocindir_meta called");
  216 }
  217 
  218 void
  219 softdep_journal_freeblocks(struct inode *ip,
  220         struct ucred *cred,
  221         off_t length,
  222         int flags)
  223 {
  224 
  225         panic("softdep_journal_freeblocks called");
  226 }
  227 
  228 void
  229 softdep_journal_fsync(struct inode *ip)
  230 {
  231 
  232         panic("softdep_journal_fsync called");
  233 }
  234 
  235 void
  236 softdep_setup_freeblocks(struct inode *ip,
  237         off_t length,
  238         int flags)
  239 {
  240 
  241         panic("softdep_setup_freeblocks called");
  242 }
  243 
  244 void
  245 softdep_freefile(struct vnode *pvp,
  246                 ino_t ino,
  247                 int mode)
  248 {
  249 
  250         panic("softdep_freefile called");
  251 }
  252 
  253 int
  254 softdep_setup_directory_add(struct buf *bp,
  255         struct inode *dp,
  256         off_t diroffset,
  257         ino_t newinum,
  258         struct buf *newdirbp,
  259         int isnewblk)
  260 {
  261 
  262         panic("softdep_setup_directory_add called");
  263 }
  264 
  265 void
  266 softdep_change_directoryentry_offset(struct buf *bp,
  267         struct inode *dp,
  268         caddr_t base,
  269         caddr_t oldloc,
  270         caddr_t newloc,
  271         int entrysize)
  272 {
  273 
  274         panic("softdep_change_directoryentry_offset called");
  275 }
  276 
  277 void
  278 softdep_setup_remove(struct buf *bp,
  279         struct inode *dp,
  280         struct inode *ip,
  281         int isrmdir)
  282 {
  283 
  284         panic("softdep_setup_remove called");
  285 }
  286 
  287 void
  288 softdep_setup_directory_change(struct buf *bp,
  289         struct inode *dp,
  290         struct inode *ip,
  291         ino_t newinum,
  292         int isrmdir)
  293 {
  294 
  295         panic("softdep_setup_directory_change called");
  296 }
  297 
  298 void
  299 softdep_setup_blkfree(struct mount *mp,
  300         struct buf *bp,
  301         ufs2_daddr_t blkno,
  302         int frags,
  303         struct workhead *wkhd)
  304 {
  305 
  306         panic("%s called", __FUNCTION__);
  307 }
  308 
  309 void
  310 softdep_setup_inofree(struct mount *mp,
  311         struct buf *bp,
  312         ino_t ino,
  313         struct workhead *wkhd)
  314 {
  315 
  316         panic("%s called", __FUNCTION__);
  317 }
  318 
  319 void
  320 softdep_setup_unlink(struct inode *dp, struct inode *ip)
  321 {
  322 
  323         panic("%s called", __FUNCTION__);
  324 }
  325 
  326 void
  327 softdep_setup_link(struct inode *dp, struct inode *ip)
  328 {
  329 
  330         panic("%s called", __FUNCTION__);
  331 }
  332 
  333 void
  334 softdep_revert_link(struct inode *dp, struct inode *ip)
  335 {
  336 
  337         panic("%s called", __FUNCTION__);
  338 }
  339 
  340 void
  341 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
  342 {
  343 
  344         panic("%s called", __FUNCTION__);
  345 }
  346 
  347 void
  348 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
  349 {
  350 
  351         panic("%s called", __FUNCTION__);
  352 }
  353 
  354 void
  355 softdep_setup_create(struct inode *dp, struct inode *ip)
  356 {
  357 
  358         panic("%s called", __FUNCTION__);
  359 }
  360 
  361 void
  362 softdep_revert_create(struct inode *dp, struct inode *ip)
  363 {
  364 
  365         panic("%s called", __FUNCTION__);
  366 }
  367 
  368 void
  369 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
  370 {
  371 
  372         panic("%s called", __FUNCTION__);
  373 }
  374 
  375 void
  376 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
  377 {
  378 
  379         panic("%s called", __FUNCTION__);
  380 }
  381 
  382 void
  383 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
  384 {
  385 
  386         panic("%s called", __FUNCTION__);
  387 }
  388 
  389 int
  390 softdep_prealloc(struct vnode *vp, int waitok)
  391 {
  392 
  393         panic("%s called", __FUNCTION__);
  394 }
  395 
  396 int
  397 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
  398 {
  399 
  400         return (ENOENT);
  401 }
  402 
  403 void
  404 softdep_change_linkcnt(struct inode *ip)
  405 {
  406 
  407         panic("softdep_change_linkcnt called");
  408 }
  409 
  410 void 
  411 softdep_load_inodeblock(struct inode *ip)
  412 {
  413 
  414         panic("softdep_load_inodeblock called");
  415 }
  416 
  417 void
  418 softdep_update_inodeblock(struct inode *ip,
  419         struct buf *bp,
  420         int waitfor)
  421 {
  422 
  423         panic("softdep_update_inodeblock called");
  424 }
  425 
  426 int
  427 softdep_fsync(struct vnode *vp) /* the "in_core" copy of the inode */
  428 {
  429 
  430         return (0);
  431 }
  432 
  433 void
  434 softdep_fsync_mountdev(struct vnode *vp)
  435 {
  436 
  437         return;
  438 }
  439 
  440 int
  441 softdep_flushworklist(struct mount *oldmnt,
  442         int *countp,
  443         struct thread *td)
  444 {
  445 
  446         *countp = 0;
  447         return (0);
  448 }
  449 
  450 int
  451 softdep_sync_metadata(struct vnode *vp)
  452 {
  453 
  454         panic("softdep_sync_metadata called");
  455 }
  456 
  457 int
  458 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
  459 {
  460 
  461         panic("softdep_sync_buf called");
  462 }
  463 
  464 int
  465 softdep_slowdown(struct vnode *vp)
  466 {
  467 
  468         panic("softdep_slowdown called");
  469 }
  470 
  471 int
  472 softdep_request_cleanup(struct fs *fs,
  473         struct vnode *vp,
  474         struct ucred *cred,
  475         int resource)
  476 {
  477 
  478         return (0);
  479 }
  480 
  481 int
  482 softdep_check_suspend(struct mount *mp,
  483                       struct vnode *devvp,
  484                       int softdep_depcnt,
  485                       int softdep_accdepcnt,
  486                       int secondary_writes,
  487                       int secondary_accwrites)
  488 {
  489         struct bufobj *bo;
  490         int error;
  491 
  492         (void) softdep_depcnt,
  493         (void) softdep_accdepcnt;
  494 
  495         bo = &devvp->v_bufobj;
  496         ASSERT_BO_WLOCKED(bo);
  497 
  498         MNT_ILOCK(mp);
  499         while (mp->mnt_secondary_writes != 0) {
  500                 BO_UNLOCK(bo);
  501                 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
  502                     (PUSER - 1) | PDROP, "secwr", 0);
  503                 BO_LOCK(bo);
  504                 MNT_ILOCK(mp);
  505         }
  506 
  507         /*
  508          * Reasons for needing more work before suspend:
  509          * - Dirty buffers on devvp.
  510          * - Secondary writes occurred after start of vnode sync loop
  511          */
  512         error = 0;
  513         if (bo->bo_numoutput > 0 ||
  514             bo->bo_dirty.bv_cnt > 0 ||
  515             secondary_writes != 0 ||
  516             mp->mnt_secondary_writes != 0 ||
  517             secondary_accwrites != mp->mnt_secondary_accwrites)
  518                 error = EAGAIN;
  519         BO_UNLOCK(bo);
  520         return (error);
  521 }
  522 
  523 void
  524 softdep_get_depcounts(struct mount *mp,
  525                       int *softdepactivep,
  526                       int *softdepactiveaccp)
  527 {
  528         (void) mp;
  529         *softdepactivep = 0;
  530         *softdepactiveaccp = 0;
  531 }
  532 
  533 void
  534 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
  535 {
  536 
  537         panic("softdep_buf_appendwork called");
  538 }
  539 
  540 void
  541 softdep_inode_append(struct inode *ip,
  542         struct ucred *cred,
  543         struct workhead *wkhd)
  544 {
  545 
  546         panic("softdep_inode_appendwork called");
  547 }
  548 
  549 void
  550 softdep_freework(struct workhead *wkhd)
  551 {
  552 
  553         panic("softdep_freework called");
  554 }
  555 
  556 int
  557 softdep_prerename(struct vnode *fdvp,
  558         struct vnode *fvp,
  559         struct vnode *tdvp,
  560         struct vnode *tvp)
  561 {
  562 
  563         panic("softdep_prerename called");
  564 }
  565 
  566 int
  567 softdep_prelink(struct vnode *dvp,
  568         struct vnode *vp,
  569         struct componentname *cnp)
  570 {
  571 
  572         panic("softdep_prelink called");
  573 }
  574 
  575 #else
  576 
  577 FEATURE(softupdates, "FFS soft-updates support");
  578 
  579 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  580     "soft updates stats");
  581 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
  582     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  583     "total dependencies allocated");
  584 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
  585     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  586     "high use dependencies allocated");
  587 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
  588     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  589     "current dependencies allocated");
  590 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
  591     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  592     "current dependencies written");
  593 
  594 unsigned long dep_current[D_LAST + 1];
  595 unsigned long dep_highuse[D_LAST + 1];
  596 unsigned long dep_total[D_LAST + 1];
  597 unsigned long dep_write[D_LAST + 1];
  598 
  599 #define SOFTDEP_TYPE(type, str, long)                                   \
  600     static MALLOC_DEFINE(M_ ## type, #str, long);                       \
  601     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,       \
  602         &dep_total[D_ ## type], 0, "");                                 \
  603     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD,     \
  604         &dep_current[D_ ## type], 0, "");                               \
  605     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD,     \
  606         &dep_highuse[D_ ## type], 0, "");                               \
  607     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD,       \
  608         &dep_write[D_ ## type], 0, "");
  609 
  610 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 
  611 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
  612 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
  613     "Block or frag allocated from cyl group map");
  614 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
  615 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
  616 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
  617 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
  618 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
  619 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
  620 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
  621 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
  622 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
  623 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
  624 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
  625 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
  626 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
  627 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
  628 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
  629 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
  630 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
  631 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
  632 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
  633 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
  634 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
  635 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
  636 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
  637 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
  638 
  639 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
  640 
  641 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
  642 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
  643 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
  644 
  645 #define M_SOFTDEP_FLAGS (M_WAITOK)
  646 
  647 /* 
  648  * translate from workitem type to memory type
  649  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
  650  */
  651 static struct malloc_type *memtype[] = {
  652         NULL,
  653         M_PAGEDEP,
  654         M_INODEDEP,
  655         M_BMSAFEMAP,
  656         M_NEWBLK,
  657         M_ALLOCDIRECT,
  658         M_INDIRDEP,
  659         M_ALLOCINDIR,
  660         M_FREEFRAG,
  661         M_FREEBLKS,
  662         M_FREEFILE,
  663         M_DIRADD,
  664         M_MKDIR,
  665         M_DIRREM,
  666         M_NEWDIRBLK,
  667         M_FREEWORK,
  668         M_FREEDEP,
  669         M_JADDREF,
  670         M_JREMREF,
  671         M_JMVREF,
  672         M_JNEWBLK,
  673         M_JFREEBLK,
  674         M_JFREEFRAG,
  675         M_JSEG,
  676         M_JSEGDEP,
  677         M_SBDEP,
  678         M_JTRUNC,
  679         M_JFSYNC,
  680         M_SENTINEL
  681 };
  682 
  683 #define DtoM(type) (memtype[type])
  684 
  685 /*
  686  * Names of malloc types.
  687  */
  688 #define TYPENAME(type)  \
  689         ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
  690         memtype[type]->ks_shortdesc : "???")
  691 /*
  692  * End system adaptation definitions.
  693  */
  694 
  695 #define DOTDOT_OFFSET   offsetof(struct dirtemplate, dotdot_ino)
  696 #define DOT_OFFSET      offsetof(struct dirtemplate, dot_ino)
  697 
  698 /*
  699  * Internal function prototypes.
  700  */
  701 static  void check_clear_deps(struct mount *);
  702 static  void softdep_error(char *, int);
  703 static  int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
  704 static  int softdep_process_worklist(struct mount *, int);
  705 static  int softdep_waitidle(struct mount *, int);
  706 static  void drain_output(struct vnode *);
  707 static  struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
  708 static  int check_inodedep_free(struct inodedep *);
  709 static  void clear_remove(struct mount *);
  710 static  void clear_inodedeps(struct mount *);
  711 static  void unlinked_inodedep(struct mount *, struct inodedep *);
  712 static  void clear_unlinked_inodedep(struct inodedep *);
  713 static  struct inodedep *first_unlinked_inodedep(struct ufsmount *);
  714 static  int flush_pagedep_deps(struct vnode *, struct mount *,
  715             struct diraddhd *, struct buf *);
  716 static  int free_pagedep(struct pagedep *);
  717 static  int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
  718 static  int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
  719 static  int flush_deplist(struct allocdirectlst *, int, int *);
  720 static  int sync_cgs(struct mount *, int);
  721 static  int handle_written_filepage(struct pagedep *, struct buf *, int);
  722 static  int handle_written_sbdep(struct sbdep *, struct buf *);
  723 static  void initiate_write_sbdep(struct sbdep *);
  724 static  void diradd_inode_written(struct diradd *, struct inodedep *);
  725 static  int handle_written_indirdep(struct indirdep *, struct buf *,
  726             struct buf**, int);
  727 static  int handle_written_inodeblock(struct inodedep *, struct buf *, int);
  728 static  int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
  729             uint8_t *);
  730 static  int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
  731 static  void handle_written_jaddref(struct jaddref *);
  732 static  void handle_written_jremref(struct jremref *);
  733 static  void handle_written_jseg(struct jseg *, struct buf *);
  734 static  void handle_written_jnewblk(struct jnewblk *);
  735 static  void handle_written_jblkdep(struct jblkdep *);
  736 static  void handle_written_jfreefrag(struct jfreefrag *);
  737 static  void complete_jseg(struct jseg *);
  738 static  void complete_jsegs(struct jseg *);
  739 static  void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
  740 static  void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
  741 static  void jremref_write(struct jremref *, struct jseg *, uint8_t *);
  742 static  void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
  743 static  void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
  744 static  void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
  745 static  void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
  746 static  void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
  747 static  void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
  748 static  inline void inoref_write(struct inoref *, struct jseg *,
  749             struct jrefrec *);
  750 static  void handle_allocdirect_partdone(struct allocdirect *,
  751             struct workhead *);
  752 static  struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
  753             struct workhead *);
  754 static  void indirdep_complete(struct indirdep *);
  755 static  int indirblk_lookup(struct mount *, ufs2_daddr_t);
  756 static  void indirblk_insert(struct freework *);
  757 static  void indirblk_remove(struct freework *);
  758 static  void handle_allocindir_partdone(struct allocindir *);
  759 static  void initiate_write_filepage(struct pagedep *, struct buf *);
  760 static  void initiate_write_indirdep(struct indirdep*, struct buf *);
  761 static  void handle_written_mkdir(struct mkdir *, int);
  762 static  int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
  763             uint8_t *);
  764 static  void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
  765 static  void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
  766 static  void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
  767 static  void handle_workitem_freefile(struct freefile *);
  768 static  int handle_workitem_remove(struct dirrem *, int);
  769 static  struct dirrem *newdirrem(struct buf *, struct inode *,
  770             struct inode *, int, struct dirrem **);
  771 static  struct indirdep *indirdep_lookup(struct mount *, struct inode *,
  772             struct buf *);
  773 static  void cancel_indirdep(struct indirdep *, struct buf *,
  774             struct freeblks *);
  775 static  void free_indirdep(struct indirdep *);
  776 static  void free_diradd(struct diradd *, struct workhead *);
  777 static  void merge_diradd(struct inodedep *, struct diradd *);
  778 static  void complete_diradd(struct diradd *);
  779 static  struct diradd *diradd_lookup(struct pagedep *, int);
  780 static  struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
  781             struct jremref *);
  782 static  struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
  783             struct jremref *);
  784 static  void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
  785             struct jremref *, struct jremref *);
  786 static  void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
  787             struct jremref *);
  788 static  void cancel_allocindir(struct allocindir *, struct buf *bp,
  789             struct freeblks *, int);
  790 static  int setup_trunc_indir(struct freeblks *, struct inode *,
  791             ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
  792 static  void complete_trunc_indir(struct freework *);
  793 static  void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
  794             int);
  795 static  void complete_mkdir(struct mkdir *);
  796 static  void free_newdirblk(struct newdirblk *);
  797 static  void free_jremref(struct jremref *);
  798 static  void free_jaddref(struct jaddref *);
  799 static  void free_jsegdep(struct jsegdep *);
  800 static  void free_jsegs(struct jblocks *);
  801 static  void rele_jseg(struct jseg *);
  802 static  void free_jseg(struct jseg *, struct jblocks *);
  803 static  void free_jnewblk(struct jnewblk *);
  804 static  void free_jblkdep(struct jblkdep *);
  805 static  void free_jfreefrag(struct jfreefrag *);
  806 static  void free_freedep(struct freedep *);
  807 static  void journal_jremref(struct dirrem *, struct jremref *,
  808             struct inodedep *);
  809 static  void cancel_jnewblk(struct jnewblk *, struct workhead *);
  810 static  int cancel_jaddref(struct jaddref *, struct inodedep *,
  811             struct workhead *);
  812 static  void cancel_jfreefrag(struct jfreefrag *);
  813 static  inline void setup_freedirect(struct freeblks *, struct inode *,
  814             int, int);
  815 static  inline void setup_freeext(struct freeblks *, struct inode *, int, int);
  816 static  inline void setup_freeindir(struct freeblks *, struct inode *, int,
  817             ufs_lbn_t, int);
  818 static  inline struct freeblks *newfreeblks(struct mount *, struct inode *);
  819 static  void freeblks_free(struct ufsmount *, struct freeblks *, int);
  820 static  void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
  821 static  ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
  822 static  int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
  823 static  void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
  824             int, int);
  825 static  void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
  826 static  int cancel_pagedep(struct pagedep *, struct freeblks *, int);
  827 static  int deallocate_dependencies(struct buf *, struct freeblks *, int);
  828 static  void newblk_freefrag(struct newblk*);
  829 static  void free_newblk(struct newblk *);
  830 static  void cancel_allocdirect(struct allocdirectlst *,
  831             struct allocdirect *, struct freeblks *);
  832 static  int check_inode_unwritten(struct inodedep *);
  833 static  int free_inodedep(struct inodedep *);
  834 static  void freework_freeblock(struct freework *, u_long);
  835 static  void freework_enqueue(struct freework *);
  836 static  int handle_workitem_freeblocks(struct freeblks *, int);
  837 static  int handle_complete_freeblocks(struct freeblks *, int);
  838 static  void handle_workitem_indirblk(struct freework *);
  839 static  void handle_written_freework(struct freework *);
  840 static  void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
  841 static  struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
  842             struct workhead *);
  843 static  struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
  844             struct inodedep *, struct allocindir *, ufs_lbn_t);
  845 static  struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
  846             ufs2_daddr_t, ufs_lbn_t);
  847 static  void handle_workitem_freefrag(struct freefrag *);
  848 static  struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
  849             ufs_lbn_t, u_long);
  850 static  void allocdirect_merge(struct allocdirectlst *,
  851             struct allocdirect *, struct allocdirect *);
  852 static  struct freefrag *allocindir_merge(struct allocindir *,
  853             struct allocindir *);
  854 static  int bmsafemap_find(struct bmsafemap_hashhead *, int,
  855             struct bmsafemap **);
  856 static  struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
  857             int cg, struct bmsafemap *);
  858 static  int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
  859             struct newblk **);
  860 static  int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
  861 static  int inodedep_find(struct inodedep_hashhead *, ino_t,
  862             struct inodedep **);
  863 static  int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
  864 static  int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
  865             int, struct pagedep **);
  866 static  int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
  867             struct pagedep **);
  868 static  void pause_timer(void *);
  869 static  int request_cleanup(struct mount *, int);
  870 static  int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
  871 static  void schedule_cleanup(struct mount *);
  872 static void softdep_ast_cleanup_proc(struct thread *, int);
  873 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
  874 static  int process_worklist_item(struct mount *, int, int);
  875 static  void process_removes(struct vnode *);
  876 static  void process_truncates(struct vnode *);
  877 static  void jwork_move(struct workhead *, struct workhead *);
  878 static  void jwork_insert(struct workhead *, struct jsegdep *);
  879 static  void add_to_worklist(struct worklist *, int);
  880 static  void wake_worklist(struct worklist *);
  881 static  void wait_worklist(struct worklist *, char *);
  882 static  void remove_from_worklist(struct worklist *);
  883 static  void softdep_flush(void *);
  884 static  void softdep_flushjournal(struct mount *);
  885 static  int softdep_speedup(struct ufsmount *);
  886 static  void worklist_speedup(struct mount *);
  887 static  int journal_mount(struct mount *, struct fs *, struct ucred *);
  888 static  void journal_unmount(struct ufsmount *);
  889 static  int journal_space(struct ufsmount *, int);
  890 static  void journal_suspend(struct ufsmount *);
  891 static  int journal_unsuspend(struct ufsmount *ump);
  892 static  void add_to_journal(struct worklist *);
  893 static  void remove_from_journal(struct worklist *);
  894 static  bool softdep_excess_items(struct ufsmount *, int);
  895 static  void softdep_process_journal(struct mount *, struct worklist *, int);
  896 static  struct jremref *newjremref(struct dirrem *, struct inode *,
  897             struct inode *ip, off_t, nlink_t);
  898 static  struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
  899             uint16_t);
  900 static  inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
  901             uint16_t);
  902 static  inline struct jsegdep *inoref_jseg(struct inoref *);
  903 static  struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
  904 static  struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
  905             ufs2_daddr_t, int);
  906 static  void adjust_newfreework(struct freeblks *, int);
  907 static  struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
  908 static  void move_newblock_dep(struct jaddref *, struct inodedep *);
  909 static  void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
  910 static  struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
  911             ufs2_daddr_t, long, ufs_lbn_t);
  912 static  struct freework *newfreework(struct ufsmount *, struct freeblks *,
  913             struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
  914 static  int jwait(struct worklist *, int);
  915 static  struct inodedep *inodedep_lookup_ip(struct inode *);
  916 static  int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
  917 static  struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
  918 static  void handle_jwork(struct workhead *);
  919 static  struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
  920             struct mkdir **);
  921 static  struct jblocks *jblocks_create(void);
  922 static  ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
  923 static  void jblocks_free(struct jblocks *, struct mount *, int);
  924 static  void jblocks_destroy(struct jblocks *);
  925 static  void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
  926 
  927 /*
  928  * Exported softdep operations.
  929  */
  930 static  void softdep_disk_io_initiation(struct buf *);
  931 static  void softdep_disk_write_complete(struct buf *);
  932 static  void softdep_deallocate_dependencies(struct buf *);
  933 static  int softdep_count_dependencies(struct buf *bp, int);
  934 
  935 /*
  936  * Global lock over all of soft updates.
  937  */
  938 static struct mtx lk;
  939 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
  940 
  941 #define ACQUIRE_GBLLOCK(lk)     mtx_lock(lk)
  942 #define FREE_GBLLOCK(lk)        mtx_unlock(lk)
  943 #define GBLLOCK_OWNED(lk)       mtx_assert((lk), MA_OWNED)
  944 
  945 /*
  946  * Per-filesystem soft-updates locking.
  947  */
  948 #define LOCK_PTR(ump)           (&(ump)->um_softdep->sd_fslock)
  949 #define TRY_ACQUIRE_LOCK(ump)   rw_try_wlock(&(ump)->um_softdep->sd_fslock)
  950 #define ACQUIRE_LOCK(ump)       rw_wlock(&(ump)->um_softdep->sd_fslock)
  951 #define FREE_LOCK(ump)          rw_wunlock(&(ump)->um_softdep->sd_fslock)
  952 #define LOCK_OWNED(ump)         rw_assert(&(ump)->um_softdep->sd_fslock, \
  953                                     RA_WLOCKED)
  954 
  955 #define BUF_AREC(bp)            lockallowrecurse(&(bp)->b_lock)
  956 #define BUF_NOREC(bp)           lockdisablerecurse(&(bp)->b_lock)
  957 
  958 /*
  959  * Worklist queue management.
  960  * These routines require that the lock be held.
  961  */
  962 #ifndef /* NOT */ INVARIANTS
  963 #define WORKLIST_INSERT(head, item) do {        \
  964         (item)->wk_state |= ONWORKLIST;         \
  965         LIST_INSERT_HEAD(head, item, wk_list);  \
  966 } while (0)
  967 #define WORKLIST_REMOVE(item) do {              \
  968         (item)->wk_state &= ~ONWORKLIST;        \
  969         LIST_REMOVE(item, wk_list);             \
  970 } while (0)
  971 #define WORKLIST_INSERT_UNLOCKED        WORKLIST_INSERT
  972 #define WORKLIST_REMOVE_UNLOCKED        WORKLIST_REMOVE
  973 
  974 #else /* INVARIANTS */
  975 static  void worklist_insert(struct workhead *, struct worklist *, int,
  976         const char *, int);
  977 static  void worklist_remove(struct worklist *, int, const char *, int);
  978 
  979 #define WORKLIST_INSERT(head, item) \
  980         worklist_insert(head, item, 1, __func__, __LINE__)
  981 #define WORKLIST_INSERT_UNLOCKED(head, item)\
  982         worklist_insert(head, item, 0, __func__, __LINE__)
  983 #define WORKLIST_REMOVE(item)\
  984         worklist_remove(item, 1, __func__, __LINE__)
  985 #define WORKLIST_REMOVE_UNLOCKED(item)\
  986         worklist_remove(item, 0, __func__, __LINE__)
  987 
  988 static void
  989 worklist_insert(struct workhead *head,
  990         struct worklist *item,
  991         int locked,
  992         const char *func,
  993         int line)
  994 {
  995 
  996         if (locked)
  997                 LOCK_OWNED(VFSTOUFS(item->wk_mp));
  998         if (item->wk_state & ONWORKLIST)
  999                 panic("worklist_insert: %p %s(0x%X) already on list, "
 1000                     "added in function %s at line %d",
 1001                     item, TYPENAME(item->wk_type), item->wk_state,
 1002                     item->wk_func, item->wk_line);
 1003         item->wk_state |= ONWORKLIST;
 1004         item->wk_func = func;
 1005         item->wk_line = line;
 1006         LIST_INSERT_HEAD(head, item, wk_list);
 1007 }
 1008 
 1009 static void
 1010 worklist_remove(struct worklist *item,
 1011         int locked,
 1012         const char *func,
 1013         int line)
 1014 {
 1015 
 1016         if (locked)
 1017                 LOCK_OWNED(VFSTOUFS(item->wk_mp));
 1018         if ((item->wk_state & ONWORKLIST) == 0)
 1019                 panic("worklist_remove: %p %s(0x%X) not on list, "
 1020                     "removed in function %s at line %d",
 1021                     item, TYPENAME(item->wk_type), item->wk_state,
 1022                     item->wk_func, item->wk_line);
 1023         item->wk_state &= ~ONWORKLIST;
 1024         item->wk_func = func;
 1025         item->wk_line = line;
 1026         LIST_REMOVE(item, wk_list);
 1027 }
 1028 #endif /* INVARIANTS */
 1029 
 1030 /*
 1031  * Merge two jsegdeps keeping only the oldest one as newer references
 1032  * can't be discarded until after older references.
 1033  */
 1034 static inline struct jsegdep *
 1035 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
 1036 {
 1037         struct jsegdep *swp;
 1038 
 1039         if (two == NULL)
 1040                 return (one);
 1041 
 1042         if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
 1043                 swp = one;
 1044                 one = two;
 1045                 two = swp;
 1046         }
 1047         WORKLIST_REMOVE(&two->jd_list);
 1048         free_jsegdep(two);
 1049 
 1050         return (one);
 1051 }
 1052 
 1053 /*
 1054  * If two freedeps are compatible free one to reduce list size.
 1055  */
 1056 static inline struct freedep *
 1057 freedep_merge(struct freedep *one, struct freedep *two)
 1058 {
 1059         if (two == NULL)
 1060                 return (one);
 1061 
 1062         if (one->fd_freework == two->fd_freework) {
 1063                 WORKLIST_REMOVE(&two->fd_list);
 1064                 free_freedep(two);
 1065         }
 1066         return (one);
 1067 }
 1068 
 1069 /*
 1070  * Move journal work from one list to another.  Duplicate freedeps and
 1071  * jsegdeps are coalesced to keep the lists as small as possible.
 1072  */
 1073 static void
 1074 jwork_move(struct workhead *dst, struct workhead *src)
 1075 {
 1076         struct freedep *freedep;
 1077         struct jsegdep *jsegdep;
 1078         struct worklist *wkn;
 1079         struct worklist *wk;
 1080 
 1081         KASSERT(dst != src,
 1082             ("jwork_move: dst == src"));
 1083         freedep = NULL;
 1084         jsegdep = NULL;
 1085         LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
 1086                 if (wk->wk_type == D_JSEGDEP)
 1087                         jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
 1088                 else if (wk->wk_type == D_FREEDEP)
 1089                         freedep = freedep_merge(WK_FREEDEP(wk), freedep);
 1090         }
 1091 
 1092         while ((wk = LIST_FIRST(src)) != NULL) {
 1093                 WORKLIST_REMOVE(wk);
 1094                 WORKLIST_INSERT(dst, wk);
 1095                 if (wk->wk_type == D_JSEGDEP) {
 1096                         jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
 1097                         continue;
 1098                 }
 1099                 if (wk->wk_type == D_FREEDEP)
 1100                         freedep = freedep_merge(WK_FREEDEP(wk), freedep);
 1101         }
 1102 }
 1103 
 1104 static void
 1105 jwork_insert(struct workhead *dst, struct jsegdep *jsegdep)
 1106 {
 1107         struct jsegdep *jsegdepn;
 1108         struct worklist *wk;
 1109 
 1110         LIST_FOREACH(wk, dst, wk_list)
 1111                 if (wk->wk_type == D_JSEGDEP)
 1112                         break;
 1113         if (wk == NULL) {
 1114                 WORKLIST_INSERT(dst, &jsegdep->jd_list);
 1115                 return;
 1116         }
 1117         jsegdepn = WK_JSEGDEP(wk);
 1118         if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
 1119                 WORKLIST_REMOVE(wk);
 1120                 free_jsegdep(jsegdepn);
 1121                 WORKLIST_INSERT(dst, &jsegdep->jd_list);
 1122         } else
 1123                 free_jsegdep(jsegdep);
 1124 }
 1125 
 1126 /*
 1127  * Routines for tracking and managing workitems.
 1128  */
 1129 static  void workitem_free(struct worklist *, int);
 1130 static  void workitem_alloc(struct worklist *, int, struct mount *);
 1131 static  void workitem_reassign(struct worklist *, int);
 1132 
 1133 #define WORKITEM_FREE(item, type) \
 1134         workitem_free((struct worklist *)(item), (type))
 1135 #define WORKITEM_REASSIGN(item, type) \
 1136         workitem_reassign((struct worklist *)(item), (type))
 1137 
 1138 static void
 1139 workitem_free(struct worklist *item, int type)
 1140 {
 1141         struct ufsmount *ump;
 1142 
 1143 #ifdef INVARIANTS
 1144         if (item->wk_state & ONWORKLIST)
 1145                 panic("workitem_free: %s(0x%X) still on list, "
 1146                     "added in function %s at line %d",
 1147                     TYPENAME(item->wk_type), item->wk_state,
 1148                     item->wk_func, item->wk_line);
 1149         if (item->wk_type != type && type != D_NEWBLK)
 1150                 panic("workitem_free: type mismatch %s != %s",
 1151                     TYPENAME(item->wk_type), TYPENAME(type));
 1152 #endif
 1153         if (item->wk_state & IOWAITING)
 1154                 wakeup(item);
 1155         ump = VFSTOUFS(item->wk_mp);
 1156         LOCK_OWNED(ump);
 1157         KASSERT(ump->softdep_deps > 0,
 1158             ("workitem_free: %s: softdep_deps going negative",
 1159             ump->um_fs->fs_fsmnt));
 1160         if (--ump->softdep_deps == 0 && ump->softdep_req)
 1161                 wakeup(&ump->softdep_deps);
 1162         KASSERT(dep_current[item->wk_type] > 0,
 1163             ("workitem_free: %s: dep_current[%s] going negative",
 1164             ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
 1165         KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
 1166             ("workitem_free: %s: softdep_curdeps[%s] going negative",
 1167             ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
 1168         atomic_subtract_long(&dep_current[item->wk_type], 1);
 1169         ump->softdep_curdeps[item->wk_type] -= 1;
 1170         LIST_REMOVE(item, wk_all);
 1171         free(item, DtoM(type));
 1172 }
 1173 
 1174 static void
 1175 workitem_alloc(struct worklist *item,
 1176         int type,
 1177         struct mount *mp)
 1178 {
 1179         struct ufsmount *ump;
 1180 
 1181         item->wk_type = type;
 1182         item->wk_mp = mp;
 1183         item->wk_state = 0;
 1184 
 1185         ump = VFSTOUFS(mp);
 1186         ACQUIRE_GBLLOCK(&lk);
 1187         dep_current[type]++;
 1188         if (dep_current[type] > dep_highuse[type])
 1189                 dep_highuse[type] = dep_current[type];
 1190         dep_total[type]++;
 1191         FREE_GBLLOCK(&lk);
 1192         ACQUIRE_LOCK(ump);
 1193         ump->softdep_curdeps[type] += 1;
 1194         ump->softdep_deps++;
 1195         ump->softdep_accdeps++;
 1196         LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
 1197         FREE_LOCK(ump);
 1198 }
 1199 
 1200 static void
 1201 workitem_reassign(struct worklist *item, int newtype)
 1202 {
 1203         struct ufsmount *ump;
 1204 
 1205         ump = VFSTOUFS(item->wk_mp);
 1206         LOCK_OWNED(ump);
 1207         KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
 1208             ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
 1209             VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
 1210         ump->softdep_curdeps[item->wk_type] -= 1;
 1211         ump->softdep_curdeps[newtype] += 1;
 1212         KASSERT(dep_current[item->wk_type] > 0,
 1213             ("workitem_reassign: %s: dep_current[%s] going negative",
 1214             VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
 1215         ACQUIRE_GBLLOCK(&lk);
 1216         dep_current[newtype]++;
 1217         dep_current[item->wk_type]--;
 1218         if (dep_current[newtype] > dep_highuse[newtype])
 1219                 dep_highuse[newtype] = dep_current[newtype];
 1220         dep_total[newtype]++;
 1221         FREE_GBLLOCK(&lk);
 1222         item->wk_type = newtype;
 1223         LIST_REMOVE(item, wk_all);
 1224         LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all);
 1225 }
 1226 
 1227 /*
 1228  * Workitem queue management
 1229  */
 1230 static int max_softdeps;        /* maximum number of structs before slowdown */
 1231 static int tickdelay = 2;       /* number of ticks to pause during slowdown */
 1232 static int proc_waiting;        /* tracks whether we have a timeout posted */
 1233 static int *stat_countp;        /* statistic to count in proc_waiting timeout */
 1234 static struct callout softdep_callout;
 1235 static int req_clear_inodedeps; /* syncer process flush some inodedeps */
 1236 static int req_clear_remove;    /* syncer process flush some freeblks */
 1237 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
 1238 
 1239 /*
 1240  * runtime statistics
 1241  */
 1242 static int stat_flush_threads;  /* number of softdep flushing threads */
 1243 static int stat_worklist_push;  /* number of worklist cleanups */
 1244 static int stat_delayed_inact;  /* number of delayed inactivation cleanups */
 1245 static int stat_blk_limit_push; /* number of times block limit neared */
 1246 static int stat_ino_limit_push; /* number of times inode limit neared */
 1247 static int stat_blk_limit_hit;  /* number of times block slowdown imposed */
 1248 static int stat_ino_limit_hit;  /* number of times inode slowdown imposed */
 1249 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
 1250 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
 1251 static int stat_inode_bitmap;   /* bufs redirtied as inode bitmap not written */
 1252 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
 1253 static int stat_dir_entry;      /* bufs redirtied as dir entry cannot write */
 1254 static int stat_jaddref;        /* bufs redirtied as ino bitmap can not write */
 1255 static int stat_jnewblk;        /* bufs redirtied as blk bitmap can not write */
 1256 static int stat_journal_min;    /* Times hit journal min threshold */
 1257 static int stat_journal_low;    /* Times hit journal low threshold */
 1258 static int stat_journal_wait;   /* Times blocked in jwait(). */
 1259 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */
 1260 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */
 1261 static int stat_jwait_inode;    /* Times blocked in jwait() for inodes. */
 1262 static int stat_jwait_newblk;   /* Times blocked in jwait() for newblks. */
 1263 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
 1264 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
 1265 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
 1266 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
 1267 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
 1268 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
 1269 
 1270 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
 1271     &max_softdeps, 0, "");
 1272 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
 1273     &tickdelay, 0, "");
 1274 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
 1275     &stat_flush_threads, 0, "");
 1276 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
 1277     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
 1278 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
 1279     &stat_delayed_inact, 0, "");
 1280 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
 1281     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
 1282 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
 1283     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
 1284 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
 1285     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
 1286 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
 1287     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
 1288 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
 1289     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
 1290 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
 1291     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
 1292 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
 1293     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
 1294 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
 1295     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
 1296 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
 1297     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
 1298 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
 1299     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
 1300 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
 1301     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
 1302 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
 1303     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
 1304 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
 1305     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
 1306 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
 1307     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
 1309     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
 1311     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
 1313     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
 1315     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
 1317     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
 1319     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
 1321     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
 1323     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
 1325     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
 1326 
 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
 1328     &softdep_flushcache, 0, "");
 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
 1330     &stat_emptyjblocks, 0, "");
 1331 
 1332 SYSCTL_DECL(_vfs_ffs);
 1333 
 1334 /* Whether to recompute the summary at mount time */
 1335 static int compute_summary_at_mount = 0;
 1336 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
 1337            &compute_summary_at_mount, 0, "Recompute summary at mount");
 1338 static int print_threads = 0;
 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
 1340     &print_threads, 0, "Notify flusher thread start/stop");
 1341 
 1342 /* List of all filesystems mounted with soft updates */
 1343 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
 1344 
 1345 static void
 1346 get_parent_vp_unlock_bp(struct mount *mp,
 1347         struct buf *bp,
 1348         struct diraddhd *diraddhdp,
 1349         struct diraddhd *unfinishedp)
 1350 {
 1351         struct diradd *dap;
 1352 
 1353         /*
 1354          * Requeue unfinished dependencies before
 1355          * unlocking buffer, which could make
 1356          * diraddhdp invalid.
 1357          */
 1358         ACQUIRE_LOCK(VFSTOUFS(mp));
 1359         while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
 1360                 LIST_REMOVE(dap, da_pdlist);
 1361                 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
 1362         }
 1363         FREE_LOCK(VFSTOUFS(mp));
 1364 
 1365         bp->b_vflags &= ~BV_SCANNED;
 1366         BUF_NOREC(bp);
 1367         BUF_UNLOCK(bp);
 1368 }
 1369 
 1370 /*
 1371  * This function fetches inode inum on mount point mp.  We already
 1372  * hold a locked vnode vp, and might have a locked buffer bp belonging
 1373  * to vp.
 1374 
 1375  * We must not block on acquiring the new inode lock as we will get
 1376  * into a lock-order reversal with the buffer lock and possibly get a
 1377  * deadlock.  Thus if we cannot instantiate the requested vnode
 1378  * without sleeping on its lock, we must unlock the vnode and the
 1379  * buffer before doing a blocking on the vnode lock.  We return
 1380  * ERELOOKUP if we have had to unlock either the vnode or the buffer so
 1381  * that the caller can reassess its state.
 1382  *
 1383  * Top-level VFS code (for syscalls and other consumers, e.g. callers
 1384  * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
 1385  * point.
 1386  *
 1387  * Since callers expect to operate on fully constructed vnode, we also
 1388  * recheck v_data after relock, and return ENOENT if NULL.
 1389  *
 1390  * If unlocking bp, we must unroll dequeueing its unfinished
 1391  * dependencies, and clear scan flag, before unlocking.  If unlocking
 1392  * vp while it is under deactivation, we re-queue deactivation.
 1393  */
 1394 static int
 1395 get_parent_vp(struct vnode *vp,
 1396         struct mount *mp,
 1397         ino_t inum,
 1398         struct buf *bp,
 1399         struct diraddhd *diraddhdp,
 1400         struct diraddhd *unfinishedp,
 1401         struct vnode **rvp)
 1402 {
 1403         struct vnode *pvp;
 1404         int error;
 1405         bool bplocked;
 1406 
 1407         ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
 1408         for (bplocked = true, pvp = NULL;;) {
 1409                 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
 1410                     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
 1411                 if (error == 0) {
 1412                         /*
 1413                          * Since we could have unlocked vp, the inode
 1414                          * number could no longer indicate a
 1415                          * constructed node.  In this case, we must
 1416                          * restart the syscall.
 1417                          */
 1418                         if (VTOI(pvp)->i_mode == 0 || !bplocked) {
 1419                                 if (bp != NULL && bplocked)
 1420                                         get_parent_vp_unlock_bp(mp, bp,
 1421                                             diraddhdp, unfinishedp);
 1422                                 if (VTOI(pvp)->i_mode == 0)
 1423                                         vgone(pvp);
 1424                                 error = ERELOOKUP;
 1425                                 goto out2;
 1426                         }
 1427                         goto out1;
 1428                 }
 1429                 if (bp != NULL && bplocked) {
 1430                         get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
 1431                         bplocked = false;
 1432                 }
 1433 
 1434                 /*
 1435                  * Do not drop vnode lock while inactivating during
 1436                  * vunref.  This would result in leaks of the VI flags
 1437                  * and reclaiming of non-truncated vnode.  Instead,
 1438                  * re-schedule inactivation hoping that we would be
 1439                  * able to sync inode later.
 1440                  */
 1441                 if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
 1442                     (vp->v_vflag & VV_UNREF) != 0) {
 1443                         VI_LOCK(vp);
 1444                         vp->v_iflag |= VI_OWEINACT;
 1445                         VI_UNLOCK(vp);
 1446                         return (ERELOOKUP);
 1447                 }
 1448 
 1449                 VOP_UNLOCK(vp);
 1450                 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
 1451                     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
 1452                 if (error != 0) {
 1453                         MPASS(error != ERELOOKUP);
 1454                         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1455                         break;
 1456                 }
 1457                 if (VTOI(pvp)->i_mode == 0) {
 1458                         vgone(pvp);
 1459                         vput(pvp);
 1460                         pvp = NULL;
 1461                         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1462                         error = ERELOOKUP;
 1463                         break;
 1464                 }
 1465                 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
 1466                 if (error == 0)
 1467                         break;
 1468                 vput(pvp);
 1469                 pvp = NULL;
 1470                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1471                 if (vp->v_data == NULL) {
 1472                         error = ENOENT;
 1473                         break;
 1474                 }
 1475         }
 1476         if (bp != NULL) {
 1477                 MPASS(!bplocked);
 1478                 error = ERELOOKUP;
 1479         }
 1480 out2:
 1481         if (error != 0 && pvp != NULL) {
 1482                 vput(pvp);
 1483                 pvp = NULL;
 1484         }
 1485 out1:
 1486         *rvp = pvp;
 1487         ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
 1488         return (error);
 1489 }
 1490 
 1491 /*
 1492  * This function cleans the worklist for a filesystem.
 1493  * Each filesystem running with soft dependencies gets its own
 1494  * thread to run in this function. The thread is started up in
 1495  * softdep_mount and shutdown in softdep_unmount. They show up
 1496  * as part of the kernel "bufdaemon" process whose process
 1497  * entry is available in bufdaemonproc.
 1498  */
 1499 static int searchfailed;
 1500 extern struct proc *bufdaemonproc;
 1501 static void
 1502 softdep_flush(void *addr)
 1503 {
 1504         struct mount *mp;
 1505         struct thread *td;
 1506         struct ufsmount *ump;
 1507         int cleanups;
 1508 
 1509         td = curthread;
 1510         td->td_pflags |= TDP_NORUNNINGBUF;
 1511         mp = (struct mount *)addr;
 1512         ump = VFSTOUFS(mp);
 1513         atomic_add_int(&stat_flush_threads, 1);
 1514         ACQUIRE_LOCK(ump);
 1515         ump->softdep_flags &= ~FLUSH_STARTING;
 1516         wakeup(&ump->softdep_flushtd);
 1517         FREE_LOCK(ump);
 1518         if (print_threads) {
 1519                 if (stat_flush_threads == 1)
 1520                         printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
 1521                             bufdaemonproc->p_pid);
 1522                 printf("Start thread %s\n", td->td_name);
 1523         }
 1524         for (;;) {      
 1525                 while (softdep_process_worklist(mp, 0) > 0 ||
 1526                     (MOUNTEDSUJ(mp) &&
 1527                     VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
 1528                         kthread_suspend_check();
 1529                 ACQUIRE_LOCK(ump);
 1530                 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
 1531                         msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
 1532                             "sdflush", hz / 2);
 1533                 ump->softdep_flags &= ~FLUSH_CLEANUP;
 1534                 /*
 1535                  * Check to see if we are done and need to exit.
 1536                  */
 1537                 if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
 1538                         FREE_LOCK(ump);
 1539                         continue;
 1540                 }
 1541                 ump->softdep_flags &= ~FLUSH_EXIT;
 1542                 cleanups = ump->um_softdep->sd_cleanups;
 1543                 FREE_LOCK(ump);
 1544                 wakeup(&ump->softdep_flags);
 1545                 if (print_threads) {
 1546                         printf("Stop thread %s: searchfailed %d, "
 1547                             "did cleanups %d\n",
 1548                             td->td_name, searchfailed, cleanups);
 1549                 }
 1550                 atomic_subtract_int(&stat_flush_threads, 1);
 1551                 kthread_exit();
 1552                 panic("kthread_exit failed\n");
 1553         }
 1554 }
 1555 
 1556 static void
 1557 worklist_speedup(struct mount *mp)
 1558 {
 1559         struct ufsmount *ump;
 1560 
 1561         ump = VFSTOUFS(mp);
 1562         LOCK_OWNED(ump);
 1563         if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
 1564                 ump->softdep_flags |= FLUSH_CLEANUP;
 1565         wakeup(&ump->softdep_flushtd);
 1566 }
 1567 
 1568 static void
 1569 softdep_send_speedup(struct ufsmount *ump,
 1570         off_t shortage,
 1571         u_int flags)
 1572 {
 1573         struct buf *bp;
 1574 
 1575         if ((ump->um_flags & UM_CANSPEEDUP) == 0)
 1576                 return;
 1577 
 1578         bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
 1579         bp->b_iocmd = BIO_SPEEDUP;
 1580         bp->b_ioflags = flags;
 1581         bp->b_bcount = omin(shortage, LONG_MAX);
 1582         g_vfs_strategy(ump->um_bo, bp);
 1583         bufwait(bp);
 1584         free(bp, M_TRIM);
 1585 }
 1586 
 1587 static int
 1588 softdep_speedup(struct ufsmount *ump)
 1589 {
 1590         struct ufsmount *altump;
 1591         struct mount_softdeps *sdp;
 1592 
 1593         LOCK_OWNED(ump);
 1594         worklist_speedup(ump->um_mountp);
 1595         bd_speedup();
 1596         /*
 1597          * If we have global shortages, then we need other
 1598          * filesystems to help with the cleanup. Here we wakeup a
 1599          * flusher thread for a filesystem that is over its fair
 1600          * share of resources.
 1601          */
 1602         if (req_clear_inodedeps || req_clear_remove) {
 1603                 ACQUIRE_GBLLOCK(&lk);
 1604                 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
 1605                         if ((altump = sdp->sd_ump) == ump)
 1606                                 continue;
 1607                         if (((req_clear_inodedeps &&
 1608                             altump->softdep_curdeps[D_INODEDEP] >
 1609                             max_softdeps / stat_flush_threads) ||
 1610                             (req_clear_remove &&
 1611                             altump->softdep_curdeps[D_DIRREM] >
 1612                             (max_softdeps / 2) / stat_flush_threads)) &&
 1613                             TRY_ACQUIRE_LOCK(altump))
 1614                                 break;
 1615                 }
 1616                 if (sdp == NULL) {
 1617                         searchfailed++;
 1618                         FREE_GBLLOCK(&lk);
 1619                 } else {
 1620                         /*
 1621                          * Move to the end of the list so we pick a
 1622                          * different one on out next try.
 1623                          */
 1624                         TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
 1625                         TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
 1626                         FREE_GBLLOCK(&lk);
 1627                         if ((altump->softdep_flags &
 1628                             (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
 1629                                 altump->softdep_flags |= FLUSH_CLEANUP;
 1630                         altump->um_softdep->sd_cleanups++;
 1631                         wakeup(&altump->softdep_flushtd);
 1632                         FREE_LOCK(altump);
 1633                 }
 1634         }
 1635         return (speedup_syncer());
 1636 }
 1637 
 1638 /*
 1639  * Add an item to the end of the work queue.
 1640  * This routine requires that the lock be held.
 1641  * This is the only routine that adds items to the list.
 1642  * The following routine is the only one that removes items
 1643  * and does so in order from first to last.
 1644  */
 1645 
 1646 #define WK_HEAD         0x0001  /* Add to HEAD. */
 1647 #define WK_NODELAY      0x0002  /* Process immediately. */
 1648 
 1649 static void
 1650 add_to_worklist(struct worklist *wk, int flags)
 1651 {
 1652         struct ufsmount *ump;
 1653 
 1654         ump = VFSTOUFS(wk->wk_mp);
 1655         LOCK_OWNED(ump);
 1656         if (wk->wk_state & ONWORKLIST)
 1657                 panic("add_to_worklist: %s(0x%X) already on list",
 1658                     TYPENAME(wk->wk_type), wk->wk_state);
 1659         wk->wk_state |= ONWORKLIST;
 1660         if (ump->softdep_on_worklist == 0) {
 1661                 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
 1662                 ump->softdep_worklist_tail = wk;
 1663         } else if (flags & WK_HEAD) {
 1664                 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
 1665         } else {
 1666                 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
 1667                 ump->softdep_worklist_tail = wk;
 1668         }
 1669         ump->softdep_on_worklist += 1;
 1670         if (flags & WK_NODELAY)
 1671                 worklist_speedup(wk->wk_mp);
 1672 }
 1673 
 1674 /*
 1675  * Remove the item to be processed. If we are removing the last
 1676  * item on the list, we need to recalculate the tail pointer.
 1677  */
 1678 static void
 1679 remove_from_worklist(struct worklist *wk)
 1680 {
 1681         struct ufsmount *ump;
 1682 
 1683         ump = VFSTOUFS(wk->wk_mp);
 1684         if (ump->softdep_worklist_tail == wk)
 1685                 ump->softdep_worklist_tail =
 1686                     (struct worklist *)wk->wk_list.le_prev;
 1687         WORKLIST_REMOVE(wk);
 1688         ump->softdep_on_worklist -= 1;
 1689 }
 1690 
 1691 static void
 1692 wake_worklist(struct worklist *wk)
 1693 {
 1694         if (wk->wk_state & IOWAITING) {
 1695                 wk->wk_state &= ~IOWAITING;
 1696                 wakeup(wk);
 1697         }
 1698 }
 1699 
 1700 static void
 1701 wait_worklist(struct worklist *wk, char *wmesg)
 1702 {
 1703         struct ufsmount *ump;
 1704 
 1705         ump = VFSTOUFS(wk->wk_mp);
 1706         wk->wk_state |= IOWAITING;
 1707         msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
 1708 }
 1709 
 1710 /*
 1711  * Process that runs once per second to handle items in the background queue.
 1712  *
 1713  * Note that we ensure that everything is done in the order in which they
 1714  * appear in the queue. The code below depends on this property to ensure
 1715  * that blocks of a file are freed before the inode itself is freed. This
 1716  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
 1717  * until all the old ones have been purged from the dependency lists.
 1718  */
 1719 static int 
 1720 softdep_process_worklist(struct mount *mp, int full)
 1721 {
 1722         int cnt, matchcnt;
 1723         struct ufsmount *ump;
 1724         long starttime;
 1725 
 1726         KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
 1727         ump = VFSTOUFS(mp);
 1728         if (ump->um_softdep == NULL)
 1729                 return (0);
 1730         matchcnt = 0;
 1731         ACQUIRE_LOCK(ump);
 1732         starttime = time_second;
 1733         softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
 1734         check_clear_deps(mp);
 1735         while (ump->softdep_on_worklist > 0) {
 1736                 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
 1737                         break;
 1738                 else
 1739                         matchcnt += cnt;
 1740                 check_clear_deps(mp);
 1741                 /*
 1742                  * We do not generally want to stop for buffer space, but if
 1743                  * we are really being a buffer hog, we will stop and wait.
 1744                  */
 1745                 if (should_yield()) {
 1746                         FREE_LOCK(ump);
 1747                         kern_yield(PRI_USER);
 1748                         bwillwrite();
 1749                         ACQUIRE_LOCK(ump);
 1750                 }
 1751                 /*
 1752                  * Never allow processing to run for more than one
 1753                  * second. This gives the syncer thread the opportunity
 1754                  * to pause if appropriate.
 1755                  */
 1756                 if (!full && starttime != time_second)
 1757                         break;
 1758         }
 1759         if (full == 0)
 1760                 journal_unsuspend(ump);
 1761         FREE_LOCK(ump);
 1762         return (matchcnt);
 1763 }
 1764 
 1765 /*
 1766  * Process all removes associated with a vnode if we are running out of
 1767  * journal space.  Any other process which attempts to flush these will
 1768  * be unable as we have the vnodes locked.
 1769  */
 1770 static void
 1771 process_removes(struct vnode *vp)
 1772 {
 1773         struct inodedep *inodedep;
 1774         struct dirrem *dirrem;
 1775         struct ufsmount *ump;
 1776         struct mount *mp;
 1777         ino_t inum;
 1778 
 1779         mp = vp->v_mount;
 1780         ump = VFSTOUFS(mp);
 1781         LOCK_OWNED(ump);
 1782         inum = VTOI(vp)->i_number;
 1783         for (;;) {
 1784 top:
 1785                 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
 1786                         return;
 1787                 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
 1788                         /*
 1789                          * If another thread is trying to lock this vnode
 1790                          * it will fail but we must wait for it to do so
 1791                          * before we can proceed.
 1792                          */
 1793                         if (dirrem->dm_state & INPROGRESS) {
 1794                                 wait_worklist(&dirrem->dm_list, "pwrwait");
 1795                                 goto top;
 1796                         }
 1797                         if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 
 1798                             (COMPLETE | ONWORKLIST))
 1799                                 break;
 1800                 }
 1801                 if (dirrem == NULL)
 1802                         return;
 1803                 remove_from_worklist(&dirrem->dm_list);
 1804                 FREE_LOCK(ump);
 1805                 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
 1806                         panic("process_removes: suspended filesystem");
 1807                 handle_workitem_remove(dirrem, 0);
 1808                 vn_finished_secondary_write(mp);
 1809                 ACQUIRE_LOCK(ump);
 1810         }
 1811 }
 1812 
 1813 /*
 1814  * Process all truncations associated with a vnode if we are running out
 1815  * of journal space.  This is called when the vnode lock is already held
 1816  * and no other process can clear the truncation.  This function returns
 1817  * a value greater than zero if it did any work.
 1818  */
 1819 static void
 1820 process_truncates(struct vnode *vp)
 1821 {
 1822         struct inodedep *inodedep;
 1823         struct freeblks *freeblks;
 1824         struct ufsmount *ump;
 1825         struct mount *mp;
 1826         ino_t inum;
 1827         int cgwait;
 1828 
 1829         mp = vp->v_mount;
 1830         ump = VFSTOUFS(mp);
 1831         LOCK_OWNED(ump);
 1832         inum = VTOI(vp)->i_number;
 1833         for (;;) {
 1834                 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
 1835                         return;
 1836                 cgwait = 0;
 1837                 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
 1838                         /* Journal entries not yet written.  */
 1839                         if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
 1840                                 jwait(&LIST_FIRST(
 1841                                     &freeblks->fb_jblkdephd)->jb_list,
 1842                                     MNT_WAIT);
 1843                                 break;
 1844                         }
 1845                         /* Another thread is executing this item. */
 1846                         if (freeblks->fb_state & INPROGRESS) {
 1847                                 wait_worklist(&freeblks->fb_list, "ptrwait");
 1848                                 break;
 1849                         }
 1850                         /* Freeblks is waiting on a inode write. */
 1851                         if ((freeblks->fb_state & COMPLETE) == 0) {
 1852                                 FREE_LOCK(ump);
 1853                                 ffs_update(vp, 1);
 1854                                 ACQUIRE_LOCK(ump);
 1855                                 break;
 1856                         }
 1857                         if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
 1858                             (ALLCOMPLETE | ONWORKLIST)) {
 1859                                 remove_from_worklist(&freeblks->fb_list);
 1860                                 freeblks->fb_state |= INPROGRESS;
 1861                                 FREE_LOCK(ump);
 1862                                 if (vn_start_secondary_write(NULL, &mp,
 1863                                     V_NOWAIT))
 1864                                         panic("process_truncates: "
 1865                                             "suspended filesystem");
 1866                                 handle_workitem_freeblocks(freeblks, 0);
 1867                                 vn_finished_secondary_write(mp);
 1868                                 ACQUIRE_LOCK(ump);
 1869                                 break;
 1870                         }
 1871                         if (freeblks->fb_cgwait)
 1872                                 cgwait++;
 1873                 }
 1874                 if (cgwait) {
 1875                         FREE_LOCK(ump);
 1876                         sync_cgs(mp, MNT_WAIT);
 1877                         ffs_sync_snap(mp, MNT_WAIT);
 1878                         ACQUIRE_LOCK(ump);
 1879                         continue;
 1880                 }
 1881                 if (freeblks == NULL)
 1882                         break;
 1883         }
 1884         return;
 1885 }
 1886 
 1887 /*
 1888  * Process one item on the worklist.
 1889  */
 1890 static int
 1891 process_worklist_item(struct mount *mp,
 1892         int target,
 1893         int flags)
 1894 {
 1895         struct worklist sentinel;
 1896         struct worklist *wk;
 1897         struct ufsmount *ump;
 1898         int matchcnt;
 1899         int error;
 1900 
 1901         KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
 1902         /*
 1903          * If we are being called because of a process doing a
 1904          * copy-on-write, then it is not safe to write as we may
 1905          * recurse into the copy-on-write routine.
 1906          */
 1907         if (curthread->td_pflags & TDP_COWINPROGRESS)
 1908                 return (-1);
 1909         PHOLD(curproc); /* Don't let the stack go away. */
 1910         ump = VFSTOUFS(mp);
 1911         LOCK_OWNED(ump);
 1912         matchcnt = 0;
 1913         sentinel.wk_mp = NULL;
 1914         sentinel.wk_type = D_SENTINEL;
 1915         LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
 1916         for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
 1917             wk = LIST_NEXT(&sentinel, wk_list)) {
 1918                 if (wk->wk_type == D_SENTINEL) {
 1919                         LIST_REMOVE(&sentinel, wk_list);
 1920                         LIST_INSERT_AFTER(wk, &sentinel, wk_list);
 1921                         continue;
 1922                 }
 1923                 if (wk->wk_state & INPROGRESS)
 1924                         panic("process_worklist_item: %p already in progress.",
 1925                             wk);
 1926                 wk->wk_state |= INPROGRESS;
 1927                 remove_from_worklist(wk);
 1928                 FREE_LOCK(ump);
 1929                 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
 1930                         panic("process_worklist_item: suspended filesystem");
 1931                 switch (wk->wk_type) {
 1932                 case D_DIRREM:
 1933                         /* removal of a directory entry */
 1934                         error = handle_workitem_remove(WK_DIRREM(wk), flags);
 1935                         break;
 1936 
 1937                 case D_FREEBLKS:
 1938                         /* releasing blocks and/or fragments from a file */
 1939                         error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
 1940                             flags);
 1941                         break;
 1942 
 1943                 case D_FREEFRAG:
 1944                         /* releasing a fragment when replaced as a file grows */
 1945                         handle_workitem_freefrag(WK_FREEFRAG(wk));
 1946                         error = 0;
 1947                         break;
 1948 
 1949                 case D_FREEFILE:
 1950                         /* releasing an inode when its link count drops to 0 */
 1951                         handle_workitem_freefile(WK_FREEFILE(wk));
 1952                         error = 0;
 1953                         break;
 1954 
 1955                 default:
 1956                         panic("%s_process_worklist: Unknown type %s",
 1957                             "softdep", TYPENAME(wk->wk_type));
 1958                         /* NOTREACHED */
 1959                 }
 1960                 vn_finished_secondary_write(mp);
 1961                 ACQUIRE_LOCK(ump);
 1962                 if (error == 0) {
 1963                         if (++matchcnt == target)
 1964                                 break;
 1965                         continue;
 1966                 }
 1967                 /*
 1968                  * We have to retry the worklist item later.  Wake up any
 1969                  * waiters who may be able to complete it immediately and
 1970                  * add the item back to the head so we don't try to execute
 1971                  * it again.
 1972                  */
 1973                 wk->wk_state &= ~INPROGRESS;
 1974                 wake_worklist(wk);
 1975                 add_to_worklist(wk, WK_HEAD);
 1976         }
 1977         /* Sentinal could've become the tail from remove_from_worklist. */
 1978         if (ump->softdep_worklist_tail == &sentinel)
 1979                 ump->softdep_worklist_tail =
 1980                     (struct worklist *)sentinel.wk_list.le_prev;
 1981         LIST_REMOVE(&sentinel, wk_list);
 1982         PRELE(curproc);
 1983         return (matchcnt);
 1984 }
 1985 
 1986 /*
 1987  * Move dependencies from one buffer to another.
 1988  */
 1989 int
 1990 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
 1991 {
 1992         struct worklist *wk, *wktail;
 1993         struct ufsmount *ump;
 1994         int dirty;
 1995 
 1996         if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
 1997                 return (0);
 1998         KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
 1999             ("softdep_move_dependencies called on non-softdep filesystem"));
 2000         dirty = 0;
 2001         wktail = NULL;
 2002         ump = VFSTOUFS(wk->wk_mp);
 2003         ACQUIRE_LOCK(ump);
 2004         while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
 2005                 LIST_REMOVE(wk, wk_list);
 2006                 if (wk->wk_type == D_BMSAFEMAP &&
 2007                     bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
 2008                         dirty = 1;
 2009                 if (wktail == NULL)
 2010                         LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
 2011                 else
 2012                         LIST_INSERT_AFTER(wktail, wk, wk_list);
 2013                 wktail = wk;
 2014         }
 2015         FREE_LOCK(ump);
 2016 
 2017         return (dirty);
 2018 }
 2019 
 2020 /*
 2021  * Purge the work list of all items associated with a particular mount point.
 2022  */
 2023 int
 2024 softdep_flushworklist(struct mount *oldmnt,
 2025         int *countp,
 2026         struct thread *td)
 2027 {
 2028         struct vnode *devvp;
 2029         struct ufsmount *ump;
 2030         int count, error;
 2031 
 2032         /*
 2033          * Alternately flush the block device associated with the mount
 2034          * point and process any dependencies that the flushing
 2035          * creates. We continue until no more worklist dependencies
 2036          * are found.
 2037          */
 2038         *countp = 0;
 2039         error = 0;
 2040         ump = VFSTOUFS(oldmnt);
 2041         devvp = ump->um_devvp;
 2042         while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
 2043                 *countp += count;
 2044                 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
 2045                 error = VOP_FSYNC(devvp, MNT_WAIT, td);
 2046                 VOP_UNLOCK(devvp);
 2047                 if (error != 0)
 2048                         break;
 2049         }
 2050         return (error);
 2051 }
 2052 
 2053 #define SU_WAITIDLE_RETRIES     20
 2054 static int
 2055 softdep_waitidle(struct mount *mp, int flags __unused)
 2056 {
 2057         struct ufsmount *ump;
 2058         struct vnode *devvp;
 2059         struct thread *td;
 2060         int error, i;
 2061 
 2062         ump = VFSTOUFS(mp);
 2063         KASSERT(ump->um_softdep != NULL,
 2064             ("softdep_waitidle called on non-softdep filesystem"));
 2065         devvp = ump->um_devvp;
 2066         td = curthread;
 2067         error = 0;
 2068         ACQUIRE_LOCK(ump);
 2069         for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
 2070                 ump->softdep_req = 1;
 2071                 KASSERT((flags & FORCECLOSE) == 0 ||
 2072                     ump->softdep_on_worklist == 0,
 2073                     ("softdep_waitidle: work added after flush"));
 2074                 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
 2075                     "softdeps", 10 * hz);
 2076                 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
 2077                 error = VOP_FSYNC(devvp, MNT_WAIT, td);
 2078                 VOP_UNLOCK(devvp);
 2079                 ACQUIRE_LOCK(ump);
 2080                 if (error != 0)
 2081                         break;
 2082         }
 2083         ump->softdep_req = 0;
 2084         if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
 2085                 error = EBUSY;
 2086                 printf("softdep_waitidle: Failed to flush worklist for %p\n",
 2087                     mp);
 2088         }
 2089         FREE_LOCK(ump);
 2090         return (error);
 2091 }
 2092 
 2093 /*
 2094  * Flush all vnodes and worklist items associated with a specified mount point.
 2095  */
 2096 int
 2097 softdep_flushfiles(struct mount *oldmnt,
 2098         int flags,
 2099         struct thread *td)
 2100 {
 2101         struct ufsmount *ump __unused;
 2102 #ifdef QUOTA
 2103         int i;
 2104 #endif
 2105         int error, early, depcount, loopcnt, retry_flush_count, retry;
 2106         int morework;
 2107 
 2108         ump = VFSTOUFS(oldmnt);
 2109         KASSERT(ump->um_softdep != NULL,
 2110             ("softdep_flushfiles called on non-softdep filesystem"));
 2111         loopcnt = 10;
 2112         retry_flush_count = 3;
 2113 retry_flush:
 2114         error = 0;
 2115 
 2116         /*
 2117          * Alternately flush the vnodes associated with the mount
 2118          * point and process any dependencies that the flushing
 2119          * creates. In theory, this loop can happen at most twice,
 2120          * but we give it a few extra just to be sure.
 2121          */
 2122         for (; loopcnt > 0; loopcnt--) {
 2123                 /*
 2124                  * Do another flush in case any vnodes were brought in
 2125                  * as part of the cleanup operations.
 2126                  */
 2127                 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
 2128                     MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
 2129                 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
 2130                         break;
 2131                 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
 2132                     depcount == 0)
 2133                         break;
 2134         }
 2135         /*
 2136          * If we are unmounting then it is an error to fail. If we
 2137          * are simply trying to downgrade to read-only, then filesystem
 2138          * activity can keep us busy forever, so we just fail with EBUSY.
 2139          */
 2140         if (loopcnt == 0) {
 2141                 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
 2142                         panic("softdep_flushfiles: looping");
 2143                 error = EBUSY;
 2144         }
 2145         if (!error)
 2146                 error = softdep_waitidle(oldmnt, flags);
 2147         if (!error) {
 2148                 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
 2149                         retry = 0;
 2150                         MNT_ILOCK(oldmnt);
 2151                         morework = oldmnt->mnt_nvnodelistsize > 0;
 2152 #ifdef QUOTA
 2153                         UFS_LOCK(ump);
 2154                         for (i = 0; i < MAXQUOTAS; i++) {
 2155                                 if (ump->um_quotas[i] != NULLVP)
 2156                                         morework = 1;
 2157                         }
 2158                         UFS_UNLOCK(ump);
 2159 #endif
 2160                         if (morework) {
 2161                                 if (--retry_flush_count > 0) {
 2162                                         retry = 1;
 2163                                         loopcnt = 3;
 2164                                 } else
 2165                                         error = EBUSY;
 2166                         }
 2167                         MNT_IUNLOCK(oldmnt);
 2168                         if (retry)
 2169                                 goto retry_flush;
 2170                 }
 2171         }
 2172         return (error);
 2173 }
 2174 
 2175 /*
 2176  * Structure hashing.
 2177  * 
 2178  * There are four types of structures that can be looked up:
 2179  *      1) pagedep structures identified by mount point, inode number,
 2180  *         and logical block.
 2181  *      2) inodedep structures identified by mount point and inode number.
 2182  *      3) newblk structures identified by mount point and
 2183  *         physical block number.
 2184  *      4) bmsafemap structures identified by mount point and
 2185  *         cylinder group number.
 2186  *
 2187  * The "pagedep" and "inodedep" dependency structures are hashed
 2188  * separately from the file blocks and inodes to which they correspond.
 2189  * This separation helps when the in-memory copy of an inode or
 2190  * file block must be replaced. It also obviates the need to access
 2191  * an inode or file page when simply updating (or de-allocating)
 2192  * dependency structures. Lookup of newblk structures is needed to
 2193  * find newly allocated blocks when trying to associate them with
 2194  * their allocdirect or allocindir structure.
 2195  *
 2196  * The lookup routines optionally create and hash a new instance when
 2197  * an existing entry is not found. The bmsafemap lookup routine always
 2198  * allocates a new structure if an existing one is not found.
 2199  */
 2200 #define DEPALLOC        0x0001  /* allocate structure if lookup fails */
 2201 
 2202 /*
 2203  * Structures and routines associated with pagedep caching.
 2204  */
 2205 #define PAGEDEP_HASH(ump, inum, lbn) \
 2206         (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
 2207 
 2208 static int
 2209 pagedep_find(struct pagedep_hashhead *pagedephd,
 2210         ino_t ino,
 2211         ufs_lbn_t lbn,
 2212         struct pagedep **pagedeppp)
 2213 {
 2214         struct pagedep *pagedep;
 2215 
 2216         LIST_FOREACH(pagedep, pagedephd, pd_hash) {
 2217                 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
 2218                         *pagedeppp = pagedep;
 2219                         return (1);
 2220                 }
 2221         }
 2222         *pagedeppp = NULL;
 2223         return (0);
 2224 }
 2225 /*
 2226  * Look up a pagedep. Return 1 if found, 0 otherwise.
 2227  * If not found, allocate if DEPALLOC flag is passed.
 2228  * Found or allocated entry is returned in pagedeppp.
 2229  */
 2230 static int
 2231 pagedep_lookup(struct mount *mp,
 2232         struct buf *bp,
 2233         ino_t ino,
 2234         ufs_lbn_t lbn,
 2235         int flags,
 2236         struct pagedep **pagedeppp)
 2237 {
 2238         struct pagedep *pagedep;
 2239         struct pagedep_hashhead *pagedephd;
 2240         struct worklist *wk;
 2241         struct ufsmount *ump;
 2242         int ret;
 2243         int i;
 2244 
 2245         ump = VFSTOUFS(mp);
 2246         LOCK_OWNED(ump);
 2247         if (bp) {
 2248                 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
 2249                         if (wk->wk_type == D_PAGEDEP) {
 2250                                 *pagedeppp = WK_PAGEDEP(wk);
 2251                                 return (1);
 2252                         }
 2253                 }
 2254         }
 2255         pagedephd = PAGEDEP_HASH(ump, ino, lbn);
 2256         ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
 2257         if (ret) {
 2258                 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
 2259                         WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
 2260                 return (1);
 2261         }
 2262         if ((flags & DEPALLOC) == 0)
 2263                 return (0);
 2264         FREE_LOCK(ump);
 2265         pagedep = malloc(sizeof(struct pagedep),
 2266             M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
 2267         workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
 2268         ACQUIRE_LOCK(ump);
 2269         ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
 2270         if (*pagedeppp) {
 2271                 /*
 2272                  * This should never happen since we only create pagedeps
 2273                  * with the vnode lock held.  Could be an assert.
 2274                  */
 2275                 WORKITEM_FREE(pagedep, D_PAGEDEP);
 2276                 return (ret);
 2277         }
 2278         pagedep->pd_ino = ino;
 2279         pagedep->pd_lbn = lbn;
 2280         LIST_INIT(&pagedep->pd_dirremhd);
 2281         LIST_INIT(&pagedep->pd_pendinghd);
 2282         for (i = 0; i < DAHASHSZ; i++)
 2283                 LIST_INIT(&pagedep->pd_diraddhd[i]);
 2284         LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
 2285         WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
 2286         *pagedeppp = pagedep;
 2287         return (0);
 2288 }
 2289 
 2290 /*
 2291  * Structures and routines associated with inodedep caching.
 2292  */
 2293 #define INODEDEP_HASH(ump, inum) \
 2294       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
 2295 
 2296 static int
 2297 inodedep_find(struct inodedep_hashhead *inodedephd,
 2298         ino_t inum,
 2299         struct inodedep **inodedeppp)
 2300 {
 2301         struct inodedep *inodedep;
 2302 
 2303         LIST_FOREACH(inodedep, inodedephd, id_hash)
 2304                 if (inum == inodedep->id_ino)
 2305                         break;
 2306         if (inodedep) {
 2307                 *inodedeppp = inodedep;
 2308                 return (1);
 2309         }
 2310         *inodedeppp = NULL;
 2311 
 2312         return (0);
 2313 }
 2314 /*
 2315  * Look up an inodedep. Return 1 if found, 0 if not found.
 2316  * If not found, allocate if DEPALLOC flag is passed.
 2317  * Found or allocated entry is returned in inodedeppp.
 2318  */
 2319 static int
 2320 inodedep_lookup(struct mount *mp,
 2321         ino_t inum,
 2322         int flags,
 2323         struct inodedep **inodedeppp)
 2324 {
 2325         struct inodedep *inodedep;
 2326         struct inodedep_hashhead *inodedephd;
 2327         struct ufsmount *ump;
 2328         struct fs *fs;
 2329 
 2330         ump = VFSTOUFS(mp);
 2331         LOCK_OWNED(ump);
 2332         fs = ump->um_fs;
 2333         inodedephd = INODEDEP_HASH(ump, inum);
 2334 
 2335         if (inodedep_find(inodedephd, inum, inodedeppp))
 2336                 return (1);
 2337         if ((flags & DEPALLOC) == 0)
 2338                 return (0);
 2339         /*
 2340          * If the system is over its limit and our filesystem is
 2341          * responsible for more than our share of that usage and
 2342          * we are not in a rush, request some inodedep cleanup.
 2343          */
 2344         if (softdep_excess_items(ump, D_INODEDEP))
 2345                 schedule_cleanup(mp);
 2346         else
 2347                 FREE_LOCK(ump);
 2348         inodedep = malloc(sizeof(struct inodedep),
 2349                 M_INODEDEP, M_SOFTDEP_FLAGS);
 2350         workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
 2351         ACQUIRE_LOCK(ump);
 2352         if (inodedep_find(inodedephd, inum, inodedeppp)) {
 2353                 WORKITEM_FREE(inodedep, D_INODEDEP);
 2354                 return (1);
 2355         }
 2356         inodedep->id_fs = fs;
 2357         inodedep->id_ino = inum;
 2358         inodedep->id_state = ALLCOMPLETE;
 2359         inodedep->id_nlinkdelta = 0;
 2360         inodedep->id_nlinkwrote = -1;
 2361         inodedep->id_savedino1 = NULL;
 2362         inodedep->id_savedsize = -1;
 2363         inodedep->id_savedextsize = -1;
 2364         inodedep->id_savednlink = -1;
 2365         inodedep->id_bmsafemap = NULL;
 2366         inodedep->id_mkdiradd = NULL;
 2367         LIST_INIT(&inodedep->id_dirremhd);
 2368         LIST_INIT(&inodedep->id_pendinghd);
 2369         LIST_INIT(&inodedep->id_inowait);
 2370         LIST_INIT(&inodedep->id_bufwait);
 2371         TAILQ_INIT(&inodedep->id_inoreflst);
 2372         TAILQ_INIT(&inodedep->id_inoupdt);
 2373         TAILQ_INIT(&inodedep->id_newinoupdt);
 2374         TAILQ_INIT(&inodedep->id_extupdt);
 2375         TAILQ_INIT(&inodedep->id_newextupdt);
 2376         TAILQ_INIT(&inodedep->id_freeblklst);
 2377         LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
 2378         *inodedeppp = inodedep;
 2379         return (0);
 2380 }
 2381 
 2382 /*
 2383  * Structures and routines associated with newblk caching.
 2384  */
 2385 #define NEWBLK_HASH(ump, inum) \
 2386         (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
 2387 
 2388 static int
 2389 newblk_find(struct newblk_hashhead *newblkhd,
 2390         ufs2_daddr_t newblkno,
 2391         int flags,
 2392         struct newblk **newblkpp)
 2393 {
 2394         struct newblk *newblk;
 2395 
 2396         LIST_FOREACH(newblk, newblkhd, nb_hash) {
 2397                 if (newblkno != newblk->nb_newblkno)
 2398                         continue;
 2399                 /*
 2400                  * If we're creating a new dependency don't match those that
 2401                  * have already been converted to allocdirects.  This is for
 2402                  * a frag extend.
 2403                  */
 2404                 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
 2405                         continue;
 2406                 break;
 2407         }
 2408         if (newblk) {
 2409                 *newblkpp = newblk;
 2410                 return (1);
 2411         }
 2412         *newblkpp = NULL;
 2413         return (0);
 2414 }
 2415 
 2416 /*
 2417  * Look up a newblk. Return 1 if found, 0 if not found.
 2418  * If not found, allocate if DEPALLOC flag is passed.
 2419  * Found or allocated entry is returned in newblkpp.
 2420  */
 2421 static int
 2422 newblk_lookup(struct mount *mp,
 2423         ufs2_daddr_t newblkno,
 2424         int flags,
 2425         struct newblk **newblkpp)
 2426 {
 2427         struct newblk *newblk;
 2428         struct newblk_hashhead *newblkhd;
 2429         struct ufsmount *ump;
 2430 
 2431         ump = VFSTOUFS(mp);
 2432         LOCK_OWNED(ump);
 2433         newblkhd = NEWBLK_HASH(ump, newblkno);
 2434         if (newblk_find(newblkhd, newblkno, flags, newblkpp))
 2435                 return (1);
 2436         if ((flags & DEPALLOC) == 0)
 2437                 return (0);
 2438         if (softdep_excess_items(ump, D_NEWBLK) ||
 2439             softdep_excess_items(ump, D_ALLOCDIRECT) ||
 2440             softdep_excess_items(ump, D_ALLOCINDIR))
 2441                 schedule_cleanup(mp);
 2442         else
 2443                 FREE_LOCK(ump);
 2444         newblk = malloc(sizeof(union allblk), M_NEWBLK,
 2445             M_SOFTDEP_FLAGS | M_ZERO);
 2446         workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
 2447         ACQUIRE_LOCK(ump);
 2448         if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
 2449                 WORKITEM_FREE(newblk, D_NEWBLK);
 2450                 return (1);
 2451         }
 2452         newblk->nb_freefrag = NULL;
 2453         LIST_INIT(&newblk->nb_indirdeps);
 2454         LIST_INIT(&newblk->nb_newdirblk);
 2455         LIST_INIT(&newblk->nb_jwork);
 2456         newblk->nb_state = ATTACHED;
 2457         newblk->nb_newblkno = newblkno;
 2458         LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
 2459         *newblkpp = newblk;
 2460         return (0);
 2461 }
 2462 
 2463 /*
 2464  * Structures and routines associated with freed indirect block caching.
 2465  */
 2466 #define INDIR_HASH(ump, blkno) \
 2467         (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
 2468 
 2469 /*
 2470  * Lookup an indirect block in the indir hash table.  The freework is
 2471  * removed and potentially freed.  The caller must do a blocking journal
 2472  * write before writing to the blkno.
 2473  */
 2474 static int
 2475 indirblk_lookup(struct mount *mp, ufs2_daddr_t blkno)
 2476 {
 2477         struct freework *freework;
 2478         struct indir_hashhead *wkhd;
 2479         struct ufsmount *ump;
 2480 
 2481         ump = VFSTOUFS(mp);
 2482         wkhd = INDIR_HASH(ump, blkno);
 2483         TAILQ_FOREACH(freework, wkhd, fw_next) {
 2484                 if (freework->fw_blkno != blkno)
 2485                         continue;
 2486                 indirblk_remove(freework);
 2487                 return (1);
 2488         }
 2489         return (0);
 2490 }
 2491 
 2492 /*
 2493  * Insert an indirect block represented by freework into the indirblk
 2494  * hash table so that it may prevent the block from being re-used prior
 2495  * to the journal being written.
 2496  */
 2497 static void
 2498 indirblk_insert(struct freework *freework)
 2499 {
 2500         struct jblocks *jblocks;
 2501         struct jseg *jseg;
 2502         struct ufsmount *ump;
 2503 
 2504         ump = VFSTOUFS(freework->fw_list.wk_mp);
 2505         jblocks = ump->softdep_jblocks;
 2506         jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
 2507         if (jseg == NULL)
 2508                 return;
 2509 
 2510         LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
 2511         TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
 2512             fw_next);
 2513         freework->fw_state &= ~DEPCOMPLETE;
 2514 }
 2515 
 2516 static void
 2517 indirblk_remove(struct freework *freework)
 2518 {
 2519         struct ufsmount *ump;
 2520 
 2521         ump = VFSTOUFS(freework->fw_list.wk_mp);
 2522         LIST_REMOVE(freework, fw_segs);
 2523         TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
 2524         freework->fw_state |= DEPCOMPLETE;
 2525         if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
 2526                 WORKITEM_FREE(freework, D_FREEWORK);
 2527 }
 2528 
 2529 /*
 2530  * Executed during filesystem system initialization before
 2531  * mounting any filesystems.
 2532  */
 2533 void 
 2534 softdep_initialize(void)
 2535 {
 2536 
 2537         TAILQ_INIT(&softdepmounts);
 2538 #ifdef __LP64__
 2539         max_softdeps = desiredvnodes * 4;
 2540 #else
 2541         max_softdeps = desiredvnodes * 2;
 2542 #endif
 2543 
 2544         /* initialise bioops hack */
 2545         bioops.io_start = softdep_disk_io_initiation;
 2546         bioops.io_complete = softdep_disk_write_complete;
 2547         bioops.io_deallocate = softdep_deallocate_dependencies;
 2548         bioops.io_countdeps = softdep_count_dependencies;
 2549         ast_register(TDA_UFS, ASTR_KCLEAR | ASTR_ASTF_REQUIRED, 0,
 2550             softdep_ast_cleanup_proc);
 2551 
 2552         /* Initialize the callout with an mtx. */
 2553         callout_init_mtx(&softdep_callout, &lk, 0);
 2554 }
 2555 
 2556 /*
 2557  * Executed after all filesystems have been unmounted during
 2558  * filesystem module unload.
 2559  */
 2560 void
 2561 softdep_uninitialize(void)
 2562 {
 2563 
 2564         /* clear bioops hack */
 2565         bioops.io_start = NULL;
 2566         bioops.io_complete = NULL;
 2567         bioops.io_deallocate = NULL;
 2568         bioops.io_countdeps = NULL;
 2569         ast_deregister(TDA_UFS);
 2570 
 2571         callout_drain(&softdep_callout);
 2572 }
 2573 
 2574 /*
 2575  * Called at mount time to notify the dependency code that a
 2576  * filesystem wishes to use it.
 2577  */
 2578 int
 2579 softdep_mount(struct vnode *devvp,
 2580         struct mount *mp,
 2581         struct fs *fs,
 2582         struct ucred *cred)
 2583 {
 2584         struct csum_total cstotal;
 2585         struct mount_softdeps *sdp;
 2586         struct ufsmount *ump;
 2587         struct cg *cgp;
 2588         struct buf *bp;
 2589         u_int cyl, i;
 2590         int error;
 2591 
 2592         ump = VFSTOUFS(mp);
 2593 
 2594         sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
 2595             M_WAITOK | M_ZERO);
 2596         rw_init(&sdp->sd_fslock, "SUrw");
 2597         sdp->sd_ump = ump;
 2598         LIST_INIT(&sdp->sd_workitem_pending);
 2599         LIST_INIT(&sdp->sd_journal_pending);
 2600         TAILQ_INIT(&sdp->sd_unlinked);
 2601         LIST_INIT(&sdp->sd_dirtycg);
 2602         sdp->sd_worklist_tail = NULL;
 2603         sdp->sd_on_worklist = 0;
 2604         sdp->sd_deps = 0;
 2605         LIST_INIT(&sdp->sd_mkdirlisthd);
 2606         sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
 2607             &sdp->sd_pdhashsize);
 2608         sdp->sd_pdnextclean = 0;
 2609         sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
 2610             &sdp->sd_idhashsize);
 2611         sdp->sd_idnextclean = 0;
 2612         sdp->sd_newblkhash = hashinit(max_softdeps / 2,  M_NEWBLK,
 2613             &sdp->sd_newblkhashsize);
 2614         sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
 2615         i = 1 << (ffs(desiredvnodes / 10) - 1);
 2616         sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
 2617             M_FREEWORK, M_WAITOK);
 2618         sdp->sd_indirhashsize = i - 1;
 2619         for (i = 0; i <= sdp->sd_indirhashsize; i++)
 2620                 TAILQ_INIT(&sdp->sd_indirhash[i]);
 2621         for (i = 0; i <= D_LAST; i++)
 2622                 LIST_INIT(&sdp->sd_alldeps[i]);
 2623         ACQUIRE_GBLLOCK(&lk);
 2624         TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
 2625         FREE_GBLLOCK(&lk);
 2626 
 2627         ump->um_softdep = sdp;
 2628         MNT_ILOCK(mp);
 2629         mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
 2630         if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
 2631                 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
 2632                     MNTK_SOFTDEP | MNTK_NOASYNC;
 2633         }
 2634         MNT_IUNLOCK(mp);
 2635 
 2636         if ((fs->fs_flags & FS_SUJ) &&
 2637             (error = journal_mount(mp, fs, cred)) != 0) {
 2638                 printf("Failed to start journal: %d\n", error);
 2639                 softdep_unmount(mp);
 2640                 return (error);
 2641         }
 2642         /*
 2643          * Start our flushing thread in the bufdaemon process.
 2644          */
 2645         ACQUIRE_LOCK(ump);
 2646         ump->softdep_flags |= FLUSH_STARTING;
 2647         FREE_LOCK(ump);
 2648         kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
 2649             &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
 2650             mp->mnt_stat.f_mntonname);
 2651         ACQUIRE_LOCK(ump);
 2652         while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
 2653                 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
 2654                     hz / 2);
 2655         }
 2656         FREE_LOCK(ump);
 2657         /*
 2658          * When doing soft updates, the counters in the
 2659          * superblock may have gotten out of sync. Recomputation
 2660          * can take a long time and can be deferred for background
 2661          * fsck.  However, the old behavior of scanning the cylinder
 2662          * groups and recalculating them at mount time is available
 2663          * by setting vfs.ffs.compute_summary_at_mount to one.
 2664          */
 2665         if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
 2666                 return (0);
 2667         bzero(&cstotal, sizeof cstotal);
 2668         for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
 2669                 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
 2670                     fs->fs_cgsize, cred, &bp)) != 0) {
 2671                         brelse(bp);
 2672                         softdep_unmount(mp);
 2673                         return (error);
 2674                 }
 2675                 cgp = (struct cg *)bp->b_data;
 2676                 cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
 2677                 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
 2678                 cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
 2679                 cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
 2680                 fs->fs_cs(fs, cyl) = cgp->cg_cs;
 2681                 brelse(bp);
 2682         }
 2683 #ifdef INVARIANTS
 2684         if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
 2685                 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
 2686 #endif
 2687         bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
 2688         return (0);
 2689 }
 2690 
 2691 void
 2692 softdep_unmount(struct mount *mp)
 2693 {
 2694         struct ufsmount *ump;
 2695         struct mount_softdeps *ums;
 2696 
 2697         ump = VFSTOUFS(mp);
 2698         KASSERT(ump->um_softdep != NULL,
 2699             ("softdep_unmount called on non-softdep filesystem"));
 2700         MNT_ILOCK(mp);
 2701         mp->mnt_flag &= ~MNT_SOFTDEP;
 2702         if ((mp->mnt_flag & MNT_SUJ) == 0) {
 2703                 MNT_IUNLOCK(mp);
 2704         } else {
 2705                 mp->mnt_flag &= ~MNT_SUJ;
 2706                 MNT_IUNLOCK(mp);
 2707                 journal_unmount(ump);
 2708         }
 2709         /*
 2710          * Shut down our flushing thread. Check for NULL is if
 2711          * softdep_mount errors out before the thread has been created.
 2712          */
 2713         if (ump->softdep_flushtd != NULL) {
 2714                 ACQUIRE_LOCK(ump);
 2715                 ump->softdep_flags |= FLUSH_EXIT;
 2716                 wakeup(&ump->softdep_flushtd);
 2717                 while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
 2718                         msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
 2719                             "sdwait", 0);
 2720                 }
 2721                 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
 2722                     ("Thread shutdown failed"));
 2723                 FREE_LOCK(ump);
 2724         }
 2725 
 2726         /*
 2727          * We are no longer have softdep structure attached to ump.
 2728          */
 2729         ums = ump->um_softdep;
 2730         ACQUIRE_GBLLOCK(&lk);
 2731         TAILQ_REMOVE(&softdepmounts, ums, sd_next);
 2732         FREE_GBLLOCK(&lk);
 2733         ump->um_softdep = NULL;
 2734 
 2735         KASSERT(ums->sd_on_journal == 0,
 2736             ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
 2737         KASSERT(ums->sd_on_worklist == 0,
 2738             ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
 2739         KASSERT(ums->sd_deps == 0,
 2740             ("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
 2741 
 2742         /*
 2743          * Free up our resources.
 2744          */
 2745         rw_destroy(&ums->sd_fslock);
 2746         hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
 2747         hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
 2748         hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
 2749         hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
 2750         free(ums->sd_indirhash, M_FREEWORK);
 2751 #ifdef INVARIANTS
 2752         for (int i = 0; i <= D_LAST; i++) {
 2753                 KASSERT(ums->sd_curdeps[i] == 0,
 2754                     ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
 2755                     TYPENAME(i), ums->sd_curdeps[i]));
 2756                 KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
 2757                     ("Unmount %s: Dep type %s not empty (%p)",
 2758                     ump->um_fs->fs_fsmnt,
 2759                     TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
 2760         }
 2761 #endif
 2762         free(ums, M_MOUNTDATA);
 2763 }
 2764 
 2765 static struct jblocks *
 2766 jblocks_create(void)
 2767 {
 2768         struct jblocks *jblocks;
 2769 
 2770         jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
 2771         TAILQ_INIT(&jblocks->jb_segs);
 2772         jblocks->jb_avail = 10;
 2773         jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
 2774             M_JBLOCKS, M_WAITOK | M_ZERO);
 2775 
 2776         return (jblocks);
 2777 }
 2778 
 2779 static ufs2_daddr_t
 2780 jblocks_alloc(struct jblocks *jblocks,
 2781         int bytes,
 2782         int *actual)
 2783 {
 2784         ufs2_daddr_t daddr;
 2785         struct jextent *jext;
 2786         int freecnt;
 2787         int blocks;
 2788 
 2789         blocks = bytes / DEV_BSIZE;
 2790         jext = &jblocks->jb_extent[jblocks->jb_head];
 2791         freecnt = jext->je_blocks - jblocks->jb_off;
 2792         if (freecnt == 0) {
 2793                 jblocks->jb_off = 0;
 2794                 if (++jblocks->jb_head > jblocks->jb_used)
 2795                         jblocks->jb_head = 0;
 2796                 jext = &jblocks->jb_extent[jblocks->jb_head];
 2797                 freecnt = jext->je_blocks;
 2798         }
 2799         if (freecnt > blocks)
 2800                 freecnt = blocks;
 2801         *actual = freecnt * DEV_BSIZE;
 2802         daddr = jext->je_daddr + jblocks->jb_off;
 2803         jblocks->jb_off += freecnt;
 2804         jblocks->jb_free -= freecnt;
 2805 
 2806         return (daddr);
 2807 }
 2808 
 2809 static void
 2810 jblocks_free(struct jblocks *jblocks,
 2811         struct mount *mp,
 2812         int bytes)
 2813 {
 2814 
 2815         LOCK_OWNED(VFSTOUFS(mp));
 2816         jblocks->jb_free += bytes / DEV_BSIZE;
 2817         if (jblocks->jb_suspended)
 2818                 worklist_speedup(mp);
 2819         wakeup(jblocks);
 2820 }
 2821 
 2822 static void
 2823 jblocks_destroy(struct jblocks *jblocks)
 2824 {
 2825 
 2826         if (jblocks->jb_extent)
 2827                 free(jblocks->jb_extent, M_JBLOCKS);
 2828         free(jblocks, M_JBLOCKS);
 2829 }
 2830 
 2831 static void
 2832 jblocks_add(struct jblocks *jblocks,
 2833         ufs2_daddr_t daddr,
 2834         int blocks)
 2835 {
 2836         struct jextent *jext;
 2837 
 2838         jblocks->jb_blocks += blocks;
 2839         jblocks->jb_free += blocks;
 2840         jext = &jblocks->jb_extent[jblocks->jb_used];
 2841         /* Adding the first block. */
 2842         if (jext->je_daddr == 0) {
 2843                 jext->je_daddr = daddr;
 2844                 jext->je_blocks = blocks;
 2845                 return;
 2846         }
 2847         /* Extending the last extent. */
 2848         if (jext->je_daddr + jext->je_blocks == daddr) {
 2849                 jext->je_blocks += blocks;
 2850                 return;
 2851         }
 2852         /* Adding a new extent. */
 2853         if (++jblocks->jb_used == jblocks->jb_avail) {
 2854                 jblocks->jb_avail *= 2;
 2855                 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
 2856                     M_JBLOCKS, M_WAITOK | M_ZERO);
 2857                 memcpy(jext, jblocks->jb_extent,
 2858                     sizeof(struct jextent) * jblocks->jb_used);
 2859                 free(jblocks->jb_extent, M_JBLOCKS);
 2860                 jblocks->jb_extent = jext;
 2861         }
 2862         jext = &jblocks->jb_extent[jblocks->jb_used];
 2863         jext->je_daddr = daddr;
 2864         jext->je_blocks = blocks;
 2865         return;
 2866 }
 2867 
 2868 int
 2869 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
 2870 {
 2871         struct componentname cnp;
 2872         struct vnode *dvp;
 2873         ino_t sujournal;
 2874         int error;
 2875 
 2876         error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
 2877         if (error)
 2878                 return (error);
 2879         bzero(&cnp, sizeof(cnp));
 2880         cnp.cn_nameiop = LOOKUP;
 2881         cnp.cn_flags = ISLASTCN;
 2882         cnp.cn_cred = curthread->td_ucred;
 2883         cnp.cn_pnbuf = SUJ_FILE;
 2884         cnp.cn_nameptr = SUJ_FILE;
 2885         cnp.cn_namelen = strlen(SUJ_FILE);
 2886         error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
 2887         vput(dvp);
 2888         if (error != 0)
 2889                 return (error);
 2890         error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
 2891         return (error);
 2892 }
 2893 
 2894 /*
 2895  * Open and verify the journal file.
 2896  */
 2897 static int
 2898 journal_mount(struct mount *mp,
 2899         struct fs *fs,
 2900         struct ucred *cred)
 2901 {
 2902         struct jblocks *jblocks;
 2903         struct ufsmount *ump;
 2904         struct vnode *vp;
 2905         struct inode *ip;
 2906         ufs2_daddr_t blkno;
 2907         int bcount;
 2908         int error;
 2909         int i;
 2910 
 2911         ump = VFSTOUFS(mp);
 2912         ump->softdep_journal_tail = NULL;
 2913         ump->softdep_on_journal = 0;
 2914         ump->softdep_accdeps = 0;
 2915         ump->softdep_req = 0;
 2916         ump->softdep_jblocks = NULL;
 2917         error = softdep_journal_lookup(mp, &vp);
 2918         if (error != 0) {
 2919                 printf("Failed to find journal.  Use tunefs to create one\n");
 2920                 return (error);
 2921         }
 2922         ip = VTOI(vp);
 2923         if (ip->i_size < SUJ_MIN) {
 2924                 error = ENOSPC;
 2925                 goto out;
 2926         }
 2927         bcount = lblkno(fs, ip->i_size);        /* Only use whole blocks. */
 2928         jblocks = jblocks_create();
 2929         for (i = 0; i < bcount; i++) {
 2930                 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
 2931                 if (error)
 2932                         break;
 2933                 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
 2934         }
 2935         if (error) {
 2936                 jblocks_destroy(jblocks);
 2937                 goto out;
 2938         }
 2939         jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */
 2940         jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
 2941         ump->softdep_jblocks = jblocks;
 2942 
 2943         MNT_ILOCK(mp);
 2944         mp->mnt_flag |= MNT_SUJ;
 2945         MNT_IUNLOCK(mp);
 2946 
 2947         /*
 2948          * Only validate the journal contents if the
 2949          * filesystem is clean, otherwise we write the logs
 2950          * but they'll never be used.  If the filesystem was
 2951          * still dirty when we mounted it the journal is
 2952          * invalid and a new journal can only be valid if it
 2953          * starts from a clean mount.
 2954          */
 2955         if (fs->fs_clean) {
 2956                 DIP_SET(ip, i_modrev, fs->fs_mtime);
 2957                 ip->i_flags |= IN_MODIFIED;
 2958                 ffs_update(vp, 1);
 2959         }
 2960 out:
 2961         vput(vp);
 2962         return (error);
 2963 }
 2964 
 2965 static void
 2966 journal_unmount(struct ufsmount *ump)
 2967 {
 2968 
 2969         if (ump->softdep_jblocks)
 2970                 jblocks_destroy(ump->softdep_jblocks);
 2971         ump->softdep_jblocks = NULL;
 2972 }
 2973 
 2974 /*
 2975  * Called when a journal record is ready to be written.  Space is allocated
 2976  * and the journal entry is created when the journal is flushed to stable
 2977  * store.
 2978  */
 2979 static void
 2980 add_to_journal(struct worklist *wk)
 2981 {
 2982         struct ufsmount *ump;
 2983 
 2984         ump = VFSTOUFS(wk->wk_mp);
 2985         LOCK_OWNED(ump);
 2986         if (wk->wk_state & ONWORKLIST)
 2987                 panic("add_to_journal: %s(0x%X) already on list",
 2988                     TYPENAME(wk->wk_type), wk->wk_state);
 2989         wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
 2990         if (LIST_EMPTY(&ump->softdep_journal_pending)) {
 2991                 ump->softdep_jblocks->jb_age = ticks;
 2992                 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
 2993         } else
 2994                 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
 2995         ump->softdep_journal_tail = wk;
 2996         ump->softdep_on_journal += 1;
 2997 }
 2998 
 2999 /*
 3000  * Remove an arbitrary item for the journal worklist maintain the tail
 3001  * pointer.  This happens when a new operation obviates the need to
 3002  * journal an old operation.
 3003  */
 3004 static void
 3005 remove_from_journal(struct worklist *wk)
 3006 {
 3007         struct ufsmount *ump;
 3008 
 3009         ump = VFSTOUFS(wk->wk_mp);
 3010         LOCK_OWNED(ump);
 3011 #ifdef INVARIANTS
 3012         {
 3013                 struct worklist *wkn;
 3014 
 3015                 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
 3016                         if (wkn == wk)
 3017                                 break;
 3018                 if (wkn == NULL)
 3019                         panic("remove_from_journal: %p is not in journal", wk);
 3020         }
 3021 #endif
 3022         /*
 3023          * We emulate a TAILQ to save space in most structures which do not
 3024          * require TAILQ semantics.  Here we must update the tail position
 3025          * when removing the tail which is not the final entry. This works
 3026          * only if the worklist linkage are at the beginning of the structure.
 3027          */
 3028         if (ump->softdep_journal_tail == wk)
 3029                 ump->softdep_journal_tail =
 3030                     (struct worklist *)wk->wk_list.le_prev;
 3031         WORKLIST_REMOVE(wk);
 3032         ump->softdep_on_journal -= 1;
 3033 }
 3034 
 3035 /*
 3036  * Check for journal space as well as dependency limits so the prelink
 3037  * code can throttle both journaled and non-journaled filesystems.
 3038  * Threshold is 0 for low and 1 for min.
 3039  */
 3040 static int
 3041 journal_space(struct ufsmount *ump, int thresh)
 3042 {
 3043         struct jblocks *jblocks;
 3044         int limit, avail;
 3045 
 3046         jblocks = ump->softdep_jblocks;
 3047         if (jblocks == NULL)
 3048                 return (1);
 3049         /*
 3050          * We use a tighter restriction here to prevent request_cleanup()
 3051          * running in threads from running into locks we currently hold.
 3052          * We have to be over the limit and our filesystem has to be
 3053          * responsible for more than our share of that usage.
 3054          */
 3055         limit = (max_softdeps / 10) * 9;
 3056         if (dep_current[D_INODEDEP] > limit &&
 3057             ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
 3058                 return (0);
 3059         if (thresh)
 3060                 thresh = jblocks->jb_min;
 3061         else
 3062                 thresh = jblocks->jb_low;
 3063         avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
 3064         avail = jblocks->jb_free - avail;
 3065 
 3066         return (avail > thresh);
 3067 }
 3068 
 3069 static void
 3070 journal_suspend(struct ufsmount *ump)
 3071 {
 3072         struct jblocks *jblocks;
 3073         struct mount *mp;
 3074         bool set;
 3075 
 3076         mp = UFSTOVFS(ump);
 3077         if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
 3078                 return;
 3079 
 3080         jblocks = ump->softdep_jblocks;
 3081         vfs_op_enter(mp);
 3082         set = false;
 3083         MNT_ILOCK(mp);
 3084         if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
 3085                 stat_journal_min++;
 3086                 mp->mnt_kern_flag |= MNTK_SUSPEND;
 3087                 mp->mnt_susp_owner = ump->softdep_flushtd;
 3088                 set = true;
 3089         }
 3090         jblocks->jb_suspended = 1;
 3091         MNT_IUNLOCK(mp);
 3092         if (!set)
 3093                 vfs_op_exit(mp);
 3094 }
 3095 
 3096 static int
 3097 journal_unsuspend(struct ufsmount *ump)
 3098 {
 3099         struct jblocks *jblocks;
 3100         struct mount *mp;
 3101 
 3102         mp = UFSTOVFS(ump);
 3103         jblocks = ump->softdep_jblocks;
 3104 
 3105         if (jblocks != NULL && jblocks->jb_suspended &&
 3106             journal_space(ump, jblocks->jb_min)) {
 3107                 jblocks->jb_suspended = 0;
 3108                 FREE_LOCK(ump);
 3109                 mp->mnt_susp_owner = curthread;
 3110                 vfs_write_resume(mp, 0);
 3111                 ACQUIRE_LOCK(ump);
 3112                 return (1);
 3113         }
 3114         return (0);
 3115 }
 3116 
 3117 static void
 3118 journal_check_space(struct ufsmount *ump)
 3119 {
 3120         struct mount *mp;
 3121 
 3122         LOCK_OWNED(ump);
 3123 
 3124         if (journal_space(ump, 0) == 0) {
 3125                 softdep_speedup(ump);
 3126                 mp = UFSTOVFS(ump);
 3127                 FREE_LOCK(ump);
 3128                 VFS_SYNC(mp, MNT_NOWAIT);
 3129                 ffs_sbupdate(ump, MNT_WAIT, 0);
 3130                 ACQUIRE_LOCK(ump);
 3131                 if (journal_space(ump, 1) == 0)
 3132                         journal_suspend(ump);
 3133         }
 3134 }
 3135 
 3136 /*
 3137  * Called before any allocation function to be certain that there is
 3138  * sufficient space in the journal prior to creating any new records.
 3139  * Since in the case of block allocation we may have multiple locked
 3140  * buffers at the time of the actual allocation we can not block
 3141  * when the journal records are created.  Doing so would create a deadlock
 3142  * if any of these buffers needed to be flushed to reclaim space.  Instead
 3143  * we require a sufficiently large amount of available space such that
 3144  * each thread in the system could have passed this allocation check and
 3145  * still have sufficient free space.  With 20% of a minimum journal size
 3146  * of 1MB we have 6553 records available.
 3147  */
 3148 int
 3149 softdep_prealloc(struct vnode *vp, int waitok)
 3150 {
 3151         struct ufsmount *ump;
 3152 
 3153         KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
 3154             ("softdep_prealloc called on non-softdep filesystem"));
 3155         /*
 3156          * Nothing to do if we are not running journaled soft updates.
 3157          * If we currently hold the snapshot lock, we must avoid
 3158          * handling other resources that could cause deadlock.  Do not
 3159          * touch quotas vnode since it is typically recursed with
 3160          * other vnode locks held.
 3161          */
 3162         if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
 3163             (vp->v_vflag & VV_SYSTEM) != 0)
 3164                 return (0);
 3165         ump = VFSTOUFS(vp->v_mount);
 3166         ACQUIRE_LOCK(ump);
 3167         if (journal_space(ump, 0)) {
 3168                 FREE_LOCK(ump);
 3169                 return (0);
 3170         }
 3171         stat_journal_low++;
 3172         FREE_LOCK(ump);
 3173         if (waitok == MNT_NOWAIT)
 3174                 return (ENOSPC);
 3175         /*
 3176          * Attempt to sync this vnode once to flush any journal
 3177          * work attached to it.
 3178          */
 3179         if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
 3180                 ffs_syncvnode(vp, waitok, 0);
 3181         ACQUIRE_LOCK(ump);
 3182         process_removes(vp);
 3183         process_truncates(vp);
 3184         journal_check_space(ump);
 3185         FREE_LOCK(ump);
 3186 
 3187         return (0);
 3188 }
 3189 
 3190 /*
 3191  * Try hard to sync all data and metadata for the vnode, and workitems
 3192  * flushing which might conflict with the vnode lock.  This is a
 3193  * helper for softdep_prerename().
 3194  */
 3195 static int
 3196 softdep_prerename_vnode(struct ufsmount *ump, struct vnode *vp)
 3197 {
 3198         int error;
 3199 
 3200         ASSERT_VOP_ELOCKED(vp, "prehandle");
 3201         if (vp->v_data == NULL)
 3202                 return (0);
 3203         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
 3204         if (error != 0)
 3205                 return (error);
 3206         ACQUIRE_LOCK(ump);
 3207         process_removes(vp);
 3208         process_truncates(vp);
 3209         FREE_LOCK(ump);
 3210         return (0);
 3211 }
 3212 
 3213 /*
 3214  * Must be called from VOP_RENAME() after all vnodes are locked.
 3215  * Ensures that there is enough journal space for rename.  It is
 3216  * sufficiently different from softdep_prelink() by having to handle
 3217  * four vnodes.
 3218  */
 3219 int
 3220 softdep_prerename(struct vnode *fdvp,
 3221         struct vnode *fvp,
 3222         struct vnode *tdvp,
 3223         struct vnode *tvp)
 3224 {
 3225         struct ufsmount *ump;
 3226         int error;
 3227 
 3228         ump = VFSTOUFS(fdvp->v_mount);
 3229 
 3230         if (journal_space(ump, 0))
 3231                 return (0);
 3232 
 3233         VOP_UNLOCK(tdvp);
 3234         VOP_UNLOCK(fvp);
 3235         if (tvp != NULL && tvp != tdvp)
 3236                 VOP_UNLOCK(tvp);
 3237 
 3238         error = softdep_prerename_vnode(ump, fdvp);
 3239         VOP_UNLOCK(fdvp);
 3240         if (error != 0)
 3241                 return (error);
 3242 
 3243         VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
 3244         error = softdep_prerename_vnode(ump, fvp);
 3245         VOP_UNLOCK(fvp);
 3246         if (error != 0)
 3247                 return (error);
 3248 
 3249         if (tdvp != fdvp) {
 3250                 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
 3251                 error = softdep_prerename_vnode(ump, tdvp);
 3252                 VOP_UNLOCK(tdvp);
 3253                 if (error != 0)
 3254                         return (error);
 3255         }
 3256 
 3257         if (tvp != fvp && tvp != NULL) {
 3258                 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
 3259                 error = softdep_prerename_vnode(ump, tvp);
 3260                 VOP_UNLOCK(tvp);
 3261                 if (error != 0)
 3262                         return (error);
 3263         }
 3264 
 3265         ACQUIRE_LOCK(ump);
 3266         softdep_speedup(ump);
 3267         process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
 3268         journal_check_space(ump);
 3269         FREE_LOCK(ump);
 3270         return (ERELOOKUP);
 3271 }
 3272 
 3273 /*
 3274  * Before adjusting a link count on a vnode verify that we have sufficient
 3275  * journal space.  If not, process operations that depend on the currently
 3276  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
 3277  * and softdep flush threads can not acquire these locks to reclaim space.
 3278  *
 3279  * Returns 0 if all owned locks are still valid and were not dropped
 3280  * in the process, in other case it returns either an error from sync,
 3281  * or ERELOOKUP if any of the locks were re-acquired.  In the later
 3282  * case, the state of the vnodes cannot be relied upon and our VFS
 3283  * syscall must be restarted at top level from the lookup.
 3284  */
 3285 int
 3286 softdep_prelink(struct vnode *dvp,
 3287         struct vnode *vp,
 3288         struct componentname *cnp)
 3289 {
 3290         struct ufsmount *ump;
 3291         struct nameidata *ndp;
 3292 
 3293         ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
 3294         if (vp != NULL)
 3295                 ASSERT_VOP_ELOCKED(vp, "prelink vp");
 3296         ump = VFSTOUFS(dvp->v_mount);
 3297 
 3298         /*
 3299          * Nothing to do if we have sufficient journal space.  We skip
 3300          * flushing when vp is a snapshot to avoid deadlock where
 3301          * another thread is trying to update the inodeblock for dvp
 3302          * and is waiting on snaplk that vp holds.
 3303          */
 3304         if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
 3305                 return (0);
 3306 
 3307         /*
 3308          * Check if the journal space consumption can in theory be
 3309          * accounted on dvp and vp.  If the vnodes metadata was not
 3310          * changed comparing with the previous round-trip into
 3311          * softdep_prelink(), as indicated by the seqc generation
 3312          * recorded in the nameidata, then there is no point in
 3313          * starting the sync.
 3314          */
 3315         ndp = __containerof(cnp, struct nameidata, ni_cnd);
 3316         if (!seqc_in_modify(ndp->ni_dvp_seqc) &&
 3317             vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) &&
 3318             (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) &&
 3319             vn_seqc_consistent(vp, ndp->ni_vp_seqc))))
 3320                 return (0);
 3321 
 3322         stat_journal_low++;
 3323         if (vp != NULL) {
 3324                 VOP_UNLOCK(dvp);
 3325                 ffs_syncvnode(vp, MNT_NOWAIT, 0);
 3326                 vn_lock_pair(dvp, false, vp, true);
 3327                 if (dvp->v_data == NULL)
 3328                         goto out;
 3329         }
 3330         if (vp != NULL)
 3331                 VOP_UNLOCK(vp);
 3332         ffs_syncvnode(dvp, MNT_WAIT, 0);
 3333         /* Process vp before dvp as it may create .. removes. */
 3334         if (vp != NULL) {
 3335                 VOP_UNLOCK(dvp);
 3336                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 3337                 if (vp->v_data == NULL) {
 3338                         vn_lock_pair(dvp, false, vp, true);
 3339                         goto out;
 3340                 }
 3341                 ACQUIRE_LOCK(ump);
 3342                 process_removes(vp);
 3343                 process_truncates(vp);
 3344                 FREE_LOCK(ump);
 3345                 VOP_UNLOCK(vp);
 3346                 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
 3347                 if (dvp->v_data == NULL) {
 3348                         vn_lock_pair(dvp, true, vp, false);
 3349                         goto out;
 3350                 }
 3351         }
 3352 
 3353         ACQUIRE_LOCK(ump);
 3354         process_removes(dvp);
 3355         process_truncates(dvp);
 3356         VOP_UNLOCK(dvp);
 3357         softdep_speedup(ump);
 3358 
 3359         process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
 3360         journal_check_space(ump);
 3361         FREE_LOCK(ump);
 3362 
 3363         vn_lock_pair(dvp, false, vp, false);
 3364 out:
 3365         ndp->ni_dvp_seqc = vn_seqc_read_any(dvp);
 3366         if (vp != NULL)
 3367                 ndp->ni_vp_seqc = vn_seqc_read_any(vp);
 3368         return (ERELOOKUP);
 3369 }
 3370 
 3371 static void
 3372 jseg_write(struct ufsmount *ump,
 3373         struct jseg *jseg,
 3374         uint8_t *data)
 3375 {
 3376         struct jsegrec *rec;
 3377 
 3378         rec = (struct jsegrec *)data;
 3379         rec->jsr_seq = jseg->js_seq;
 3380         rec->jsr_oldest = jseg->js_oldseq;
 3381         rec->jsr_cnt = jseg->js_cnt;
 3382         rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
 3383         rec->jsr_crc = 0;
 3384         rec->jsr_time = ump->um_fs->fs_mtime;
 3385 }
 3386 
 3387 static inline void
 3388 inoref_write(struct inoref *inoref,
 3389         struct jseg *jseg,
 3390         struct jrefrec *rec)
 3391 {
 3392 
 3393         inoref->if_jsegdep->jd_seg = jseg;
 3394         rec->jr_ino = inoref->if_ino;
 3395         rec->jr_parent = inoref->if_parent;
 3396         rec->jr_nlink = inoref->if_nlink;
 3397         rec->jr_mode = inoref->if_mode;
 3398         rec->jr_diroff = inoref->if_diroff;
 3399 }
 3400 
 3401 static void
 3402 jaddref_write(struct jaddref *jaddref,
 3403         struct jseg *jseg,
 3404         uint8_t *data)
 3405 {
 3406         struct jrefrec *rec;
 3407 
 3408         rec = (struct jrefrec *)data;
 3409         rec->jr_op = JOP_ADDREF;
 3410         inoref_write(&jaddref->ja_ref, jseg, rec);
 3411 }
 3412 
 3413 static void
 3414 jremref_write(struct jremref *jremref,
 3415         struct jseg *jseg,
 3416         uint8_t *data)
 3417 {
 3418         struct jrefrec *rec;
 3419 
 3420         rec = (struct jrefrec *)data;
 3421         rec->jr_op = JOP_REMREF;
 3422         inoref_write(&jremref->jr_ref, jseg, rec);
 3423 }
 3424 
 3425 static void
 3426 jmvref_write(struct jmvref *jmvref,
 3427         struct jseg *jseg,
 3428         uint8_t *data)
 3429 {
 3430         struct jmvrec *rec;
 3431 
 3432         rec = (struct jmvrec *)data;
 3433         rec->jm_op = JOP_MVREF;
 3434         rec->jm_ino = jmvref->jm_ino;
 3435         rec->jm_parent = jmvref->jm_parent;
 3436         rec->jm_oldoff = jmvref->jm_oldoff;
 3437         rec->jm_newoff = jmvref->jm_newoff;
 3438 }
 3439 
 3440 static void
 3441 jnewblk_write(struct jnewblk *jnewblk,
 3442         struct jseg *jseg,
 3443         uint8_t *data)
 3444 {
 3445         struct jblkrec *rec;
 3446 
 3447         jnewblk->jn_jsegdep->jd_seg = jseg;
 3448         rec = (struct jblkrec *)data;
 3449         rec->jb_op = JOP_NEWBLK;
 3450         rec->jb_ino = jnewblk->jn_ino;
 3451         rec->jb_blkno = jnewblk->jn_blkno;
 3452         rec->jb_lbn = jnewblk->jn_lbn;
 3453         rec->jb_frags = jnewblk->jn_frags;
 3454         rec->jb_oldfrags = jnewblk->jn_oldfrags;
 3455 }
 3456 
 3457 static void
 3458 jfreeblk_write(struct jfreeblk *jfreeblk,
 3459         struct jseg *jseg,
 3460         uint8_t *data)
 3461 {
 3462         struct jblkrec *rec;
 3463 
 3464         jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
 3465         rec = (struct jblkrec *)data;
 3466         rec->jb_op = JOP_FREEBLK;
 3467         rec->jb_ino = jfreeblk->jf_ino;
 3468         rec->jb_blkno = jfreeblk->jf_blkno;
 3469         rec->jb_lbn = jfreeblk->jf_lbn;
 3470         rec->jb_frags = jfreeblk->jf_frags;
 3471         rec->jb_oldfrags = 0;
 3472 }
 3473 
 3474 static void
 3475 jfreefrag_write(struct jfreefrag *jfreefrag,
 3476         struct jseg *jseg,
 3477         uint8_t *data)
 3478 {
 3479         struct jblkrec *rec;
 3480 
 3481         jfreefrag->fr_jsegdep->jd_seg = jseg;
 3482         rec = (struct jblkrec *)data;
 3483         rec->jb_op = JOP_FREEBLK;
 3484         rec->jb_ino = jfreefrag->fr_ino;
 3485         rec->jb_blkno = jfreefrag->fr_blkno;
 3486         rec->jb_lbn = jfreefrag->fr_lbn;
 3487         rec->jb_frags = jfreefrag->fr_frags;
 3488         rec->jb_oldfrags = 0;
 3489 }
 3490 
 3491 static void
 3492 jtrunc_write(struct jtrunc *jtrunc,
 3493         struct jseg *jseg,
 3494         uint8_t *data)
 3495 {
 3496         struct jtrncrec *rec;
 3497 
 3498         jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
 3499         rec = (struct jtrncrec *)data;
 3500         rec->jt_op = JOP_TRUNC;
 3501         rec->jt_ino = jtrunc->jt_ino;
 3502         rec->jt_size = jtrunc->jt_size;
 3503         rec->jt_extsize = jtrunc->jt_extsize;
 3504 }
 3505 
 3506 static void
 3507 jfsync_write(struct jfsync *jfsync,
 3508         struct jseg *jseg,
 3509         uint8_t *data)
 3510 {
 3511         struct jtrncrec *rec;
 3512 
 3513         rec = (struct jtrncrec *)data;
 3514         rec->jt_op = JOP_SYNC;
 3515         rec->jt_ino = jfsync->jfs_ino;
 3516         rec->jt_size = jfsync->jfs_size;
 3517         rec->jt_extsize = jfsync->jfs_extsize;
 3518 }
 3519 
 3520 static void
 3521 softdep_flushjournal(struct mount *mp)
 3522 {
 3523         struct jblocks *jblocks;
 3524         struct ufsmount *ump;
 3525 
 3526         if (MOUNTEDSUJ(mp) == 0)
 3527                 return;
 3528         ump = VFSTOUFS(mp);
 3529         jblocks = ump->softdep_jblocks;
 3530         ACQUIRE_LOCK(ump);
 3531         while (ump->softdep_on_journal) {
 3532                 jblocks->jb_needseg = 1;
 3533                 softdep_process_journal(mp, NULL, MNT_WAIT);
 3534         }
 3535         FREE_LOCK(ump);
 3536 }
 3537 
 3538 static void softdep_synchronize_completed(struct bio *);
 3539 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
 3540 
 3541 static void
 3542 softdep_synchronize_completed(struct bio *bp)
 3543 {
 3544         struct jseg *oldest;
 3545         struct jseg *jseg;
 3546         struct ufsmount *ump;
 3547 
 3548         /*
 3549          * caller1 marks the last segment written before we issued the
 3550          * synchronize cache.
 3551          */
 3552         jseg = bp->bio_caller1;
 3553         if (jseg == NULL) {
 3554                 g_destroy_bio(bp);
 3555                 return;
 3556         }
 3557         ump = VFSTOUFS(jseg->js_list.wk_mp);
 3558         ACQUIRE_LOCK(ump);
 3559         oldest = NULL;
 3560         /*
 3561          * Mark all the journal entries waiting on the synchronize cache
 3562          * as completed so they may continue on.
 3563          */
 3564         while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
 3565                 jseg->js_state |= COMPLETE;
 3566                 oldest = jseg;
 3567                 jseg = TAILQ_PREV(jseg, jseglst, js_next);
 3568         }
 3569         /*
 3570          * Restart deferred journal entry processing from the oldest
 3571          * completed jseg.
 3572          */
 3573         if (oldest)
 3574                 complete_jsegs(oldest);
 3575 
 3576         FREE_LOCK(ump);
 3577         g_destroy_bio(bp);
 3578 }
 3579 
 3580 /*
 3581  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
 3582  * barriers.  The journal must be written prior to any blocks that depend
 3583  * on it and the journal can not be released until the blocks have be
 3584  * written.  This code handles both barriers simultaneously.
 3585  */
 3586 static void
 3587 softdep_synchronize(struct bio *bp,
 3588         struct ufsmount *ump,
 3589         void *caller1)
 3590 {
 3591 
 3592         bp->bio_cmd = BIO_FLUSH;
 3593         bp->bio_flags |= BIO_ORDERED;
 3594         bp->bio_data = NULL;
 3595         bp->bio_offset = ump->um_cp->provider->mediasize;
 3596         bp->bio_length = 0;
 3597         bp->bio_done = softdep_synchronize_completed;
 3598         bp->bio_caller1 = caller1;
 3599         g_io_request(bp, ump->um_cp);
 3600 }
 3601 
 3602 /*
 3603  * Flush some journal records to disk.
 3604  */
 3605 static void
 3606 softdep_process_journal(struct mount *mp,
 3607         struct worklist *needwk,
 3608         int flags)
 3609 {
 3610         struct jblocks *jblocks;
 3611         struct ufsmount *ump;
 3612         struct worklist *wk;
 3613         struct jseg *jseg;
 3614         struct buf *bp;
 3615         struct bio *bio;
 3616         uint8_t *data;
 3617         struct fs *fs;
 3618         int shouldflush;
 3619         int segwritten;
 3620         int jrecmin;    /* Minimum records per block. */
 3621         int jrecmax;    /* Maximum records per block. */
 3622         int size;
 3623         int cnt;
 3624         int off;
 3625         int devbsize;
 3626 
 3627         ump = VFSTOUFS(mp);
 3628         if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
 3629                 return;
 3630         shouldflush = softdep_flushcache;
 3631         bio = NULL;
 3632         jseg = NULL;
 3633         LOCK_OWNED(ump);
 3634         fs = ump->um_fs;
 3635         jblocks = ump->softdep_jblocks;
 3636         devbsize = ump->um_devvp->v_bufobj.bo_bsize;
 3637         /*
 3638          * We write anywhere between a disk block and fs block.  The upper
 3639          * bound is picked to prevent buffer cache fragmentation and limit
 3640          * processing time per I/O.
 3641          */
 3642         jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
 3643         jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
 3644         segwritten = 0;
 3645         for (;;) {
 3646                 cnt = ump->softdep_on_journal;
 3647                 /*
 3648                  * Criteria for writing a segment:
 3649                  * 1) We have a full block.
 3650                  * 2) We're called from jwait() and haven't found the
 3651                  *    journal item yet.
 3652                  * 3) Always write if needseg is set.
 3653                  * 4) If we are called from process_worklist and have
 3654                  *    not yet written anything we write a partial block
 3655                  *    to enforce a 1 second maximum latency on journal
 3656                  *    entries.
 3657                  */
 3658                 if (cnt < (jrecmax - 1) && needwk == NULL &&
 3659                     jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
 3660                         break;
 3661                 cnt++;
 3662                 /*
 3663                  * Verify some free journal space.  softdep_prealloc() should
 3664                  * guarantee that we don't run out so this is indicative of
 3665                  * a problem with the flow control.  Try to recover
 3666                  * gracefully in any event.
 3667                  */
 3668                 while (jblocks->jb_free == 0) {
 3669                         if (flags != MNT_WAIT)
 3670                                 break;
 3671                         printf("softdep: Out of journal space!\n");
 3672                         softdep_speedup(ump);
 3673                         msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
 3674                 }
 3675                 FREE_LOCK(ump);
 3676                 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
 3677                 workitem_alloc(&jseg->js_list, D_JSEG, mp);
 3678                 LIST_INIT(&jseg->js_entries);
 3679                 LIST_INIT(&jseg->js_indirs);
 3680                 jseg->js_state = ATTACHED;
 3681                 if (shouldflush == 0)
 3682                         jseg->js_state |= COMPLETE;
 3683                 else if (bio == NULL)
 3684                         bio = g_alloc_bio();
 3685                 jseg->js_jblocks = jblocks;
 3686                 bp = geteblk(fs->fs_bsize, 0);
 3687                 ACQUIRE_LOCK(ump);
 3688                 /*
 3689                  * If there was a race while we were allocating the block
 3690                  * and jseg the entry we care about was likely written.
 3691                  * We bail out in both the WAIT and NOWAIT case and assume
 3692                  * the caller will loop if the entry it cares about is
 3693                  * not written.
 3694                  */
 3695                 cnt = ump->softdep_on_journal;
 3696                 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
 3697                         bp->b_flags |= B_INVAL | B_NOCACHE;
 3698                         WORKITEM_FREE(jseg, D_JSEG);
 3699                         FREE_LOCK(ump);
 3700                         brelse(bp);
 3701                         ACQUIRE_LOCK(ump);
 3702                         break;
 3703                 }
 3704                 /*
 3705                  * Calculate the disk block size required for the available
 3706                  * records rounded to the min size.
 3707                  */
 3708                 if (cnt == 0)
 3709                         size = devbsize;
 3710                 else if (cnt < jrecmax)
 3711                         size = howmany(cnt, jrecmin) * devbsize;
 3712                 else
 3713                         size = fs->fs_bsize;
 3714                 /*
 3715                  * Allocate a disk block for this journal data and account
 3716                  * for truncation of the requested size if enough contiguous
 3717                  * space was not available.
 3718                  */
 3719                 bp->b_blkno = jblocks_alloc(jblocks, size, &size);
 3720                 bp->b_lblkno = bp->b_blkno;
 3721                 bp->b_offset = bp->b_blkno * DEV_BSIZE;
 3722                 bp->b_bcount = size;
 3723                 bp->b_flags &= ~B_INVAL;
 3724                 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
 3725                 /*
 3726                  * Initialize our jseg with cnt records.  Assign the next
 3727                  * sequence number to it and link it in-order.
 3728                  */
 3729                 cnt = MIN(cnt, (size / devbsize) * jrecmin);
 3730                 jseg->js_buf = bp;
 3731                 jseg->js_cnt = cnt;
 3732                 jseg->js_refs = cnt + 1;        /* Self ref. */
 3733                 jseg->js_size = size;
 3734                 jseg->js_seq = jblocks->jb_nextseq++;
 3735                 if (jblocks->jb_oldestseg == NULL)
 3736                         jblocks->jb_oldestseg = jseg;
 3737                 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
 3738                 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
 3739                 if (jblocks->jb_writeseg == NULL)
 3740                         jblocks->jb_writeseg = jseg;
 3741                 /*
 3742                  * Start filling in records from the pending list.
 3743                  */
 3744                 data = bp->b_data;
 3745                 off = 0;
 3746 
 3747                 /*
 3748                  * Always put a header on the first block.
 3749                  * XXX As with below, there might not be a chance to get
 3750                  * into the loop.  Ensure that something valid is written.
 3751                  */
 3752                 jseg_write(ump, jseg, data);
 3753                 off += JREC_SIZE;
 3754                 data = bp->b_data + off;
 3755 
 3756                 /*
 3757                  * XXX Something is wrong here.  There's no work to do,
 3758                  * but we need to perform and I/O and allow it to complete
 3759                  * anyways.
 3760                  */
 3761                 if (LIST_EMPTY(&ump->softdep_journal_pending))
 3762                         stat_emptyjblocks++;
 3763 
 3764                 while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
 3765                     != NULL) {
 3766                         if (cnt == 0)
 3767                                 break;
 3768                         /* Place a segment header on every device block. */
 3769                         if ((off % devbsize) == 0) {
 3770                                 jseg_write(ump, jseg, data);
 3771                                 off += JREC_SIZE;
 3772                                 data = bp->b_data + off;
 3773                         }
 3774                         if (wk == needwk)
 3775                                 needwk = NULL;
 3776                         remove_from_journal(wk);
 3777                         wk->wk_state |= INPROGRESS;
 3778                         WORKLIST_INSERT(&jseg->js_entries, wk);
 3779                         switch (wk->wk_type) {
 3780                         case D_JADDREF:
 3781                                 jaddref_write(WK_JADDREF(wk), jseg, data);
 3782                                 break;
 3783                         case D_JREMREF:
 3784                                 jremref_write(WK_JREMREF(wk), jseg, data);
 3785                                 break;
 3786                         case D_JMVREF:
 3787                                 jmvref_write(WK_JMVREF(wk), jseg, data);
 3788                                 break;
 3789                         case D_JNEWBLK:
 3790                                 jnewblk_write(WK_JNEWBLK(wk), jseg, data);
 3791                                 break;
 3792                         case D_JFREEBLK:
 3793                                 jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
 3794                                 break;
 3795                         case D_JFREEFRAG:
 3796                                 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
 3797                                 break;
 3798                         case D_JTRUNC:
 3799                                 jtrunc_write(WK_JTRUNC(wk), jseg, data);
 3800                                 break;
 3801                         case D_JFSYNC:
 3802                                 jfsync_write(WK_JFSYNC(wk), jseg, data);
 3803                                 break;
 3804                         default:
 3805                                 panic("process_journal: Unknown type %s",
 3806                                     TYPENAME(wk->wk_type));
 3807                                 /* NOTREACHED */
 3808                         }
 3809                         off += JREC_SIZE;
 3810                         data = bp->b_data + off;
 3811                         cnt--;
 3812                 }
 3813 
 3814                 /* Clear any remaining space so we don't leak kernel data */
 3815                 if (size > off)
 3816                         bzero(data, size - off);
 3817 
 3818                 /*
 3819                  * Write this one buffer and continue.
 3820                  */
 3821                 segwritten = 1;
 3822                 jblocks->jb_needseg = 0;
 3823                 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
 3824                 FREE_LOCK(ump);
 3825                 bp->b_xflags |= BX_CVTENXIO;
 3826                 pbgetvp(ump->um_devvp, bp);
 3827                 /*
 3828                  * We only do the blocking wait once we find the journal
 3829                  * entry we're looking for.
 3830                  */
 3831                 if (needwk == NULL && flags == MNT_WAIT)
 3832                         bwrite(bp);
 3833                 else
 3834                         bawrite(bp);
 3835                 ACQUIRE_LOCK(ump);
 3836         }
 3837         /*
 3838          * If we wrote a segment issue a synchronize cache so the journal
 3839          * is reflected on disk before the data is written.  Since reclaiming
 3840          * journal space also requires writing a journal record this
 3841          * process also enforces a barrier before reclamation.
 3842          */
 3843         if (segwritten && shouldflush) {
 3844                 softdep_synchronize(bio, ump, 
 3845                     TAILQ_LAST(&jblocks->jb_segs, jseglst));
 3846         } else if (bio)
 3847                 g_destroy_bio(bio);
 3848         /*
 3849          * If we've suspended the filesystem because we ran out of journal
 3850          * space either try to sync it here to make some progress or
 3851          * unsuspend it if we already have.
 3852          */
 3853         if (flags == 0 && jblocks->jb_suspended) {
 3854                 if (journal_unsuspend(ump))
 3855                         return;
 3856                 FREE_LOCK(ump);
 3857                 VFS_SYNC(mp, MNT_NOWAIT);
 3858                 ffs_sbupdate(ump, MNT_WAIT, 0);
 3859                 ACQUIRE_LOCK(ump);
 3860         }
 3861 }
 3862 
 3863 /*
 3864  * Complete a jseg, allowing all dependencies awaiting journal writes
 3865  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
 3866  * structures so that the journal segment can be freed to reclaim space.
 3867  */
 3868 static void
 3869 complete_jseg(struct jseg *jseg)
 3870 {
 3871         struct worklist *wk;
 3872         struct jmvref *jmvref;
 3873 #ifdef INVARIANTS
 3874         int i = 0;
 3875 #endif
 3876 
 3877         while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
 3878                 WORKLIST_REMOVE(wk);
 3879                 wk->wk_state &= ~INPROGRESS;
 3880                 wk->wk_state |= COMPLETE;
 3881                 KASSERT(i++ < jseg->js_cnt,
 3882                     ("handle_written_jseg: overflow %d >= %d",
 3883                     i - 1, jseg->js_cnt));
 3884                 switch (wk->wk_type) {
 3885                 case D_JADDREF:
 3886                         handle_written_jaddref(WK_JADDREF(wk));
 3887                         break;
 3888                 case D_JREMREF:
 3889                         handle_written_jremref(WK_JREMREF(wk));
 3890                         break;
 3891                 case D_JMVREF:
 3892                         rele_jseg(jseg);        /* No jsegdep. */
 3893                         jmvref = WK_JMVREF(wk);
 3894                         LIST_REMOVE(jmvref, jm_deps);
 3895                         if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
 3896                                 free_pagedep(jmvref->jm_pagedep);
 3897                         WORKITEM_FREE(jmvref, D_JMVREF);
 3898                         break;
 3899                 case D_JNEWBLK:
 3900                         handle_written_jnewblk(WK_JNEWBLK(wk));
 3901                         break;
 3902                 case D_JFREEBLK:
 3903                         handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
 3904                         break;
 3905                 case D_JTRUNC:
 3906                         handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
 3907                         break;
 3908                 case D_JFSYNC:
 3909                         rele_jseg(jseg);        /* No jsegdep. */
 3910                         WORKITEM_FREE(wk, D_JFSYNC);
 3911                         break;
 3912                 case D_JFREEFRAG:
 3913                         handle_written_jfreefrag(WK_JFREEFRAG(wk));
 3914                         break;
 3915                 default:
 3916                         panic("handle_written_jseg: Unknown type %s",
 3917                             TYPENAME(wk->wk_type));
 3918                         /* NOTREACHED */
 3919                 }
 3920         }
 3921         /* Release the self reference so the structure may be freed. */
 3922         rele_jseg(jseg);
 3923 }
 3924 
 3925 /*
 3926  * Determine which jsegs are ready for completion processing.  Waits for
 3927  * synchronize cache to complete as well as forcing in-order completion
 3928  * of journal entries.
 3929  */
 3930 static void
 3931 complete_jsegs(struct jseg *jseg)
 3932 {
 3933         struct jblocks *jblocks;
 3934         struct jseg *jsegn;
 3935 
 3936         jblocks = jseg->js_jblocks;
 3937         /*
 3938          * Don't allow out of order completions.  If this isn't the first
 3939          * block wait for it to write before we're done.
 3940          */
 3941         if (jseg != jblocks->jb_writeseg)
 3942                 return;
 3943         /* Iterate through available jsegs processing their entries. */
 3944         while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
 3945                 jblocks->jb_oldestwrseq = jseg->js_oldseq;
 3946                 jsegn = TAILQ_NEXT(jseg, js_next);
 3947                 complete_jseg(jseg);
 3948                 jseg = jsegn;
 3949         }
 3950         jblocks->jb_writeseg = jseg;
 3951         /*
 3952          * Attempt to free jsegs now that oldestwrseq may have advanced. 
 3953          */
 3954         free_jsegs(jblocks);
 3955 }
 3956 
 3957 /*
 3958  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
 3959  * the final completions.
 3960  */
 3961 static void
 3962 handle_written_jseg(struct jseg *jseg, struct buf *bp)
 3963 {
 3964 
 3965         if (jseg->js_refs == 0)
 3966                 panic("handle_written_jseg: No self-reference on %p", jseg);
 3967         jseg->js_state |= DEPCOMPLETE;
 3968         /*
 3969          * We'll never need this buffer again, set flags so it will be
 3970          * discarded.
 3971          */
 3972         bp->b_flags |= B_INVAL | B_NOCACHE;
 3973         pbrelvp(bp);
 3974         complete_jsegs(jseg);
 3975 }
 3976 
 3977 static inline struct jsegdep *
 3978 inoref_jseg(struct inoref *inoref)
 3979 {
 3980         struct jsegdep *jsegdep;
 3981 
 3982         jsegdep = inoref->if_jsegdep;
 3983         inoref->if_jsegdep = NULL;
 3984 
 3985         return (jsegdep);
 3986 }
 3987 
 3988 /*
 3989  * Called once a jremref has made it to stable store.  The jremref is marked
 3990  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
 3991  * for the jremref to complete will be awoken by free_jremref.
 3992  */
 3993 static void
 3994 handle_written_jremref(struct jremref *jremref)
 3995 {
 3996         struct inodedep *inodedep;
 3997         struct jsegdep *jsegdep;
 3998         struct dirrem *dirrem;
 3999 
 4000         /* Grab the jsegdep. */
 4001         jsegdep = inoref_jseg(&jremref->jr_ref);
 4002         /*
 4003          * Remove us from the inoref list.
 4004          */
 4005         if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
 4006             0, &inodedep) == 0)
 4007                 panic("handle_written_jremref: Lost inodedep");
 4008         TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
 4009         /*
 4010          * Complete the dirrem.
 4011          */
 4012         dirrem = jremref->jr_dirrem;
 4013         jremref->jr_dirrem = NULL;
 4014         LIST_REMOVE(jremref, jr_deps);
 4015         jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
 4016         jwork_insert(&dirrem->dm_jwork, jsegdep);
 4017         if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
 4018             (dirrem->dm_state & COMPLETE) != 0)
 4019                 add_to_worklist(&dirrem->dm_list, 0);
 4020         free_jremref(jremref);
 4021 }
 4022 
 4023 /*
 4024  * Called once a jaddref has made it to stable store.  The dependency is
 4025  * marked complete and any dependent structures are added to the inode
 4026  * bufwait list to be completed as soon as it is written.  If a bitmap write
 4027  * depends on this entry we move the inode into the inodedephd of the
 4028  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
 4029  */
 4030 static void
 4031 handle_written_jaddref(struct jaddref *jaddref)
 4032 {
 4033         struct jsegdep *jsegdep;
 4034         struct inodedep *inodedep;
 4035         struct diradd *diradd;
 4036         struct mkdir *mkdir;
 4037 
 4038         /* Grab the jsegdep. */
 4039         jsegdep = inoref_jseg(&jaddref->ja_ref);
 4040         mkdir = NULL;
 4041         diradd = NULL;
 4042         if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
 4043             0, &inodedep) == 0)
 4044                 panic("handle_written_jaddref: Lost inodedep.");
 4045         if (jaddref->ja_diradd == NULL)
 4046                 panic("handle_written_jaddref: No dependency");
 4047         if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
 4048                 diradd = jaddref->ja_diradd;
 4049                 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
 4050         } else if (jaddref->ja_state & MKDIR_PARENT) {
 4051                 mkdir = jaddref->ja_mkdir;
 4052                 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
 4053         } else if (jaddref->ja_state & MKDIR_BODY)
 4054                 mkdir = jaddref->ja_mkdir;
 4055         else
 4056                 panic("handle_written_jaddref: Unknown dependency %p",
 4057                     jaddref->ja_diradd);
 4058         jaddref->ja_diradd = NULL;      /* also clears ja_mkdir */
 4059         /*
 4060          * Remove us from the inode list.
 4061          */
 4062         TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
 4063         /*
 4064          * The mkdir may be waiting on the jaddref to clear before freeing.
 4065          */
 4066         if (mkdir) {
 4067                 KASSERT(mkdir->md_list.wk_type == D_MKDIR,
 4068                     ("handle_written_jaddref: Incorrect type for mkdir %s",
 4069                     TYPENAME(mkdir->md_list.wk_type)));
 4070                 mkdir->md_jaddref = NULL;
 4071                 diradd = mkdir->md_diradd;
 4072                 mkdir->md_state |= DEPCOMPLETE;
 4073                 complete_mkdir(mkdir);
 4074         }
 4075         jwork_insert(&diradd->da_jwork, jsegdep);
 4076         if (jaddref->ja_state & NEWBLOCK) {
 4077                 inodedep->id_state |= ONDEPLIST;
 4078                 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
 4079                     inodedep, id_deps);
 4080         }
 4081         free_jaddref(jaddref);
 4082 }
 4083 
 4084 /*
 4085  * Called once a jnewblk journal is written.  The allocdirect or allocindir
 4086  * is placed in the bmsafemap to await notification of a written bitmap.  If
 4087  * the operation was canceled we add the segdep to the appropriate
 4088  * dependency to free the journal space once the canceling operation
 4089  * completes.
 4090  */
 4091 static void
 4092 handle_written_jnewblk(struct jnewblk *jnewblk)
 4093 {
 4094         struct bmsafemap *bmsafemap;
 4095         struct freefrag *freefrag;
 4096         struct freework *freework;
 4097         struct jsegdep *jsegdep;
 4098         struct newblk *newblk;
 4099 
 4100         /* Grab the jsegdep. */
 4101         jsegdep = jnewblk->jn_jsegdep;
 4102         jnewblk->jn_jsegdep = NULL;
 4103         if (jnewblk->jn_dep == NULL) 
 4104                 panic("handle_written_jnewblk: No dependency for the segdep.");
 4105         switch (jnewblk->jn_dep->wk_type) {
 4106         case D_NEWBLK:
 4107         case D_ALLOCDIRECT:
 4108         case D_ALLOCINDIR:
 4109                 /*
 4110                  * Add the written block to the bmsafemap so it can
 4111                  * be notified when the bitmap is on disk.
 4112                  */
 4113                 newblk = WK_NEWBLK(jnewblk->jn_dep);
 4114                 newblk->nb_jnewblk = NULL;
 4115                 if ((newblk->nb_state & GOINGAWAY) == 0) {
 4116                         bmsafemap = newblk->nb_bmsafemap;
 4117                         newblk->nb_state |= ONDEPLIST;
 4118                         LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
 4119                             nb_deps);
 4120                 }
 4121                 jwork_insert(&newblk->nb_jwork, jsegdep);
 4122                 break;
 4123         case D_FREEFRAG:
 4124                 /*
 4125                  * A newblock being removed by a freefrag when replaced by
 4126                  * frag extension.
 4127                  */
 4128                 freefrag = WK_FREEFRAG(jnewblk->jn_dep);
 4129                 freefrag->ff_jdep = NULL;
 4130                 jwork_insert(&freefrag->ff_jwork, jsegdep);
 4131                 break;
 4132         case D_FREEWORK:
 4133                 /*
 4134                  * A direct block was removed by truncate.
 4135                  */
 4136                 freework = WK_FREEWORK(jnewblk->jn_dep);
 4137                 freework->fw_jnewblk = NULL;
 4138                 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
 4139                 break;
 4140         default:
 4141                 panic("handle_written_jnewblk: Unknown type %d.",
 4142                     jnewblk->jn_dep->wk_type);
 4143         }
 4144         jnewblk->jn_dep = NULL;
 4145         free_jnewblk(jnewblk);
 4146 }
 4147 
 4148 /*
 4149  * Cancel a jfreefrag that won't be needed, probably due to colliding with
 4150  * an in-flight allocation that has not yet been committed.  Divorce us
 4151  * from the freefrag and mark it DEPCOMPLETE so that it may be added
 4152  * to the worklist.
 4153  */
 4154 static void
 4155 cancel_jfreefrag(struct jfreefrag *jfreefrag)
 4156 {
 4157         struct freefrag *freefrag;
 4158 
 4159         if (jfreefrag->fr_jsegdep) {
 4160                 free_jsegdep(jfreefrag->fr_jsegdep);
 4161                 jfreefrag->fr_jsegdep = NULL;
 4162         }
 4163         freefrag = jfreefrag->fr_freefrag;
 4164         jfreefrag->fr_freefrag = NULL;
 4165         free_jfreefrag(jfreefrag);
 4166         freefrag->ff_state |= DEPCOMPLETE;
 4167         CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
 4168 }
 4169 
 4170 /*
 4171  * Free a jfreefrag when the parent freefrag is rendered obsolete.
 4172  */
 4173 static void
 4174 free_jfreefrag(struct jfreefrag *jfreefrag)
 4175 {
 4176 
 4177         if (jfreefrag->fr_state & INPROGRESS)
 4178                 WORKLIST_REMOVE(&jfreefrag->fr_list);
 4179         else if (jfreefrag->fr_state & ONWORKLIST)
 4180                 remove_from_journal(&jfreefrag->fr_list);
 4181         if (jfreefrag->fr_freefrag != NULL)
 4182                 panic("free_jfreefrag:  Still attached to a freefrag.");
 4183         WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
 4184 }
 4185 
 4186 /*
 4187  * Called when the journal write for a jfreefrag completes.  The parent
 4188  * freefrag is added to the worklist if this completes its dependencies.
 4189  */
 4190 static void
 4191 handle_written_jfreefrag(struct jfreefrag *jfreefrag)
 4192 {
 4193         struct jsegdep *jsegdep;
 4194         struct freefrag *freefrag;
 4195 
 4196         /* Grab the jsegdep. */
 4197         jsegdep = jfreefrag->fr_jsegdep;
 4198         jfreefrag->fr_jsegdep = NULL;
 4199         freefrag = jfreefrag->fr_freefrag;
 4200         if (freefrag == NULL)
 4201                 panic("handle_written_jfreefrag: No freefrag.");
 4202         freefrag->ff_state |= DEPCOMPLETE;
 4203         freefrag->ff_jdep = NULL;
 4204         jwork_insert(&freefrag->ff_jwork, jsegdep);
 4205         if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
 4206                 add_to_worklist(&freefrag->ff_list, 0);
 4207         jfreefrag->fr_freefrag = NULL;
 4208         free_jfreefrag(jfreefrag);
 4209 }
 4210 
 4211 /*
 4212  * Called when the journal write for a jfreeblk completes.  The jfreeblk
 4213  * is removed from the freeblks list of pending journal writes and the
 4214  * jsegdep is moved to the freeblks jwork to be completed when all blocks
 4215  * have been reclaimed.
 4216  */
 4217 static void
 4218 handle_written_jblkdep(struct jblkdep *jblkdep)
 4219 {
 4220         struct freeblks *freeblks;
 4221         struct jsegdep *jsegdep;
 4222 
 4223         /* Grab the jsegdep. */
 4224         jsegdep = jblkdep->jb_jsegdep;
 4225         jblkdep->jb_jsegdep = NULL;
 4226         freeblks = jblkdep->jb_freeblks;
 4227         LIST_REMOVE(jblkdep, jb_deps);
 4228         jwork_insert(&freeblks->fb_jwork, jsegdep);
 4229         /*
 4230          * If the freeblks is all journaled, we can add it to the worklist.
 4231          */
 4232         if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
 4233             (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
 4234                 add_to_worklist(&freeblks->fb_list, WK_NODELAY);
 4235 
 4236         free_jblkdep(jblkdep);
 4237 }
 4238 
 4239 static struct jsegdep *
 4240 newjsegdep(struct worklist *wk)
 4241 {
 4242         struct jsegdep *jsegdep;
 4243 
 4244         jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
 4245         workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
 4246         jsegdep->jd_seg = NULL;
 4247 
 4248         return (jsegdep);
 4249 }
 4250 
 4251 static struct jmvref *
 4252 newjmvref(struct inode *dp,
 4253         ino_t ino,
 4254         off_t oldoff,
 4255         off_t newoff)
 4256 {
 4257         struct jmvref *jmvref;
 4258 
 4259         jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
 4260         workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
 4261         jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
 4262         jmvref->jm_parent = dp->i_number;
 4263         jmvref->jm_ino = ino;
 4264         jmvref->jm_oldoff = oldoff;
 4265         jmvref->jm_newoff = newoff;
 4266 
 4267         return (jmvref);
 4268 }
 4269 
 4270 /*
 4271  * Allocate a new jremref that tracks the removal of ip from dp with the
 4272  * directory entry offset of diroff.  Mark the entry as ATTACHED and
 4273  * DEPCOMPLETE as we have all the information required for the journal write
 4274  * and the directory has already been removed from the buffer.  The caller
 4275  * is responsible for linking the jremref into the pagedep and adding it
 4276  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
 4277  * a DOTDOT addition so handle_workitem_remove() can properly assign
 4278  * the jsegdep when we're done.
 4279  */
 4280 static struct jremref *
 4281 newjremref(struct dirrem *dirrem,
 4282         struct inode *dp,
 4283         struct inode *ip,
 4284         off_t diroff,
 4285         nlink_t nlink)
 4286 {
 4287         struct jremref *jremref;
 4288 
 4289         jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
 4290         workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
 4291         jremref->jr_state = ATTACHED;
 4292         newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
 4293            nlink, ip->i_mode);
 4294         jremref->jr_dirrem = dirrem;
 4295 
 4296         return (jremref);
 4297 }
 4298 
 4299 static inline void
 4300 newinoref(struct inoref *inoref,
 4301         ino_t ino,
 4302         ino_t parent,
 4303         off_t diroff,
 4304         nlink_t nlink,
 4305         uint16_t mode)
 4306 {
 4307 
 4308         inoref->if_jsegdep = newjsegdep(&inoref->if_list);
 4309         inoref->if_diroff = diroff;
 4310         inoref->if_ino = ino;
 4311         inoref->if_parent = parent;
 4312         inoref->if_nlink = nlink;
 4313         inoref->if_mode = mode;
 4314 }
 4315 
 4316 /*
 4317  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
 4318  * directory offset may not be known until later.  The caller is responsible
 4319  * adding the entry to the journal when this information is available.  nlink
 4320  * should be the link count prior to the addition and mode is only required
 4321  * to have the correct FMT.
 4322  */
 4323 static struct jaddref *
 4324 newjaddref(struct inode *dp,
 4325         ino_t ino,
 4326         off_t diroff,
 4327         int16_t nlink,
 4328         uint16_t mode)
 4329 {
 4330         struct jaddref *jaddref;
 4331 
 4332         jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
 4333         workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
 4334         jaddref->ja_state = ATTACHED;
 4335         jaddref->ja_mkdir = NULL;
 4336         newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
 4337 
 4338         return (jaddref);
 4339 }
 4340 
 4341 /*
 4342  * Create a new free dependency for a freework.  The caller is responsible
 4343  * for adjusting the reference count when it has the lock held.  The freedep
 4344  * will track an outstanding bitmap write that will ultimately clear the
 4345  * freework to continue.
 4346  */
 4347 static struct freedep *
 4348 newfreedep(struct freework *freework)
 4349 {
 4350         struct freedep *freedep;
 4351 
 4352         freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
 4353         workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
 4354         freedep->fd_freework = freework;
 4355 
 4356         return (freedep);
 4357 }
 4358 
 4359 /*
 4360  * Free a freedep structure once the buffer it is linked to is written.  If
 4361  * this is the last reference to the freework schedule it for completion.
 4362  */
 4363 static void
 4364 free_freedep(struct freedep *freedep)
 4365 {
 4366         struct freework *freework;
 4367 
 4368         freework = freedep->fd_freework;
 4369         freework->fw_freeblks->fb_cgwait--;
 4370         if (--freework->fw_ref == 0)
 4371                 freework_enqueue(freework);
 4372         WORKITEM_FREE(freedep, D_FREEDEP);
 4373 }
 4374 
 4375 /*
 4376  * Allocate a new freework structure that may be a level in an indirect
 4377  * when parent is not NULL or a top level block when it is.  The top level
 4378  * freework structures are allocated without the per-filesystem lock held
 4379  * and before the freeblks is visible outside of softdep_setup_freeblocks().
 4380  */
 4381 static struct freework *
 4382 newfreework(struct ufsmount *ump,
 4383         struct freeblks *freeblks,
 4384         struct freework *parent,
 4385         ufs_lbn_t lbn,
 4386         ufs2_daddr_t nb,
 4387         int frags,
 4388         int off,
 4389         int journal)
 4390 {
 4391         struct freework *freework;
 4392 
 4393         freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
 4394         workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
 4395         freework->fw_state = ATTACHED;
 4396         freework->fw_jnewblk = NULL;
 4397         freework->fw_freeblks = freeblks;
 4398         freework->fw_parent = parent;
 4399         freework->fw_lbn = lbn;
 4400         freework->fw_blkno = nb;
 4401         freework->fw_frags = frags;
 4402         freework->fw_indir = NULL;
 4403         freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
 4404             lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
 4405         freework->fw_start = freework->fw_off = off;
 4406         if (journal)
 4407                 newjfreeblk(freeblks, lbn, nb, frags);
 4408         if (parent == NULL) {
 4409                 ACQUIRE_LOCK(ump);
 4410                 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
 4411                 freeblks->fb_ref++;
 4412                 FREE_LOCK(ump);
 4413         }
 4414 
 4415         return (freework);
 4416 }
 4417 
 4418 /*
 4419  * Eliminate a jfreeblk for a block that does not need journaling.
 4420  */
 4421 static void
 4422 cancel_jfreeblk(struct freeblks *freeblks, ufs2_daddr_t blkno)
 4423 {
 4424         struct jfreeblk *jfreeblk;
 4425         struct jblkdep *jblkdep;
 4426 
 4427         LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
 4428                 if (jblkdep->jb_list.wk_type != D_JFREEBLK)
 4429                         continue;
 4430                 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
 4431                 if (jfreeblk->jf_blkno == blkno)
 4432                         break;
 4433         }
 4434         if (jblkdep == NULL)
 4435                 return;
 4436         CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
 4437         free_jsegdep(jblkdep->jb_jsegdep);
 4438         LIST_REMOVE(jblkdep, jb_deps);
 4439         WORKITEM_FREE(jfreeblk, D_JFREEBLK);
 4440 }
 4441 
 4442 /*
 4443  * Allocate a new jfreeblk to journal top level block pointer when truncating
 4444  * a file.  The caller must add this to the worklist when the per-filesystem
 4445  * lock is held.
 4446  */
 4447 static struct jfreeblk *
 4448 newjfreeblk(struct freeblks *freeblks,
 4449         ufs_lbn_t lbn,
 4450         ufs2_daddr_t blkno,
 4451         int frags)
 4452 {
 4453         struct jfreeblk *jfreeblk;
 4454 
 4455         jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
 4456         workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
 4457             freeblks->fb_list.wk_mp);
 4458         jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
 4459         jfreeblk->jf_dep.jb_freeblks = freeblks;
 4460         jfreeblk->jf_ino = freeblks->fb_inum;
 4461         jfreeblk->jf_lbn = lbn;
 4462         jfreeblk->jf_blkno = blkno;
 4463         jfreeblk->jf_frags = frags;
 4464         LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
 4465 
 4466         return (jfreeblk);
 4467 }
 4468 
 4469 /*
 4470  * The journal is only prepared to handle full-size block numbers, so we
 4471  * have to adjust the record to reflect the change to a full-size block.
 4472  * For example, suppose we have a block made up of fragments 8-15 and
 4473  * want to free its last two fragments. We are given a request that says:
 4474  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
 4475  * where frags are the number of fragments to free and oldfrags are the
 4476  * number of fragments to keep. To block align it, we have to change it to
 4477  * have a valid full-size blkno, so it becomes:
 4478  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
 4479  */
 4480 static void
 4481 adjust_newfreework(struct freeblks *freeblks, int frag_offset)
 4482 {
 4483         struct jfreeblk *jfreeblk;
 4484 
 4485         KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
 4486             LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
 4487             ("adjust_newfreework: Missing freeblks dependency"));
 4488 
 4489         jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
 4490         jfreeblk->jf_blkno -= frag_offset;
 4491         jfreeblk->jf_frags += frag_offset;
 4492 }
 4493 
 4494 /*
 4495  * Allocate a new jtrunc to track a partial truncation.
 4496  */
 4497 static struct jtrunc *
 4498 newjtrunc(struct freeblks *freeblks,
 4499         off_t size,
 4500         int extsize)
 4501 {
 4502         struct jtrunc *jtrunc;
 4503 
 4504         jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
 4505         workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
 4506             freeblks->fb_list.wk_mp);
 4507         jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
 4508         jtrunc->jt_dep.jb_freeblks = freeblks;
 4509         jtrunc->jt_ino = freeblks->fb_inum;
 4510         jtrunc->jt_size = size;
 4511         jtrunc->jt_extsize = extsize;
 4512         LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
 4513 
 4514         return (jtrunc);
 4515 }
 4516 
 4517 /*
 4518  * If we're canceling a new bitmap we have to search for another ref
 4519  * to move into the bmsafemap dep.  This might be better expressed
 4520  * with another structure.
 4521  */
 4522 static void
 4523 move_newblock_dep(struct jaddref *jaddref, struct inodedep *inodedep)
 4524 {
 4525         struct inoref *inoref;
 4526         struct jaddref *jaddrefn;
 4527 
 4528         jaddrefn = NULL;
 4529         for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
 4530             inoref = TAILQ_NEXT(inoref, if_deps)) {
 4531                 if ((jaddref->ja_state & NEWBLOCK) &&
 4532                     inoref->if_list.wk_type == D_JADDREF) {
 4533                         jaddrefn = (struct jaddref *)inoref;
 4534                         break;
 4535                 }
 4536         }
 4537         if (jaddrefn == NULL)
 4538                 return;
 4539         jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
 4540         jaddrefn->ja_state |= jaddref->ja_state &
 4541             (ATTACHED | UNDONE | NEWBLOCK);
 4542         jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
 4543         jaddref->ja_state |= ATTACHED;
 4544         LIST_REMOVE(jaddref, ja_bmdeps);
 4545         LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
 4546             ja_bmdeps);
 4547 }
 4548 
 4549 /*
 4550  * Cancel a jaddref either before it has been written or while it is being
 4551  * written.  This happens when a link is removed before the add reaches
 4552  * the disk.  The jaddref dependency is kept linked into the bmsafemap
 4553  * and inode to prevent the link count or bitmap from reaching the disk
 4554  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
 4555  * required.
 4556  *
 4557  * Returns 1 if the canceled addref requires journaling of the remove and
 4558  * 0 otherwise.
 4559  */
 4560 static int
 4561 cancel_jaddref(struct jaddref *jaddref,
 4562         struct inodedep *inodedep,
 4563         struct workhead *wkhd)
 4564 {
 4565         struct inoref *inoref;
 4566         struct jsegdep *jsegdep;
 4567         int needsj;
 4568 
 4569         KASSERT((jaddref->ja_state & COMPLETE) == 0,
 4570             ("cancel_jaddref: Canceling complete jaddref"));
 4571         if (jaddref->ja_state & (INPROGRESS | COMPLETE))
 4572                 needsj = 1;
 4573         else
 4574                 needsj = 0;
 4575         if (inodedep == NULL)
 4576                 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
 4577                     0, &inodedep) == 0)
 4578                         panic("cancel_jaddref: Lost inodedep");
 4579         /*
 4580          * We must adjust the nlink of any reference operation that follows
 4581          * us so that it is consistent with the in-memory reference.  This
 4582          * ensures that inode nlink rollbacks always have the correct link.
 4583          */
 4584         if (needsj == 0) {
 4585                 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
 4586                     inoref = TAILQ_NEXT(inoref, if_deps)) {
 4587                         if (inoref->if_state & GOINGAWAY)
 4588                                 break;
 4589                         inoref->if_nlink--;
 4590                 }
 4591         }
 4592         jsegdep = inoref_jseg(&jaddref->ja_ref);
 4593         if (jaddref->ja_state & NEWBLOCK)
 4594                 move_newblock_dep(jaddref, inodedep);
 4595         wake_worklist(&jaddref->ja_list);
 4596         jaddref->ja_mkdir = NULL;
 4597         if (jaddref->ja_state & INPROGRESS) {
 4598                 jaddref->ja_state &= ~INPROGRESS;
 4599                 WORKLIST_REMOVE(&jaddref->ja_list);
 4600                 jwork_insert(wkhd, jsegdep);
 4601         } else {
 4602                 free_jsegdep(jsegdep);
 4603                 if (jaddref->ja_state & DEPCOMPLETE)
 4604                         remove_from_journal(&jaddref->ja_list);
 4605         }
 4606         jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
 4607         /*
 4608          * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
 4609          * can arrange for them to be freed with the bitmap.  Otherwise we
 4610          * no longer need this addref attached to the inoreflst and it
 4611          * will incorrectly adjust nlink if we leave it.
 4612          */
 4613         if ((jaddref->ja_state & NEWBLOCK) == 0) {
 4614                 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
 4615                     if_deps);
 4616                 jaddref->ja_state |= COMPLETE;
 4617                 free_jaddref(jaddref);
 4618                 return (needsj);
 4619         }
 4620         /*
 4621          * Leave the head of the list for jsegdeps for fast merging.
 4622          */
 4623         if (LIST_FIRST(wkhd) != NULL) {
 4624                 jaddref->ja_state |= ONWORKLIST;
 4625                 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
 4626         } else
 4627                 WORKLIST_INSERT(wkhd, &jaddref->ja_list);
 4628 
 4629         return (needsj);
 4630 }
 4631 
 4632 /* 
 4633  * Attempt to free a jaddref structure when some work completes.  This
 4634  * should only succeed once the entry is written and all dependencies have
 4635  * been notified.
 4636  */
 4637 static void
 4638 free_jaddref(struct jaddref *jaddref)
 4639 {
 4640 
 4641         if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
 4642                 return;
 4643         if (jaddref->ja_ref.if_jsegdep)
 4644                 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
 4645                     jaddref, jaddref->ja_state);
 4646         if (jaddref->ja_state & NEWBLOCK)
 4647                 LIST_REMOVE(jaddref, ja_bmdeps);
 4648         if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
 4649                 panic("free_jaddref: Bad state %p(0x%X)",
 4650                     jaddref, jaddref->ja_state);
 4651         if (jaddref->ja_mkdir != NULL)
 4652                 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
 4653         WORKITEM_FREE(jaddref, D_JADDREF);
 4654 }
 4655 
 4656 /*
 4657  * Free a jremref structure once it has been written or discarded.
 4658  */
 4659 static void
 4660 free_jremref(struct jremref *jremref)
 4661 {
 4662 
 4663         if (jremref->jr_ref.if_jsegdep)
 4664                 free_jsegdep(jremref->jr_ref.if_jsegdep);
 4665         if (jremref->jr_state & INPROGRESS)
 4666                 panic("free_jremref: IO still pending");
 4667         WORKITEM_FREE(jremref, D_JREMREF);
 4668 }
 4669 
 4670 /*
 4671  * Free a jnewblk structure.
 4672  */
 4673 static void
 4674 free_jnewblk(struct jnewblk *jnewblk)
 4675 {
 4676 
 4677         if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
 4678                 return;
 4679         LIST_REMOVE(jnewblk, jn_deps);
 4680         if (jnewblk->jn_dep != NULL)
 4681                 panic("free_jnewblk: Dependency still attached.");
 4682         WORKITEM_FREE(jnewblk, D_JNEWBLK);
 4683 }
 4684 
 4685 /*
 4686  * Cancel a jnewblk which has been been made redundant by frag extension.
 4687  */
 4688 static void
 4689 cancel_jnewblk(struct jnewblk *jnewblk, struct workhead *wkhd)
 4690 {
 4691         struct jsegdep *jsegdep;
 4692 
 4693         CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
 4694         jsegdep = jnewblk->jn_jsegdep;
 4695         if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
 4696                 panic("cancel_jnewblk: Invalid state");
 4697         jnewblk->jn_jsegdep  = NULL;
 4698         jnewblk->jn_dep = NULL;
 4699         jnewblk->jn_state |= GOINGAWAY;
 4700         if (jnewblk->jn_state & INPROGRESS) {
 4701                 jnewblk->jn_state &= ~INPROGRESS;
 4702                 WORKLIST_REMOVE(&jnewblk->jn_list);
 4703                 jwork_insert(wkhd, jsegdep);
 4704         } else {
 4705                 free_jsegdep(jsegdep);
 4706                 remove_from_journal(&jnewblk->jn_list);
 4707         }
 4708         wake_worklist(&jnewblk->jn_list);
 4709         WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
 4710 }
 4711 
 4712 static void
 4713 free_jblkdep(struct jblkdep *jblkdep)
 4714 {
 4715 
 4716         if (jblkdep->jb_list.wk_type == D_JFREEBLK)
 4717                 WORKITEM_FREE(jblkdep, D_JFREEBLK);
 4718         else if (jblkdep->jb_list.wk_type == D_JTRUNC)
 4719                 WORKITEM_FREE(jblkdep, D_JTRUNC);
 4720         else
 4721                 panic("free_jblkdep: Unexpected type %s",
 4722                     TYPENAME(jblkdep->jb_list.wk_type));
 4723 }
 4724 
 4725 /*
 4726  * Free a single jseg once it is no longer referenced in memory or on
 4727  * disk.  Reclaim journal blocks and dependencies waiting for the segment
 4728  * to disappear.
 4729  */
 4730 static void
 4731 free_jseg(struct jseg *jseg, struct jblocks *jblocks)
 4732 {
 4733         struct freework *freework;
 4734 
 4735         /*
 4736          * Free freework structures that were lingering to indicate freed
 4737          * indirect blocks that forced journal write ordering on reallocate.
 4738          */
 4739         while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
 4740                 indirblk_remove(freework);
 4741         if (jblocks->jb_oldestseg == jseg)
 4742                 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
 4743         TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
 4744         jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
 4745         KASSERT(LIST_EMPTY(&jseg->js_entries),
 4746             ("free_jseg: Freed jseg has valid entries."));
 4747         WORKITEM_FREE(jseg, D_JSEG);
 4748 }
 4749 
 4750 /*
 4751  * Free all jsegs that meet the criteria for being reclaimed and update
 4752  * oldestseg.
 4753  */
 4754 static void
 4755 free_jsegs(struct jblocks *jblocks)
 4756 {
 4757         struct jseg *jseg;
 4758 
 4759         /*
 4760          * Free only those jsegs which have none allocated before them to
 4761          * preserve the journal space ordering.
 4762          */
 4763         while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
 4764                 /*
 4765                  * Only reclaim space when nothing depends on this journal
 4766                  * set and another set has written that it is no longer
 4767                  * valid.
 4768                  */
 4769                 if (jseg->js_refs != 0) {
 4770                         jblocks->jb_oldestseg = jseg;
 4771                         return;
 4772                 }
 4773                 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
 4774                         break;
 4775                 if (jseg->js_seq > jblocks->jb_oldestwrseq)
 4776                         break;
 4777                 /*
 4778                  * We can free jsegs that didn't write entries when
 4779                  * oldestwrseq == js_seq.
 4780                  */
 4781                 if (jseg->js_seq == jblocks->jb_oldestwrseq &&
 4782                     jseg->js_cnt != 0)
 4783                         break;
 4784                 free_jseg(jseg, jblocks);
 4785         }
 4786         /*
 4787          * If we exited the loop above we still must discover the
 4788          * oldest valid segment.
 4789          */
 4790         if (jseg)
 4791                 for (jseg = jblocks->jb_oldestseg; jseg != NULL;
 4792                      jseg = TAILQ_NEXT(jseg, js_next))
 4793                         if (jseg->js_refs != 0)
 4794                                 break;
 4795         jblocks->jb_oldestseg = jseg;
 4796         /*
 4797          * The journal has no valid records but some jsegs may still be
 4798          * waiting on oldestwrseq to advance.  We force a small record
 4799          * out to permit these lingering records to be reclaimed.
 4800          */
 4801         if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
 4802                 jblocks->jb_needseg = 1;
 4803 }
 4804 
 4805 /*
 4806  * Release one reference to a jseg and free it if the count reaches 0.  This
 4807  * should eventually reclaim journal space as well.
 4808  */
 4809 static void
 4810 rele_jseg(struct jseg *jseg)
 4811 {
 4812 
 4813         KASSERT(jseg->js_refs > 0,
 4814             ("free_jseg: Invalid refcnt %d", jseg->js_refs));
 4815         if (--jseg->js_refs != 0)
 4816                 return;
 4817         free_jsegs(jseg->js_jblocks);
 4818 }
 4819 
 4820 /*
 4821  * Release a jsegdep and decrement the jseg count.
 4822  */
 4823 static void
 4824 free_jsegdep(struct jsegdep *jsegdep)
 4825 {
 4826 
 4827         if (jsegdep->jd_seg)
 4828                 rele_jseg(jsegdep->jd_seg);
 4829         WORKITEM_FREE(jsegdep, D_JSEGDEP);
 4830 }
 4831 
 4832 /*
 4833  * Wait for a journal item to make it to disk.  Initiate journal processing
 4834  * if required.
 4835  */
 4836 static int
 4837 jwait(struct worklist *wk, int waitfor)
 4838 {
 4839 
 4840         LOCK_OWNED(VFSTOUFS(wk->wk_mp));
 4841         /*
 4842          * Blocking journal waits cause slow synchronous behavior.  Record
 4843          * stats on the frequency of these blocking operations.
 4844          */
 4845         if (waitfor == MNT_WAIT) {
 4846                 stat_journal_wait++;
 4847                 switch (wk->wk_type) {
 4848                 case D_JREMREF:
 4849                 case D_JMVREF:
 4850                         stat_jwait_filepage++;
 4851                         break;
 4852                 case D_JTRUNC:
 4853                 case D_JFREEBLK:
 4854                         stat_jwait_freeblks++;
 4855                         break;
 4856                 case D_JNEWBLK:
 4857                         stat_jwait_newblk++;
 4858                         break;
 4859                 case D_JADDREF:
 4860                         stat_jwait_inode++;
 4861                         break;
 4862                 default:
 4863                         break;
 4864                 }
 4865         }
 4866         /*
 4867          * If IO has not started we process the journal.  We can't mark the
 4868          * worklist item as IOWAITING because we drop the lock while
 4869          * processing the journal and the worklist entry may be freed after
 4870          * this point.  The caller may call back in and re-issue the request.
 4871          */
 4872         if ((wk->wk_state & INPROGRESS) == 0) {
 4873                 softdep_process_journal(wk->wk_mp, wk, waitfor);
 4874                 if (waitfor != MNT_WAIT)
 4875                         return (EBUSY);
 4876                 return (0);
 4877         }
 4878         if (waitfor != MNT_WAIT)
 4879                 return (EBUSY);
 4880         wait_worklist(wk, "jwait");
 4881         return (0);
 4882 }
 4883 
 4884 /*
 4885  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
 4886  * appropriate.  This is a convenience function to reduce duplicate code
 4887  * for the setup and revert functions below.
 4888  */
 4889 static struct inodedep *
 4890 inodedep_lookup_ip(struct inode *ip)
 4891 {
 4892         struct inodedep *inodedep;
 4893 
 4894         KASSERT(ip->i_nlink >= ip->i_effnlink,
 4895             ("inodedep_lookup_ip: bad delta"));
 4896         (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
 4897             &inodedep);
 4898         inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
 4899         KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
 4900 
 4901         return (inodedep);
 4902 }
 4903 
 4904 /*
 4905  * Called prior to creating a new inode and linking it to a directory.  The
 4906  * jaddref structure must already be allocated by softdep_setup_inomapdep
 4907  * and it is discovered here so we can initialize the mode and update
 4908  * nlinkdelta.
 4909  */
 4910 void
 4911 softdep_setup_create(struct inode *dp, struct inode *ip)
 4912 {
 4913         struct inodedep *inodedep;
 4914         struct jaddref *jaddref __diagused;
 4915         struct vnode *dvp;
 4916 
 4917         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 4918             ("softdep_setup_create called on non-softdep filesystem"));
 4919         KASSERT(ip->i_nlink == 1,
 4920             ("softdep_setup_create: Invalid link count."));
 4921         dvp = ITOV(dp);
 4922         ACQUIRE_LOCK(ITOUMP(dp));
 4923         inodedep = inodedep_lookup_ip(ip);
 4924         if (DOINGSUJ(dvp)) {
 4925                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 4926                     inoreflst);
 4927                 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
 4928                     ("softdep_setup_create: No addref structure present."));
 4929         }
 4930         FREE_LOCK(ITOUMP(dp));
 4931 }
 4932 
 4933 /*
 4934  * Create a jaddref structure to track the addition of a DOTDOT link when
 4935  * we are reparenting an inode as part of a rename.  This jaddref will be
 4936  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
 4937  * non-journaling softdep.
 4938  */
 4939 void
 4940 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
 4941 {
 4942         struct inodedep *inodedep;
 4943         struct jaddref *jaddref;
 4944         struct vnode *dvp;
 4945 
 4946         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 4947             ("softdep_setup_dotdot_link called on non-softdep filesystem"));
 4948         dvp = ITOV(dp);
 4949         jaddref = NULL;
 4950         /*
 4951          * We don't set MKDIR_PARENT as this is not tied to a mkdir and
 4952          * is used as a normal link would be.
 4953          */
 4954         if (DOINGSUJ(dvp))
 4955                 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
 4956                     dp->i_effnlink - 1, dp->i_mode);
 4957         ACQUIRE_LOCK(ITOUMP(dp));
 4958         inodedep = inodedep_lookup_ip(dp);
 4959         if (jaddref)
 4960                 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
 4961                     if_deps);
 4962         FREE_LOCK(ITOUMP(dp));
 4963 }
 4964 
 4965 /*
 4966  * Create a jaddref structure to track a new link to an inode.  The directory
 4967  * offset is not known until softdep_setup_directory_add or
 4968  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
 4969  * softdep.
 4970  */
 4971 void
 4972 softdep_setup_link(struct inode *dp, struct inode *ip)
 4973 {
 4974         struct inodedep *inodedep;
 4975         struct jaddref *jaddref;
 4976         struct vnode *dvp;
 4977 
 4978         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 4979             ("softdep_setup_link called on non-softdep filesystem"));
 4980         dvp = ITOV(dp);
 4981         jaddref = NULL;
 4982         if (DOINGSUJ(dvp))
 4983                 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
 4984                     ip->i_mode);
 4985         ACQUIRE_LOCK(ITOUMP(dp));
 4986         inodedep = inodedep_lookup_ip(ip);
 4987         if (jaddref)
 4988                 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
 4989                     if_deps);
 4990         FREE_LOCK(ITOUMP(dp));
 4991 }
 4992 
 4993 /*
 4994  * Called to create the jaddref structures to track . and .. references as
 4995  * well as lookup and further initialize the incomplete jaddref created
 4996  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
 4997  * nlinkdelta for non-journaling softdep.
 4998  */
 4999 void
 5000 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
 5001 {
 5002         struct inodedep *inodedep;
 5003         struct jaddref *dotdotaddref;
 5004         struct jaddref *dotaddref;
 5005         struct jaddref *jaddref;
 5006         struct vnode *dvp;
 5007 
 5008         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 5009             ("softdep_setup_mkdir called on non-softdep filesystem"));
 5010         dvp = ITOV(dp);
 5011         dotaddref = dotdotaddref = NULL;
 5012         if (DOINGSUJ(dvp)) {
 5013                 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
 5014                     ip->i_mode);
 5015                 dotaddref->ja_state |= MKDIR_BODY;
 5016                 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
 5017                     dp->i_effnlink - 1, dp->i_mode);
 5018                 dotdotaddref->ja_state |= MKDIR_PARENT;
 5019         }
 5020         ACQUIRE_LOCK(ITOUMP(dp));
 5021         inodedep = inodedep_lookup_ip(ip);
 5022         if (DOINGSUJ(dvp)) {
 5023                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 5024                     inoreflst);
 5025                 KASSERT(jaddref != NULL,
 5026                     ("softdep_setup_mkdir: No addref structure present."));
 5027                 KASSERT(jaddref->ja_parent == dp->i_number, 
 5028                     ("softdep_setup_mkdir: bad parent %ju",
 5029                     (uintmax_t)jaddref->ja_parent));
 5030                 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
 5031                     if_deps);
 5032         }
 5033         inodedep = inodedep_lookup_ip(dp);
 5034         if (DOINGSUJ(dvp))
 5035                 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
 5036                     &dotdotaddref->ja_ref, if_deps);
 5037         FREE_LOCK(ITOUMP(dp));
 5038 }
 5039 
 5040 /*
 5041  * Called to track nlinkdelta of the inode and parent directories prior to
 5042  * unlinking a directory.
 5043  */
 5044 void
 5045 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
 5046 {
 5047 
 5048         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 5049             ("softdep_setup_rmdir called on non-softdep filesystem"));
 5050         ACQUIRE_LOCK(ITOUMP(dp));
 5051         (void) inodedep_lookup_ip(ip);
 5052         (void) inodedep_lookup_ip(dp);
 5053         FREE_LOCK(ITOUMP(dp));
 5054 }
 5055 
 5056 /*
 5057  * Called to track nlinkdelta of the inode and parent directories prior to
 5058  * unlink.
 5059  */
 5060 void
 5061 softdep_setup_unlink(struct inode *dp, struct inode *ip)
 5062 {
 5063 
 5064         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 5065             ("softdep_setup_unlink called on non-softdep filesystem"));
 5066         ACQUIRE_LOCK(ITOUMP(dp));
 5067         (void) inodedep_lookup_ip(ip);
 5068         (void) inodedep_lookup_ip(dp);
 5069         FREE_LOCK(ITOUMP(dp));
 5070 }
 5071 
 5072 /*
 5073  * Called to release the journal structures created by a failed non-directory
 5074  * creation.  Adjusts nlinkdelta for non-journaling softdep.
 5075  */
 5076 void
 5077 softdep_revert_create(struct inode *dp, struct inode *ip)
 5078 {
 5079         struct inodedep *inodedep;
 5080         struct jaddref *jaddref;
 5081         struct vnode *dvp;
 5082 
 5083         KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
 5084             ("softdep_revert_create called on non-softdep filesystem"));
 5085         dvp = ITOV(dp);
 5086         ACQUIRE_LOCK(ITOUMP(dp));
 5087         inodedep = inodedep_lookup_ip(ip);
 5088         if (DOINGSUJ(dvp)) {
 5089                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 5090                     inoreflst);
 5091                 KASSERT(jaddref->ja_parent == dp->i_number,
 5092                     ("softdep_revert_create: addref parent mismatch"));
 5093                 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
 5094         }
 5095         FREE_LOCK(ITOUMP(dp));
 5096 }
 5097 
 5098 /*
 5099  * Called to release the journal structures created by a failed link
 5100  * addition.  Adjusts nlinkdelta for non-journaling softdep.
 5101  */
 5102 void
 5103 softdep_revert_link(struct inode *dp, struct inode *ip)
 5104 {
 5105         struct inodedep *inodedep;
 5106         struct jaddref *jaddref;
 5107         struct vnode *dvp;
 5108 
 5109         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 5110             ("softdep_revert_link called on non-softdep filesystem"));
 5111         dvp = ITOV(dp);
 5112         ACQUIRE_LOCK(ITOUMP(dp));
 5113         inodedep = inodedep_lookup_ip(ip);
 5114         if (DOINGSUJ(dvp)) {
 5115                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 5116                     inoreflst);
 5117                 KASSERT(jaddref->ja_parent == dp->i_number,
 5118                     ("softdep_revert_link: addref parent mismatch"));
 5119                 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
 5120         }
 5121         FREE_LOCK(ITOUMP(dp));
 5122 }
 5123 
 5124 /*
 5125  * Called to release the journal structures created by a failed mkdir
 5126  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
 5127  */
 5128 void
 5129 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
 5130 {
 5131         struct inodedep *inodedep;
 5132         struct jaddref *jaddref;
 5133         struct jaddref *dotaddref;
 5134         struct vnode *dvp;
 5135 
 5136         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 5137             ("softdep_revert_mkdir called on non-softdep filesystem"));
 5138         dvp = ITOV(dp);
 5139 
 5140         ACQUIRE_LOCK(ITOUMP(dp));
 5141         inodedep = inodedep_lookup_ip(dp);
 5142         if (DOINGSUJ(dvp)) {
 5143                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 5144                     inoreflst);
 5145                 KASSERT(jaddref->ja_parent == ip->i_number,
 5146                     ("softdep_revert_mkdir: dotdot addref parent mismatch"));
 5147                 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
 5148         }
 5149         inodedep = inodedep_lookup_ip(ip);
 5150         if (DOINGSUJ(dvp)) {
 5151                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 5152                     inoreflst);
 5153                 KASSERT(jaddref->ja_parent == dp->i_number,
 5154                     ("softdep_revert_mkdir: addref parent mismatch"));
 5155                 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
 5156                     inoreflst, if_deps);
 5157                 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
 5158                 KASSERT(dotaddref->ja_parent == ip->i_number,
 5159                     ("softdep_revert_mkdir: dot addref parent mismatch"));
 5160                 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
 5161         }
 5162         FREE_LOCK(ITOUMP(dp));
 5163 }
 5164 
 5165 /* 
 5166  * Called to correct nlinkdelta after a failed rmdir.
 5167  */
 5168 void
 5169 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
 5170 {
 5171 
 5172         KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
 5173             ("softdep_revert_rmdir called on non-softdep filesystem"));
 5174         ACQUIRE_LOCK(ITOUMP(dp));
 5175         (void) inodedep_lookup_ip(ip);
 5176         (void) inodedep_lookup_ip(dp);
 5177         FREE_LOCK(ITOUMP(dp));
 5178 }
 5179 
 5180 /*
 5181  * Protecting the freemaps (or bitmaps).
 5182  * 
 5183  * To eliminate the need to execute fsck before mounting a filesystem
 5184  * after a power failure, one must (conservatively) guarantee that the
 5185  * on-disk copy of the bitmaps never indicate that a live inode or block is
 5186  * free.  So, when a block or inode is allocated, the bitmap should be
 5187  * updated (on disk) before any new pointers.  When a block or inode is
 5188  * freed, the bitmap should not be updated until all pointers have been
 5189  * reset.  The latter dependency is handled by the delayed de-allocation
 5190  * approach described below for block and inode de-allocation.  The former
 5191  * dependency is handled by calling the following procedure when a block or
 5192  * inode is allocated. When an inode is allocated an "inodedep" is created
 5193  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
 5194  * Each "inodedep" is also inserted into the hash indexing structure so
 5195  * that any additional link additions can be made dependent on the inode
 5196  * allocation.
 5197  * 
 5198  * The ufs filesystem maintains a number of free block counts (e.g., per
 5199  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
 5200  * in addition to the bitmaps.  These counts are used to improve efficiency
 5201  * during allocation and therefore must be consistent with the bitmaps.
 5202  * There is no convenient way to guarantee post-crash consistency of these
 5203  * counts with simple update ordering, for two main reasons: (1) The counts
 5204  * and bitmaps for a single cylinder group block are not in the same disk
 5205  * sector.  If a disk write is interrupted (e.g., by power failure), one may
 5206  * be written and the other not.  (2) Some of the counts are located in the
 5207  * superblock rather than the cylinder group block. So, we focus our soft
 5208  * updates implementation on protecting the bitmaps. When mounting a
 5209  * filesystem, we recompute the auxiliary counts from the bitmaps.
 5210  */
 5211 
 5212 /*
 5213  * Called just after updating the cylinder group block to allocate an inode.
 5214  */
 5215 void
 5216 softdep_setup_inomapdep(
 5217         struct buf *bp,         /* buffer for cylgroup block with inode map */
 5218         struct inode *ip,       /* inode related to allocation */
 5219         ino_t newinum,          /* new inode number being allocated */
 5220         int mode)
 5221 {
 5222         struct inodedep *inodedep;
 5223         struct bmsafemap *bmsafemap;
 5224         struct jaddref *jaddref;
 5225         struct mount *mp;
 5226         struct fs *fs;
 5227 
 5228         mp = ITOVFS(ip);
 5229         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 5230             ("softdep_setup_inomapdep called on non-softdep filesystem"));
 5231         fs = VFSTOUFS(mp)->um_fs;
 5232         jaddref = NULL;
 5233 
 5234         /*
 5235          * Allocate the journal reference add structure so that the bitmap
 5236          * can be dependent on it.
 5237          */
 5238         if (MOUNTEDSUJ(mp)) {
 5239                 jaddref = newjaddref(ip, newinum, 0, 0, mode);
 5240                 jaddref->ja_state |= NEWBLOCK;
 5241         }
 5242 
 5243         /*
 5244          * Create a dependency for the newly allocated inode.
 5245          * Panic if it already exists as something is seriously wrong.
 5246          * Otherwise add it to the dependency list for the buffer holding
 5247          * the cylinder group map from which it was allocated.
 5248          *
 5249          * We have to preallocate a bmsafemap entry in case it is needed
 5250          * in bmsafemap_lookup since once we allocate the inodedep, we
 5251          * have to finish initializing it before we can FREE_LOCK().
 5252          * By preallocating, we avoid FREE_LOCK() while doing a malloc
 5253          * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
 5254          * creating the inodedep as it can be freed during the time
 5255          * that we FREE_LOCK() while allocating the inodedep. We must
 5256          * call workitem_alloc() before entering the locked section as
 5257          * it also acquires the lock and we must avoid trying doing so
 5258          * recursively.
 5259          */
 5260         bmsafemap = malloc(sizeof(struct bmsafemap),
 5261             M_BMSAFEMAP, M_SOFTDEP_FLAGS);
 5262         workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
 5263         ACQUIRE_LOCK(ITOUMP(ip));
 5264         if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
 5265                 panic("softdep_setup_inomapdep: dependency %p for new"
 5266                     "inode already exists", inodedep);
 5267         bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
 5268         if (jaddref) {
 5269                 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
 5270                 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
 5271                     if_deps);
 5272         } else {
 5273                 inodedep->id_state |= ONDEPLIST;
 5274                 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
 5275         }
 5276         inodedep->id_bmsafemap = bmsafemap;
 5277         inodedep->id_state &= ~DEPCOMPLETE;
 5278         FREE_LOCK(ITOUMP(ip));
 5279 }
 5280 
 5281 /*
 5282  * Called just after updating the cylinder group block to
 5283  * allocate block or fragment.
 5284  */
 5285 void
 5286 softdep_setup_blkmapdep(
 5287         struct buf *bp,         /* buffer for cylgroup block with block map */
 5288         struct mount *mp,       /* filesystem doing allocation */
 5289         ufs2_daddr_t newblkno,  /* number of newly allocated block */
 5290         int frags,              /* Number of fragments. */
 5291         int oldfrags)           /* Previous number of fragments for extend. */
 5292 {
 5293         struct newblk *newblk;
 5294         struct bmsafemap *bmsafemap;
 5295         struct jnewblk *jnewblk;
 5296         struct ufsmount *ump;
 5297         struct fs *fs;
 5298 
 5299         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 5300             ("softdep_setup_blkmapdep called on non-softdep filesystem"));
 5301         ump = VFSTOUFS(mp);
 5302         fs = ump->um_fs;
 5303         jnewblk = NULL;
 5304         /*
 5305          * Create a dependency for the newly allocated block.
 5306          * Add it to the dependency list for the buffer holding
 5307          * the cylinder group map from which it was allocated.
 5308          */
 5309         if (MOUNTEDSUJ(mp)) {
 5310                 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
 5311                 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
 5312                 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
 5313                 jnewblk->jn_state = ATTACHED;
 5314                 jnewblk->jn_blkno = newblkno;
 5315                 jnewblk->jn_frags = frags;
 5316                 jnewblk->jn_oldfrags = oldfrags;
 5317 #ifdef INVARIANTS
 5318                 {
 5319                         struct cg *cgp;
 5320                         uint8_t *blksfree;
 5321                         long bno;
 5322                         int i;
 5323 
 5324                         cgp = (struct cg *)bp->b_data;
 5325                         blksfree = cg_blksfree(cgp);
 5326                         bno = dtogd(fs, jnewblk->jn_blkno);
 5327                         for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
 5328                             i++) {
 5329                                 if (isset(blksfree, bno + i))
 5330                                         panic("softdep_setup_blkmapdep: "
 5331                                             "free fragment %d from %d-%d "
 5332                                             "state 0x%X dep %p", i,
 5333                                             jnewblk->jn_oldfrags,
 5334                                             jnewblk->jn_frags,
 5335                                             jnewblk->jn_state,
 5336                                             jnewblk->jn_dep);
 5337                         }
 5338                 }
 5339 #endif
 5340         }
 5341 
 5342         CTR3(KTR_SUJ,
 5343             "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
 5344             newblkno, frags, oldfrags);
 5345         ACQUIRE_LOCK(ump);
 5346         if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
 5347                 panic("softdep_setup_blkmapdep: found block");
 5348         newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
 5349             dtog(fs, newblkno), NULL);
 5350         if (jnewblk) {
 5351                 jnewblk->jn_dep = (struct worklist *)newblk;
 5352                 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
 5353         } else {
 5354                 newblk->nb_state |= ONDEPLIST;
 5355                 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
 5356         }
 5357         newblk->nb_bmsafemap = bmsafemap;
 5358         newblk->nb_jnewblk = jnewblk;
 5359         FREE_LOCK(ump);
 5360 }
 5361 
 5362 #define BMSAFEMAP_HASH(ump, cg) \
 5363       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
 5364 
 5365 static int
 5366 bmsafemap_find(
 5367         struct bmsafemap_hashhead *bmsafemaphd,
 5368         int cg,
 5369         struct bmsafemap **bmsafemapp)
 5370 {
 5371         struct bmsafemap *bmsafemap;
 5372 
 5373         LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
 5374                 if (bmsafemap->sm_cg == cg)
 5375                         break;
 5376         if (bmsafemap) {
 5377                 *bmsafemapp = bmsafemap;
 5378                 return (1);
 5379         }
 5380         *bmsafemapp = NULL;
 5381 
 5382         return (0);
 5383 }
 5384 
 5385 /*
 5386  * Find the bmsafemap associated with a cylinder group buffer.
 5387  * If none exists, create one. The buffer must be locked when
 5388  * this routine is called and this routine must be called with
 5389  * the softdep lock held. To avoid giving up the lock while
 5390  * allocating a new bmsafemap, a preallocated bmsafemap may be
 5391  * provided. If it is provided but not needed, it is freed.
 5392  */
 5393 static struct bmsafemap *
 5394 bmsafemap_lookup(struct mount *mp,
 5395         struct buf *bp,
 5396         int cg,
 5397         struct bmsafemap *newbmsafemap)
 5398 {
 5399         struct bmsafemap_hashhead *bmsafemaphd;
 5400         struct bmsafemap *bmsafemap, *collision;
 5401         struct worklist *wk;
 5402         struct ufsmount *ump;
 5403 
 5404         ump = VFSTOUFS(mp);
 5405         LOCK_OWNED(ump);
 5406         KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
 5407         LIST_FOREACH(wk, &bp->b_dep, wk_list) {
 5408                 if (wk->wk_type == D_BMSAFEMAP) {
 5409                         if (newbmsafemap)
 5410                                 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
 5411                         return (WK_BMSAFEMAP(wk));
 5412                 }
 5413         }
 5414         bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
 5415         if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
 5416                 if (newbmsafemap)
 5417                         WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
 5418                 return (bmsafemap);
 5419         }
 5420         if (newbmsafemap) {
 5421                 bmsafemap = newbmsafemap;
 5422         } else {
 5423                 FREE_LOCK(ump);
 5424                 bmsafemap = malloc(sizeof(struct bmsafemap),
 5425                         M_BMSAFEMAP, M_SOFTDEP_FLAGS);
 5426                 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
 5427                 ACQUIRE_LOCK(ump);
 5428         }
 5429         bmsafemap->sm_buf = bp;
 5430         LIST_INIT(&bmsafemap->sm_inodedephd);
 5431         LIST_INIT(&bmsafemap->sm_inodedepwr);
 5432         LIST_INIT(&bmsafemap->sm_newblkhd);
 5433         LIST_INIT(&bmsafemap->sm_newblkwr);
 5434         LIST_INIT(&bmsafemap->sm_jaddrefhd);
 5435         LIST_INIT(&bmsafemap->sm_jnewblkhd);
 5436         LIST_INIT(&bmsafemap->sm_freehd);
 5437         LIST_INIT(&bmsafemap->sm_freewr);
 5438         if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
 5439                 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
 5440                 return (collision);
 5441         }
 5442         bmsafemap->sm_cg = cg;
 5443         LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
 5444         LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
 5445         WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
 5446         return (bmsafemap);
 5447 }
 5448 
 5449 /*
 5450  * Direct block allocation dependencies.
 5451  * 
 5452  * When a new block is allocated, the corresponding disk locations must be
 5453  * initialized (with zeros or new data) before the on-disk inode points to
 5454  * them.  Also, the freemap from which the block was allocated must be
 5455  * updated (on disk) before the inode's pointer. These two dependencies are
 5456  * independent of each other and are needed for all file blocks and indirect
 5457  * blocks that are pointed to directly by the inode.  Just before the
 5458  * "in-core" version of the inode is updated with a newly allocated block
 5459  * number, a procedure (below) is called to setup allocation dependency
 5460  * structures.  These structures are removed when the corresponding
 5461  * dependencies are satisfied or when the block allocation becomes obsolete
 5462  * (i.e., the file is deleted, the block is de-allocated, or the block is a
 5463  * fragment that gets upgraded).  All of these cases are handled in
 5464  * procedures described later.
 5465  * 
 5466  * When a file extension causes a fragment to be upgraded, either to a larger
 5467  * fragment or to a full block, the on-disk location may change (if the
 5468  * previous fragment could not simply be extended). In this case, the old
 5469  * fragment must be de-allocated, but not until after the inode's pointer has
 5470  * been updated. In most cases, this is handled by later procedures, which
 5471  * will construct a "freefrag" structure to be added to the workitem queue
 5472  * when the inode update is complete (or obsolete).  The main exception to
 5473  * this is when an allocation occurs while a pending allocation dependency
 5474  * (for the same block pointer) remains.  This case is handled in the main
 5475  * allocation dependency setup procedure by immediately freeing the
 5476  * unreferenced fragments.
 5477  */ 
 5478 void 
 5479 softdep_setup_allocdirect(
 5480         struct inode *ip,       /* inode to which block is being added */
 5481         ufs_lbn_t off,          /* block pointer within inode */
 5482         ufs2_daddr_t newblkno,  /* disk block number being added */
 5483         ufs2_daddr_t oldblkno,  /* previous block number, 0 unless frag */
 5484         long newsize,           /* size of new block */
 5485         long oldsize,           /* size of new block */
 5486         struct buf *bp)         /* bp for allocated block */
 5487 {
 5488         struct allocdirect *adp, *oldadp;
 5489         struct allocdirectlst *adphead;
 5490         struct freefrag *freefrag;
 5491         struct inodedep *inodedep;
 5492         struct pagedep *pagedep;
 5493         struct jnewblk *jnewblk;
 5494         struct newblk *newblk;
 5495         struct mount *mp;
 5496         ufs_lbn_t lbn;
 5497 
 5498         lbn = bp->b_lblkno;
 5499         mp = ITOVFS(ip);
 5500         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 5501             ("softdep_setup_allocdirect called on non-softdep filesystem"));
 5502         if (oldblkno && oldblkno != newblkno)
 5503                 /*
 5504                  * The usual case is that a smaller fragment that
 5505                  * was just allocated has been replaced with a bigger
 5506                  * fragment or a full-size block. If it is marked as
 5507                  * B_DELWRI, the current contents have not been written
 5508                  * to disk. It is possible that the block was written
 5509                  * earlier, but very uncommon. If the block has never
 5510                  * been written, there is no need to send a BIO_DELETE
 5511                  * for it when it is freed. The gain from avoiding the
 5512                  * TRIMs for the common case of unwritten blocks far
 5513                  * exceeds the cost of the write amplification for the
 5514                  * uncommon case of failing to send a TRIM for a block
 5515                  * that had been written.
 5516                  */
 5517                 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
 5518                     (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
 5519         else
 5520                 freefrag = NULL;
 5521 
 5522         CTR6(KTR_SUJ,
 5523             "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
 5524             "off %jd newsize %ld oldsize %d",
 5525             ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
 5526         ACQUIRE_LOCK(ITOUMP(ip));
 5527         if (off >= UFS_NDADDR) {
 5528                 if (lbn > 0)
 5529                         panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
 5530                             lbn, off);
 5531                 /* allocating an indirect block */
 5532                 if (oldblkno != 0)
 5533                         panic("softdep_setup_allocdirect: non-zero indir");
 5534         } else {
 5535                 if (off != lbn)
 5536                         panic("softdep_setup_allocdirect: lbn %jd != off %jd",
 5537                             lbn, off);
 5538                 /*
 5539                  * Allocating a direct block.
 5540                  *
 5541                  * If we are allocating a directory block, then we must
 5542                  * allocate an associated pagedep to track additions and
 5543                  * deletions.
 5544                  */
 5545                 if ((ip->i_mode & IFMT) == IFDIR)
 5546                         pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
 5547                             &pagedep);
 5548         }
 5549         if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
 5550                 panic("softdep_setup_allocdirect: lost block");
 5551         KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
 5552             ("softdep_setup_allocdirect: newblk already initialized"));
 5553         /*
 5554          * Convert the newblk to an allocdirect.
 5555          */
 5556         WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
 5557         adp = (struct allocdirect *)newblk;
 5558         newblk->nb_freefrag = freefrag;
 5559         adp->ad_offset = off;
 5560         adp->ad_oldblkno = oldblkno;
 5561         adp->ad_newsize = newsize;
 5562         adp->ad_oldsize = oldsize;
 5563 
 5564         /*
 5565          * Finish initializing the journal.
 5566          */
 5567         if ((jnewblk = newblk->nb_jnewblk) != NULL) {
 5568                 jnewblk->jn_ino = ip->i_number;
 5569                 jnewblk->jn_lbn = lbn;
 5570                 add_to_journal(&jnewblk->jn_list);
 5571         }
 5572         if (freefrag && freefrag->ff_jdep != NULL &&
 5573             freefrag->ff_jdep->wk_type == D_JFREEFRAG)
 5574                 add_to_journal(freefrag->ff_jdep);
 5575         inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
 5576         adp->ad_inodedep = inodedep;
 5577 
 5578         WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
 5579         /*
 5580          * The list of allocdirects must be kept in sorted and ascending
 5581          * order so that the rollback routines can quickly determine the
 5582          * first uncommitted block (the size of the file stored on disk
 5583          * ends at the end of the lowest committed fragment, or if there
 5584          * are no fragments, at the end of the highest committed block).
 5585          * Since files generally grow, the typical case is that the new
 5586          * block is to be added at the end of the list. We speed this
 5587          * special case by checking against the last allocdirect in the
 5588          * list before laboriously traversing the list looking for the
 5589          * insertion point.
 5590          */
 5591         adphead = &inodedep->id_newinoupdt;
 5592         oldadp = TAILQ_LAST(adphead, allocdirectlst);
 5593         if (oldadp == NULL || oldadp->ad_offset <= off) {
 5594                 /* insert at end of list */
 5595                 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
 5596                 if (oldadp != NULL && oldadp->ad_offset == off)
 5597                         allocdirect_merge(adphead, adp, oldadp);
 5598                 FREE_LOCK(ITOUMP(ip));
 5599                 return;
 5600         }
 5601         TAILQ_FOREACH(oldadp, adphead, ad_next) {
 5602                 if (oldadp->ad_offset >= off)
 5603                         break;
 5604         }
 5605         if (oldadp == NULL)
 5606                 panic("softdep_setup_allocdirect: lost entry");
 5607         /* insert in middle of list */
 5608         TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
 5609         if (oldadp->ad_offset == off)
 5610                 allocdirect_merge(adphead, adp, oldadp);
 5611 
 5612         FREE_LOCK(ITOUMP(ip));
 5613 }
 5614 
 5615 /*
 5616  * Merge a newer and older journal record to be stored either in a
 5617  * newblock or freefrag.  This handles aggregating journal records for
 5618  * fragment allocation into a second record as well as replacing a
 5619  * journal free with an aborted journal allocation.  A segment for the
 5620  * oldest record will be placed on wkhd if it has been written.  If not
 5621  * the segment for the newer record will suffice.
 5622  */
 5623 static struct worklist *
 5624 jnewblk_merge(struct worklist *new,
 5625         struct worklist *old,
 5626         struct workhead *wkhd)
 5627 {
 5628         struct jnewblk *njnewblk;
 5629         struct jnewblk *jnewblk;
 5630 
 5631         /* Handle NULLs to simplify callers. */
 5632         if (new == NULL)
 5633                 return (old);
 5634         if (old == NULL)
 5635                 return (new);
 5636         /* Replace a jfreefrag with a jnewblk. */
 5637         if (new->wk_type == D_JFREEFRAG) {
 5638                 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
 5639                         panic("jnewblk_merge: blkno mismatch: %p, %p",
 5640                             old, new);
 5641                 cancel_jfreefrag(WK_JFREEFRAG(new));
 5642                 return (old);
 5643         }
 5644         if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
 5645                 panic("jnewblk_merge: Bad type: old %d new %d\n",
 5646                     old->wk_type, new->wk_type);
 5647         /*
 5648          * Handle merging of two jnewblk records that describe
 5649          * different sets of fragments in the same block.
 5650          */
 5651         jnewblk = WK_JNEWBLK(old);
 5652         njnewblk = WK_JNEWBLK(new);
 5653         if (jnewblk->jn_blkno != njnewblk->jn_blkno)
 5654                 panic("jnewblk_merge: Merging disparate blocks.");
 5655         /*
 5656          * The record may be rolled back in the cg.
 5657          */
 5658         if (jnewblk->jn_state & UNDONE) {
 5659                 jnewblk->jn_state &= ~UNDONE;
 5660                 njnewblk->jn_state |= UNDONE;
 5661                 njnewblk->jn_state &= ~ATTACHED;
 5662         }
 5663         /*
 5664          * We modify the newer addref and free the older so that if neither
 5665          * has been written the most up-to-date copy will be on disk.  If
 5666          * both have been written but rolled back we only temporarily need
 5667          * one of them to fix the bits when the cg write completes.
 5668          */
 5669         jnewblk->jn_state |= ATTACHED | COMPLETE;
 5670         njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
 5671         cancel_jnewblk(jnewblk, wkhd);
 5672         WORKLIST_REMOVE(&jnewblk->jn_list);
 5673         free_jnewblk(jnewblk);
 5674         return (new);
 5675 }
 5676 
 5677 /*
 5678  * Replace an old allocdirect dependency with a newer one.
 5679  */
 5680 static void
 5681 allocdirect_merge(
 5682         struct allocdirectlst *adphead, /* head of list holding allocdirects */
 5683         struct allocdirect *newadp,     /* allocdirect being added */
 5684         struct allocdirect *oldadp)     /* existing allocdirect being checked */
 5685 {
 5686         struct worklist *wk;
 5687         struct freefrag *freefrag;
 5688 
 5689         freefrag = NULL;
 5690         LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
 5691         if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
 5692             newadp->ad_oldsize != oldadp->ad_newsize ||
 5693             newadp->ad_offset >= UFS_NDADDR)
 5694                 panic("%s %jd != new %jd || old size %ld != new %ld",
 5695                     "allocdirect_merge: old blkno",
 5696                     (intmax_t)newadp->ad_oldblkno,
 5697                     (intmax_t)oldadp->ad_newblkno,
 5698                     newadp->ad_oldsize, oldadp->ad_newsize);
 5699         newadp->ad_oldblkno = oldadp->ad_oldblkno;
 5700         newadp->ad_oldsize = oldadp->ad_oldsize;
 5701         /*
 5702          * If the old dependency had a fragment to free or had never
 5703          * previously had a block allocated, then the new dependency
 5704          * can immediately post its freefrag and adopt the old freefrag.
 5705          * This action is done by swapping the freefrag dependencies.
 5706          * The new dependency gains the old one's freefrag, and the
 5707          * old one gets the new one and then immediately puts it on
 5708          * the worklist when it is freed by free_newblk. It is
 5709          * not possible to do this swap when the old dependency had a
 5710          * non-zero size but no previous fragment to free. This condition
 5711          * arises when the new block is an extension of the old block.
 5712          * Here, the first part of the fragment allocated to the new
 5713          * dependency is part of the block currently claimed on disk by
 5714          * the old dependency, so cannot legitimately be freed until the
 5715          * conditions for the new dependency are fulfilled.
 5716          */
 5717         freefrag = newadp->ad_freefrag;
 5718         if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
 5719                 newadp->ad_freefrag = oldadp->ad_freefrag;
 5720                 oldadp->ad_freefrag = freefrag;
 5721         }
 5722         /*
 5723          * If we are tracking a new directory-block allocation,
 5724          * move it from the old allocdirect to the new allocdirect.
 5725          */
 5726         if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
 5727                 WORKLIST_REMOVE(wk);
 5728                 if (!LIST_EMPTY(&oldadp->ad_newdirblk))
 5729                         panic("allocdirect_merge: extra newdirblk");
 5730                 WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
 5731         }
 5732         TAILQ_REMOVE(adphead, oldadp, ad_next);
 5733         /*
 5734          * We need to move any journal dependencies over to the freefrag
 5735          * that releases this block if it exists.  Otherwise we are
 5736          * extending an existing block and we'll wait until that is
 5737          * complete to release the journal space and extend the
 5738          * new journal to cover this old space as well.
 5739          */
 5740         if (freefrag == NULL) {
 5741                 if (oldadp->ad_newblkno != newadp->ad_newblkno)
 5742                         panic("allocdirect_merge: %jd != %jd",
 5743                             oldadp->ad_newblkno, newadp->ad_newblkno);
 5744                 newadp->ad_block.nb_jnewblk = (struct jnewblk *)
 5745                     jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 
 5746                     &oldadp->ad_block.nb_jnewblk->jn_list,
 5747                     &newadp->ad_block.nb_jwork);
 5748                 oldadp->ad_block.nb_jnewblk = NULL;
 5749                 cancel_newblk(&oldadp->ad_block, NULL,
 5750                     &newadp->ad_block.nb_jwork);
 5751         } else {
 5752                 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
 5753                     &freefrag->ff_list, &freefrag->ff_jwork);
 5754                 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
 5755                     &freefrag->ff_jwork);
 5756         }
 5757         free_newblk(&oldadp->ad_block);
 5758 }
 5759 
 5760 /*
 5761  * Allocate a jfreefrag structure to journal a single block free.
 5762  */
 5763 static struct jfreefrag *
 5764 newjfreefrag(struct freefrag *freefrag,
 5765         struct inode *ip,
 5766         ufs2_daddr_t blkno,
 5767         long size,
 5768         ufs_lbn_t lbn)
 5769 {
 5770         struct jfreefrag *jfreefrag;
 5771         struct fs *fs;
 5772 
 5773         fs = ITOFS(ip);
 5774         jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
 5775             M_SOFTDEP_FLAGS);
 5776         workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
 5777         jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
 5778         jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
 5779         jfreefrag->fr_ino = ip->i_number;
 5780         jfreefrag->fr_lbn = lbn;
 5781         jfreefrag->fr_blkno = blkno;
 5782         jfreefrag->fr_frags = numfrags(fs, size);
 5783         jfreefrag->fr_freefrag = freefrag;
 5784 
 5785         return (jfreefrag);
 5786 }
 5787 
 5788 /*
 5789  * Allocate a new freefrag structure.
 5790  */
 5791 static struct freefrag *
 5792 newfreefrag(struct inode *ip,
 5793         ufs2_daddr_t blkno,
 5794         long size,
 5795         ufs_lbn_t lbn,
 5796         u_long key)
 5797 {
 5798         struct freefrag *freefrag;
 5799         struct ufsmount *ump;
 5800         struct fs *fs;
 5801 
 5802         CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
 5803             ip->i_number, blkno, size, lbn);
 5804         ump = ITOUMP(ip);
 5805         fs = ump->um_fs;
 5806         if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
 5807                 panic("newfreefrag: frag size");
 5808         freefrag = malloc(sizeof(struct freefrag),
 5809             M_FREEFRAG, M_SOFTDEP_FLAGS);
 5810         workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
 5811         freefrag->ff_state = ATTACHED;
 5812         LIST_INIT(&freefrag->ff_jwork);
 5813         freefrag->ff_inum = ip->i_number;
 5814         freefrag->ff_vtype = ITOV(ip)->v_type;
 5815         freefrag->ff_blkno = blkno;
 5816         freefrag->ff_fragsize = size;
 5817         freefrag->ff_key = key;
 5818 
 5819         if (MOUNTEDSUJ(UFSTOVFS(ump))) {
 5820                 freefrag->ff_jdep = (struct worklist *)
 5821                     newjfreefrag(freefrag, ip, blkno, size, lbn);
 5822         } else {
 5823                 freefrag->ff_state |= DEPCOMPLETE;
 5824                 freefrag->ff_jdep = NULL;
 5825         }
 5826 
 5827         return (freefrag);
 5828 }
 5829 
 5830 /*
 5831  * This workitem de-allocates fragments that were replaced during
 5832  * file block allocation.
 5833  */
 5834 static void 
 5835 handle_workitem_freefrag(struct freefrag *freefrag)
 5836 {
 5837         struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
 5838         struct workhead wkhd;
 5839 
 5840         CTR3(KTR_SUJ,
 5841             "handle_workitem_freefrag: ino %d blkno %jd size %ld",
 5842             freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
 5843         /*
 5844          * It would be illegal to add new completion items to the
 5845          * freefrag after it was schedule to be done so it must be
 5846          * safe to modify the list head here.
 5847          */
 5848         LIST_INIT(&wkhd);
 5849         ACQUIRE_LOCK(ump);
 5850         LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
 5851         /*
 5852          * If the journal has not been written we must cancel it here.
 5853          */
 5854         if (freefrag->ff_jdep) {
 5855                 if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
 5856                         panic("handle_workitem_freefrag: Unexpected type %d\n",
 5857                             freefrag->ff_jdep->wk_type);
 5858                 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
 5859         }
 5860         FREE_LOCK(ump);
 5861         ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
 5862            freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
 5863            &wkhd, freefrag->ff_key);
 5864         ACQUIRE_LOCK(ump);
 5865         WORKITEM_FREE(freefrag, D_FREEFRAG);
 5866         FREE_LOCK(ump);
 5867 }
 5868 
 5869 /*
 5870  * Set up a dependency structure for an external attributes data block.
 5871  * This routine follows much of the structure of softdep_setup_allocdirect.
 5872  * See the description of softdep_setup_allocdirect above for details.
 5873  */
 5874 void 
 5875 softdep_setup_allocext(
 5876         struct inode *ip,
 5877         ufs_lbn_t off,
 5878         ufs2_daddr_t newblkno,
 5879         ufs2_daddr_t oldblkno,
 5880         long newsize,
 5881         long oldsize,
 5882         struct buf *bp)
 5883 {
 5884         struct allocdirect *adp, *oldadp;
 5885         struct allocdirectlst *adphead;
 5886         struct freefrag *freefrag;
 5887         struct inodedep *inodedep;
 5888         struct jnewblk *jnewblk;
 5889         struct newblk *newblk;
 5890         struct mount *mp;
 5891         struct ufsmount *ump;
 5892         ufs_lbn_t lbn;
 5893 
 5894         mp = ITOVFS(ip);
 5895         ump = VFSTOUFS(mp);
 5896         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 5897             ("softdep_setup_allocext called on non-softdep filesystem"));
 5898         KASSERT(off < UFS_NXADDR,
 5899             ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
 5900 
 5901         lbn = bp->b_lblkno;
 5902         if (oldblkno && oldblkno != newblkno)
 5903                 /*
 5904                  * The usual case is that a smaller fragment that
 5905                  * was just allocated has been replaced with a bigger
 5906                  * fragment or a full-size block. If it is marked as
 5907                  * B_DELWRI, the current contents have not been written
 5908                  * to disk. It is possible that the block was written
 5909                  * earlier, but very uncommon. If the block has never
 5910                  * been written, there is no need to send a BIO_DELETE
 5911                  * for it when it is freed. The gain from avoiding the
 5912                  * TRIMs for the common case of unwritten blocks far
 5913                  * exceeds the cost of the write amplification for the
 5914                  * uncommon case of failing to send a TRIM for a block
 5915                  * that had been written.
 5916                  */
 5917                 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
 5918                     (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
 5919         else
 5920                 freefrag = NULL;
 5921 
 5922         ACQUIRE_LOCK(ump);
 5923         if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
 5924                 panic("softdep_setup_allocext: lost block");
 5925         KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
 5926             ("softdep_setup_allocext: newblk already initialized"));
 5927         /*
 5928          * Convert the newblk to an allocdirect.
 5929          */
 5930         WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
 5931         adp = (struct allocdirect *)newblk;
 5932         newblk->nb_freefrag = freefrag;
 5933         adp->ad_offset = off;
 5934         adp->ad_oldblkno = oldblkno;
 5935         adp->ad_newsize = newsize;
 5936         adp->ad_oldsize = oldsize;
 5937         adp->ad_state |=  EXTDATA;
 5938 
 5939         /*
 5940          * Finish initializing the journal.
 5941          */
 5942         if ((jnewblk = newblk->nb_jnewblk) != NULL) {
 5943                 jnewblk->jn_ino = ip->i_number;
 5944                 jnewblk->jn_lbn = lbn;
 5945                 add_to_journal(&jnewblk->jn_list);
 5946         }
 5947         if (freefrag && freefrag->ff_jdep != NULL &&
 5948             freefrag->ff_jdep->wk_type == D_JFREEFRAG)
 5949                 add_to_journal(freefrag->ff_jdep);
 5950         inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
 5951         adp->ad_inodedep = inodedep;
 5952 
 5953         WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
 5954         /*
 5955          * The list of allocdirects must be kept in sorted and ascending
 5956          * order so that the rollback routines can quickly determine the
 5957          * first uncommitted block (the size of the file stored on disk
 5958          * ends at the end of the lowest committed fragment, or if there
 5959          * are no fragments, at the end of the highest committed block).
 5960          * Since files generally grow, the typical case is that the new
 5961          * block is to be added at the end of the list. We speed this
 5962          * special case by checking against the last allocdirect in the
 5963          * list before laboriously traversing the list looking for the
 5964          * insertion point.
 5965          */
 5966         adphead = &inodedep->id_newextupdt;
 5967         oldadp = TAILQ_LAST(adphead, allocdirectlst);
 5968         if (oldadp == NULL || oldadp->ad_offset <= off) {
 5969                 /* insert at end of list */
 5970                 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
 5971                 if (oldadp != NULL && oldadp->ad_offset == off)
 5972                         allocdirect_merge(adphead, adp, oldadp);
 5973                 FREE_LOCK(ump);
 5974                 return;
 5975         }
 5976         TAILQ_FOREACH(oldadp, adphead, ad_next) {
 5977                 if (oldadp->ad_offset >= off)
 5978                         break;
 5979         }
 5980         if (oldadp == NULL)
 5981                 panic("softdep_setup_allocext: lost entry");
 5982         /* insert in middle of list */
 5983         TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
 5984         if (oldadp->ad_offset == off)
 5985                 allocdirect_merge(adphead, adp, oldadp);
 5986         FREE_LOCK(ump);
 5987 }
 5988 
 5989 /*
 5990  * Indirect block allocation dependencies.
 5991  * 
 5992  * The same dependencies that exist for a direct block also exist when
 5993  * a new block is allocated and pointed to by an entry in a block of
 5994  * indirect pointers. The undo/redo states described above are also
 5995  * used here. Because an indirect block contains many pointers that
 5996  * may have dependencies, a second copy of the entire in-memory indirect
 5997  * block is kept. The buffer cache copy is always completely up-to-date.
 5998  * The second copy, which is used only as a source for disk writes,
 5999  * contains only the safe pointers (i.e., those that have no remaining
 6000  * update dependencies). The second copy is freed when all pointers
 6001  * are safe. The cache is not allowed to replace indirect blocks with
 6002  * pending update dependencies. If a buffer containing an indirect
 6003  * block with dependencies is written, these routines will mark it
 6004  * dirty again. It can only be successfully written once all the
 6005  * dependencies are removed. The ffs_fsync routine in conjunction with
 6006  * softdep_sync_metadata work together to get all the dependencies
 6007  * removed so that a file can be successfully written to disk. Three
 6008  * procedures are used when setting up indirect block pointer
 6009  * dependencies. The division is necessary because of the organization
 6010  * of the "balloc" routine and because of the distinction between file
 6011  * pages and file metadata blocks.
 6012  */
 6013 
 6014 /*
 6015  * Allocate a new allocindir structure.
 6016  */
 6017 static struct allocindir *
 6018 newallocindir(
 6019         struct inode *ip,       /* inode for file being extended */
 6020         int ptrno,              /* offset of pointer in indirect block */
 6021         ufs2_daddr_t newblkno,  /* disk block number being added */
 6022         ufs2_daddr_t oldblkno,  /* previous block number, 0 if none */
 6023         ufs_lbn_t lbn)
 6024 {
 6025         struct newblk *newblk;
 6026         struct allocindir *aip;
 6027         struct freefrag *freefrag;
 6028         struct jnewblk *jnewblk;
 6029 
 6030         if (oldblkno)
 6031                 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
 6032                     SINGLETON_KEY);
 6033         else
 6034                 freefrag = NULL;
 6035         ACQUIRE_LOCK(ITOUMP(ip));
 6036         if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
 6037                 panic("new_allocindir: lost block");
 6038         KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
 6039             ("newallocindir: newblk already initialized"));
 6040         WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
 6041         newblk->nb_freefrag = freefrag;
 6042         aip = (struct allocindir *)newblk;
 6043         aip->ai_offset = ptrno;
 6044         aip->ai_oldblkno = oldblkno;
 6045         aip->ai_lbn = lbn;
 6046         if ((jnewblk = newblk->nb_jnewblk) != NULL) {
 6047                 jnewblk->jn_ino = ip->i_number;
 6048                 jnewblk->jn_lbn = lbn;
 6049                 add_to_journal(&jnewblk->jn_list);
 6050         }
 6051         if (freefrag && freefrag->ff_jdep != NULL &&
 6052             freefrag->ff_jdep->wk_type == D_JFREEFRAG)
 6053                 add_to_journal(freefrag->ff_jdep);
 6054         return (aip);
 6055 }
 6056 
 6057 /*
 6058  * Called just before setting an indirect block pointer
 6059  * to a newly allocated file page.
 6060  */
 6061 void
 6062 softdep_setup_allocindir_page(
 6063         struct inode *ip,       /* inode for file being extended */
 6064         ufs_lbn_t lbn,          /* allocated block number within file */
 6065         struct buf *bp,         /* buffer with indirect blk referencing page */
 6066         int ptrno,              /* offset of pointer in indirect block */
 6067         ufs2_daddr_t newblkno,  /* disk block number being added */
 6068         ufs2_daddr_t oldblkno,  /* previous block number, 0 if none */
 6069         struct buf *nbp)        /* buffer holding allocated page */
 6070 {
 6071         struct inodedep *inodedep;
 6072         struct freefrag *freefrag;
 6073         struct allocindir *aip;
 6074         struct pagedep *pagedep;
 6075         struct mount *mp;
 6076         struct ufsmount *ump;
 6077 
 6078         mp = ITOVFS(ip);
 6079         ump = VFSTOUFS(mp);
 6080         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 6081             ("softdep_setup_allocindir_page called on non-softdep filesystem"));
 6082         KASSERT(lbn == nbp->b_lblkno,
 6083             ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
 6084             lbn, bp->b_lblkno));
 6085         CTR4(KTR_SUJ,
 6086             "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
 6087             "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
 6088         ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
 6089         aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
 6090         (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
 6091         /*
 6092          * If we are allocating a directory page, then we must
 6093          * allocate an associated pagedep to track additions and
 6094          * deletions.
 6095          */
 6096         if ((ip->i_mode & IFMT) == IFDIR)
 6097                 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
 6098         WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
 6099         freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
 6100         FREE_LOCK(ump);
 6101         if (freefrag)
 6102                 handle_workitem_freefrag(freefrag);
 6103 }
 6104 
 6105 /*
 6106  * Called just before setting an indirect block pointer to a
 6107  * newly allocated indirect block.
 6108  */
 6109 void
 6110 softdep_setup_allocindir_meta(
 6111         struct buf *nbp,        /* newly allocated indirect block */
 6112         struct inode *ip,       /* inode for file being extended */
 6113         struct buf *bp,         /* indirect block referencing allocated block */
 6114         int ptrno,              /* offset of pointer in indirect block */
 6115         ufs2_daddr_t newblkno)  /* disk block number being added */
 6116 {
 6117         struct inodedep *inodedep;
 6118         struct allocindir *aip;
 6119         struct ufsmount *ump;
 6120         ufs_lbn_t lbn;
 6121 
 6122         ump = ITOUMP(ip);
 6123         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
 6124             ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
 6125         CTR3(KTR_SUJ,
 6126             "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
 6127             ip->i_number, newblkno, ptrno);
 6128         lbn = nbp->b_lblkno;
 6129         ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
 6130         aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
 6131         inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
 6132         WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
 6133         if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
 6134                 panic("softdep_setup_allocindir_meta: Block already existed");
 6135         FREE_LOCK(ump);
 6136 }
 6137 
 6138 static void
 6139 indirdep_complete(struct indirdep *indirdep)
 6140 {
 6141         struct allocindir *aip;
 6142 
 6143         LIST_REMOVE(indirdep, ir_next);
 6144         indirdep->ir_state |= DEPCOMPLETE;
 6145 
 6146         while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
 6147                 LIST_REMOVE(aip, ai_next);
 6148                 free_newblk(&aip->ai_block);
 6149         }
 6150         /*
 6151          * If this indirdep is not attached to a buf it was simply waiting
 6152          * on completion to clear completehd.  free_indirdep() asserts
 6153          * that nothing is dangling.
 6154          */
 6155         if ((indirdep->ir_state & ONWORKLIST) == 0)
 6156                 free_indirdep(indirdep);
 6157 }
 6158 
 6159 static struct indirdep *
 6160 indirdep_lookup(struct mount *mp,
 6161         struct inode *ip,
 6162         struct buf *bp)
 6163 {
 6164         struct indirdep *indirdep, *newindirdep;
 6165         struct newblk *newblk;
 6166         struct ufsmount *ump;
 6167         struct worklist *wk;
 6168         struct fs *fs;
 6169         ufs2_daddr_t blkno;
 6170 
 6171         ump = VFSTOUFS(mp);
 6172         LOCK_OWNED(ump);
 6173         indirdep = NULL;
 6174         newindirdep = NULL;
 6175         fs = ump->um_fs;
 6176         for (;;) {
 6177                 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
 6178                         if (wk->wk_type != D_INDIRDEP)
 6179                                 continue;
 6180                         indirdep = WK_INDIRDEP(wk);
 6181                         break;
 6182                 }
 6183                 /* Found on the buffer worklist, no new structure to free. */
 6184                 if (indirdep != NULL && newindirdep == NULL)
 6185                         return (indirdep);
 6186                 if (indirdep != NULL && newindirdep != NULL)
 6187                         panic("indirdep_lookup: simultaneous create");
 6188                 /* None found on the buffer and a new structure is ready. */
 6189                 if (indirdep == NULL && newindirdep != NULL)
 6190                         break;
 6191                 /* None found and no new structure available. */
 6192                 FREE_LOCK(ump);
 6193                 newindirdep = malloc(sizeof(struct indirdep),
 6194                     M_INDIRDEP, M_SOFTDEP_FLAGS);
 6195                 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
 6196                 newindirdep->ir_state = ATTACHED;
 6197                 if (I_IS_UFS1(ip))
 6198                         newindirdep->ir_state |= UFS1FMT;
 6199                 TAILQ_INIT(&newindirdep->ir_trunc);
 6200                 newindirdep->ir_saveddata = NULL;
 6201                 LIST_INIT(&newindirdep->ir_deplisthd);
 6202                 LIST_INIT(&newindirdep->ir_donehd);
 6203                 LIST_INIT(&newindirdep->ir_writehd);
 6204                 LIST_INIT(&newindirdep->ir_completehd);
 6205                 if (bp->b_blkno == bp->b_lblkno) {
 6206                         ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
 6207                             NULL, NULL);
 6208                         bp->b_blkno = blkno;
 6209                 }
 6210                 newindirdep->ir_freeblks = NULL;
 6211                 newindirdep->ir_savebp =
 6212                     getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
 6213                 newindirdep->ir_bp = bp;
 6214                 BUF_KERNPROC(newindirdep->ir_savebp);
 6215                 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
 6216                 ACQUIRE_LOCK(ump);
 6217         }
 6218         indirdep = newindirdep;
 6219         WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
 6220         /*
 6221          * If the block is not yet allocated we don't set DEPCOMPLETE so
 6222          * that we don't free dependencies until the pointers are valid.
 6223          * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
 6224          * than using the hash.
 6225          */
 6226         if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
 6227                 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
 6228         else
 6229                 indirdep->ir_state |= DEPCOMPLETE;
 6230         return (indirdep);
 6231 }
 6232 
 6233 /*
 6234  * Called to finish the allocation of the "aip" allocated
 6235  * by one of the two routines above.
 6236  */
 6237 static struct freefrag *
 6238 setup_allocindir_phase2(
 6239         struct buf *bp,         /* in-memory copy of the indirect block */
 6240         struct inode *ip,       /* inode for file being extended */
 6241         struct inodedep *inodedep, /* Inodedep for ip */
 6242         struct allocindir *aip, /* allocindir allocated by the above routines */
 6243         ufs_lbn_t lbn)          /* Logical block number for this block. */
 6244 {
 6245         struct fs *fs __diagused;
 6246         struct indirdep *indirdep;
 6247         struct allocindir *oldaip;
 6248         struct freefrag *freefrag;
 6249         struct mount *mp;
 6250         struct ufsmount *ump;
 6251 
 6252         mp = ITOVFS(ip);
 6253         ump = VFSTOUFS(mp);
 6254         LOCK_OWNED(ump);
 6255         fs = ump->um_fs;
 6256         if (bp->b_lblkno >= 0)
 6257                 panic("setup_allocindir_phase2: not indir blk");
 6258         KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
 6259             ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
 6260         indirdep = indirdep_lookup(mp, ip, bp);
 6261         KASSERT(indirdep->ir_savebp != NULL,
 6262             ("setup_allocindir_phase2 NULL ir_savebp"));
 6263         aip->ai_indirdep = indirdep;
 6264         /*
 6265          * Check for an unwritten dependency for this indirect offset.  If
 6266          * there is, merge the old dependency into the new one.  This happens
 6267          * as a result of reallocblk only.
 6268          */
 6269         freefrag = NULL;
 6270         if (aip->ai_oldblkno != 0) {
 6271                 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
 6272                         if (oldaip->ai_offset == aip->ai_offset) {
 6273                                 freefrag = allocindir_merge(aip, oldaip);
 6274                                 goto done;
 6275                         }
 6276                 }
 6277                 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
 6278                         if (oldaip->ai_offset == aip->ai_offset) {
 6279                                 freefrag = allocindir_merge(aip, oldaip);
 6280                                 goto done;
 6281                         }
 6282                 }
 6283         }
 6284 done:
 6285         LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
 6286         return (freefrag);
 6287 }
 6288 
 6289 /*
 6290  * Merge two allocindirs which refer to the same block.  Move newblock
 6291  * dependencies and setup the freefrags appropriately.
 6292  */
 6293 static struct freefrag *
 6294 allocindir_merge(
 6295         struct allocindir *aip,
 6296         struct allocindir *oldaip)
 6297 {
 6298         struct freefrag *freefrag;
 6299         struct worklist *wk;
 6300 
 6301         if (oldaip->ai_newblkno != aip->ai_oldblkno)
 6302                 panic("allocindir_merge: blkno");
 6303         aip->ai_oldblkno = oldaip->ai_oldblkno;
 6304         freefrag = aip->ai_freefrag;
 6305         aip->ai_freefrag = oldaip->ai_freefrag;
 6306         oldaip->ai_freefrag = NULL;
 6307         KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
 6308         /*
 6309          * If we are tracking a new directory-block allocation,
 6310          * move it from the old allocindir to the new allocindir.
 6311          */
 6312         if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
 6313                 WORKLIST_REMOVE(wk);
 6314                 if (!LIST_EMPTY(&oldaip->ai_newdirblk))
 6315                         panic("allocindir_merge: extra newdirblk");
 6316                 WORKLIST_INSERT(&aip->ai_newdirblk, wk);
 6317         }
 6318         /*
 6319          * We can skip journaling for this freefrag and just complete
 6320          * any pending journal work for the allocindir that is being
 6321          * removed after the freefrag completes.
 6322          */
 6323         if (freefrag->ff_jdep)
 6324                 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
 6325         LIST_REMOVE(oldaip, ai_next);
 6326         freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
 6327             &freefrag->ff_list, &freefrag->ff_jwork);
 6328         free_newblk(&oldaip->ai_block);
 6329 
 6330         return (freefrag);
 6331 }
 6332 
 6333 static inline void
 6334 setup_freedirect(
 6335         struct freeblks *freeblks,
 6336         struct inode *ip,
 6337         int i,
 6338         int needj)
 6339 {
 6340         struct ufsmount *ump;
 6341         ufs2_daddr_t blkno;
 6342         int frags;
 6343 
 6344         blkno = DIP(ip, i_db[i]);
 6345         if (blkno == 0)
 6346                 return;
 6347         DIP_SET(ip, i_db[i], 0);
 6348         ump = ITOUMP(ip);
 6349         frags = sblksize(ump->um_fs, ip->i_size, i);
 6350         frags = numfrags(ump->um_fs, frags);
 6351         newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
 6352 }
 6353 
 6354 static inline void
 6355 setup_freeext(
 6356         struct freeblks *freeblks,
 6357         struct inode *ip,
 6358         int i,
 6359         int needj)
 6360 {
 6361         struct ufsmount *ump;
 6362         ufs2_daddr_t blkno;
 6363         int frags;
 6364 
 6365         blkno = ip->i_din2->di_extb[i];
 6366         if (blkno == 0)
 6367                 return;
 6368         ip->i_din2->di_extb[i] = 0;
 6369         ump = ITOUMP(ip);
 6370         frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
 6371         frags = numfrags(ump->um_fs, frags);
 6372         newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
 6373 }
 6374 
 6375 static inline void
 6376 setup_freeindir(
 6377         struct freeblks *freeblks,
 6378         struct inode *ip,
 6379         int i,
 6380         ufs_lbn_t lbn,
 6381         int needj)
 6382 {
 6383         struct ufsmount *ump;
 6384         ufs2_daddr_t blkno;
 6385 
 6386         blkno = DIP(ip, i_ib[i]);
 6387         if (blkno == 0)
 6388                 return;
 6389         DIP_SET(ip, i_ib[i], 0);
 6390         ump = ITOUMP(ip);
 6391         newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
 6392             0, needj);
 6393 }
 6394 
 6395 static inline struct freeblks *
 6396 newfreeblks(struct mount *mp, struct inode *ip)
 6397 {
 6398         struct freeblks *freeblks;
 6399 
 6400         freeblks = malloc(sizeof(struct freeblks),
 6401                 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
 6402         workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
 6403         LIST_INIT(&freeblks->fb_jblkdephd);
 6404         LIST_INIT(&freeblks->fb_jwork);
 6405         freeblks->fb_ref = 0;
 6406         freeblks->fb_cgwait = 0;
 6407         freeblks->fb_state = ATTACHED;
 6408         freeblks->fb_uid = ip->i_uid;
 6409         freeblks->fb_inum = ip->i_number;
 6410         freeblks->fb_vtype = ITOV(ip)->v_type;
 6411         freeblks->fb_modrev = DIP(ip, i_modrev);
 6412         freeblks->fb_devvp = ITODEVVP(ip);
 6413         freeblks->fb_chkcnt = 0;
 6414         freeblks->fb_len = 0;
 6415 
 6416         return (freeblks);
 6417 }
 6418 
 6419 static void
 6420 trunc_indirdep(
 6421         struct indirdep *indirdep,
 6422         struct freeblks *freeblks,
 6423         struct buf *bp,
 6424         int off)
 6425 {
 6426         struct allocindir *aip, *aipn;
 6427 
 6428         /*
 6429          * The first set of allocindirs won't be in savedbp.
 6430          */
 6431         LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
 6432                 if (aip->ai_offset > off)
 6433                         cancel_allocindir(aip, bp, freeblks, 1);
 6434         LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
 6435                 if (aip->ai_offset > off)
 6436                         cancel_allocindir(aip, bp, freeblks, 1);
 6437         /*
 6438          * These will exist in savedbp.
 6439          */
 6440         LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
 6441                 if (aip->ai_offset > off)
 6442                         cancel_allocindir(aip, NULL, freeblks, 0);
 6443         LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
 6444                 if (aip->ai_offset > off)
 6445                         cancel_allocindir(aip, NULL, freeblks, 0);
 6446 }
 6447 
 6448 /*
 6449  * Follow the chain of indirects down to lastlbn creating a freework
 6450  * structure for each.  This will be used to start indir_trunc() at
 6451  * the right offset and create the journal records for the parrtial
 6452  * truncation.  A second step will handle the truncated dependencies.
 6453  */
 6454 static int
 6455 setup_trunc_indir(
 6456         struct freeblks *freeblks,
 6457         struct inode *ip,
 6458         ufs_lbn_t lbn,
 6459         ufs_lbn_t lastlbn,
 6460         ufs2_daddr_t blkno)
 6461 {
 6462         struct indirdep *indirdep;
 6463         struct indirdep *indirn;
 6464         struct freework *freework;
 6465         struct newblk *newblk;
 6466         struct mount *mp;
 6467         struct ufsmount *ump;
 6468         struct buf *bp;
 6469         uint8_t *start;
 6470         uint8_t *end;
 6471         ufs_lbn_t lbnadd;
 6472         int level;
 6473         int error;
 6474         int off;
 6475 
 6476         freework = NULL;
 6477         if (blkno == 0)
 6478                 return (0);
 6479         mp = freeblks->fb_list.wk_mp;
 6480         ump = VFSTOUFS(mp);
 6481         /*
 6482          * Here, calls to VOP_BMAP() will fail.  However, we already have
 6483          * the on-disk address, so we just pass it to bread() instead of
 6484          * having bread() attempt to calculate it using VOP_BMAP().
 6485          */
 6486         error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
 6487             (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
 6488         if (error)
 6489                 return (error);
 6490         level = lbn_level(lbn);
 6491         lbnadd = lbn_offset(ump->um_fs, level);
 6492         /*
 6493          * Compute the offset of the last block we want to keep.  Store
 6494          * in the freework the first block we want to completely free.
 6495          */
 6496         off = (lastlbn - -(lbn + level)) / lbnadd;
 6497         if (off + 1 == NINDIR(ump->um_fs))
 6498                 goto nowork;
 6499         freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
 6500         /*
 6501          * Link the freework into the indirdep.  This will prevent any new
 6502          * allocations from proceeding until we are finished with the
 6503          * truncate and the block is written.
 6504          */
 6505         ACQUIRE_LOCK(ump);
 6506         indirdep = indirdep_lookup(mp, ip, bp);
 6507         if (indirdep->ir_freeblks)
 6508                 panic("setup_trunc_indir: indirdep already truncated.");
 6509         TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
 6510         freework->fw_indir = indirdep;
 6511         /*
 6512          * Cancel any allocindirs that will not make it to disk.
 6513          * We have to do this for all copies of the indirdep that
 6514          * live on this newblk.
 6515          */
 6516         if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
 6517                 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
 6518                     &newblk) == 0)
 6519                         panic("setup_trunc_indir: lost block");
 6520                 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
 6521                         trunc_indirdep(indirn, freeblks, bp, off);
 6522         } else
 6523                 trunc_indirdep(indirdep, freeblks, bp, off);
 6524         FREE_LOCK(ump);
 6525         /*
 6526          * Creation is protected by the buf lock. The saveddata is only
 6527          * needed if a full truncation follows a partial truncation but it
 6528          * is difficult to allocate in that case so we fetch it anyway.
 6529          */
 6530         if (indirdep->ir_saveddata == NULL)
 6531                 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
 6532                     M_SOFTDEP_FLAGS);
 6533 nowork:
 6534         /* Fetch the blkno of the child and the zero start offset. */
 6535         if (I_IS_UFS1(ip)) {
 6536                 blkno = ((ufs1_daddr_t *)bp->b_data)[off];
 6537                 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
 6538         } else {
 6539                 blkno = ((ufs2_daddr_t *)bp->b_data)[off];
 6540                 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
 6541         }
 6542         if (freework) {
 6543                 /* Zero the truncated pointers. */
 6544                 end = bp->b_data + bp->b_bcount;
 6545                 bzero(start, end - start);
 6546                 bdwrite(bp);
 6547         } else
 6548                 bqrelse(bp);
 6549         if (level == 0)
 6550                 return (0);
 6551         lbn++; /* adjust level */
 6552         lbn -= (off * lbnadd);
 6553         return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
 6554 }
 6555 
 6556 /*
 6557  * Complete the partial truncation of an indirect block setup by
 6558  * setup_trunc_indir().  This zeros the truncated pointers in the saved
 6559  * copy and writes them to disk before the freeblks is allowed to complete.
 6560  */
 6561 static void
 6562 complete_trunc_indir(struct freework *freework)
 6563 {
 6564         struct freework *fwn;
 6565         struct indirdep *indirdep;
 6566         struct ufsmount *ump;
 6567         struct buf *bp;
 6568         uintptr_t start;
 6569         int count;
 6570 
 6571         ump = VFSTOUFS(freework->fw_list.wk_mp);
 6572         LOCK_OWNED(ump);
 6573         indirdep = freework->fw_indir;
 6574         for (;;) {
 6575                 bp = indirdep->ir_bp;
 6576                 /* See if the block was discarded. */
 6577                 if (bp == NULL)
 6578                         break;
 6579                 /* Inline part of getdirtybuf().  We dont want bremfree. */
 6580                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
 6581                         break;
 6582                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
 6583                     LOCK_PTR(ump)) == 0)
 6584                         BUF_UNLOCK(bp);
 6585                 ACQUIRE_LOCK(ump);
 6586         }
 6587         freework->fw_state |= DEPCOMPLETE;
 6588         TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
 6589         /*
 6590          * Zero the pointers in the saved copy.
 6591          */
 6592         if (indirdep->ir_state & UFS1FMT)
 6593                 start = sizeof(ufs1_daddr_t);
 6594         else
 6595                 start = sizeof(ufs2_daddr_t);
 6596         start *= freework->fw_start;
 6597         count = indirdep->ir_savebp->b_bcount - start;
 6598         start += (uintptr_t)indirdep->ir_savebp->b_data;
 6599         bzero((char *)start, count);
 6600         /*
 6601          * We need to start the next truncation in the list if it has not
 6602          * been started yet.
 6603          */
 6604         fwn = TAILQ_FIRST(&indirdep->ir_trunc);
 6605         if (fwn != NULL) {
 6606                 if (fwn->fw_freeblks == indirdep->ir_freeblks)
 6607                         TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
 6608                 if ((fwn->fw_state & ONWORKLIST) == 0)
 6609                         freework_enqueue(fwn);
 6610         }
 6611         /*
 6612          * If bp is NULL the block was fully truncated, restore
 6613          * the saved block list otherwise free it if it is no
 6614          * longer needed.
 6615          */
 6616         if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
 6617                 if (bp == NULL)
 6618                         bcopy(indirdep->ir_saveddata,
 6619                             indirdep->ir_savebp->b_data,
 6620                             indirdep->ir_savebp->b_bcount);
 6621                 free(indirdep->ir_saveddata, M_INDIRDEP);
 6622                 indirdep->ir_saveddata = NULL;
 6623         }
 6624         /*
 6625          * When bp is NULL there is a full truncation pending.  We
 6626          * must wait for this full truncation to be journaled before
 6627          * we can release this freework because the disk pointers will
 6628          * never be written as zero.
 6629          */
 6630         if (bp == NULL)  {
 6631                 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
 6632                         handle_written_freework(freework);
 6633                 else
 6634                         WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
 6635                            &freework->fw_list);
 6636                 if (fwn == NULL) {
 6637                         freework->fw_indir = (void *)0x0000deadbeef0000;
 6638                         bp = indirdep->ir_savebp;
 6639                         indirdep->ir_savebp = NULL;
 6640                         free_indirdep(indirdep);
 6641                         FREE_LOCK(ump);
 6642                         brelse(bp);
 6643                         ACQUIRE_LOCK(ump);
 6644                 }
 6645         } else {
 6646                 /* Complete when the real copy is written. */
 6647                 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
 6648                 BUF_UNLOCK(bp);
 6649         }
 6650 }
 6651 
 6652 /*
 6653  * Calculate the number of blocks we are going to release where datablocks
 6654  * is the current total and length is the new file size.
 6655  */
 6656 static ufs2_daddr_t
 6657 blkcount(struct fs *fs,
 6658         ufs2_daddr_t datablocks,
 6659         off_t length)
 6660 {
 6661         off_t totblks, numblks;
 6662 
 6663         totblks = 0;
 6664         numblks = howmany(length, fs->fs_bsize);
 6665         if (numblks <= UFS_NDADDR) {
 6666                 totblks = howmany(length, fs->fs_fsize);
 6667                 goto out;
 6668         }
 6669         totblks = blkstofrags(fs, numblks);
 6670         numblks -= UFS_NDADDR;
 6671         /*
 6672          * Count all single, then double, then triple indirects required.
 6673          * Subtracting one indirects worth of blocks for each pass
 6674          * acknowledges one of each pointed to by the inode.
 6675          */
 6676         for (;;) {
 6677                 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
 6678                 numblks -= NINDIR(fs);
 6679                 if (numblks <= 0)
 6680                         break;
 6681                 numblks = howmany(numblks, NINDIR(fs));
 6682         }
 6683 out:
 6684         totblks = fsbtodb(fs, totblks);
 6685         /*
 6686          * Handle sparse files.  We can't reclaim more blocks than the inode
 6687          * references.  We will correct it later in handle_complete_freeblks()
 6688          * when we know the real count.
 6689          */
 6690         if (totblks > datablocks)
 6691                 return (0);
 6692         return (datablocks - totblks);
 6693 }
 6694 
 6695 /*
 6696  * Handle freeblocks for journaled softupdate filesystems.
 6697  *
 6698  * Contrary to normal softupdates, we must preserve the block pointers in
 6699  * indirects until their subordinates are free.  This is to avoid journaling
 6700  * every block that is freed which may consume more space than the journal
 6701  * itself.  The recovery program will see the free block journals at the
 6702  * base of the truncated area and traverse them to reclaim space.  The
 6703  * pointers in the inode may be cleared immediately after the journal
 6704  * records are written because each direct and indirect pointer in the
 6705  * inode is recorded in a journal.  This permits full truncation to proceed
 6706  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
 6707  *
 6708  * The algorithm is as follows:
 6709  * 1) Traverse the in-memory state and create journal entries to release
 6710  *    the relevant blocks and full indirect trees.
 6711  * 2) Traverse the indirect block chain adding partial truncation freework
 6712  *    records to indirects in the path to lastlbn.  The freework will
 6713  *    prevent new allocation dependencies from being satisfied in this
 6714  *    indirect until the truncation completes.
 6715  * 3) Read and lock the inode block, performing an update with the new size
 6716  *    and pointers.  This prevents truncated data from becoming valid on
 6717  *    disk through step 4.
 6718  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
 6719  *    eliminate journal work for those records that do not require it.
 6720  * 5) Schedule the journal records to be written followed by the inode block.
 6721  * 6) Allocate any necessary frags for the end of file.
 6722  * 7) Zero any partially truncated blocks.
 6723  *
 6724  * From this truncation proceeds asynchronously using the freework and
 6725  * indir_trunc machinery.  The file will not be extended again into a
 6726  * partially truncated indirect block until all work is completed but
 6727  * the normal dependency mechanism ensures that it is rolled back/forward
 6728  * as appropriate.  Further truncation may occur without delay and is
 6729  * serialized in indir_trunc().
 6730  */
 6731 void
 6732 softdep_journal_freeblocks(
 6733         struct inode *ip,       /* The inode whose length is to be reduced */
 6734         struct ucred *cred,
 6735         off_t length,           /* The new length for the file */
 6736         int flags)              /* IO_EXT and/or IO_NORMAL */
 6737 {
 6738         struct freeblks *freeblks, *fbn;
 6739         struct worklist *wk, *wkn;
 6740         struct inodedep *inodedep;
 6741         struct jblkdep *jblkdep;
 6742         struct allocdirect *adp, *adpn;
 6743         struct ufsmount *ump;
 6744         struct fs *fs;
 6745         struct buf *bp;
 6746         struct vnode *vp;
 6747         struct mount *mp;
 6748         daddr_t dbn;
 6749         ufs2_daddr_t extblocks, datablocks;
 6750         ufs_lbn_t tmpval, lbn, lastlbn;
 6751         int frags, lastoff, iboff, allocblock, needj, error, i;
 6752 
 6753         ump = ITOUMP(ip);
 6754         mp = UFSTOVFS(ump);
 6755         fs = ump->um_fs;
 6756         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 6757             ("softdep_journal_freeblocks called on non-softdep filesystem"));
 6758         vp = ITOV(ip);
 6759         needj = 1;
 6760         iboff = -1;
 6761         allocblock = 0;
 6762         extblocks = 0;
 6763         datablocks = 0;
 6764         frags = 0;
 6765         freeblks = newfreeblks(mp, ip);
 6766         ACQUIRE_LOCK(ump);
 6767         /*
 6768          * If we're truncating a removed file that will never be written
 6769          * we don't need to journal the block frees.  The canceled journals
 6770          * for the allocations will suffice.
 6771          */
 6772         inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
 6773         if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
 6774             length == 0)
 6775                 needj = 0;
 6776         CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
 6777             ip->i_number, length, needj);
 6778         FREE_LOCK(ump);
 6779         /*
 6780          * Calculate the lbn that we are truncating to.  This results in -1
 6781          * if we're truncating the 0 bytes.  So it is the last lbn we want
 6782          * to keep, not the first lbn we want to truncate.
 6783          */
 6784         lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
 6785         lastoff = blkoff(fs, length);
 6786         /*
 6787          * Compute frags we are keeping in lastlbn.  0 means all.
 6788          */
 6789         if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
 6790                 frags = fragroundup(fs, lastoff);
 6791                 /* adp offset of last valid allocdirect. */
 6792                 iboff = lastlbn;
 6793         } else if (lastlbn > 0)
 6794                 iboff = UFS_NDADDR;
 6795         if (fs->fs_magic == FS_UFS2_MAGIC)
 6796                 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
 6797         /*
 6798          * Handle normal data blocks and indirects.  This section saves
 6799          * values used after the inode update to complete frag and indirect
 6800          * truncation.
 6801          */
 6802         if ((flags & IO_NORMAL) != 0) {
 6803                 /*
 6804                  * Handle truncation of whole direct and indirect blocks.
 6805                  */
 6806                 for (i = iboff + 1; i < UFS_NDADDR; i++)
 6807                         setup_freedirect(freeblks, ip, i, needj);
 6808                 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
 6809                     i < UFS_NIADDR;
 6810                     i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
 6811                         /* Release a whole indirect tree. */
 6812                         if (lbn > lastlbn) {
 6813                                 setup_freeindir(freeblks, ip, i, -lbn -i,
 6814                                     needj);
 6815                                 continue;
 6816                         }
 6817                         iboff = i + UFS_NDADDR;
 6818                         /*
 6819                          * Traverse partially truncated indirect tree.
 6820                          */
 6821                         if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
 6822                                 setup_trunc_indir(freeblks, ip, -lbn - i,
 6823                                     lastlbn, DIP(ip, i_ib[i]));
 6824                 }
 6825                 /*
 6826                  * Handle partial truncation to a frag boundary.
 6827                  */
 6828                 if (frags) {
 6829                         ufs2_daddr_t blkno;
 6830                         long oldfrags;
 6831 
 6832                         oldfrags = blksize(fs, ip, lastlbn);
 6833                         blkno = DIP(ip, i_db[lastlbn]);
 6834                         if (blkno && oldfrags != frags) {
 6835                                 oldfrags -= frags;
 6836                                 oldfrags = numfrags(fs, oldfrags);
 6837                                 blkno += numfrags(fs, frags);
 6838                                 newfreework(ump, freeblks, NULL, lastlbn,
 6839                                     blkno, oldfrags, 0, needj);
 6840                                 if (needj)
 6841                                         adjust_newfreework(freeblks,
 6842                                             numfrags(fs, frags));
 6843                         } else if (blkno == 0)
 6844                                 allocblock = 1;
 6845                 }
 6846                 /*
 6847                  * Add a journal record for partial truncate if we are
 6848                  * handling indirect blocks.  Non-indirects need no extra
 6849                  * journaling.
 6850                  */
 6851                 if (length != 0 && lastlbn >= UFS_NDADDR) {
 6852                         UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
 6853                         newjtrunc(freeblks, length, 0);
 6854                 }
 6855                 ip->i_size = length;
 6856                 DIP_SET(ip, i_size, ip->i_size);
 6857                 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
 6858                 datablocks = DIP(ip, i_blocks) - extblocks;
 6859                 if (length != 0)
 6860                         datablocks = blkcount(fs, datablocks, length);
 6861                 freeblks->fb_len = length;
 6862         }
 6863         if ((flags & IO_EXT) != 0) {
 6864                 for (i = 0; i < UFS_NXADDR; i++)
 6865                         setup_freeext(freeblks, ip, i, needj);
 6866                 ip->i_din2->di_extsize = 0;
 6867                 datablocks += extblocks;
 6868                 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
 6869         }
 6870 #ifdef QUOTA
 6871         /* Reference the quotas in case the block count is wrong in the end. */
 6872         quotaref(vp, freeblks->fb_quota);
 6873         (void) chkdq(ip, -datablocks, NOCRED, FORCE);
 6874 #endif
 6875         freeblks->fb_chkcnt = -datablocks;
 6876         UFS_LOCK(ump);
 6877         fs->fs_pendingblocks += datablocks;
 6878         UFS_UNLOCK(ump);
 6879         DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
 6880         /*
 6881          * Handle truncation of incomplete alloc direct dependencies.  We
 6882          * hold the inode block locked to prevent incomplete dependencies
 6883          * from reaching the disk while we are eliminating those that
 6884          * have been truncated.  This is a partially inlined ffs_update().
 6885          */
 6886         ufs_itimes(vp);
 6887         ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
 6888         dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
 6889         error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
 6890             NULL, NULL, 0, cred, 0, NULL, &bp);
 6891         if (error) {
 6892                 softdep_error("softdep_journal_freeblocks", error);
 6893                 return;
 6894         }
 6895         if (bp->b_bufsize == fs->fs_bsize)
 6896                 bp->b_flags |= B_CLUSTEROK;
 6897         softdep_update_inodeblock(ip, bp, 0);
 6898         if (ump->um_fstype == UFS1) {
 6899                 *((struct ufs1_dinode *)bp->b_data +
 6900                     ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
 6901         } else {
 6902                 ffs_update_dinode_ckhash(fs, ip->i_din2);
 6903                 *((struct ufs2_dinode *)bp->b_data +
 6904                     ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
 6905         }
 6906         ACQUIRE_LOCK(ump);
 6907         (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
 6908         if ((inodedep->id_state & IOSTARTED) != 0)
 6909                 panic("softdep_setup_freeblocks: inode busy");
 6910         /*
 6911          * Add the freeblks structure to the list of operations that
 6912          * must await the zero'ed inode being written to disk. If we
 6913          * still have a bitmap dependency (needj), then the inode
 6914          * has never been written to disk, so we can process the
 6915          * freeblks below once we have deleted the dependencies.
 6916          */
 6917         if (needj)
 6918                 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
 6919         else
 6920                 freeblks->fb_state |= COMPLETE;
 6921         if ((flags & IO_NORMAL) != 0) {
 6922                 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
 6923                         if (adp->ad_offset > iboff)
 6924                                 cancel_allocdirect(&inodedep->id_inoupdt, adp,
 6925                                     freeblks);
 6926                         /*
 6927                          * Truncate the allocdirect.  We could eliminate
 6928                          * or modify journal records as well.
 6929                          */
 6930                         else if (adp->ad_offset == iboff && frags)
 6931                                 adp->ad_newsize = frags;
 6932                 }
 6933         }
 6934         if ((flags & IO_EXT) != 0)
 6935                 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
 6936                         cancel_allocdirect(&inodedep->id_extupdt, adp,
 6937                             freeblks);
 6938         /*
 6939          * Scan the bufwait list for newblock dependencies that will never
 6940          * make it to disk.
 6941          */
 6942         LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
 6943                 if (wk->wk_type != D_ALLOCDIRECT)
 6944                         continue;
 6945                 adp = WK_ALLOCDIRECT(wk);
 6946                 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
 6947                     ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
 6948                         cancel_jfreeblk(freeblks, adp->ad_newblkno);
 6949                         cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
 6950                         WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
 6951                 }
 6952         }
 6953         /*
 6954          * Add journal work.
 6955          */
 6956         LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
 6957                 add_to_journal(&jblkdep->jb_list);
 6958         FREE_LOCK(ump);
 6959         bdwrite(bp);
 6960         /*
 6961          * Truncate dependency structures beyond length.
 6962          */
 6963         trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
 6964         /*
 6965          * This is only set when we need to allocate a fragment because
 6966          * none existed at the end of a frag-sized file.  It handles only
 6967          * allocating a new, zero filled block.
 6968          */
 6969         if (allocblock) {
 6970                 ip->i_size = length - lastoff;
 6971                 DIP_SET(ip, i_size, ip->i_size);
 6972                 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
 6973                 if (error != 0) {
 6974                         softdep_error("softdep_journal_freeblks", error);
 6975                         return;
 6976                 }
 6977                 ip->i_size = length;
 6978                 DIP_SET(ip, i_size, length);
 6979                 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
 6980                 allocbuf(bp, frags);
 6981                 ffs_update(vp, 0);
 6982                 bawrite(bp);
 6983         } else if (lastoff != 0 && vp->v_type != VDIR) {
 6984                 int size;
 6985 
 6986                 /*
 6987                  * Zero the end of a truncated frag or block.
 6988                  */
 6989                 size = sblksize(fs, length, lastlbn);
 6990                 error = bread(vp, lastlbn, size, cred, &bp);
 6991                 if (error == 0) {
 6992                         bzero((char *)bp->b_data + lastoff, size - lastoff);
 6993                         bawrite(bp);
 6994                 } else if (!ffs_fsfail_cleanup(ump, error)) {
 6995                         softdep_error("softdep_journal_freeblks", error);
 6996                         return;
 6997                 }
 6998         }
 6999         ACQUIRE_LOCK(ump);
 7000         inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
 7001         TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
 7002         freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
 7003         /*
 7004          * We zero earlier truncations so they don't erroneously
 7005          * update i_blocks.
 7006          */
 7007         if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
 7008                 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
 7009                         fbn->fb_len = 0;
 7010         if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
 7011             LIST_EMPTY(&freeblks->fb_jblkdephd))
 7012                 freeblks->fb_state |= INPROGRESS;
 7013         else
 7014                 freeblks = NULL;
 7015         FREE_LOCK(ump);
 7016         if (freeblks)
 7017                 handle_workitem_freeblocks(freeblks, 0);
 7018         trunc_pages(ip, length, extblocks, flags);
 7019 
 7020 }
 7021 
 7022 /*
 7023  * Flush a JOP_SYNC to the journal.
 7024  */
 7025 void
 7026 softdep_journal_fsync(struct inode *ip)
 7027 {
 7028         struct jfsync *jfsync;
 7029         struct ufsmount *ump;
 7030 
 7031         ump = ITOUMP(ip);
 7032         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
 7033             ("softdep_journal_fsync called on non-softdep filesystem"));
 7034         if ((ip->i_flag & IN_TRUNCATED) == 0)
 7035                 return;
 7036         ip->i_flag &= ~IN_TRUNCATED;
 7037         jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
 7038         workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
 7039         jfsync->jfs_size = ip->i_size;
 7040         jfsync->jfs_ino = ip->i_number;
 7041         ACQUIRE_LOCK(ump);
 7042         add_to_journal(&jfsync->jfs_list);
 7043         jwait(&jfsync->jfs_list, MNT_WAIT);
 7044         FREE_LOCK(ump);
 7045 }
 7046 
 7047 /*
 7048  * Block de-allocation dependencies.
 7049  * 
 7050  * When blocks are de-allocated, the on-disk pointers must be nullified before
 7051  * the blocks are made available for use by other files.  (The true
 7052  * requirement is that old pointers must be nullified before new on-disk
 7053  * pointers are set.  We chose this slightly more stringent requirement to
 7054  * reduce complexity.) Our implementation handles this dependency by updating
 7055  * the inode (or indirect block) appropriately but delaying the actual block
 7056  * de-allocation (i.e., freemap and free space count manipulation) until
 7057  * after the updated versions reach stable storage.  After the disk is
 7058  * updated, the blocks can be safely de-allocated whenever it is convenient.
 7059  * This implementation handles only the common case of reducing a file's
 7060  * length to zero. Other cases are handled by the conventional synchronous
 7061  * write approach.
 7062  *
 7063  * The ffs implementation with which we worked double-checks
 7064  * the state of the block pointers and file size as it reduces
 7065  * a file's length.  Some of this code is replicated here in our
 7066  * soft updates implementation.  The freeblks->fb_chkcnt field is
 7067  * used to transfer a part of this information to the procedure
 7068  * that eventually de-allocates the blocks.
 7069  *
 7070  * This routine should be called from the routine that shortens
 7071  * a file's length, before the inode's size or block pointers
 7072  * are modified. It will save the block pointer information for
 7073  * later release and zero the inode so that the calling routine
 7074  * can release it.
 7075  */
 7076 void
 7077 softdep_setup_freeblocks(
 7078         struct inode *ip,       /* The inode whose length is to be reduced */
 7079         off_t length,           /* The new length for the file */
 7080         int flags)              /* IO_EXT and/or IO_NORMAL */
 7081 {
 7082         struct ufs1_dinode *dp1;
 7083         struct ufs2_dinode *dp2;
 7084         struct freeblks *freeblks;
 7085         struct inodedep *inodedep;
 7086         struct allocdirect *adp;
 7087         struct ufsmount *ump;
 7088         struct buf *bp;
 7089         struct fs *fs;
 7090         ufs2_daddr_t extblocks, datablocks;
 7091         struct mount *mp;
 7092         int i, delay, error;
 7093         ufs_lbn_t tmpval;
 7094         ufs_lbn_t lbn;
 7095 
 7096         ump = ITOUMP(ip);
 7097         mp = UFSTOVFS(ump);
 7098         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 7099             ("softdep_setup_freeblocks called on non-softdep filesystem"));
 7100         CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
 7101             ip->i_number, length);
 7102         KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
 7103         fs = ump->um_fs;
 7104         if ((error = bread(ump->um_devvp,
 7105             fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
 7106             (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
 7107                 if (!ffs_fsfail_cleanup(ump, error))
 7108                         softdep_error("softdep_setup_freeblocks", error);
 7109                 return;
 7110         }
 7111         freeblks = newfreeblks(mp, ip);
 7112         extblocks = 0;
 7113         datablocks = 0;
 7114         if (fs->fs_magic == FS_UFS2_MAGIC)
 7115                 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
 7116         if ((flags & IO_NORMAL) != 0) {
 7117                 for (i = 0; i < UFS_NDADDR; i++)
 7118                         setup_freedirect(freeblks, ip, i, 0);
 7119                 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
 7120                     i < UFS_NIADDR;
 7121                     i++, lbn += tmpval, tmpval *= NINDIR(fs))
 7122                         setup_freeindir(freeblks, ip, i, -lbn -i, 0);
 7123                 ip->i_size = 0;
 7124                 DIP_SET(ip, i_size, 0);
 7125                 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
 7126                 datablocks = DIP(ip, i_blocks) - extblocks;
 7127         }
 7128         if ((flags & IO_EXT) != 0) {
 7129                 for (i = 0; i < UFS_NXADDR; i++)
 7130                         setup_freeext(freeblks, ip, i, 0);
 7131                 ip->i_din2->di_extsize = 0;
 7132                 datablocks += extblocks;
 7133                 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
 7134         }
 7135 #ifdef QUOTA
 7136         /* Reference the quotas in case the block count is wrong in the end. */
 7137         quotaref(ITOV(ip), freeblks->fb_quota);
 7138         (void) chkdq(ip, -datablocks, NOCRED, FORCE);
 7139 #endif
 7140         freeblks->fb_chkcnt = -datablocks;
 7141         UFS_LOCK(ump);
 7142         fs->fs_pendingblocks += datablocks;
 7143         UFS_UNLOCK(ump);
 7144         DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
 7145         /*
 7146          * Push the zero'ed inode to its disk buffer so that we are free
 7147          * to delete its dependencies below. Once the dependencies are gone
 7148          * the buffer can be safely released.
 7149          */
 7150         if (ump->um_fstype == UFS1) {
 7151                 dp1 = ((struct ufs1_dinode *)bp->b_data +
 7152                     ino_to_fsbo(fs, ip->i_number));
 7153                 ip->i_din1->di_freelink = dp1->di_freelink;
 7154                 *dp1 = *ip->i_din1;
 7155         } else {
 7156                 dp2 = ((struct ufs2_dinode *)bp->b_data +
 7157                     ino_to_fsbo(fs, ip->i_number));
 7158                 ip->i_din2->di_freelink = dp2->di_freelink;
 7159                 ffs_update_dinode_ckhash(fs, ip->i_din2);
 7160                 *dp2 = *ip->i_din2;
 7161         }
 7162         /*
 7163          * Find and eliminate any inode dependencies.
 7164          */
 7165         ACQUIRE_LOCK(ump);
 7166         (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
 7167         if ((inodedep->id_state & IOSTARTED) != 0)
 7168                 panic("softdep_setup_freeblocks: inode busy");
 7169         /*
 7170          * Add the freeblks structure to the list of operations that
 7171          * must await the zero'ed inode being written to disk. If we
 7172          * still have a bitmap dependency (delay == 0), then the inode
 7173          * has never been written to disk, so we can process the
 7174          * freeblks below once we have deleted the dependencies.
 7175          */
 7176         delay = (inodedep->id_state & DEPCOMPLETE);
 7177         if (delay)
 7178                 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
 7179         else
 7180                 freeblks->fb_state |= COMPLETE;
 7181         /*
 7182          * Because the file length has been truncated to zero, any
 7183          * pending block allocation dependency structures associated
 7184          * with this inode are obsolete and can simply be de-allocated.
 7185          * We must first merge the two dependency lists to get rid of
 7186          * any duplicate freefrag structures, then purge the merged list.
 7187          * If we still have a bitmap dependency, then the inode has never
 7188          * been written to disk, so we can free any fragments without delay.
 7189          */
 7190         if (flags & IO_NORMAL) {
 7191                 merge_inode_lists(&inodedep->id_newinoupdt,
 7192                     &inodedep->id_inoupdt);
 7193                 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
 7194                         cancel_allocdirect(&inodedep->id_inoupdt, adp,
 7195                             freeblks);
 7196         }
 7197         if (flags & IO_EXT) {
 7198                 merge_inode_lists(&inodedep->id_newextupdt,
 7199                     &inodedep->id_extupdt);
 7200                 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
 7201                         cancel_allocdirect(&inodedep->id_extupdt, adp,
 7202                             freeblks);
 7203         }
 7204         FREE_LOCK(ump);
 7205         bdwrite(bp);
 7206         trunc_dependencies(ip, freeblks, -1, 0, flags);
 7207         ACQUIRE_LOCK(ump);
 7208         if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
 7209                 (void) free_inodedep(inodedep);
 7210         freeblks->fb_state |= DEPCOMPLETE;
 7211         /*
 7212          * If the inode with zeroed block pointers is now on disk
 7213          * we can start freeing blocks.
 7214          */  
 7215         if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
 7216                 freeblks->fb_state |= INPROGRESS;
 7217         else
 7218                 freeblks = NULL;
 7219         FREE_LOCK(ump);
 7220         if (freeblks)
 7221                 handle_workitem_freeblocks(freeblks, 0);
 7222         trunc_pages(ip, length, extblocks, flags);
 7223 }
 7224 
 7225 /*
 7226  * Eliminate pages from the page cache that back parts of this inode and
 7227  * adjust the vnode pager's idea of our size.  This prevents stale data
 7228  * from hanging around in the page cache.
 7229  */
 7230 static void
 7231 trunc_pages(
 7232         struct inode *ip,
 7233         off_t length,
 7234         ufs2_daddr_t extblocks,
 7235         int flags)
 7236 {
 7237         struct vnode *vp;
 7238         struct fs *fs;
 7239         ufs_lbn_t lbn;
 7240         off_t end, extend;
 7241 
 7242         vp = ITOV(ip);
 7243         fs = ITOFS(ip);
 7244         extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
 7245         if ((flags & IO_EXT) != 0)
 7246                 vn_pages_remove(vp, extend, 0);
 7247         if ((flags & IO_NORMAL) == 0)
 7248                 return;
 7249         BO_LOCK(&vp->v_bufobj);
 7250         drain_output(vp);
 7251         BO_UNLOCK(&vp->v_bufobj);
 7252         /*
 7253          * The vnode pager eliminates file pages we eliminate indirects
 7254          * below.
 7255          */
 7256         vnode_pager_setsize(vp, length);
 7257         /*
 7258          * Calculate the end based on the last indirect we want to keep.  If
 7259          * the block extends into indirects we can just use the negative of
 7260          * its lbn.  Doubles and triples exist at lower numbers so we must
 7261          * be careful not to remove those, if they exist.  double and triple
 7262          * indirect lbns do not overlap with others so it is not important
 7263          * to verify how many levels are required.
 7264          */
 7265         lbn = lblkno(fs, length);
 7266         if (lbn >= UFS_NDADDR) {
 7267                 /* Calculate the virtual lbn of the triple indirect. */
 7268                 lbn = -lbn - (UFS_NIADDR - 1);
 7269                 end = OFF_TO_IDX(lblktosize(fs, lbn));
 7270         } else
 7271                 end = extend;
 7272         vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
 7273 }
 7274 
 7275 /*
 7276  * See if the buf bp is in the range eliminated by truncation.
 7277  */
 7278 static int
 7279 trunc_check_buf(
 7280         struct buf *bp,
 7281         int *blkoffp,
 7282         ufs_lbn_t lastlbn,
 7283         int lastoff,
 7284         int flags)
 7285 {
 7286         ufs_lbn_t lbn;
 7287 
 7288         *blkoffp = 0;
 7289         /* Only match ext/normal blocks as appropriate. */
 7290         if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
 7291             ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
 7292                 return (0);
 7293         /* ALTDATA is always a full truncation. */
 7294         if ((bp->b_xflags & BX_ALTDATA) != 0)
 7295                 return (1);
 7296         /* -1 is full truncation. */
 7297         if (lastlbn == -1)
 7298                 return (1);
 7299         /*
 7300          * If this is a partial truncate we only want those
 7301          * blocks and indirect blocks that cover the range
 7302          * we're after.
 7303          */
 7304         lbn = bp->b_lblkno;
 7305         if (lbn < 0)
 7306                 lbn = -(lbn + lbn_level(lbn));
 7307         if (lbn < lastlbn)
 7308                 return (0);
 7309         /* Here we only truncate lblkno if it's partial. */
 7310         if (lbn == lastlbn) {
 7311                 if (lastoff == 0)
 7312                         return (0);
 7313                 *blkoffp = lastoff;
 7314         }
 7315         return (1);
 7316 }
 7317 
 7318 /*
 7319  * Eliminate any dependencies that exist in memory beyond lblkno:off
 7320  */
 7321 static void
 7322 trunc_dependencies(
 7323         struct inode *ip,
 7324         struct freeblks *freeblks,
 7325         ufs_lbn_t lastlbn,
 7326         int lastoff,
 7327         int flags)
 7328 {
 7329         struct bufobj *bo;
 7330         struct vnode *vp;
 7331         struct buf *bp;
 7332         int blkoff;
 7333 
 7334         /*
 7335          * We must wait for any I/O in progress to finish so that
 7336          * all potential buffers on the dirty list will be visible.
 7337          * Once they are all there, walk the list and get rid of
 7338          * any dependencies.
 7339          */
 7340         vp = ITOV(ip);
 7341         bo = &vp->v_bufobj;
 7342         BO_LOCK(bo);
 7343         drain_output(vp);
 7344         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
 7345                 bp->b_vflags &= ~BV_SCANNED;
 7346 restart:
 7347         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
 7348                 if (bp->b_vflags & BV_SCANNED)
 7349                         continue;
 7350                 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
 7351                         bp->b_vflags |= BV_SCANNED;
 7352                         continue;
 7353                 }
 7354                 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
 7355                 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
 7356                         goto restart;
 7357                 BO_UNLOCK(bo);
 7358                 if (deallocate_dependencies(bp, freeblks, blkoff))
 7359                         bqrelse(bp);
 7360                 else
 7361                         brelse(bp);
 7362                 BO_LOCK(bo);
 7363                 goto restart;
 7364         }
 7365         /*
 7366          * Now do the work of vtruncbuf while also matching indirect blocks.
 7367          */
 7368         TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
 7369                 bp->b_vflags &= ~BV_SCANNED;
 7370 cleanrestart:
 7371         TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
 7372                 if (bp->b_vflags & BV_SCANNED)
 7373                         continue;
 7374                 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
 7375                         bp->b_vflags |= BV_SCANNED;
 7376                         continue;
 7377                 }
 7378                 if (BUF_LOCK(bp,
 7379                     LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
 7380                     BO_LOCKPTR(bo)) == ENOLCK) {
 7381                         BO_LOCK(bo);
 7382                         goto cleanrestart;
 7383                 }
 7384                 BO_LOCK(bo);
 7385                 bp->b_vflags |= BV_SCANNED;
 7386                 BO_UNLOCK(bo);
 7387                 bremfree(bp);
 7388                 if (blkoff != 0) {
 7389                         allocbuf(bp, blkoff);
 7390                         bqrelse(bp);
 7391                 } else {
 7392                         bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
 7393                         brelse(bp);
 7394                 }
 7395                 BO_LOCK(bo);
 7396                 goto cleanrestart;
 7397         }
 7398         drain_output(vp);
 7399         BO_UNLOCK(bo);
 7400 }
 7401 
 7402 static int
 7403 cancel_pagedep(
 7404         struct pagedep *pagedep,
 7405         struct freeblks *freeblks,
 7406         int blkoff)
 7407 {
 7408         struct jremref *jremref;
 7409         struct jmvref *jmvref;
 7410         struct dirrem *dirrem, *tmp;
 7411         int i;
 7412 
 7413         /*
 7414          * Copy any directory remove dependencies to the list
 7415          * to be processed after the freeblks proceeds.  If
 7416          * directory entry never made it to disk they
 7417          * can be dumped directly onto the work list.
 7418          */
 7419         LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
 7420                 /* Skip this directory removal if it is intended to remain. */
 7421                 if (dirrem->dm_offset < blkoff)
 7422                         continue;
 7423                 /*
 7424                  * If there are any dirrems we wait for the journal write
 7425                  * to complete and then restart the buf scan as the lock
 7426                  * has been dropped.
 7427                  */
 7428                 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
 7429                         jwait(&jremref->jr_list, MNT_WAIT);
 7430                         return (ERESTART);
 7431                 }
 7432                 LIST_REMOVE(dirrem, dm_next);
 7433                 dirrem->dm_dirinum = pagedep->pd_ino;
 7434                 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
 7435         }
 7436         while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
 7437                 jwait(&jmvref->jm_list, MNT_WAIT);
 7438                 return (ERESTART);
 7439         }
 7440         /*
 7441          * When we're partially truncating a pagedep we just want to flush
 7442          * journal entries and return.  There can not be any adds in the
 7443          * truncated portion of the directory and newblk must remain if
 7444          * part of the block remains.
 7445          */
 7446         if (blkoff != 0) {
 7447                 struct diradd *dap;
 7448 
 7449                 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
 7450                         if (dap->da_offset > blkoff)
 7451                                 panic("cancel_pagedep: diradd %p off %d > %d",
 7452                                     dap, dap->da_offset, blkoff);
 7453                 for (i = 0; i < DAHASHSZ; i++)
 7454                         LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
 7455                                 if (dap->da_offset > blkoff)
 7456                                         panic("cancel_pagedep: diradd %p off %d > %d",
 7457                                             dap, dap->da_offset, blkoff);
 7458                 return (0);
 7459         }
 7460         /*
 7461          * There should be no directory add dependencies present
 7462          * as the directory could not be truncated until all
 7463          * children were removed.
 7464          */
 7465         KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
 7466             ("deallocate_dependencies: pendinghd != NULL"));
 7467         for (i = 0; i < DAHASHSZ; i++)
 7468                 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
 7469                     ("deallocate_dependencies: diraddhd != NULL"));
 7470         if ((pagedep->pd_state & NEWBLOCK) != 0)
 7471                 free_newdirblk(pagedep->pd_newdirblk);
 7472         if (free_pagedep(pagedep) == 0)
 7473                 panic("Failed to free pagedep %p", pagedep);
 7474         return (0);
 7475 }
 7476 
 7477 /*
 7478  * Reclaim any dependency structures from a buffer that is about to
 7479  * be reallocated to a new vnode. The buffer must be locked, thus,
 7480  * no I/O completion operations can occur while we are manipulating
 7481  * its associated dependencies. The mutex is held so that other I/O's
 7482  * associated with related dependencies do not occur.
 7483  */
 7484 static int
 7485 deallocate_dependencies(
 7486         struct buf *bp,
 7487         struct freeblks *freeblks,
 7488         int off)
 7489 {
 7490         struct indirdep *indirdep;
 7491         struct pagedep *pagedep;
 7492         struct worklist *wk, *wkn;
 7493         struct ufsmount *ump;
 7494 
 7495         ump = softdep_bp_to_mp(bp);
 7496         if (ump == NULL)
 7497                 goto done;
 7498         ACQUIRE_LOCK(ump);
 7499         LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
 7500                 switch (wk->wk_type) {
 7501                 case D_INDIRDEP:
 7502                         indirdep = WK_INDIRDEP(wk);
 7503                         if (bp->b_lblkno >= 0 ||
 7504                             bp->b_blkno != indirdep->ir_savebp->b_lblkno)
 7505                                 panic("deallocate_dependencies: not indir");
 7506                         cancel_indirdep(indirdep, bp, freeblks);
 7507                         continue;
 7508 
 7509                 case D_PAGEDEP:
 7510                         pagedep = WK_PAGEDEP(wk);
 7511                         if (cancel_pagedep(pagedep, freeblks, off)) {
 7512                                 FREE_LOCK(ump);
 7513                                 return (ERESTART);
 7514                         }
 7515                         continue;
 7516 
 7517                 case D_ALLOCINDIR:
 7518                         /*
 7519                          * Simply remove the allocindir, we'll find it via
 7520                          * the indirdep where we can clear pointers if
 7521                          * needed.
 7522                          */
 7523                         WORKLIST_REMOVE(wk);
 7524                         continue;
 7525 
 7526                 case D_FREEWORK:
 7527                         /*
 7528                          * A truncation is waiting for the zero'd pointers
 7529                          * to be written.  It can be freed when the freeblks
 7530                          * is journaled.
 7531                          */
 7532                         WORKLIST_REMOVE(wk);
 7533                         wk->wk_state |= ONDEPLIST;
 7534                         WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
 7535                         break;
 7536 
 7537                 case D_ALLOCDIRECT:
 7538                         if (off != 0)
 7539                                 continue;
 7540                         /* FALLTHROUGH */
 7541                 default:
 7542                         panic("deallocate_dependencies: Unexpected type %s",
 7543                             TYPENAME(wk->wk_type));
 7544                         /* NOTREACHED */
 7545                 }
 7546         }
 7547         FREE_LOCK(ump);
 7548 done:
 7549         /*
 7550          * Don't throw away this buf, we were partially truncating and
 7551          * some deps may always remain.
 7552          */
 7553         if (off) {
 7554                 allocbuf(bp, off);
 7555                 bp->b_vflags |= BV_SCANNED;
 7556                 return (EBUSY);
 7557         }
 7558         bp->b_flags |= B_INVAL | B_NOCACHE;
 7559 
 7560         return (0);
 7561 }
 7562 
 7563 /*
 7564  * An allocdirect is being canceled due to a truncate.  We must make sure
 7565  * the journal entry is released in concert with the blkfree that releases
 7566  * the storage.  Completed journal entries must not be released until the
 7567  * space is no longer pointed to by the inode or in the bitmap.
 7568  */
 7569 static void
 7570 cancel_allocdirect(
 7571         struct allocdirectlst *adphead,
 7572         struct allocdirect *adp,
 7573         struct freeblks *freeblks)
 7574 {
 7575         struct freework *freework;
 7576         struct newblk *newblk;
 7577         struct worklist *wk;
 7578 
 7579         TAILQ_REMOVE(adphead, adp, ad_next);
 7580         newblk = (struct newblk *)adp;
 7581         freework = NULL;
 7582         /*
 7583          * Find the correct freework structure.
 7584          */
 7585         LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
 7586                 if (wk->wk_type != D_FREEWORK)
 7587                         continue;
 7588                 freework = WK_FREEWORK(wk);
 7589                 if (freework->fw_blkno == newblk->nb_newblkno)
 7590                         break;
 7591         }
 7592         if (freework == NULL)
 7593                 panic("cancel_allocdirect: Freework not found");
 7594         /*
 7595          * If a newblk exists at all we still have the journal entry that
 7596          * initiated the allocation so we do not need to journal the free.
 7597          */
 7598         cancel_jfreeblk(freeblks, freework->fw_blkno);
 7599         /*
 7600          * If the journal hasn't been written the jnewblk must be passed
 7601          * to the call to ffs_blkfree that reclaims the space.  We accomplish
 7602          * this by linking the journal dependency into the freework to be
 7603          * freed when freework_freeblock() is called.  If the journal has
 7604          * been written we can simply reclaim the journal space when the
 7605          * freeblks work is complete.
 7606          */
 7607         freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
 7608             &freeblks->fb_jwork);
 7609         WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
 7610 }
 7611 
 7612 /*
 7613  * Cancel a new block allocation.  May be an indirect or direct block.  We
 7614  * remove it from various lists and return any journal record that needs to
 7615  * be resolved by the caller.
 7616  *
 7617  * A special consideration is made for indirects which were never pointed
 7618  * at on disk and will never be found once this block is released.
 7619  */
 7620 static struct jnewblk *
 7621 cancel_newblk(
 7622         struct newblk *newblk,
 7623         struct worklist *wk,
 7624         struct workhead *wkhd)
 7625 {
 7626         struct jnewblk *jnewblk;
 7627 
 7628         CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
 7629             
 7630         newblk->nb_state |= GOINGAWAY;
 7631         /*
 7632          * Previously we traversed the completedhd on each indirdep
 7633          * attached to this newblk to cancel them and gather journal
 7634          * work.  Since we need only the oldest journal segment and
 7635          * the lowest point on the tree will always have the oldest
 7636          * journal segment we are free to release the segments
 7637          * of any subordinates and may leave the indirdep list to
 7638          * indirdep_complete() when this newblk is freed.
 7639          */
 7640         if (newblk->nb_state & ONDEPLIST) {
 7641                 newblk->nb_state &= ~ONDEPLIST;
 7642                 LIST_REMOVE(newblk, nb_deps);
 7643         }
 7644         if (newblk->nb_state & ONWORKLIST)
 7645                 WORKLIST_REMOVE(&newblk->nb_list);
 7646         /*
 7647          * If the journal entry hasn't been written we save a pointer to
 7648          * the dependency that frees it until it is written or the
 7649          * superseding operation completes.
 7650          */
 7651         jnewblk = newblk->nb_jnewblk;
 7652         if (jnewblk != NULL && wk != NULL) {
 7653                 newblk->nb_jnewblk = NULL;
 7654                 jnewblk->jn_dep = wk;
 7655         }
 7656         if (!LIST_EMPTY(&newblk->nb_jwork))
 7657                 jwork_move(wkhd, &newblk->nb_jwork);
 7658         /*
 7659          * When truncating we must free the newdirblk early to remove
 7660          * the pagedep from the hash before returning.
 7661          */
 7662         if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
 7663                 free_newdirblk(WK_NEWDIRBLK(wk));
 7664         if (!LIST_EMPTY(&newblk->nb_newdirblk))
 7665                 panic("cancel_newblk: extra newdirblk");
 7666 
 7667         return (jnewblk);
 7668 }
 7669 
 7670 /*
 7671  * Schedule the freefrag associated with a newblk to be released once
 7672  * the pointers are written and the previous block is no longer needed.
 7673  */
 7674 static void
 7675 newblk_freefrag(struct newblk *newblk)
 7676 {
 7677         struct freefrag *freefrag;
 7678 
 7679         if (newblk->nb_freefrag == NULL)
 7680                 return;
 7681         freefrag = newblk->nb_freefrag;
 7682         newblk->nb_freefrag = NULL;
 7683         freefrag->ff_state |= COMPLETE;
 7684         if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
 7685                 add_to_worklist(&freefrag->ff_list, 0);
 7686 }
 7687 
 7688 /*
 7689  * Free a newblk. Generate a new freefrag work request if appropriate.
 7690  * This must be called after the inode pointer and any direct block pointers
 7691  * are valid or fully removed via truncate or frag extension.
 7692  */
 7693 static void
 7694 free_newblk(struct newblk *newblk)
 7695 {
 7696         struct indirdep *indirdep;
 7697         struct worklist *wk;
 7698 
 7699         KASSERT(newblk->nb_jnewblk == NULL,
 7700             ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
 7701         KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
 7702             ("free_newblk: unclaimed newblk"));
 7703         LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
 7704         newblk_freefrag(newblk);
 7705         if (newblk->nb_state & ONDEPLIST)
 7706                 LIST_REMOVE(newblk, nb_deps);
 7707         if (newblk->nb_state & ONWORKLIST)
 7708                 WORKLIST_REMOVE(&newblk->nb_list);
 7709         LIST_REMOVE(newblk, nb_hash);
 7710         if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
 7711                 free_newdirblk(WK_NEWDIRBLK(wk));
 7712         if (!LIST_EMPTY(&newblk->nb_newdirblk))
 7713                 panic("free_newblk: extra newdirblk");
 7714         while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
 7715                 indirdep_complete(indirdep);
 7716         handle_jwork(&newblk->nb_jwork);
 7717         WORKITEM_FREE(newblk, D_NEWBLK);
 7718 }
 7719 
 7720 /*
 7721  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
 7722  */
 7723 static void
 7724 free_newdirblk(struct newdirblk *newdirblk)
 7725 {
 7726         struct pagedep *pagedep;
 7727         struct diradd *dap;
 7728         struct worklist *wk;
 7729 
 7730         LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
 7731         WORKLIST_REMOVE(&newdirblk->db_list);
 7732         /*
 7733          * If the pagedep is still linked onto the directory buffer
 7734          * dependency chain, then some of the entries on the
 7735          * pd_pendinghd list may not be committed to disk yet. In
 7736          * this case, we will simply clear the NEWBLOCK flag and
 7737          * let the pd_pendinghd list be processed when the pagedep
 7738          * is next written. If the pagedep is no longer on the buffer
 7739          * dependency chain, then all the entries on the pd_pending
 7740          * list are committed to disk and we can free them here.
 7741          */
 7742         pagedep = newdirblk->db_pagedep;
 7743         pagedep->pd_state &= ~NEWBLOCK;
 7744         if ((pagedep->pd_state & ONWORKLIST) == 0) {
 7745                 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
 7746                         free_diradd(dap, NULL);
 7747                 /*
 7748                  * If no dependencies remain, the pagedep will be freed.
 7749                  */
 7750                 free_pagedep(pagedep);
 7751         }
 7752         /* Should only ever be one item in the list. */
 7753         while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
 7754                 WORKLIST_REMOVE(wk);
 7755                 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
 7756         }
 7757         WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
 7758 }
 7759 
 7760 /*
 7761  * Prepare an inode to be freed. The actual free operation is not
 7762  * done until the zero'ed inode has been written to disk.
 7763  */
 7764 void
 7765 softdep_freefile(
 7766         struct vnode *pvp,
 7767         ino_t ino,
 7768         int mode)
 7769 {
 7770         struct inode *ip = VTOI(pvp);
 7771         struct inodedep *inodedep;
 7772         struct freefile *freefile;
 7773         struct freeblks *freeblks;
 7774         struct ufsmount *ump;
 7775 
 7776         ump = ITOUMP(ip);
 7777         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
 7778             ("softdep_freefile called on non-softdep filesystem"));
 7779         /*
 7780          * This sets up the inode de-allocation dependency.
 7781          */
 7782         freefile = malloc(sizeof(struct freefile),
 7783                 M_FREEFILE, M_SOFTDEP_FLAGS);
 7784         workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
 7785         freefile->fx_mode = mode;
 7786         freefile->fx_oldinum = ino;
 7787         freefile->fx_devvp = ump->um_devvp;
 7788         LIST_INIT(&freefile->fx_jwork);
 7789         UFS_LOCK(ump);
 7790         ump->um_fs->fs_pendinginodes += 1;
 7791         UFS_UNLOCK(ump);
 7792 
 7793         /*
 7794          * If the inodedep does not exist, then the zero'ed inode has
 7795          * been written to disk. If the allocated inode has never been
 7796          * written to disk, then the on-disk inode is zero'ed. In either
 7797          * case we can free the file immediately.  If the journal was
 7798          * canceled before being written the inode will never make it to
 7799          * disk and we must send the canceled journal entrys to
 7800          * ffs_freefile() to be cleared in conjunction with the bitmap.
 7801          * Any blocks waiting on the inode to write can be safely freed
 7802          * here as it will never been written.
 7803          */
 7804         ACQUIRE_LOCK(ump);
 7805         inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
 7806         if (inodedep) {
 7807                 /*
 7808                  * Clear out freeblks that no longer need to reference
 7809                  * this inode.
 7810                  */
 7811                 while ((freeblks =
 7812                     TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
 7813                         TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
 7814                             fb_next);
 7815                         freeblks->fb_state &= ~ONDEPLIST;
 7816                 }
 7817                 /*
 7818                  * Remove this inode from the unlinked list.
 7819                  */
 7820                 if (inodedep->id_state & UNLINKED) {
 7821                         /*
 7822                          * Save the journal work to be freed with the bitmap
 7823                          * before we clear UNLINKED.  Otherwise it can be lost
 7824                          * if the inode block is written.
 7825                          */
 7826                         handle_bufwait(inodedep, &freefile->fx_jwork);
 7827                         clear_unlinked_inodedep(inodedep);
 7828                         /*
 7829                          * Re-acquire inodedep as we've dropped the
 7830                          * per-filesystem lock in clear_unlinked_inodedep().
 7831                          */
 7832                         inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
 7833                 }
 7834         }
 7835         if (inodedep == NULL || check_inode_unwritten(inodedep)) {
 7836                 FREE_LOCK(ump);
 7837                 handle_workitem_freefile(freefile);
 7838                 return;
 7839         }
 7840         if ((inodedep->id_state & DEPCOMPLETE) == 0)
 7841                 inodedep->id_state |= GOINGAWAY;
 7842         WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
 7843         FREE_LOCK(ump);
 7844         if (ip->i_number == ino)
 7845                 UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
 7846 }
 7847 
 7848 /*
 7849  * Check to see if an inode has never been written to disk. If
 7850  * so free the inodedep and return success, otherwise return failure.
 7851  *
 7852  * If we still have a bitmap dependency, then the inode has never
 7853  * been written to disk. Drop the dependency as it is no longer
 7854  * necessary since the inode is being deallocated. We set the
 7855  * ALLCOMPLETE flags since the bitmap now properly shows that the
 7856  * inode is not allocated. Even if the inode is actively being
 7857  * written, it has been rolled back to its zero'ed state, so we
 7858  * are ensured that a zero inode is what is on the disk. For short
 7859  * lived files, this change will usually result in removing all the
 7860  * dependencies from the inode so that it can be freed immediately.
 7861  */
 7862 static int
 7863 check_inode_unwritten(struct inodedep *inodedep)
 7864 {
 7865 
 7866         LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
 7867 
 7868         if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
 7869             !LIST_EMPTY(&inodedep->id_dirremhd) ||
 7870             !LIST_EMPTY(&inodedep->id_pendinghd) ||
 7871             !LIST_EMPTY(&inodedep->id_bufwait) ||
 7872             !LIST_EMPTY(&inodedep->id_inowait) ||
 7873             !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
 7874             !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
 7875             !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
 7876             !TAILQ_EMPTY(&inodedep->id_extupdt) ||
 7877             !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
 7878             !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
 7879             inodedep->id_mkdiradd != NULL || 
 7880             inodedep->id_nlinkdelta != 0)
 7881                 return (0);
 7882         /*
 7883          * Another process might be in initiate_write_inodeblock_ufs[12]
 7884          * trying to allocate memory without holding "Softdep Lock".
 7885          */
 7886         if ((inodedep->id_state & IOSTARTED) != 0 &&
 7887             inodedep->id_savedino1 == NULL)
 7888                 return (0);
 7889 
 7890         if (inodedep->id_state & ONDEPLIST)
 7891                 LIST_REMOVE(inodedep, id_deps);
 7892         inodedep->id_state &= ~ONDEPLIST;
 7893         inodedep->id_state |= ALLCOMPLETE;
 7894         inodedep->id_bmsafemap = NULL;
 7895         if (inodedep->id_state & ONWORKLIST)
 7896                 WORKLIST_REMOVE(&inodedep->id_list);
 7897         if (inodedep->id_savedino1 != NULL) {
 7898                 free(inodedep->id_savedino1, M_SAVEDINO);
 7899                 inodedep->id_savedino1 = NULL;
 7900         }
 7901         if (free_inodedep(inodedep) == 0)
 7902                 panic("check_inode_unwritten: busy inode");
 7903         return (1);
 7904 }
 7905 
 7906 static int
 7907 check_inodedep_free(struct inodedep *inodedep)
 7908 {
 7909 
 7910         LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
 7911         if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
 7912             !LIST_EMPTY(&inodedep->id_dirremhd) ||
 7913             !LIST_EMPTY(&inodedep->id_pendinghd) ||
 7914             !LIST_EMPTY(&inodedep->id_bufwait) ||
 7915             !LIST_EMPTY(&inodedep->id_inowait) ||
 7916             !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
 7917             !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
 7918             !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
 7919             !TAILQ_EMPTY(&inodedep->id_extupdt) ||
 7920             !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
 7921             !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
 7922             inodedep->id_mkdiradd != NULL ||
 7923             inodedep->id_nlinkdelta != 0 ||
 7924             inodedep->id_savedino1 != NULL)
 7925                 return (0);
 7926         return (1);
 7927 }
 7928 
 7929 /*
 7930  * Try to free an inodedep structure. Return 1 if it could be freed.
 7931  */
 7932 static int
 7933 free_inodedep(struct inodedep *inodedep)
 7934 {
 7935 
 7936         LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
 7937         if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
 7938             !check_inodedep_free(inodedep))
 7939                 return (0);
 7940         if (inodedep->id_state & ONDEPLIST)
 7941                 LIST_REMOVE(inodedep, id_deps);
 7942         LIST_REMOVE(inodedep, id_hash);
 7943         WORKITEM_FREE(inodedep, D_INODEDEP);
 7944         return (1);
 7945 }
 7946 
 7947 /*
 7948  * Free the block referenced by a freework structure.  The parent freeblks
 7949  * structure is released and completed when the final cg bitmap reaches
 7950  * the disk.  This routine may be freeing a jnewblk which never made it to
 7951  * disk in which case we do not have to wait as the operation is undone
 7952  * in memory immediately.
 7953  */
 7954 static void
 7955 freework_freeblock(struct freework *freework, u_long key)
 7956 {
 7957         struct freeblks *freeblks;
 7958         struct jnewblk *jnewblk;
 7959         struct ufsmount *ump;
 7960         struct workhead wkhd;
 7961         struct fs *fs;
 7962         int bsize;
 7963         int needj;
 7964 
 7965         ump = VFSTOUFS(freework->fw_list.wk_mp);
 7966         LOCK_OWNED(ump);
 7967         /*
 7968          * Handle partial truncate separately.
 7969          */
 7970         if (freework->fw_indir) {
 7971                 complete_trunc_indir(freework);
 7972                 return;
 7973         }
 7974         freeblks = freework->fw_freeblks;
 7975         fs = ump->um_fs;
 7976         needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
 7977         bsize = lfragtosize(fs, freework->fw_frags);
 7978         LIST_INIT(&wkhd);
 7979         /*
 7980          * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
 7981          * on the indirblk hashtable and prevents premature freeing.
 7982          */
 7983         freework->fw_state |= DEPCOMPLETE;
 7984         /*
 7985          * SUJ needs to wait for the segment referencing freed indirect
 7986          * blocks to expire so that we know the checker will not confuse
 7987          * a re-allocated indirect block with its old contents.
 7988          */
 7989         if (needj && freework->fw_lbn <= -UFS_NDADDR)
 7990                 indirblk_insert(freework);
 7991         /*
 7992          * If we are canceling an existing jnewblk pass it to the free
 7993          * routine, otherwise pass the freeblk which will ultimately
 7994          * release the freeblks.  If we're not journaling, we can just
 7995          * free the freeblks immediately.
 7996          */
 7997         jnewblk = freework->fw_jnewblk;
 7998         if (jnewblk != NULL) {
 7999                 cancel_jnewblk(jnewblk, &wkhd);
 8000                 needj = 0;
 8001         } else if (needj) {
 8002                 freework->fw_state |= DELAYEDFREE;
 8003                 freeblks->fb_cgwait++;
 8004                 WORKLIST_INSERT(&wkhd, &freework->fw_list);
 8005         }
 8006         FREE_LOCK(ump);
 8007         freeblks_free(ump, freeblks, btodb(bsize));
 8008         CTR4(KTR_SUJ,
 8009             "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
 8010             freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
 8011         ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
 8012             freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
 8013         ACQUIRE_LOCK(ump);
 8014         /*
 8015          * The jnewblk will be discarded and the bits in the map never
 8016          * made it to disk.  We can immediately free the freeblk.
 8017          */
 8018         if (needj == 0)
 8019                 handle_written_freework(freework);
 8020 }
 8021 
 8022 /*
 8023  * We enqueue freework items that need processing back on the freeblks and
 8024  * add the freeblks to the worklist.  This makes it easier to find all work
 8025  * required to flush a truncation in process_truncates().
 8026  */
 8027 static void
 8028 freework_enqueue(struct freework *freework)
 8029 {
 8030         struct freeblks *freeblks;
 8031 
 8032         freeblks = freework->fw_freeblks;
 8033         if ((freework->fw_state & INPROGRESS) == 0)
 8034                 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
 8035         if ((freeblks->fb_state &
 8036             (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
 8037             LIST_EMPTY(&freeblks->fb_jblkdephd))
 8038                 add_to_worklist(&freeblks->fb_list, WK_NODELAY);
 8039 }
 8040 
 8041 /*
 8042  * Start, continue, or finish the process of freeing an indirect block tree.
 8043  * The free operation may be paused at any point with fw_off containing the
 8044  * offset to restart from.  This enables us to implement some flow control
 8045  * for large truncates which may fan out and generate a huge number of
 8046  * dependencies.
 8047  */
 8048 static void
 8049 handle_workitem_indirblk(struct freework *freework)
 8050 {
 8051         struct freeblks *freeblks;
 8052         struct ufsmount *ump;
 8053         struct fs *fs;
 8054 
 8055         freeblks = freework->fw_freeblks;
 8056         ump = VFSTOUFS(freeblks->fb_list.wk_mp);
 8057         fs = ump->um_fs;
 8058         if (freework->fw_state & DEPCOMPLETE) {
 8059                 handle_written_freework(freework);
 8060                 return;
 8061         }
 8062         if (freework->fw_off == NINDIR(fs)) {
 8063                 freework_freeblock(freework, SINGLETON_KEY);
 8064                 return;
 8065         }
 8066         freework->fw_state |= INPROGRESS;
 8067         FREE_LOCK(ump);
 8068         indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
 8069             freework->fw_lbn);
 8070         ACQUIRE_LOCK(ump);
 8071 }
 8072 
 8073 /*
 8074  * Called when a freework structure attached to a cg buf is written.  The
 8075  * ref on either the parent or the freeblks structure is released and
 8076  * the freeblks is added back to the worklist if there is more work to do.
 8077  */
 8078 static void
 8079 handle_written_freework(struct freework *freework)
 8080 {
 8081         struct freeblks *freeblks;
 8082         struct freework *parent;
 8083 
 8084         freeblks = freework->fw_freeblks;
 8085         parent = freework->fw_parent;
 8086         if (freework->fw_state & DELAYEDFREE)
 8087                 freeblks->fb_cgwait--;
 8088         freework->fw_state |= COMPLETE;
 8089         if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
 8090                 WORKITEM_FREE(freework, D_FREEWORK);
 8091         if (parent) {
 8092                 if (--parent->fw_ref == 0)
 8093                         freework_enqueue(parent);
 8094                 return;
 8095         }
 8096         if (--freeblks->fb_ref != 0)
 8097                 return;
 8098         if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
 8099             ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 
 8100                 add_to_worklist(&freeblks->fb_list, WK_NODELAY);
 8101 }
 8102 
 8103 /*
 8104  * This workitem routine performs the block de-allocation.
 8105  * The workitem is added to the pending list after the updated
 8106  * inode block has been written to disk.  As mentioned above,
 8107  * checks regarding the number of blocks de-allocated (compared
 8108  * to the number of blocks allocated for the file) are also
 8109  * performed in this function.
 8110  */
 8111 static int
 8112 handle_workitem_freeblocks(struct freeblks *freeblks, int flags)
 8113 {
 8114         struct freework *freework;
 8115         struct newblk *newblk;
 8116         struct allocindir *aip;
 8117         struct ufsmount *ump;
 8118         struct worklist *wk;
 8119         u_long key;
 8120 
 8121         KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
 8122             ("handle_workitem_freeblocks: Journal entries not written."));
 8123         ump = VFSTOUFS(freeblks->fb_list.wk_mp);
 8124         key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
 8125         ACQUIRE_LOCK(ump);
 8126         while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
 8127                 WORKLIST_REMOVE(wk);
 8128                 switch (wk->wk_type) {
 8129                 case D_DIRREM:
 8130                         wk->wk_state |= COMPLETE;
 8131                         add_to_worklist(wk, 0);
 8132                         continue;
 8133 
 8134                 case D_ALLOCDIRECT:
 8135                         free_newblk(WK_NEWBLK(wk));
 8136                         continue;
 8137 
 8138                 case D_ALLOCINDIR:
 8139                         aip = WK_ALLOCINDIR(wk);
 8140                         freework = NULL;
 8141                         if (aip->ai_state & DELAYEDFREE) {
 8142                                 FREE_LOCK(ump);
 8143                                 freework = newfreework(ump, freeblks, NULL,
 8144                                     aip->ai_lbn, aip->ai_newblkno,
 8145                                     ump->um_fs->fs_frag, 0, 0);
 8146                                 ACQUIRE_LOCK(ump);
 8147                         }
 8148                         newblk = WK_NEWBLK(wk);
 8149                         if (newblk->nb_jnewblk) {
 8150                                 freework->fw_jnewblk = newblk->nb_jnewblk;
 8151                                 newblk->nb_jnewblk->jn_dep = &freework->fw_list;
 8152                                 newblk->nb_jnewblk = NULL;
 8153                         }
 8154                         free_newblk(newblk);
 8155                         continue;
 8156 
 8157                 case D_FREEWORK:
 8158                         freework = WK_FREEWORK(wk);
 8159                         if (freework->fw_lbn <= -UFS_NDADDR)
 8160                                 handle_workitem_indirblk(freework);
 8161                         else
 8162                                 freework_freeblock(freework, key);
 8163                         continue;
 8164                 default:
 8165                         panic("handle_workitem_freeblocks: Unknown type %s",
 8166                             TYPENAME(wk->wk_type));
 8167                 }
 8168         }
 8169         if (freeblks->fb_ref != 0) {
 8170                 freeblks->fb_state &= ~INPROGRESS;
 8171                 wake_worklist(&freeblks->fb_list);
 8172                 freeblks = NULL;
 8173         }
 8174         FREE_LOCK(ump);
 8175         ffs_blkrelease_finish(ump, key);
 8176         if (freeblks)
 8177                 return handle_complete_freeblocks(freeblks, flags);
 8178         return (0);
 8179 }
 8180 
 8181 /*
 8182  * Handle completion of block free via truncate.  This allows fs_pending
 8183  * to track the actual free block count more closely than if we only updated
 8184  * it at the end.  We must be careful to handle cases where the block count
 8185  * on free was incorrect.
 8186  */
 8187 static void
 8188 freeblks_free(struct ufsmount *ump,
 8189         struct freeblks *freeblks,
 8190         int blocks)
 8191 {
 8192         struct fs *fs;
 8193         ufs2_daddr_t remain;
 8194 
 8195         UFS_LOCK(ump);
 8196         remain = -freeblks->fb_chkcnt;
 8197         freeblks->fb_chkcnt += blocks;
 8198         if (remain > 0) {
 8199                 if (remain < blocks)
 8200                         blocks = remain;
 8201                 fs = ump->um_fs;
 8202                 fs->fs_pendingblocks -= blocks;
 8203         }
 8204         UFS_UNLOCK(ump);
 8205 }
 8206 
 8207 /*
 8208  * Once all of the freework workitems are complete we can retire the
 8209  * freeblocks dependency and any journal work awaiting completion.  This
 8210  * can not be called until all other dependencies are stable on disk.
 8211  */
 8212 static int
 8213 handle_complete_freeblocks(struct freeblks *freeblks, int flags)
 8214 {
 8215         struct inodedep *inodedep;
 8216         struct inode *ip;
 8217         struct vnode *vp;
 8218         struct fs *fs;
 8219         struct ufsmount *ump;
 8220         ufs2_daddr_t spare;
 8221 
 8222         ump = VFSTOUFS(freeblks->fb_list.wk_mp);
 8223         fs = ump->um_fs;
 8224         flags = LK_EXCLUSIVE | flags;
 8225         spare = freeblks->fb_chkcnt;
 8226 
 8227         /*
 8228          * If we did not release the expected number of blocks we may have
 8229          * to adjust the inode block count here.  Only do so if it wasn't
 8230          * a truncation to zero and the modrev still matches.
 8231          */
 8232         if (spare && freeblks->fb_len != 0) {
 8233                 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
 8234                     flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
 8235                         return (EBUSY);
 8236                 ip = VTOI(vp);
 8237                 if (ip->i_mode == 0) {
 8238                         vgone(vp);
 8239                 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
 8240                         DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
 8241                         UFS_INODE_SET_FLAG(ip, IN_CHANGE);
 8242                         /*
 8243                          * We must wait so this happens before the
 8244                          * journal is reclaimed.
 8245                          */
 8246                         ffs_update(vp, 1);
 8247                 }
 8248                 vput(vp);
 8249         }
 8250         if (spare < 0) {
 8251                 UFS_LOCK(ump);
 8252                 fs->fs_pendingblocks += spare;
 8253                 UFS_UNLOCK(ump);
 8254         }
 8255 #ifdef QUOTA
 8256         /* Handle spare. */
 8257         if (spare)
 8258                 quotaadj(freeblks->fb_quota, ump, -spare);
 8259         quotarele(freeblks->fb_quota);
 8260 #endif
 8261         ACQUIRE_LOCK(ump);
 8262         if (freeblks->fb_state & ONDEPLIST) {
 8263                 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
 8264                     0, &inodedep);
 8265                 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
 8266                 freeblks->fb_state &= ~ONDEPLIST;
 8267                 if (TAILQ_EMPTY(&inodedep->id_freeblklst))
 8268                         free_inodedep(inodedep);
 8269         }
 8270         /*
 8271          * All of the freeblock deps must be complete prior to this call
 8272          * so it's now safe to complete earlier outstanding journal entries.
 8273          */
 8274         handle_jwork(&freeblks->fb_jwork);
 8275         WORKITEM_FREE(freeblks, D_FREEBLKS);
 8276         FREE_LOCK(ump);
 8277         return (0);
 8278 }
 8279 
 8280 /*
 8281  * Release blocks associated with the freeblks and stored in the indirect
 8282  * block dbn. If level is greater than SINGLE, the block is an indirect block
 8283  * and recursive calls to indirtrunc must be used to cleanse other indirect
 8284  * blocks.
 8285  *
 8286  * This handles partial and complete truncation of blocks.  Partial is noted
 8287  * with goingaway == 0.  In this case the freework is completed after the
 8288  * zero'd indirects are written to disk.  For full truncation the freework
 8289  * is completed after the block is freed.
 8290  */
 8291 static void
 8292 indir_trunc(struct freework *freework,
 8293         ufs2_daddr_t dbn,
 8294         ufs_lbn_t lbn)
 8295 {
 8296         struct freework *nfreework;
 8297         struct workhead wkhd;
 8298         struct freeblks *freeblks;
 8299         struct buf *bp;
 8300         struct fs *fs;
 8301         struct indirdep *indirdep;
 8302         struct mount *mp;
 8303         struct ufsmount *ump;
 8304         ufs1_daddr_t *bap1;
 8305         ufs2_daddr_t nb, nnb, *bap2;
 8306         ufs_lbn_t lbnadd, nlbn;
 8307         u_long key;
 8308         int nblocks, ufs1fmt, freedblocks;
 8309         int goingaway, freedeps, needj, level, cnt, i, error;
 8310 
 8311         freeblks = freework->fw_freeblks;
 8312         mp = freeblks->fb_list.wk_mp;
 8313         ump = VFSTOUFS(mp);
 8314         fs = ump->um_fs;
 8315         /*
 8316          * Get buffer of block pointers to be freed.  There are three cases:
 8317          * 
 8318          * 1) Partial truncate caches the indirdep pointer in the freework
 8319          *    which provides us a back copy to the save bp which holds the
 8320          *    pointers we want to clear.  When this completes the zero
 8321          *    pointers are written to the real copy.
 8322          * 2) The indirect is being completely truncated, cancel_indirdep()
 8323          *    eliminated the real copy and placed the indirdep on the saved
 8324          *    copy.  The indirdep and buf are discarded when this completes.
 8325          * 3) The indirect was not in memory, we read a copy off of the disk
 8326          *    using the devvp and drop and invalidate the buffer when we're
 8327          *    done.
 8328          */
 8329         goingaway = 1;
 8330         indirdep = NULL;
 8331         if (freework->fw_indir != NULL) {
 8332                 goingaway = 0;
 8333                 indirdep = freework->fw_indir;
 8334                 bp = indirdep->ir_savebp;
 8335                 if (bp == NULL || bp->b_blkno != dbn)
 8336                         panic("indir_trunc: Bad saved buf %p blkno %jd",
 8337                             bp, (intmax_t)dbn);
 8338         } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
 8339                 /*
 8340                  * The lock prevents the buf dep list from changing and
 8341                  * indirects on devvp should only ever have one dependency.
 8342                  */
 8343                 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
 8344                 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
 8345                         panic("indir_trunc: Bad indirdep %p from buf %p",
 8346                             indirdep, bp);
 8347         } else {
 8348                 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
 8349                     (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
 8350                 if (error)
 8351                         return;
 8352         }
 8353         ACQUIRE_LOCK(ump);
 8354         /* Protects against a race with complete_trunc_indir(). */
 8355         freework->fw_state &= ~INPROGRESS;
 8356         /*
 8357          * If we have an indirdep we need to enforce the truncation order
 8358          * and discard it when it is complete.
 8359          */
 8360         if (indirdep) {
 8361                 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
 8362                     !TAILQ_EMPTY(&indirdep->ir_trunc)) {
 8363                         /*
 8364                          * Add the complete truncate to the list on the
 8365                          * indirdep to enforce in-order processing.
 8366                          */
 8367                         if (freework->fw_indir == NULL)
 8368                                 TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
 8369                                     freework, fw_next);
 8370                         FREE_LOCK(ump);
 8371                         return;
 8372                 }
 8373                 /*
 8374                  * If we're goingaway, free the indirdep.  Otherwise it will
 8375                  * linger until the write completes.
 8376                  */
 8377                 if (goingaway) {
 8378                         KASSERT(indirdep->ir_savebp == bp,
 8379                             ("indir_trunc: losing ir_savebp %p",
 8380                             indirdep->ir_savebp));
 8381                         indirdep->ir_savebp = NULL;
 8382                         free_indirdep(indirdep);
 8383                 }
 8384         }
 8385         FREE_LOCK(ump);
 8386         /* Initialize pointers depending on block size. */
 8387         if (ump->um_fstype == UFS1) {
 8388                 bap1 = (ufs1_daddr_t *)bp->b_data;
 8389                 nb = bap1[freework->fw_off];
 8390                 ufs1fmt = 1;
 8391                 bap2 = NULL;
 8392         } else {
 8393                 bap2 = (ufs2_daddr_t *)bp->b_data;
 8394                 nb = bap2[freework->fw_off];
 8395                 ufs1fmt = 0;
 8396                 bap1 = NULL;
 8397         }
 8398         level = lbn_level(lbn);
 8399         needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
 8400         lbnadd = lbn_offset(fs, level);
 8401         nblocks = btodb(fs->fs_bsize);
 8402         nfreework = freework;
 8403         freedeps = 0;
 8404         cnt = 0;
 8405         /*
 8406          * Reclaim blocks.  Traverses into nested indirect levels and
 8407          * arranges for the current level to be freed when subordinates
 8408          * are free when journaling.
 8409          */
 8410         key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
 8411         for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
 8412                 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
 8413                     fs->fs_bsize) != 0)
 8414                         nb = 0;
 8415                 if (i != NINDIR(fs) - 1) {
 8416                         if (ufs1fmt)
 8417                                 nnb = bap1[i+1];
 8418                         else
 8419                                 nnb = bap2[i+1];
 8420                 } else
 8421                         nnb = 0;
 8422                 if (nb == 0)
 8423                         continue;
 8424                 cnt++;
 8425                 if (level != 0) {
 8426                         nlbn = (lbn + 1) - (i * lbnadd);
 8427                         if (needj != 0) {
 8428                                 nfreework = newfreework(ump, freeblks, freework,
 8429                                     nlbn, nb, fs->fs_frag, 0, 0);
 8430                                 freedeps++;
 8431                         }
 8432                         indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
 8433                 } else {
 8434                         struct freedep *freedep;
 8435 
 8436                         /*
 8437                          * Attempt to aggregate freedep dependencies for
 8438                          * all blocks being released to the same CG.
 8439                          */
 8440                         LIST_INIT(&wkhd);
 8441                         if (needj != 0 &&
 8442                             (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
 8443                                 freedep = newfreedep(freework);
 8444                                 WORKLIST_INSERT_UNLOCKED(&wkhd,
 8445                                     &freedep->fd_list);
 8446                                 freedeps++;
 8447                         }
 8448                         CTR3(KTR_SUJ,
 8449                             "indir_trunc: ino %jd blkno %jd size %d",
 8450                             freeblks->fb_inum, nb, fs->fs_bsize);
 8451                         ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
 8452                             fs->fs_bsize, freeblks->fb_inum,
 8453                             freeblks->fb_vtype, &wkhd, key);
 8454                 }
 8455         }
 8456         ffs_blkrelease_finish(ump, key);
 8457         if (goingaway) {
 8458                 bp->b_flags |= B_INVAL | B_NOCACHE;
 8459                 brelse(bp);
 8460         }
 8461         freedblocks = 0;
 8462         if (level == 0)
 8463                 freedblocks = (nblocks * cnt);
 8464         if (needj == 0)
 8465                 freedblocks += nblocks;
 8466         freeblks_free(ump, freeblks, freedblocks);
 8467         /*
 8468          * If we are journaling set up the ref counts and offset so this
 8469          * indirect can be completed when its children are free.
 8470          */
 8471         if (needj) {
 8472                 ACQUIRE_LOCK(ump);
 8473                 freework->fw_off = i;
 8474                 freework->fw_ref += freedeps;
 8475                 freework->fw_ref -= NINDIR(fs) + 1;
 8476                 if (level == 0)
 8477                         freeblks->fb_cgwait += freedeps;
 8478                 if (freework->fw_ref == 0)
 8479                         freework_freeblock(freework, SINGLETON_KEY);
 8480                 FREE_LOCK(ump);
 8481                 return;
 8482         }
 8483         /*
 8484          * If we're not journaling we can free the indirect now.
 8485          */
 8486         dbn = dbtofsb(fs, dbn);
 8487         CTR3(KTR_SUJ,
 8488             "indir_trunc 2: ino %jd blkno %jd size %d",
 8489             freeblks->fb_inum, dbn, fs->fs_bsize);
 8490         ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
 8491             freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
 8492         /* Non SUJ softdep does single-threaded truncations. */
 8493         if (freework->fw_blkno == dbn) {
 8494                 freework->fw_state |= ALLCOMPLETE;
 8495                 ACQUIRE_LOCK(ump);
 8496                 handle_written_freework(freework);
 8497                 FREE_LOCK(ump);
 8498         }
 8499         return;
 8500 }
 8501 
 8502 /*
 8503  * Cancel an allocindir when it is removed via truncation.  When bp is not
 8504  * NULL the indirect never appeared on disk and is scheduled to be freed
 8505  * independently of the indir so we can more easily track journal work.
 8506  */
 8507 static void
 8508 cancel_allocindir(
 8509         struct allocindir *aip,
 8510         struct buf *bp,
 8511         struct freeblks *freeblks,
 8512         int trunc)
 8513 {
 8514         struct indirdep *indirdep;
 8515         struct freefrag *freefrag;
 8516         struct newblk *newblk;
 8517 
 8518         newblk = (struct newblk *)aip;
 8519         LIST_REMOVE(aip, ai_next);
 8520         /*
 8521          * We must eliminate the pointer in bp if it must be freed on its
 8522          * own due to partial truncate or pending journal work.
 8523          */
 8524         if (bp && (trunc || newblk->nb_jnewblk)) {
 8525                 /*
 8526                  * Clear the pointer and mark the aip to be freed
 8527                  * directly if it never existed on disk.
 8528                  */
 8529                 aip->ai_state |= DELAYEDFREE;
 8530                 indirdep = aip->ai_indirdep;
 8531                 if (indirdep->ir_state & UFS1FMT)
 8532                         ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
 8533                 else
 8534                         ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
 8535         }
 8536         /*
 8537          * When truncating the previous pointer will be freed via
 8538          * savedbp.  Eliminate the freefrag which would dup free.
 8539          */
 8540         if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
 8541                 newblk->nb_freefrag = NULL;
 8542                 if (freefrag->ff_jdep)
 8543                         cancel_jfreefrag(
 8544                             WK_JFREEFRAG(freefrag->ff_jdep));
 8545                 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
 8546                 WORKITEM_FREE(freefrag, D_FREEFRAG);
 8547         }
 8548         /*
 8549          * If the journal hasn't been written the jnewblk must be passed
 8550          * to the call to ffs_blkfree that reclaims the space.  We accomplish
 8551          * this by leaving the journal dependency on the newblk to be freed
 8552          * when a freework is created in handle_workitem_freeblocks().
 8553          */
 8554         cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
 8555         WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
 8556 }
 8557 
 8558 /*
 8559  * Create the mkdir dependencies for . and .. in a new directory.  Link them
 8560  * in to a newdirblk so any subsequent additions are tracked properly.  The
 8561  * caller is responsible for adding the mkdir1 dependency to the journal
 8562  * and updating id_mkdiradd.  This function returns with the per-filesystem
 8563  * lock held.
 8564  */
 8565 static struct mkdir *
 8566 setup_newdir(
 8567         struct diradd *dap,
 8568         ino_t newinum,
 8569         ino_t dinum,
 8570         struct buf *newdirbp,
 8571         struct mkdir **mkdirp)
 8572 {
 8573         struct newblk *newblk;
 8574         struct pagedep *pagedep;
 8575         struct inodedep *inodedep;
 8576         struct newdirblk *newdirblk;
 8577         struct mkdir *mkdir1, *mkdir2;
 8578         struct worklist *wk;
 8579         struct jaddref *jaddref;
 8580         struct ufsmount *ump;
 8581         struct mount *mp;
 8582 
 8583         mp = dap->da_list.wk_mp;
 8584         ump = VFSTOUFS(mp);
 8585         newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
 8586             M_SOFTDEP_FLAGS);
 8587         workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
 8588         LIST_INIT(&newdirblk->db_mkdir);
 8589         mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
 8590         workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
 8591         mkdir1->md_state = ATTACHED | MKDIR_BODY;
 8592         mkdir1->md_diradd = dap;
 8593         mkdir1->md_jaddref = NULL;
 8594         mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
 8595         workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
 8596         mkdir2->md_state = ATTACHED | MKDIR_PARENT;
 8597         mkdir2->md_diradd = dap;
 8598         mkdir2->md_jaddref = NULL;
 8599         if (MOUNTEDSUJ(mp) == 0) {
 8600                 mkdir1->md_state |= DEPCOMPLETE;
 8601                 mkdir2->md_state |= DEPCOMPLETE;
 8602         }
 8603         /*
 8604          * Dependency on "." and ".." being written to disk.
 8605          */
 8606         mkdir1->md_buf = newdirbp;
 8607         ACQUIRE_LOCK(VFSTOUFS(mp));
 8608         LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
 8609         /*
 8610          * We must link the pagedep, allocdirect, and newdirblk for
 8611          * the initial file page so the pointer to the new directory
 8612          * is not written until the directory contents are live and
 8613          * any subsequent additions are not marked live until the
 8614          * block is reachable via the inode.
 8615          */
 8616         if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
 8617                 panic("setup_newdir: lost pagedep");
 8618         LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
 8619                 if (wk->wk_type == D_ALLOCDIRECT)
 8620                         break;
 8621         if (wk == NULL)
 8622                 panic("setup_newdir: lost allocdirect");
 8623         if (pagedep->pd_state & NEWBLOCK)
 8624                 panic("setup_newdir: NEWBLOCK already set");
 8625         newblk = WK_NEWBLK(wk);
 8626         pagedep->pd_state |= NEWBLOCK;
 8627         pagedep->pd_newdirblk = newdirblk;
 8628         newdirblk->db_pagedep = pagedep;
 8629         WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
 8630         WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
 8631         /*
 8632          * Look up the inodedep for the parent directory so that we
 8633          * can link mkdir2 into the pending dotdot jaddref or
 8634          * the inode write if there is none.  If the inode is
 8635          * ALLCOMPLETE and no jaddref is present all dependencies have
 8636          * been satisfied and mkdir2 can be freed.
 8637          */
 8638         inodedep_lookup(mp, dinum, 0, &inodedep);
 8639         if (MOUNTEDSUJ(mp)) {
 8640                 if (inodedep == NULL)
 8641                         panic("setup_newdir: Lost parent.");
 8642                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 8643                     inoreflst);
 8644                 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
 8645                     (jaddref->ja_state & MKDIR_PARENT),
 8646                     ("setup_newdir: bad dotdot jaddref %p", jaddref));
 8647                 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
 8648                 mkdir2->md_jaddref = jaddref;
 8649                 jaddref->ja_mkdir = mkdir2;
 8650         } else if (inodedep == NULL ||
 8651             (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
 8652                 dap->da_state &= ~MKDIR_PARENT;
 8653                 WORKITEM_FREE(mkdir2, D_MKDIR);
 8654                 mkdir2 = NULL;
 8655         } else {
 8656                 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
 8657                 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
 8658         }
 8659         *mkdirp = mkdir2;
 8660 
 8661         return (mkdir1);
 8662 }
 8663 
 8664 /*
 8665  * Directory entry addition dependencies.
 8666  * 
 8667  * When adding a new directory entry, the inode (with its incremented link
 8668  * count) must be written to disk before the directory entry's pointer to it.
 8669  * Also, if the inode is newly allocated, the corresponding freemap must be
 8670  * updated (on disk) before the directory entry's pointer. These requirements
 8671  * are met via undo/redo on the directory entry's pointer, which consists
 8672  * simply of the inode number.
 8673  * 
 8674  * As directory entries are added and deleted, the free space within a
 8675  * directory block can become fragmented.  The ufs filesystem will compact
 8676  * a fragmented directory block to make space for a new entry. When this
 8677  * occurs, the offsets of previously added entries change. Any "diradd"
 8678  * dependency structures corresponding to these entries must be updated with
 8679  * the new offsets.
 8680  */
 8681 
 8682 /*
 8683  * This routine is called after the in-memory inode's link
 8684  * count has been incremented, but before the directory entry's
 8685  * pointer to the inode has been set.
 8686  */
 8687 int
 8688 softdep_setup_directory_add(
 8689         struct buf *bp,         /* buffer containing directory block */
 8690         struct inode *dp,       /* inode for directory */
 8691         off_t diroffset,        /* offset of new entry in directory */
 8692         ino_t newinum,          /* inode referenced by new directory entry */
 8693         struct buf *newdirbp,   /* non-NULL => contents of new mkdir */
 8694         int isnewblk)           /* entry is in a newly allocated block */
 8695 {
 8696         int offset;             /* offset of new entry within directory block */
 8697         ufs_lbn_t lbn;          /* block in directory containing new entry */
 8698         struct fs *fs;
 8699         struct diradd *dap;
 8700         struct newblk *newblk;
 8701         struct pagedep *pagedep;
 8702         struct inodedep *inodedep;
 8703         struct newdirblk *newdirblk;
 8704         struct mkdir *mkdir1, *mkdir2;
 8705         struct jaddref *jaddref;
 8706         struct ufsmount *ump;
 8707         struct mount *mp;
 8708         int isindir;
 8709 
 8710         mp = ITOVFS(dp);
 8711         ump = VFSTOUFS(mp);
 8712         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 8713             ("softdep_setup_directory_add called on non-softdep filesystem"));
 8714         /*
 8715          * Whiteouts have no dependencies.
 8716          */
 8717         if (newinum == UFS_WINO) {
 8718                 if (newdirbp != NULL)
 8719                         bdwrite(newdirbp);
 8720                 return (0);
 8721         }
 8722         jaddref = NULL;
 8723         mkdir1 = mkdir2 = NULL;
 8724         fs = ump->um_fs;
 8725         lbn = lblkno(fs, diroffset);
 8726         offset = blkoff(fs, diroffset);
 8727         dap = malloc(sizeof(struct diradd), M_DIRADD,
 8728                 M_SOFTDEP_FLAGS|M_ZERO);
 8729         workitem_alloc(&dap->da_list, D_DIRADD, mp);
 8730         dap->da_offset = offset;
 8731         dap->da_newinum = newinum;
 8732         dap->da_state = ATTACHED;
 8733         LIST_INIT(&dap->da_jwork);
 8734         isindir = bp->b_lblkno >= UFS_NDADDR;
 8735         newdirblk = NULL;
 8736         if (isnewblk &&
 8737             (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
 8738                 newdirblk = malloc(sizeof(struct newdirblk),
 8739                     M_NEWDIRBLK, M_SOFTDEP_FLAGS);
 8740                 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
 8741                 LIST_INIT(&newdirblk->db_mkdir);
 8742         }
 8743         /*
 8744          * If we're creating a new directory setup the dependencies and set
 8745          * the dap state to wait for them.  Otherwise it's COMPLETE and
 8746          * we can move on.
 8747          */
 8748         if (newdirbp == NULL) {
 8749                 dap->da_state |= DEPCOMPLETE;
 8750                 ACQUIRE_LOCK(ump);
 8751         } else {
 8752                 dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
 8753                 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
 8754                     &mkdir2);
 8755         }
 8756         /*
 8757          * Link into parent directory pagedep to await its being written.
 8758          */
 8759         pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
 8760 #ifdef INVARIANTS
 8761         if (diradd_lookup(pagedep, offset) != NULL)
 8762                 panic("softdep_setup_directory_add: %p already at off %d\n",
 8763                     diradd_lookup(pagedep, offset), offset);
 8764 #endif
 8765         dap->da_pagedep = pagedep;
 8766         LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
 8767             da_pdlist);
 8768         inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
 8769         /*
 8770          * If we're journaling, link the diradd into the jaddref so it
 8771          * may be completed after the journal entry is written.  Otherwise,
 8772          * link the diradd into its inodedep.  If the inode is not yet
 8773          * written place it on the bufwait list, otherwise do the post-inode
 8774          * write processing to put it on the id_pendinghd list.
 8775          */
 8776         if (MOUNTEDSUJ(mp)) {
 8777                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 8778                     inoreflst);
 8779                 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
 8780                     ("softdep_setup_directory_add: bad jaddref %p", jaddref));
 8781                 jaddref->ja_diroff = diroffset;
 8782                 jaddref->ja_diradd = dap;
 8783                 add_to_journal(&jaddref->ja_list);
 8784         } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
 8785                 diradd_inode_written(dap, inodedep);
 8786         else
 8787                 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
 8788         /*
 8789          * Add the journal entries for . and .. links now that the primary
 8790          * link is written.
 8791          */
 8792         if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
 8793                 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
 8794                     inoreflst, if_deps);
 8795                 KASSERT(jaddref != NULL &&
 8796                     jaddref->ja_ino == jaddref->ja_parent &&
 8797                     (jaddref->ja_state & MKDIR_BODY),
 8798                     ("softdep_setup_directory_add: bad dot jaddref %p",
 8799                     jaddref));
 8800                 mkdir1->md_jaddref = jaddref;
 8801                 jaddref->ja_mkdir = mkdir1;
 8802                 /*
 8803                  * It is important that the dotdot journal entry
 8804                  * is added prior to the dot entry since dot writes
 8805                  * both the dot and dotdot links.  These both must
 8806                  * be added after the primary link for the journal
 8807                  * to remain consistent.
 8808                  */
 8809                 add_to_journal(&mkdir2->md_jaddref->ja_list);
 8810                 add_to_journal(&jaddref->ja_list);
 8811         }
 8812         /*
 8813          * If we are adding a new directory remember this diradd so that if
 8814          * we rename it we can keep the dot and dotdot dependencies.  If
 8815          * we are adding a new name for an inode that has a mkdiradd we
 8816          * must be in rename and we have to move the dot and dotdot
 8817          * dependencies to this new name.  The old name is being orphaned
 8818          * soon.
 8819          */
 8820         if (mkdir1 != NULL) {
 8821                 if (inodedep->id_mkdiradd != NULL)
 8822                         panic("softdep_setup_directory_add: Existing mkdir");
 8823                 inodedep->id_mkdiradd = dap;
 8824         } else if (inodedep->id_mkdiradd)
 8825                 merge_diradd(inodedep, dap);
 8826         if (newdirblk != NULL) {
 8827                 /*
 8828                  * There is nothing to do if we are already tracking
 8829                  * this block.
 8830                  */
 8831                 if ((pagedep->pd_state & NEWBLOCK) != 0) {
 8832                         WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
 8833                         FREE_LOCK(ump);
 8834                         return (0);
 8835                 }
 8836                 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
 8837                     == 0)
 8838                         panic("softdep_setup_directory_add: lost entry");
 8839                 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
 8840                 pagedep->pd_state |= NEWBLOCK;
 8841                 pagedep->pd_newdirblk = newdirblk;
 8842                 newdirblk->db_pagedep = pagedep;
 8843                 FREE_LOCK(ump);
 8844                 /*
 8845                  * If we extended into an indirect signal direnter to sync.
 8846                  */
 8847                 if (isindir)
 8848                         return (1);
 8849                 return (0);
 8850         }
 8851         FREE_LOCK(ump);
 8852         return (0);
 8853 }
 8854 
 8855 /*
 8856  * This procedure is called to change the offset of a directory
 8857  * entry when compacting a directory block which must be owned
 8858  * exclusively by the caller. Note that the actual entry movement
 8859  * must be done in this procedure to ensure that no I/O completions
 8860  * occur while the move is in progress.
 8861  */
 8862 void 
 8863 softdep_change_directoryentry_offset(
 8864         struct buf *bp,         /* Buffer holding directory block. */
 8865         struct inode *dp,       /* inode for directory */
 8866         caddr_t base,           /* address of dp->i_offset */
 8867         caddr_t oldloc,         /* address of old directory location */
 8868         caddr_t newloc,         /* address of new directory location */
 8869         int entrysize)          /* size of directory entry */
 8870 {
 8871         int offset, oldoffset, newoffset;
 8872         struct pagedep *pagedep;
 8873         struct jmvref *jmvref;
 8874         struct diradd *dap;
 8875         struct direct *de;
 8876         struct mount *mp;
 8877         struct ufsmount *ump;
 8878         ufs_lbn_t lbn;
 8879         int flags;
 8880 
 8881         mp = ITOVFS(dp);
 8882         ump = VFSTOUFS(mp);
 8883         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 8884             ("softdep_change_directoryentry_offset called on "
 8885              "non-softdep filesystem"));
 8886         de = (struct direct *)oldloc;
 8887         jmvref = NULL;
 8888         flags = 0;
 8889         /*
 8890          * Moves are always journaled as it would be too complex to
 8891          * determine if any affected adds or removes are present in the
 8892          * journal.
 8893          */
 8894         if (MOUNTEDSUJ(mp)) {
 8895                 flags = DEPALLOC;
 8896                 jmvref = newjmvref(dp, de->d_ino,
 8897                     I_OFFSET(dp) + (oldloc - base),
 8898                     I_OFFSET(dp) + (newloc - base));
 8899         }
 8900         lbn = lblkno(ump->um_fs, I_OFFSET(dp));
 8901         offset = blkoff(ump->um_fs, I_OFFSET(dp));
 8902         oldoffset = offset + (oldloc - base);
 8903         newoffset = offset + (newloc - base);
 8904         ACQUIRE_LOCK(ump);
 8905         if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
 8906                 goto done;
 8907         dap = diradd_lookup(pagedep, oldoffset);
 8908         if (dap) {
 8909                 dap->da_offset = newoffset;
 8910                 newoffset = DIRADDHASH(newoffset);
 8911                 oldoffset = DIRADDHASH(oldoffset);
 8912                 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
 8913                     newoffset != oldoffset) {
 8914                         LIST_REMOVE(dap, da_pdlist);
 8915                         LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
 8916                             dap, da_pdlist);
 8917                 }
 8918         }
 8919 done:
 8920         if (jmvref) {
 8921                 jmvref->jm_pagedep = pagedep;
 8922                 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
 8923                 add_to_journal(&jmvref->jm_list);
 8924         }
 8925         bcopy(oldloc, newloc, entrysize);
 8926         FREE_LOCK(ump);
 8927 }
 8928 
 8929 /*
 8930  * Move the mkdir dependencies and journal work from one diradd to another
 8931  * when renaming a directory.  The new name must depend on the mkdir deps
 8932  * completing as the old name did.  Directories can only have one valid link
 8933  * at a time so one must be canonical.
 8934  */
 8935 static void
 8936 merge_diradd(struct inodedep *inodedep, struct diradd *newdap)
 8937 {
 8938         struct diradd *olddap;
 8939         struct mkdir *mkdir, *nextmd;
 8940         struct ufsmount *ump;
 8941         short state;
 8942 
 8943         olddap = inodedep->id_mkdiradd;
 8944         inodedep->id_mkdiradd = newdap;
 8945         if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
 8946                 newdap->da_state &= ~DEPCOMPLETE;
 8947                 ump = VFSTOUFS(inodedep->id_list.wk_mp);
 8948                 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
 8949                      mkdir = nextmd) {
 8950                         nextmd = LIST_NEXT(mkdir, md_mkdirs);
 8951                         if (mkdir->md_diradd != olddap)
 8952                                 continue;
 8953                         mkdir->md_diradd = newdap;
 8954                         state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
 8955                         newdap->da_state |= state;
 8956                         olddap->da_state &= ~state;
 8957                         if ((olddap->da_state &
 8958                             (MKDIR_PARENT | MKDIR_BODY)) == 0)
 8959                                 break;
 8960                 }
 8961                 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
 8962                         panic("merge_diradd: unfound ref");
 8963         }
 8964         /*
 8965          * Any mkdir related journal items are not safe to be freed until
 8966          * the new name is stable.
 8967          */
 8968         jwork_move(&newdap->da_jwork, &olddap->da_jwork);
 8969         olddap->da_state |= DEPCOMPLETE;
 8970         complete_diradd(olddap);
 8971 }
 8972 
 8973 /*
 8974  * Move the diradd to the pending list when all diradd dependencies are
 8975  * complete.
 8976  */
 8977 static void
 8978 complete_diradd(struct diradd *dap)
 8979 {
 8980         struct pagedep *pagedep;
 8981 
 8982         if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
 8983                 if (dap->da_state & DIRCHG)
 8984                         pagedep = dap->da_previous->dm_pagedep;
 8985                 else
 8986                         pagedep = dap->da_pagedep;
 8987                 LIST_REMOVE(dap, da_pdlist);
 8988                 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
 8989         }
 8990 }
 8991 
 8992 /*
 8993  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
 8994  * add entries and conditionally journal the remove.
 8995  */
 8996 static void
 8997 cancel_diradd(
 8998         struct diradd *dap,
 8999         struct dirrem *dirrem,
 9000         struct jremref *jremref,
 9001         struct jremref *dotremref,
 9002         struct jremref *dotdotremref)
 9003 {
 9004         struct inodedep *inodedep;
 9005         struct jaddref *jaddref;
 9006         struct inoref *inoref;
 9007         struct ufsmount *ump;
 9008         struct mkdir *mkdir;
 9009 
 9010         /*
 9011          * If no remove references were allocated we're on a non-journaled
 9012          * filesystem and can skip the cancel step.
 9013          */
 9014         if (jremref == NULL) {
 9015                 free_diradd(dap, NULL);
 9016                 return;
 9017         }
 9018         /*
 9019          * Cancel the primary name an free it if it does not require
 9020          * journaling.
 9021          */
 9022         if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
 9023             0, &inodedep) != 0) {
 9024                 /* Abort the addref that reference this diradd.  */
 9025                 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
 9026                         if (inoref->if_list.wk_type != D_JADDREF)
 9027                                 continue;
 9028                         jaddref = (struct jaddref *)inoref;
 9029                         if (jaddref->ja_diradd != dap)
 9030                                 continue;
 9031                         if (cancel_jaddref(jaddref, inodedep,
 9032                             &dirrem->dm_jwork) == 0) {
 9033                                 free_jremref(jremref);
 9034                                 jremref = NULL;
 9035                         }
 9036                         break;
 9037                 }
 9038         }
 9039         /*
 9040          * Cancel subordinate names and free them if they do not require
 9041          * journaling.
 9042          */
 9043         if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
 9044                 ump = VFSTOUFS(dap->da_list.wk_mp);
 9045                 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
 9046                         if (mkdir->md_diradd != dap)
 9047                                 continue;
 9048                         if ((jaddref = mkdir->md_jaddref) == NULL)
 9049                                 continue;
 9050                         mkdir->md_jaddref = NULL;
 9051                         if (mkdir->md_state & MKDIR_PARENT) {
 9052                                 if (cancel_jaddref(jaddref, NULL,
 9053                                     &dirrem->dm_jwork) == 0) {
 9054                                         free_jremref(dotdotremref);
 9055                                         dotdotremref = NULL;
 9056                                 }
 9057                         } else {
 9058                                 if (cancel_jaddref(jaddref, inodedep,
 9059                                     &dirrem->dm_jwork) == 0) {
 9060                                         free_jremref(dotremref);
 9061                                         dotremref = NULL;
 9062                                 }
 9063                         }
 9064                 }
 9065         }
 9066 
 9067         if (jremref)
 9068                 journal_jremref(dirrem, jremref, inodedep);
 9069         if (dotremref)
 9070                 journal_jremref(dirrem, dotremref, inodedep);
 9071         if (dotdotremref)
 9072                 journal_jremref(dirrem, dotdotremref, NULL);
 9073         jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
 9074         free_diradd(dap, &dirrem->dm_jwork);
 9075 }
 9076 
 9077 /*
 9078  * Free a diradd dependency structure.
 9079  */
 9080 static void
 9081 free_diradd(struct diradd *dap, struct workhead *wkhd)
 9082 {
 9083         struct dirrem *dirrem;
 9084         struct pagedep *pagedep;
 9085         struct inodedep *inodedep;
 9086         struct mkdir *mkdir, *nextmd;
 9087         struct ufsmount *ump;
 9088 
 9089         ump = VFSTOUFS(dap->da_list.wk_mp);
 9090         LOCK_OWNED(ump);
 9091         LIST_REMOVE(dap, da_pdlist);
 9092         if (dap->da_state & ONWORKLIST)
 9093                 WORKLIST_REMOVE(&dap->da_list);
 9094         if ((dap->da_state & DIRCHG) == 0) {
 9095                 pagedep = dap->da_pagedep;
 9096         } else {
 9097                 dirrem = dap->da_previous;
 9098                 pagedep = dirrem->dm_pagedep;
 9099                 dirrem->dm_dirinum = pagedep->pd_ino;
 9100                 dirrem->dm_state |= COMPLETE;
 9101                 if (LIST_EMPTY(&dirrem->dm_jremrefhd))
 9102                         add_to_worklist(&dirrem->dm_list, 0);
 9103         }
 9104         if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
 9105             0, &inodedep) != 0)
 9106                 if (inodedep->id_mkdiradd == dap)
 9107                         inodedep->id_mkdiradd = NULL;
 9108         if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
 9109                 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
 9110                      mkdir = nextmd) {
 9111                         nextmd = LIST_NEXT(mkdir, md_mkdirs);
 9112                         if (mkdir->md_diradd != dap)
 9113                                 continue;
 9114                         dap->da_state &=
 9115                             ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
 9116                         LIST_REMOVE(mkdir, md_mkdirs);
 9117                         if (mkdir->md_state & ONWORKLIST)
 9118                                 WORKLIST_REMOVE(&mkdir->md_list);
 9119                         if (mkdir->md_jaddref != NULL)
 9120                                 panic("free_diradd: Unexpected jaddref");
 9121                         WORKITEM_FREE(mkdir, D_MKDIR);
 9122                         if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
 9123                                 break;
 9124                 }
 9125                 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
 9126                         panic("free_diradd: unfound ref");
 9127         }
 9128         if (inodedep)
 9129                 free_inodedep(inodedep);
 9130         /*
 9131          * Free any journal segments waiting for the directory write.
 9132          */
 9133         handle_jwork(&dap->da_jwork);
 9134         WORKITEM_FREE(dap, D_DIRADD);
 9135 }
 9136 
 9137 /*
 9138  * Directory entry removal dependencies.
 9139  * 
 9140  * When removing a directory entry, the entry's inode pointer must be
 9141  * zero'ed on disk before the corresponding inode's link count is decremented
 9142  * (possibly freeing the inode for re-use). This dependency is handled by
 9143  * updating the directory entry but delaying the inode count reduction until
 9144  * after the directory block has been written to disk. After this point, the
 9145  * inode count can be decremented whenever it is convenient.
 9146  */
 9147 
 9148 /*
 9149  * This routine should be called immediately after removing
 9150  * a directory entry.  The inode's link count should not be
 9151  * decremented by the calling procedure -- the soft updates
 9152  * code will do this task when it is safe.
 9153  */
 9154 void 
 9155 softdep_setup_remove(
 9156         struct buf *bp,         /* buffer containing directory block */
 9157         struct inode *dp,       /* inode for the directory being modified */
 9158         struct inode *ip,       /* inode for directory entry being removed */
 9159         int isrmdir)            /* indicates if doing RMDIR */
 9160 {
 9161         struct dirrem *dirrem, *prevdirrem;
 9162         struct inodedep *inodedep;
 9163         struct ufsmount *ump;
 9164         int direct;
 9165 
 9166         ump = ITOUMP(ip);
 9167         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
 9168             ("softdep_setup_remove called on non-softdep filesystem"));
 9169         /*
 9170          * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
 9171          * newdirrem() to setup the full directory remove which requires
 9172          * isrmdir > 1.
 9173          */
 9174         dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
 9175         /*
 9176          * Add the dirrem to the inodedep's pending remove list for quick
 9177          * discovery later.
 9178          */
 9179         if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
 9180                 panic("softdep_setup_remove: Lost inodedep.");
 9181         KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
 9182         dirrem->dm_state |= ONDEPLIST;
 9183         LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
 9184 
 9185         /*
 9186          * If the COMPLETE flag is clear, then there were no active
 9187          * entries and we want to roll back to a zeroed entry until
 9188          * the new inode is committed to disk. If the COMPLETE flag is
 9189          * set then we have deleted an entry that never made it to
 9190          * disk. If the entry we deleted resulted from a name change,
 9191          * then the old name still resides on disk. We cannot delete
 9192          * its inode (returned to us in prevdirrem) until the zeroed
 9193          * directory entry gets to disk. The new inode has never been
 9194          * referenced on the disk, so can be deleted immediately.
 9195          */
 9196         if ((dirrem->dm_state & COMPLETE) == 0) {
 9197                 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
 9198                     dm_next);
 9199                 FREE_LOCK(ump);
 9200         } else {
 9201                 if (prevdirrem != NULL)
 9202                         LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
 9203                             prevdirrem, dm_next);
 9204                 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
 9205                 direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
 9206                 FREE_LOCK(ump);
 9207                 if (direct)
 9208                         handle_workitem_remove(dirrem, 0);
 9209         }
 9210 }
 9211 
 9212 /*
 9213  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
 9214  * pd_pendinghd list of a pagedep.
 9215  */
 9216 static struct diradd *
 9217 diradd_lookup(struct pagedep *pagedep, int offset)
 9218 {
 9219         struct diradd *dap;
 9220 
 9221         LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
 9222                 if (dap->da_offset == offset)
 9223                         return (dap);
 9224         LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
 9225                 if (dap->da_offset == offset)
 9226                         return (dap);
 9227         return (NULL);
 9228 }
 9229 
 9230 /*
 9231  * Search for a .. diradd dependency in a directory that is being removed.
 9232  * If the directory was renamed to a new parent we have a diradd rather
 9233  * than a mkdir for the .. entry.  We need to cancel it now before
 9234  * it is found in truncate().
 9235  */
 9236 static struct jremref *
 9237 cancel_diradd_dotdot(struct inode *ip,
 9238         struct dirrem *dirrem,
 9239         struct jremref *jremref)
 9240 {
 9241         struct pagedep *pagedep;
 9242         struct diradd *dap;
 9243         struct worklist *wk;
 9244 
 9245         if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
 9246                 return (jremref);
 9247         dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
 9248         if (dap == NULL)
 9249                 return (jremref);
 9250         cancel_diradd(dap, dirrem, jremref, NULL, NULL);
 9251         /*
 9252          * Mark any journal work as belonging to the parent so it is freed
 9253          * with the .. reference.
 9254          */
 9255         LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
 9256                 wk->wk_state |= MKDIR_PARENT;
 9257         return (NULL);
 9258 }
 9259 
 9260 /*
 9261  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
 9262  * replace it with a dirrem/diradd pair as a result of re-parenting a
 9263  * directory.  This ensures that we don't simultaneously have a mkdir and
 9264  * a diradd for the same .. entry.
 9265  */
 9266 static struct jremref *
 9267 cancel_mkdir_dotdot(struct inode *ip,
 9268         struct dirrem *dirrem,
 9269         struct jremref *jremref)
 9270 {
 9271         struct inodedep *inodedep;
 9272         struct jaddref *jaddref;
 9273         struct ufsmount *ump;
 9274         struct mkdir *mkdir;
 9275         struct diradd *dap;
 9276         struct mount *mp;
 9277 
 9278         mp = ITOVFS(ip);
 9279         if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
 9280                 return (jremref);
 9281         dap = inodedep->id_mkdiradd;
 9282         if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
 9283                 return (jremref);
 9284         ump = VFSTOUFS(inodedep->id_list.wk_mp);
 9285         for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
 9286             mkdir = LIST_NEXT(mkdir, md_mkdirs))
 9287                 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
 9288                         break;
 9289         if (mkdir == NULL)
 9290                 panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
 9291         if ((jaddref = mkdir->md_jaddref) != NULL) {
 9292                 mkdir->md_jaddref = NULL;
 9293                 jaddref->ja_state &= ~MKDIR_PARENT;
 9294                 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
 9295                         panic("cancel_mkdir_dotdot: Lost parent inodedep");
 9296                 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
 9297                         journal_jremref(dirrem, jremref, inodedep);
 9298                         jremref = NULL;
 9299                 }
 9300         }
 9301         if (mkdir->md_state & ONWORKLIST)
 9302                 WORKLIST_REMOVE(&mkdir->md_list);
 9303         mkdir->md_state |= ALLCOMPLETE;
 9304         complete_mkdir(mkdir);
 9305         return (jremref);
 9306 }
 9307 
 9308 static void
 9309 journal_jremref(struct dirrem *dirrem,
 9310         struct jremref *jremref,
 9311         struct inodedep *inodedep)
 9312 {
 9313 
 9314         if (inodedep == NULL)
 9315                 if (inodedep_lookup(jremref->jr_list.wk_mp,
 9316                     jremref->jr_ref.if_ino, 0, &inodedep) == 0)
 9317                         panic("journal_jremref: Lost inodedep");
 9318         LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
 9319         TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
 9320         add_to_journal(&jremref->jr_list);
 9321 }
 9322 
 9323 static void
 9324 dirrem_journal(
 9325         struct dirrem *dirrem,
 9326         struct jremref *jremref,
 9327         struct jremref *dotremref,
 9328         struct jremref *dotdotremref)
 9329 {
 9330         struct inodedep *inodedep;
 9331 
 9332         if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
 9333             &inodedep) == 0)
 9334                 panic("dirrem_journal: Lost inodedep");
 9335         journal_jremref(dirrem, jremref, inodedep);
 9336         if (dotremref)
 9337                 journal_jremref(dirrem, dotremref, inodedep);
 9338         if (dotdotremref)
 9339                 journal_jremref(dirrem, dotdotremref, NULL);
 9340 }
 9341 
 9342 /*
 9343  * Allocate a new dirrem if appropriate and return it along with
 9344  * its associated pagedep. Called without a lock, returns with lock.
 9345  */
 9346 static struct dirrem *
 9347 newdirrem(
 9348         struct buf *bp,         /* buffer containing directory block */
 9349         struct inode *dp,       /* inode for the directory being modified */
 9350         struct inode *ip,       /* inode for directory entry being removed */
 9351         int isrmdir,            /* indicates if doing RMDIR */
 9352         struct dirrem **prevdirremp) /* previously referenced inode, if any */
 9353 {
 9354         int offset;
 9355         ufs_lbn_t lbn;
 9356         struct diradd *dap;
 9357         struct dirrem *dirrem;
 9358         struct pagedep *pagedep;
 9359         struct jremref *jremref;
 9360         struct jremref *dotremref;
 9361         struct jremref *dotdotremref;
 9362         struct vnode *dvp;
 9363         struct ufsmount *ump;
 9364 
 9365         /*
 9366          * Whiteouts have no deletion dependencies.
 9367          */
 9368         if (ip == NULL)
 9369                 panic("newdirrem: whiteout");
 9370         dvp = ITOV(dp);
 9371         ump = ITOUMP(dp);
 9372 
 9373         /*
 9374          * If the system is over its limit and our filesystem is
 9375          * responsible for more than our share of that usage and
 9376          * we are not a snapshot, request some inodedep cleanup.
 9377          * Limiting the number of dirrem structures will also limit
 9378          * the number of freefile and freeblks structures.
 9379          */
 9380         ACQUIRE_LOCK(ump);
 9381         if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
 9382                 schedule_cleanup(UFSTOVFS(ump));
 9383         else
 9384                 FREE_LOCK(ump);
 9385         dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
 9386             M_ZERO);
 9387         workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
 9388         LIST_INIT(&dirrem->dm_jremrefhd);
 9389         LIST_INIT(&dirrem->dm_jwork);
 9390         dirrem->dm_state = isrmdir ? RMDIR : 0;
 9391         dirrem->dm_oldinum = ip->i_number;
 9392         *prevdirremp = NULL;
 9393         /*
 9394          * Allocate remove reference structures to track journal write
 9395          * dependencies.  We will always have one for the link and
 9396          * when doing directories we will always have one more for dot.
 9397          * When renaming a directory we skip the dotdot link change so
 9398          * this is not needed.
 9399          */
 9400         jremref = dotremref = dotdotremref = NULL;
 9401         if (DOINGSUJ(dvp)) {
 9402                 if (isrmdir) {
 9403                         jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
 9404                             ip->i_effnlink + 2);
 9405                         dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
 9406                             ip->i_effnlink + 1);
 9407                         dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
 9408                             dp->i_effnlink + 1);
 9409                         dotdotremref->jr_state |= MKDIR_PARENT;
 9410                 } else
 9411                         jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
 9412                             ip->i_effnlink + 1);
 9413         }
 9414         ACQUIRE_LOCK(ump);
 9415         lbn = lblkno(ump->um_fs, I_OFFSET(dp));
 9416         offset = blkoff(ump->um_fs, I_OFFSET(dp));
 9417         pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
 9418             &pagedep);
 9419         dirrem->dm_pagedep = pagedep;
 9420         dirrem->dm_offset = offset;
 9421         /*
 9422          * If we're renaming a .. link to a new directory, cancel any
 9423          * existing MKDIR_PARENT mkdir.  If it has already been canceled
 9424          * the jremref is preserved for any potential diradd in this
 9425          * location.  This can not coincide with a rmdir.
 9426          */
 9427         if (I_OFFSET(dp) == DOTDOT_OFFSET) {
 9428                 if (isrmdir)
 9429                         panic("newdirrem: .. directory change during remove?");
 9430                 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
 9431         }
 9432         /*
 9433          * If we're removing a directory search for the .. dependency now and
 9434          * cancel it.  Any pending journal work will be added to the dirrem
 9435          * to be completed when the workitem remove completes.
 9436          */
 9437         if (isrmdir)
 9438                 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
 9439         /*
 9440          * Check for a diradd dependency for the same directory entry.
 9441          * If present, then both dependencies become obsolete and can
 9442          * be de-allocated.
 9443          */
 9444         dap = diradd_lookup(pagedep, offset);
 9445         if (dap == NULL) {
 9446                 /*
 9447                  * Link the jremref structures into the dirrem so they are
 9448                  * written prior to the pagedep.
 9449                  */
 9450                 if (jremref)
 9451                         dirrem_journal(dirrem, jremref, dotremref,
 9452                             dotdotremref);
 9453                 return (dirrem);
 9454         }
 9455         /*
 9456          * Must be ATTACHED at this point.
 9457          */
 9458         if ((dap->da_state & ATTACHED) == 0)
 9459                 panic("newdirrem: not ATTACHED");
 9460         if (dap->da_newinum != ip->i_number)
 9461                 panic("newdirrem: inum %ju should be %ju",
 9462                     (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
 9463         /*
 9464          * If we are deleting a changed name that never made it to disk,
 9465          * then return the dirrem describing the previous inode (which
 9466          * represents the inode currently referenced from this entry on disk).
 9467          */
 9468         if ((dap->da_state & DIRCHG) != 0) {
 9469                 *prevdirremp = dap->da_previous;
 9470                 dap->da_state &= ~DIRCHG;
 9471                 dap->da_pagedep = pagedep;
 9472         }
 9473         /*
 9474          * We are deleting an entry that never made it to disk.
 9475          * Mark it COMPLETE so we can delete its inode immediately.
 9476          */
 9477         dirrem->dm_state |= COMPLETE;
 9478         cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
 9479 #ifdef INVARIANTS
 9480         if (isrmdir == 0) {
 9481                 struct worklist *wk;
 9482 
 9483                 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
 9484                         if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
 9485                                 panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
 9486         }
 9487 #endif
 9488 
 9489         return (dirrem);
 9490 }
 9491 
 9492 /*
 9493  * Directory entry change dependencies.
 9494  * 
 9495  * Changing an existing directory entry requires that an add operation
 9496  * be completed first followed by a deletion. The semantics for the addition
 9497  * are identical to the description of adding a new entry above except
 9498  * that the rollback is to the old inode number rather than zero. Once
 9499  * the addition dependency is completed, the removal is done as described
 9500  * in the removal routine above.
 9501  */
 9502 
 9503 /*
 9504  * This routine should be called immediately after changing
 9505  * a directory entry.  The inode's link count should not be
 9506  * decremented by the calling procedure -- the soft updates
 9507  * code will perform this task when it is safe.
 9508  */
 9509 void 
 9510 softdep_setup_directory_change(
 9511         struct buf *bp,         /* buffer containing directory block */
 9512         struct inode *dp,       /* inode for the directory being modified */
 9513         struct inode *ip,       /* inode for directory entry being removed */
 9514         ino_t newinum,          /* new inode number for changed entry */
 9515         int isrmdir)            /* indicates if doing RMDIR */
 9516 {
 9517         int offset;
 9518         struct diradd *dap = NULL;
 9519         struct dirrem *dirrem, *prevdirrem;
 9520         struct pagedep *pagedep;
 9521         struct inodedep *inodedep;
 9522         struct jaddref *jaddref;
 9523         struct mount *mp;
 9524         struct ufsmount *ump;
 9525 
 9526         mp = ITOVFS(dp);
 9527         ump = VFSTOUFS(mp);
 9528         offset = blkoff(ump->um_fs, I_OFFSET(dp));
 9529         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
 9530            ("softdep_setup_directory_change called on non-softdep filesystem"));
 9531 
 9532         /*
 9533          * Whiteouts do not need diradd dependencies.
 9534          */
 9535         if (newinum != UFS_WINO) {
 9536                 dap = malloc(sizeof(struct diradd),
 9537                     M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
 9538                 workitem_alloc(&dap->da_list, D_DIRADD, mp);
 9539                 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
 9540                 dap->da_offset = offset;
 9541                 dap->da_newinum = newinum;
 9542                 LIST_INIT(&dap->da_jwork);
 9543         }
 9544 
 9545         /*
 9546          * Allocate a new dirrem and ACQUIRE_LOCK.
 9547          */
 9548         dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
 9549         pagedep = dirrem->dm_pagedep;
 9550         /*
 9551          * The possible values for isrmdir:
 9552          *      0 - non-directory file rename
 9553          *      1 - directory rename within same directory
 9554          *   inum - directory rename to new directory of given inode number
 9555          * When renaming to a new directory, we are both deleting and
 9556          * creating a new directory entry, so the link count on the new
 9557          * directory should not change. Thus we do not need the followup
 9558          * dirrem which is usually done in handle_workitem_remove. We set
 9559          * the DIRCHG flag to tell handle_workitem_remove to skip the 
 9560          * followup dirrem.
 9561          */
 9562         if (isrmdir > 1)
 9563                 dirrem->dm_state |= DIRCHG;
 9564 
 9565         /*
 9566          * Whiteouts have no additional dependencies,
 9567          * so just put the dirrem on the correct list.
 9568          */
 9569         if (newinum == UFS_WINO) {
 9570                 if ((dirrem->dm_state & COMPLETE) == 0) {
 9571                         LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
 9572                             dm_next);
 9573                 } else {
 9574                         dirrem->dm_dirinum = pagedep->pd_ino;
 9575                         if (LIST_EMPTY(&dirrem->dm_jremrefhd))
 9576                                 add_to_worklist(&dirrem->dm_list, 0);
 9577                 }
 9578                 FREE_LOCK(ump);
 9579                 return;
 9580         }
 9581         /*
 9582          * Add the dirrem to the inodedep's pending remove list for quick
 9583          * discovery later.  A valid nlinkdelta ensures that this lookup
 9584          * will not fail.
 9585          */
 9586         if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
 9587                 panic("softdep_setup_directory_change: Lost inodedep.");
 9588         dirrem->dm_state |= ONDEPLIST;
 9589         LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
 9590 
 9591         /*
 9592          * If the COMPLETE flag is clear, then there were no active
 9593          * entries and we want to roll back to the previous inode until
 9594          * the new inode is committed to disk. If the COMPLETE flag is
 9595          * set, then we have deleted an entry that never made it to disk.
 9596          * If the entry we deleted resulted from a name change, then the old
 9597          * inode reference still resides on disk. Any rollback that we do
 9598          * needs to be to that old inode (returned to us in prevdirrem). If
 9599          * the entry we deleted resulted from a create, then there is
 9600          * no entry on the disk, so we want to roll back to zero rather
 9601          * than the uncommitted inode. In either of the COMPLETE cases we
 9602          * want to immediately free the unwritten and unreferenced inode.
 9603          */
 9604         if ((dirrem->dm_state & COMPLETE) == 0) {
 9605                 dap->da_previous = dirrem;
 9606         } else {
 9607                 if (prevdirrem != NULL) {
 9608                         dap->da_previous = prevdirrem;
 9609                 } else {
 9610                         dap->da_state &= ~DIRCHG;
 9611                         dap->da_pagedep = pagedep;
 9612                 }
 9613                 dirrem->dm_dirinum = pagedep->pd_ino;
 9614                 if (LIST_EMPTY(&dirrem->dm_jremrefhd))
 9615                         add_to_worklist(&dirrem->dm_list, 0);
 9616         }
 9617         /*
 9618          * Lookup the jaddref for this journal entry.  We must finish
 9619          * initializing it and make the diradd write dependent on it.
 9620          * If we're not journaling, put it on the id_bufwait list if the
 9621          * inode is not yet written. If it is written, do the post-inode
 9622          * write processing to put it on the id_pendinghd list.
 9623          */
 9624         inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
 9625         if (MOUNTEDSUJ(mp)) {
 9626                 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
 9627                     inoreflst);
 9628                 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
 9629                     ("softdep_setup_directory_change: bad jaddref %p",
 9630                     jaddref));
 9631                 jaddref->ja_diroff = I_OFFSET(dp);
 9632                 jaddref->ja_diradd = dap;
 9633                 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
 9634                     dap, da_pdlist);
 9635                 add_to_journal(&jaddref->ja_list);
 9636         } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
 9637                 dap->da_state |= COMPLETE;
 9638                 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
 9639                 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
 9640         } else {
 9641                 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
 9642                     dap, da_pdlist);
 9643                 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
 9644         }
 9645         /*
 9646          * If we're making a new name for a directory that has not been
 9647          * committed when need to move the dot and dotdot references to
 9648          * this new name.
 9649          */
 9650         if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
 9651                 merge_diradd(inodedep, dap);
 9652         FREE_LOCK(ump);
 9653 }
 9654 
 9655 /*
 9656  * Called whenever the link count on an inode is changed.
 9657  * It creates an inode dependency so that the new reference(s)
 9658  * to the inode cannot be committed to disk until the updated
 9659  * inode has been written.
 9660  */
 9661 void
 9662 softdep_change_linkcnt(
 9663         struct inode *ip)       /* the inode with the increased link count */
 9664 {
 9665         struct inodedep *inodedep;
 9666         struct ufsmount *ump;
 9667 
 9668         ump = ITOUMP(ip);
 9669         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
 9670             ("softdep_change_linkcnt called on non-softdep filesystem"));
 9671         ACQUIRE_LOCK(ump);
 9672         inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
 9673         if (ip->i_nlink < ip->i_effnlink)
 9674                 panic("softdep_change_linkcnt: bad delta");
 9675         inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
 9676         FREE_LOCK(ump);
 9677 }
 9678 
 9679 /*
 9680  * Attach a sbdep dependency to the superblock buf so that we can keep
 9681  * track of the head of the linked list of referenced but unlinked inodes.
 9682  */
 9683 void
 9684 softdep_setup_sbupdate(
 9685         struct ufsmount *ump,
 9686         struct fs *fs,
 9687         struct buf *bp)
 9688 {
 9689         struct sbdep *sbdep;
 9690         struct worklist *wk;
 9691 
 9692         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
 9693             ("softdep_setup_sbupdate called on non-softdep filesystem"));
 9694         LIST_FOREACH(wk, &bp->b_dep, wk_list)
 9695                 if (wk->wk_type == D_SBDEP)
 9696                         break;
 9697         if (wk != NULL)
 9698                 return;
 9699         sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
 9700         workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
 9701         sbdep->sb_fs = fs;
 9702         sbdep->sb_ump = ump;
 9703         ACQUIRE_LOCK(ump);
 9704         WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
 9705         FREE_LOCK(ump);
 9706 }
 9707 
 9708 /*
 9709  * Return the first unlinked inodedep which is ready to be the head of the
 9710  * list.  The inodedep and all those after it must have valid next pointers.
 9711  */
 9712 static struct inodedep *
 9713 first_unlinked_inodedep(struct ufsmount *ump)
 9714 {
 9715         struct inodedep *inodedep;
 9716         struct inodedep *idp;
 9717 
 9718         LOCK_OWNED(ump);
 9719         for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
 9720             inodedep; inodedep = idp) {
 9721                 if ((inodedep->id_state & UNLINKNEXT) == 0)
 9722                         return (NULL);
 9723                 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
 9724                 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
 9725                         break;
 9726                 if ((inodedep->id_state & UNLINKPREV) == 0)
 9727                         break;
 9728         }
 9729         return (inodedep);
 9730 }
 9731 
 9732 /*
 9733  * Set the sujfree unlinked head pointer prior to writing a superblock.
 9734  */
 9735 static void
 9736 initiate_write_sbdep(struct sbdep *sbdep)
 9737 {
 9738         struct inodedep *inodedep;
 9739         struct fs *bpfs;
 9740         struct fs *fs;
 9741 
 9742         bpfs = sbdep->sb_fs;
 9743         fs = sbdep->sb_ump->um_fs;
 9744         inodedep = first_unlinked_inodedep(sbdep->sb_ump);
 9745         if (inodedep) {
 9746                 fs->fs_sujfree = inodedep->id_ino;
 9747                 inodedep->id_state |= UNLINKPREV;
 9748         } else
 9749                 fs->fs_sujfree = 0;
 9750         bpfs->fs_sujfree = fs->fs_sujfree;
 9751         /*
 9752          * Because we have made changes to the superblock, we need to
 9753          * recompute its check-hash.
 9754          */
 9755         bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
 9756 }
 9757 
 9758 /*
 9759  * After a superblock is written determine whether it must be written again
 9760  * due to a changing unlinked list head.
 9761  */
 9762 static int
 9763 handle_written_sbdep(struct sbdep *sbdep, struct buf *bp)
 9764 {
 9765         struct inodedep *inodedep;
 9766         struct fs *fs;
 9767 
 9768         LOCK_OWNED(sbdep->sb_ump);
 9769         fs = sbdep->sb_fs;
 9770         /*
 9771          * If the superblock doesn't match the in-memory list start over.
 9772          */
 9773         inodedep = first_unlinked_inodedep(sbdep->sb_ump);
 9774         if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
 9775             (inodedep == NULL && fs->fs_sujfree != 0)) {
 9776                 bdirty(bp);
 9777                 return (1);
 9778         }
 9779         WORKITEM_FREE(sbdep, D_SBDEP);
 9780         if (fs->fs_sujfree == 0)
 9781                 return (0);
 9782         /*
 9783          * Now that we have a record of this inode in stable store allow it
 9784          * to be written to free up pending work.  Inodes may see a lot of
 9785          * write activity after they are unlinked which we must not hold up.
 9786          */
 9787         for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
 9788                 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
 9789                         panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
 9790                             inodedep, inodedep->id_state);
 9791                 if (inodedep->id_state & UNLINKONLIST)
 9792                         break;
 9793                 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
 9794         }
 9795 
 9796         return (0);
 9797 }
 9798 
 9799 /*
 9800  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
 9801  */
 9802 static void
 9803 unlinked_inodedep( struct mount *mp, struct inodedep *inodedep)
 9804 {
 9805         struct ufsmount *ump;
 9806 
 9807         ump = VFSTOUFS(mp);
 9808         LOCK_OWNED(ump);
 9809         if (MOUNTEDSUJ(mp) == 0)
 9810                 return;
 9811         ump->um_fs->fs_fmod = 1;
 9812         if (inodedep->id_state & UNLINKED)
 9813                 panic("unlinked_inodedep: %p already unlinked\n", inodedep);
 9814         inodedep->id_state |= UNLINKED;
 9815         TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
 9816 }
 9817 
 9818 /*
 9819  * Remove an inodedep from the unlinked inodedep list.  This may require
 9820  * disk writes if the inode has made it that far.
 9821  */
 9822 static void
 9823 clear_unlinked_inodedep( struct inodedep *inodedep)
 9824 {
 9825         struct ufs2_dinode *dip;
 9826         struct ufsmount *ump;
 9827         struct inodedep *idp;
 9828         struct inodedep *idn;
 9829         struct fs *fs, *bpfs;
 9830         struct buf *bp;
 9831         daddr_t dbn;
 9832         ino_t ino;
 9833         ino_t nino;
 9834         ino_t pino;
 9835         int error;
 9836 
 9837         ump = VFSTOUFS(inodedep->id_list.wk_mp);
 9838         fs = ump->um_fs;
 9839         ino = inodedep->id_ino;
 9840         error = 0;
 9841         for (;;) {
 9842                 LOCK_OWNED(ump);
 9843                 KASSERT((inodedep->id_state & UNLINKED) != 0,
 9844                     ("clear_unlinked_inodedep: inodedep %p not unlinked",
 9845                     inodedep));
 9846                 /*
 9847                  * If nothing has yet been written simply remove us from
 9848                  * the in memory list and return.  This is the most common
 9849                  * case where handle_workitem_remove() loses the final
 9850                  * reference.
 9851                  */
 9852                 if ((inodedep->id_state & UNLINKLINKS) == 0)
 9853                         break;
 9854                 /*
 9855                  * If we have a NEXT pointer and no PREV pointer we can simply
 9856                  * clear NEXT's PREV and remove ourselves from the list.  Be
 9857                  * careful not to clear PREV if the superblock points at
 9858                  * next as well.
 9859                  */
 9860                 idn = TAILQ_NEXT(inodedep, id_unlinked);
 9861                 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
 9862                         if (idn && fs->fs_sujfree != idn->id_ino)
 9863                                 idn->id_state &= ~UNLINKPREV;
 9864                         break;
 9865                 }
 9866                 /*
 9867                  * Here we have an inodedep which is actually linked into
 9868                  * the list.  We must remove it by forcing a write to the
 9869                  * link before us, whether it be the superblock or an inode.
 9870                  * Unfortunately the list may change while we're waiting
 9871                  * on the buf lock for either resource so we must loop until
 9872                  * we lock the right one.  If both the superblock and an
 9873                  * inode point to this inode we must clear the inode first
 9874                  * followed by the superblock.
 9875                  */
 9876                 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
 9877                 pino = 0;
 9878                 if (idp && (idp->id_state & UNLINKNEXT))
 9879                         pino = idp->id_ino;
 9880                 FREE_LOCK(ump);
 9881                 if (pino == 0) {
 9882                         bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
 9883                             (int)fs->fs_sbsize, 0, 0, 0);
 9884                 } else {
 9885                         dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
 9886                         error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
 9887                             (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
 9888                             &bp);
 9889                 }
 9890                 ACQUIRE_LOCK(ump);
 9891                 if (error)
 9892                         break;
 9893                 /* If the list has changed restart the loop. */
 9894                 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
 9895                 nino = 0;
 9896                 if (idp && (idp->id_state & UNLINKNEXT))
 9897                         nino = idp->id_ino;
 9898                 if (nino != pino ||
 9899                     (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
 9900                         FREE_LOCK(ump);
 9901                         brelse(bp);
 9902                         ACQUIRE_LOCK(ump);
 9903                         continue;
 9904                 }
 9905                 nino = 0;
 9906                 idn = TAILQ_NEXT(inodedep, id_unlinked);
 9907                 if (idn)
 9908                         nino = idn->id_ino;
 9909                 /*
 9910                  * Remove us from the in memory list.  After this we cannot
 9911                  * access the inodedep.
 9912                  */
 9913                 KASSERT((inodedep->id_state & UNLINKED) != 0,
 9914                     ("clear_unlinked_inodedep: inodedep %p not unlinked",
 9915                     inodedep));
 9916                 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
 9917                 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
 9918                 FREE_LOCK(ump);
 9919                 /*
 9920                  * The predecessor's next pointer is manually updated here
 9921                  * so that the NEXT flag is never cleared for an element
 9922                  * that is in the list.
 9923                  */
 9924                 if (pino == 0) {
 9925                         bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
 9926                         bpfs = (struct fs *)bp->b_data;
 9927                         ffs_oldfscompat_write(bpfs, ump);
 9928                         softdep_setup_sbupdate(ump, bpfs, bp);
 9929                         /*
 9930                          * Because we may have made changes to the superblock,
 9931                          * we need to recompute its check-hash.
 9932                          */
 9933                         bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
 9934                 } else if (fs->fs_magic == FS_UFS1_MAGIC) {
 9935                         ((struct ufs1_dinode *)bp->b_data +
 9936                             ino_to_fsbo(fs, pino))->di_freelink = nino;
 9937                 } else {
 9938                         dip = (struct ufs2_dinode *)bp->b_data +
 9939                             ino_to_fsbo(fs, pino);
 9940                         dip->di_freelink = nino;
 9941                         ffs_update_dinode_ckhash(fs, dip);
 9942                 }
 9943                 /*
 9944                  * If the bwrite fails we have no recourse to recover.  The
 9945                  * filesystem is corrupted already.
 9946                  */
 9947                 bwrite(bp);
 9948                 ACQUIRE_LOCK(ump);
 9949                 /*
 9950                  * If the superblock pointer still needs to be cleared force
 9951                  * a write here.
 9952                  */
 9953                 if (fs->fs_sujfree == ino) {
 9954                         FREE_LOCK(ump);
 9955                         bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
 9956                             (int)fs->fs_sbsize, 0, 0, 0);
 9957                         bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
 9958                         bpfs = (struct fs *)bp->b_data;
 9959                         ffs_oldfscompat_write(bpfs, ump);
 9960                         softdep_setup_sbupdate(ump, bpfs, bp);
 9961                         /*
 9962                          * Because we may have made changes to the superblock,
 9963                          * we need to recompute its check-hash.
 9964                          */
 9965                         bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
 9966                         bwrite(bp);
 9967                         ACQUIRE_LOCK(ump);
 9968                 }
 9969 
 9970                 if (fs->fs_sujfree != ino)
 9971                         return;
 9972                 panic("clear_unlinked_inodedep: Failed to clear free head");
 9973         }
 9974         if (inodedep->id_ino == fs->fs_sujfree)
 9975                 panic("clear_unlinked_inodedep: Freeing head of free list");
 9976         inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
 9977         TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
 9978         return;
 9979 }
 9980 
 9981 /*
 9982  * This workitem decrements the inode's link count.
 9983  * If the link count reaches zero, the file is removed.
 9984  */
 9985 static int
 9986 handle_workitem_remove(struct dirrem *dirrem, int flags)
 9987 {
 9988         struct inodedep *inodedep;
 9989         struct workhead dotdotwk;
 9990         struct worklist *wk;
 9991         struct ufsmount *ump;
 9992         struct mount *mp;
 9993         struct vnode *vp;
 9994         struct inode *ip;
 9995         ino_t oldinum;
 9996 
 9997         if (dirrem->dm_state & ONWORKLIST)
 9998                 panic("handle_workitem_remove: dirrem %p still on worklist",
 9999                     dirrem);
10000         oldinum = dirrem->dm_oldinum;
10001         mp = dirrem->dm_list.wk_mp;
10002         ump = VFSTOUFS(mp);
10003         flags |= LK_EXCLUSIVE;
10004         if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10005             FFSV_FORCEINODEDEP) != 0)
10006                 return (EBUSY);
10007         ip = VTOI(vp);
10008         MPASS(ip->i_mode != 0);
10009         ACQUIRE_LOCK(ump);
10010         if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10011                 panic("handle_workitem_remove: lost inodedep");
10012         if (dirrem->dm_state & ONDEPLIST)
10013                 LIST_REMOVE(dirrem, dm_inonext);
10014         KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10015             ("handle_workitem_remove:  Journal entries not written."));
10016 
10017         /*
10018          * Move all dependencies waiting on the remove to complete
10019          * from the dirrem to the inode inowait list to be completed
10020          * after the inode has been updated and written to disk.
10021          *
10022          * Any marked MKDIR_PARENT are saved to be completed when the 
10023          * dotdot ref is removed unless DIRCHG is specified.  For
10024          * directory change operations there will be no further
10025          * directory writes and the jsegdeps need to be moved along
10026          * with the rest to be completed when the inode is free or
10027          * stable in the inode free list.
10028          */
10029         LIST_INIT(&dotdotwk);
10030         while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10031                 WORKLIST_REMOVE(wk);
10032                 if ((dirrem->dm_state & DIRCHG) == 0 &&
10033                     wk->wk_state & MKDIR_PARENT) {
10034                         wk->wk_state &= ~MKDIR_PARENT;
10035                         WORKLIST_INSERT(&dotdotwk, wk);
10036                         continue;
10037                 }
10038                 WORKLIST_INSERT(&inodedep->id_inowait, wk);
10039         }
10040         LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10041         /*
10042          * Normal file deletion.
10043          */
10044         if ((dirrem->dm_state & RMDIR) == 0) {
10045                 ip->i_nlink--;
10046                 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10047                     "%ju negative i_nlink %d", (intmax_t)ip->i_number,
10048                     ip->i_nlink));
10049                 DIP_SET(ip, i_nlink, ip->i_nlink);
10050                 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10051                 if (ip->i_nlink < ip->i_effnlink)
10052                         panic("handle_workitem_remove: bad file delta");
10053                 if (ip->i_nlink == 0) 
10054                         unlinked_inodedep(mp, inodedep);
10055                 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10056                 KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10057                     ("handle_workitem_remove: worklist not empty. %s",
10058                     TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10059                 WORKITEM_FREE(dirrem, D_DIRREM);
10060                 FREE_LOCK(ump);
10061                 goto out;
10062         }
10063         /*
10064          * Directory deletion. Decrement reference count for both the
10065          * just deleted parent directory entry and the reference for ".".
10066          * Arrange to have the reference count on the parent decremented
10067          * to account for the loss of "..".
10068          */
10069         ip->i_nlink -= 2;
10070         KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10071             "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10072         DIP_SET(ip, i_nlink, ip->i_nlink);
10073         UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10074         if (ip->i_nlink < ip->i_effnlink)
10075                 panic("handle_workitem_remove: bad dir delta");
10076         if (ip->i_nlink == 0)
10077                 unlinked_inodedep(mp, inodedep);
10078         inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10079         /*
10080          * Rename a directory to a new parent. Since, we are both deleting
10081          * and creating a new directory entry, the link count on the new
10082          * directory should not change. Thus we skip the followup dirrem.
10083          */
10084         if (dirrem->dm_state & DIRCHG) {
10085                 KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10086                     ("handle_workitem_remove: DIRCHG and worklist not empty."));
10087                 WORKITEM_FREE(dirrem, D_DIRREM);
10088                 FREE_LOCK(ump);
10089                 goto out;
10090         }
10091         dirrem->dm_state = ONDEPLIST;
10092         dirrem->dm_oldinum = dirrem->dm_dirinum;
10093         /*
10094          * Place the dirrem on the parent's diremhd list.
10095          */
10096         if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10097                 panic("handle_workitem_remove: lost dir inodedep");
10098         LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10099         /*
10100          * If the allocated inode has never been written to disk, then
10101          * the on-disk inode is zero'ed and we can remove the file
10102          * immediately.  When journaling if the inode has been marked
10103          * unlinked and not DEPCOMPLETE we know it can never be written.
10104          */
10105         inodedep_lookup(mp, oldinum, 0, &inodedep);
10106         if (inodedep == NULL ||
10107             (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10108             check_inode_unwritten(inodedep)) {
10109                 FREE_LOCK(ump);
10110                 vput(vp);
10111                 return handle_workitem_remove(dirrem, flags);
10112         }
10113         WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10114         FREE_LOCK(ump);
10115         UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10116 out:
10117         ffs_update(vp, 0);
10118         vput(vp);
10119         return (0);
10120 }
10121 
10122 /*
10123  * Inode de-allocation dependencies.
10124  * 
10125  * When an inode's link count is reduced to zero, it can be de-allocated. We
10126  * found it convenient to postpone de-allocation until after the inode is
10127  * written to disk with its new link count (zero).  At this point, all of the
10128  * on-disk inode's block pointers are nullified and, with careful dependency
10129  * list ordering, all dependencies related to the inode will be satisfied and
10130  * the corresponding dependency structures de-allocated.  So, if/when the
10131  * inode is reused, there will be no mixing of old dependencies with new
10132  * ones.  This artificial dependency is set up by the block de-allocation
10133  * procedure above (softdep_setup_freeblocks) and completed by the
10134  * following procedure.
10135  */
10136 static void 
10137 handle_workitem_freefile(struct freefile *freefile)
10138 {
10139         struct workhead wkhd;
10140         struct fs *fs;
10141         struct ufsmount *ump;
10142         int error;
10143 #ifdef INVARIANTS
10144         struct inodedep *idp;
10145 #endif
10146 
10147         ump = VFSTOUFS(freefile->fx_list.wk_mp);
10148         fs = ump->um_fs;
10149 #ifdef INVARIANTS
10150         ACQUIRE_LOCK(ump);
10151         error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10152         FREE_LOCK(ump);
10153         if (error)
10154                 panic("handle_workitem_freefile: inodedep %p survived", idp);
10155 #endif
10156         UFS_LOCK(ump);
10157         fs->fs_pendinginodes -= 1;
10158         UFS_UNLOCK(ump);
10159         LIST_INIT(&wkhd);
10160         LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10161         if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10162             freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10163                 softdep_error("handle_workitem_freefile", error);
10164         ACQUIRE_LOCK(ump);
10165         WORKITEM_FREE(freefile, D_FREEFILE);
10166         FREE_LOCK(ump);
10167 }
10168 
10169 /*
10170  * Helper function which unlinks marker element from work list and returns
10171  * the next element on the list.
10172  */
10173 static __inline struct worklist *
10174 markernext(struct worklist *marker)
10175 {
10176         struct worklist *next;
10177 
10178         next = LIST_NEXT(marker, wk_list);
10179         LIST_REMOVE(marker, wk_list);
10180         return next;
10181 }
10182 
10183 /*
10184  * Disk writes.
10185  * 
10186  * The dependency structures constructed above are most actively used when file
10187  * system blocks are written to disk.  No constraints are placed on when a
10188  * block can be written, but unsatisfied update dependencies are made safe by
10189  * modifying (or replacing) the source memory for the duration of the disk
10190  * write.  When the disk write completes, the memory block is again brought
10191  * up-to-date.
10192  *
10193  * In-core inode structure reclamation.
10194  * 
10195  * Because there are a finite number of "in-core" inode structures, they are
10196  * reused regularly.  By transferring all inode-related dependencies to the
10197  * in-memory inode block and indexing them separately (via "inodedep"s), we
10198  * can allow "in-core" inode structures to be reused at any time and avoid
10199  * any increase in contention.
10200  *
10201  * Called just before entering the device driver to initiate a new disk I/O.
10202  * The buffer must be locked, thus, no I/O completion operations can occur
10203  * while we are manipulating its associated dependencies.
10204  */
10205 static void 
10206 softdep_disk_io_initiation(
10207         struct buf *bp)         /* structure describing disk write to occur */
10208 {
10209         struct worklist *wk;
10210         struct worklist marker;
10211         struct inodedep *inodedep;
10212         struct freeblks *freeblks;
10213         struct jblkdep *jblkdep;
10214         struct newblk *newblk;
10215         struct ufsmount *ump;
10216 
10217         /*
10218          * We only care about write operations. There should never
10219          * be dependencies for reads.
10220          */
10221         if (bp->b_iocmd != BIO_WRITE)
10222                 panic("softdep_disk_io_initiation: not write");
10223 
10224         if (bp->b_vflags & BV_BKGRDINPROG)
10225                 panic("softdep_disk_io_initiation: Writing buffer with "
10226                     "background write in progress: %p", bp);
10227 
10228         ump = softdep_bp_to_mp(bp);
10229         if (ump == NULL)
10230                 return;
10231 
10232         marker.wk_type = D_LAST + 1;    /* Not a normal workitem */
10233         PHOLD(curproc);                 /* Don't swap out kernel stack */
10234         ACQUIRE_LOCK(ump);
10235         /*
10236          * Do any necessary pre-I/O processing.
10237          */
10238         for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10239              wk = markernext(&marker)) {
10240                 LIST_INSERT_AFTER(wk, &marker, wk_list);
10241                 switch (wk->wk_type) {
10242                 case D_PAGEDEP:
10243                         initiate_write_filepage(WK_PAGEDEP(wk), bp);
10244                         continue;
10245 
10246                 case D_INODEDEP:
10247                         inodedep = WK_INODEDEP(wk);
10248                         if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10249                                 initiate_write_inodeblock_ufs1(inodedep, bp);
10250                         else
10251                                 initiate_write_inodeblock_ufs2(inodedep, bp);
10252                         continue;
10253 
10254                 case D_INDIRDEP:
10255                         initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10256                         continue;
10257 
10258                 case D_BMSAFEMAP:
10259                         initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10260                         continue;
10261 
10262                 case D_JSEG:
10263                         WK_JSEG(wk)->js_buf = NULL;
10264                         continue;
10265 
10266                 case D_FREEBLKS:
10267                         freeblks = WK_FREEBLKS(wk);
10268                         jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10269                         /*
10270                          * We have to wait for the freeblks to be journaled
10271                          * before we can write an inodeblock with updated
10272                          * pointers.  Be careful to arrange the marker so
10273                          * we revisit the freeblks if it's not removed by
10274                          * the first jwait().
10275                          */
10276                         if (jblkdep != NULL) {
10277                                 LIST_REMOVE(&marker, wk_list);
10278                                 LIST_INSERT_BEFORE(wk, &marker, wk_list);
10279                                 jwait(&jblkdep->jb_list, MNT_WAIT);
10280                         }
10281                         continue;
10282                 case D_ALLOCDIRECT:
10283                 case D_ALLOCINDIR:
10284                         /*
10285                          * We have to wait for the jnewblk to be journaled
10286                          * before we can write to a block if the contents
10287                          * may be confused with an earlier file's indirect
10288                          * at recovery time.  Handle the marker as described
10289                          * above.
10290                          */
10291                         newblk = WK_NEWBLK(wk);
10292                         if (newblk->nb_jnewblk != NULL &&
10293                             indirblk_lookup(newblk->nb_list.wk_mp,
10294                             newblk->nb_newblkno)) {
10295                                 LIST_REMOVE(&marker, wk_list);
10296                                 LIST_INSERT_BEFORE(wk, &marker, wk_list);
10297                                 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10298                         }
10299                         continue;
10300 
10301                 case D_SBDEP:
10302                         initiate_write_sbdep(WK_SBDEP(wk));
10303                         continue;
10304 
10305                 case D_MKDIR:
10306                 case D_FREEWORK:
10307                 case D_FREEDEP:
10308                 case D_JSEGDEP:
10309                         continue;
10310 
10311                 default:
10312                         panic("handle_disk_io_initiation: Unexpected type %s",
10313                             TYPENAME(wk->wk_type));
10314                         /* NOTREACHED */
10315                 }
10316         }
10317         FREE_LOCK(ump);
10318         PRELE(curproc);                 /* Allow swapout of kernel stack */
10319 }
10320 
10321 /*
10322  * Called from within the procedure above to deal with unsatisfied
10323  * allocation dependencies in a directory. The buffer must be locked,
10324  * thus, no I/O completion operations can occur while we are
10325  * manipulating its associated dependencies.
10326  */
10327 static void
10328 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
10329 {
10330         struct jremref *jremref;
10331         struct jmvref *jmvref;
10332         struct dirrem *dirrem;
10333         struct diradd *dap;
10334         struct direct *ep;
10335         int i;
10336 
10337         if (pagedep->pd_state & IOSTARTED) {
10338                 /*
10339                  * This can only happen if there is a driver that does not
10340                  * understand chaining. Here biodone will reissue the call
10341                  * to strategy for the incomplete buffers.
10342                  */
10343                 printf("initiate_write_filepage: already started\n");
10344                 return;
10345         }
10346         pagedep->pd_state |= IOSTARTED;
10347         /*
10348          * Wait for all journal remove dependencies to hit the disk.
10349          * We can not allow any potentially conflicting directory adds
10350          * to be visible before removes and rollback is too difficult.
10351          * The per-filesystem lock may be dropped and re-acquired, however 
10352          * we hold the buf locked so the dependency can not go away.
10353          */
10354         LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10355                 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10356                         jwait(&jremref->jr_list, MNT_WAIT);
10357         while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10358                 jwait(&jmvref->jm_list, MNT_WAIT);
10359         for (i = 0; i < DAHASHSZ; i++) {
10360                 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10361                         ep = (struct direct *)
10362                             ((char *)bp->b_data + dap->da_offset);
10363                         if (ep->d_ino != dap->da_newinum)
10364                                 panic("%s: dir inum %ju != new %ju",
10365                                     "initiate_write_filepage",
10366                                     (uintmax_t)ep->d_ino,
10367                                     (uintmax_t)dap->da_newinum);
10368                         if (dap->da_state & DIRCHG)
10369                                 ep->d_ino = dap->da_previous->dm_oldinum;
10370                         else
10371                                 ep->d_ino = 0;
10372                         dap->da_state &= ~ATTACHED;
10373                         dap->da_state |= UNDONE;
10374                 }
10375         }
10376 }
10377 
10378 /*
10379  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10380  * Note that any bug fixes made to this routine must be done in the
10381  * version found below.
10382  *
10383  * Called from within the procedure above to deal with unsatisfied
10384  * allocation dependencies in an inodeblock. The buffer must be
10385  * locked, thus, no I/O completion operations can occur while we
10386  * are manipulating its associated dependencies.
10387  */
10388 static void 
10389 initiate_write_inodeblock_ufs1(
10390         struct inodedep *inodedep,
10391         struct buf *bp)                 /* The inode block */
10392 {
10393         struct allocdirect *adp, *lastadp;
10394         struct ufs1_dinode *dp;
10395         struct ufs1_dinode *sip;
10396         struct inoref *inoref;
10397         struct ufsmount *ump;
10398         struct fs *fs;
10399         ufs_lbn_t i;
10400 #ifdef INVARIANTS
10401         ufs_lbn_t prevlbn = 0;
10402 #endif
10403         int deplist __diagused;
10404 
10405         if (inodedep->id_state & IOSTARTED)
10406                 panic("initiate_write_inodeblock_ufs1: already started");
10407         inodedep->id_state |= IOSTARTED;
10408         fs = inodedep->id_fs;
10409         ump = VFSTOUFS(inodedep->id_list.wk_mp);
10410         LOCK_OWNED(ump);
10411         dp = (struct ufs1_dinode *)bp->b_data +
10412             ino_to_fsbo(fs, inodedep->id_ino);
10413 
10414         /*
10415          * If we're on the unlinked list but have not yet written our
10416          * next pointer initialize it here.
10417          */
10418         if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10419                 struct inodedep *inon;
10420 
10421                 inon = TAILQ_NEXT(inodedep, id_unlinked);
10422                 dp->di_freelink = inon ? inon->id_ino : 0;
10423         }
10424         /*
10425          * If the bitmap is not yet written, then the allocated
10426          * inode cannot be written to disk.
10427          */
10428         if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10429                 if (inodedep->id_savedino1 != NULL)
10430                         panic("initiate_write_inodeblock_ufs1: I/O underway");
10431                 FREE_LOCK(ump);
10432                 sip = malloc(sizeof(struct ufs1_dinode),
10433                     M_SAVEDINO, M_SOFTDEP_FLAGS);
10434                 ACQUIRE_LOCK(ump);
10435                 inodedep->id_savedino1 = sip;
10436                 *inodedep->id_savedino1 = *dp;
10437                 bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10438                 dp->di_gen = inodedep->id_savedino1->di_gen;
10439                 dp->di_freelink = inodedep->id_savedino1->di_freelink;
10440                 return;
10441         }
10442         /*
10443          * If no dependencies, then there is nothing to roll back.
10444          */
10445         inodedep->id_savedsize = dp->di_size;
10446         inodedep->id_savedextsize = 0;
10447         inodedep->id_savednlink = dp->di_nlink;
10448         if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10449             TAILQ_EMPTY(&inodedep->id_inoreflst))
10450                 return;
10451         /*
10452          * Revert the link count to that of the first unwritten journal entry.
10453          */
10454         inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10455         if (inoref)
10456                 dp->di_nlink = inoref->if_nlink;
10457         /*
10458          * Set the dependencies to busy.
10459          */
10460         for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10461              adp = TAILQ_NEXT(adp, ad_next)) {
10462 #ifdef INVARIANTS
10463                 if (deplist != 0 && prevlbn >= adp->ad_offset)
10464                         panic("softdep_write_inodeblock: lbn order");
10465                 prevlbn = adp->ad_offset;
10466                 if (adp->ad_offset < UFS_NDADDR &&
10467                     dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10468                         panic("initiate_write_inodeblock_ufs1: "
10469                             "direct pointer #%jd mismatch %d != %jd",
10470                             (intmax_t)adp->ad_offset,
10471                             dp->di_db[adp->ad_offset],
10472                             (intmax_t)adp->ad_newblkno);
10473                 if (adp->ad_offset >= UFS_NDADDR &&
10474                     dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10475                         panic("initiate_write_inodeblock_ufs1: "
10476                             "indirect pointer #%jd mismatch %d != %jd",
10477                             (intmax_t)adp->ad_offset - UFS_NDADDR,
10478                             dp->di_ib[adp->ad_offset - UFS_NDADDR],
10479                             (intmax_t)adp->ad_newblkno);
10480                 deplist |= 1 << adp->ad_offset;
10481                 if ((adp->ad_state & ATTACHED) == 0)
10482                         panic("initiate_write_inodeblock_ufs1: "
10483                             "Unknown state 0x%x", adp->ad_state);
10484 #endif /* INVARIANTS */
10485                 adp->ad_state &= ~ATTACHED;
10486                 adp->ad_state |= UNDONE;
10487         }
10488         /*
10489          * The on-disk inode cannot claim to be any larger than the last
10490          * fragment that has been written. Otherwise, the on-disk inode
10491          * might have fragments that were not the last block in the file
10492          * which would corrupt the filesystem.
10493          */
10494         for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10495              lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10496                 if (adp->ad_offset >= UFS_NDADDR)
10497                         break;
10498                 dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10499                 /* keep going until hitting a rollback to a frag */
10500                 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10501                         continue;
10502                 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10503                 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10504 #ifdef INVARIANTS
10505                         if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10506                                 panic("initiate_write_inodeblock_ufs1: "
10507                                     "lost dep1");
10508 #endif /* INVARIANTS */
10509                         dp->di_db[i] = 0;
10510                 }
10511                 for (i = 0; i < UFS_NIADDR; i++) {
10512 #ifdef INVARIANTS
10513                         if (dp->di_ib[i] != 0 &&
10514                             (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10515                                 panic("initiate_write_inodeblock_ufs1: "
10516                                     "lost dep2");
10517 #endif /* INVARIANTS */
10518                         dp->di_ib[i] = 0;
10519                 }
10520                 return;
10521         }
10522         /*
10523          * If we have zero'ed out the last allocated block of the file,
10524          * roll back the size to the last currently allocated block.
10525          * We know that this last allocated block is a full-sized as
10526          * we already checked for fragments in the loop above.
10527          */
10528         if (lastadp != NULL &&
10529             dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10530                 for (i = lastadp->ad_offset; i >= 0; i--)
10531                         if (dp->di_db[i] != 0)
10532                                 break;
10533                 dp->di_size = (i + 1) * fs->fs_bsize;
10534         }
10535         /*
10536          * The only dependencies are for indirect blocks.
10537          *
10538          * The file size for indirect block additions is not guaranteed.
10539          * Such a guarantee would be non-trivial to achieve. The conventional
10540          * synchronous write implementation also does not make this guarantee.
10541          * Fsck should catch and fix discrepancies. Arguably, the file size
10542          * can be over-estimated without destroying integrity when the file
10543          * moves into the indirect blocks (i.e., is large). If we want to
10544          * postpone fsck, we are stuck with this argument.
10545          */
10546         for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10547                 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10548 }
10549                 
10550 /*
10551  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10552  * Note that any bug fixes made to this routine must be done in the
10553  * version found above.
10554  *
10555  * Called from within the procedure above to deal with unsatisfied
10556  * allocation dependencies in an inodeblock. The buffer must be
10557  * locked, thus, no I/O completion operations can occur while we
10558  * are manipulating its associated dependencies.
10559  */
10560 static void 
10561 initiate_write_inodeblock_ufs2(
10562         struct inodedep *inodedep,
10563         struct buf *bp)                 /* The inode block */
10564 {
10565         struct allocdirect *adp, *lastadp;
10566         struct ufs2_dinode *dp;
10567         struct ufs2_dinode *sip;
10568         struct inoref *inoref;
10569         struct ufsmount *ump;
10570         struct fs *fs;
10571         ufs_lbn_t i;
10572 #ifdef INVARIANTS
10573         ufs_lbn_t prevlbn = 0;
10574 #endif
10575         int deplist __diagused;
10576 
10577         if (inodedep->id_state & IOSTARTED)
10578                 panic("initiate_write_inodeblock_ufs2: already started");
10579         inodedep->id_state |= IOSTARTED;
10580         fs = inodedep->id_fs;
10581         ump = VFSTOUFS(inodedep->id_list.wk_mp);
10582         LOCK_OWNED(ump);
10583         dp = (struct ufs2_dinode *)bp->b_data +
10584             ino_to_fsbo(fs, inodedep->id_ino);
10585 
10586         /*
10587          * If we're on the unlinked list but have not yet written our
10588          * next pointer initialize it here.
10589          */
10590         if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10591                 struct inodedep *inon;
10592 
10593                 inon = TAILQ_NEXT(inodedep, id_unlinked);
10594                 dp->di_freelink = inon ? inon->id_ino : 0;
10595                 ffs_update_dinode_ckhash(fs, dp);
10596         }
10597         /*
10598          * If the bitmap is not yet written, then the allocated
10599          * inode cannot be written to disk.
10600          */
10601         if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10602                 if (inodedep->id_savedino2 != NULL)
10603                         panic("initiate_write_inodeblock_ufs2: I/O underway");
10604                 FREE_LOCK(ump);
10605                 sip = malloc(sizeof(struct ufs2_dinode),
10606                     M_SAVEDINO, M_SOFTDEP_FLAGS);
10607                 ACQUIRE_LOCK(ump);
10608                 inodedep->id_savedino2 = sip;
10609                 *inodedep->id_savedino2 = *dp;
10610                 bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10611                 dp->di_gen = inodedep->id_savedino2->di_gen;
10612                 dp->di_freelink = inodedep->id_savedino2->di_freelink;
10613                 return;
10614         }
10615         /*
10616          * If no dependencies, then there is nothing to roll back.
10617          */
10618         inodedep->id_savedsize = dp->di_size;
10619         inodedep->id_savedextsize = dp->di_extsize;
10620         inodedep->id_savednlink = dp->di_nlink;
10621         if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10622             TAILQ_EMPTY(&inodedep->id_extupdt) &&
10623             TAILQ_EMPTY(&inodedep->id_inoreflst))
10624                 return;
10625         /*
10626          * Revert the link count to that of the first unwritten journal entry.
10627          */
10628         inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10629         if (inoref)
10630                 dp->di_nlink = inoref->if_nlink;
10631 
10632         /*
10633          * Set the ext data dependencies to busy.
10634          */
10635         for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10636              adp = TAILQ_NEXT(adp, ad_next)) {
10637 #ifdef INVARIANTS
10638                 if (deplist != 0 && prevlbn >= adp->ad_offset)
10639                         panic("initiate_write_inodeblock_ufs2: lbn order");
10640                 prevlbn = adp->ad_offset;
10641                 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10642                         panic("initiate_write_inodeblock_ufs2: "
10643                             "ext pointer #%jd mismatch %jd != %jd",
10644                             (intmax_t)adp->ad_offset,
10645                             (intmax_t)dp->di_extb[adp->ad_offset],
10646                             (intmax_t)adp->ad_newblkno);
10647                 deplist |= 1 << adp->ad_offset;
10648                 if ((adp->ad_state & ATTACHED) == 0)
10649                         panic("initiate_write_inodeblock_ufs2: Unknown "
10650                             "state 0x%x", adp->ad_state);
10651 #endif /* INVARIANTS */
10652                 adp->ad_state &= ~ATTACHED;
10653                 adp->ad_state |= UNDONE;
10654         }
10655         /*
10656          * The on-disk inode cannot claim to be any larger than the last
10657          * fragment that has been written. Otherwise, the on-disk inode
10658          * might have fragments that were not the last block in the ext
10659          * data which would corrupt the filesystem.
10660          */
10661         for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10662              lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10663                 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10664                 /* keep going until hitting a rollback to a frag */
10665                 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10666                         continue;
10667                 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10668                 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10669 #ifdef INVARIANTS
10670                         if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10671                                 panic("initiate_write_inodeblock_ufs2: "
10672                                     "lost dep1");
10673 #endif /* INVARIANTS */
10674                         dp->di_extb[i] = 0;
10675                 }
10676                 lastadp = NULL;
10677                 break;
10678         }
10679         /*
10680          * If we have zero'ed out the last allocated block of the ext
10681          * data, roll back the size to the last currently allocated block.
10682          * We know that this last allocated block is a full-sized as
10683          * we already checked for fragments in the loop above.
10684          */
10685         if (lastadp != NULL &&
10686             dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10687                 for (i = lastadp->ad_offset; i >= 0; i--)
10688                         if (dp->di_extb[i] != 0)
10689                                 break;
10690                 dp->di_extsize = (i + 1) * fs->fs_bsize;
10691         }
10692         /*
10693          * Set the file data dependencies to busy.
10694          */
10695         for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10696              adp = TAILQ_NEXT(adp, ad_next)) {
10697 #ifdef INVARIANTS
10698                 if (deplist != 0 && prevlbn >= adp->ad_offset)
10699                         panic("softdep_write_inodeblock: lbn order");
10700                 if ((adp->ad_state & ATTACHED) == 0)
10701                         panic("inodedep %p and adp %p not attached", inodedep, adp);
10702                 prevlbn = adp->ad_offset;
10703                 if (!ffs_fsfail_cleanup(ump, 0) &&
10704                     adp->ad_offset < UFS_NDADDR &&
10705                     dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10706                         panic("initiate_write_inodeblock_ufs2: "
10707                             "direct pointer #%jd mismatch %jd != %jd",
10708                             (intmax_t)adp->ad_offset,
10709                             (intmax_t)dp->di_db[adp->ad_offset],
10710                             (intmax_t)adp->ad_newblkno);
10711                 if (!ffs_fsfail_cleanup(ump, 0) &&
10712                     adp->ad_offset >= UFS_NDADDR &&
10713                     dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10714                         panic("initiate_write_inodeblock_ufs2: "
10715                             "indirect pointer #%jd mismatch %jd != %jd",
10716                             (intmax_t)adp->ad_offset - UFS_NDADDR,
10717                             (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10718                             (intmax_t)adp->ad_newblkno);
10719                 deplist |= 1 << adp->ad_offset;
10720                 if ((adp->ad_state & ATTACHED) == 0)
10721                         panic("initiate_write_inodeblock_ufs2: Unknown "
10722                              "state 0x%x", adp->ad_state);
10723 #endif /* INVARIANTS */
10724                 adp->ad_state &= ~ATTACHED;
10725                 adp->ad_state |= UNDONE;
10726         }
10727         /*
10728          * The on-disk inode cannot claim to be any larger than the last
10729          * fragment that has been written. Otherwise, the on-disk inode
10730          * might have fragments that were not the last block in the file
10731          * which would corrupt the filesystem.
10732          */
10733         for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10734              lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10735                 if (adp->ad_offset >= UFS_NDADDR)
10736                         break;
10737                 dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10738                 /* keep going until hitting a rollback to a frag */
10739                 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10740                         continue;
10741                 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10742                 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10743 #ifdef INVARIANTS
10744                         if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10745                                 panic("initiate_write_inodeblock_ufs2: "
10746                                     "lost dep2");
10747 #endif /* INVARIANTS */
10748                         dp->di_db[i] = 0;
10749                 }
10750                 for (i = 0; i < UFS_NIADDR; i++) {
10751 #ifdef INVARIANTS
10752                         if (dp->di_ib[i] != 0 &&
10753                             (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10754                                 panic("initiate_write_inodeblock_ufs2: "
10755                                     "lost dep3");
10756 #endif /* INVARIANTS */
10757                         dp->di_ib[i] = 0;
10758                 }
10759                 ffs_update_dinode_ckhash(fs, dp);
10760                 return;
10761         }
10762         /*
10763          * If we have zero'ed out the last allocated block of the file,
10764          * roll back the size to the last currently allocated block.
10765          * We know that this last allocated block is a full-sized as
10766          * we already checked for fragments in the loop above.
10767          */
10768         if (lastadp != NULL &&
10769             dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10770                 for (i = lastadp->ad_offset; i >= 0; i--)
10771                         if (dp->di_db[i] != 0)
10772                                 break;
10773                 dp->di_size = (i + 1) * fs->fs_bsize;
10774         }
10775         /*
10776          * The only dependencies are for indirect blocks.
10777          *
10778          * The file size for indirect block additions is not guaranteed.
10779          * Such a guarantee would be non-trivial to achieve. The conventional
10780          * synchronous write implementation also does not make this guarantee.
10781          * Fsck should catch and fix discrepancies. Arguably, the file size
10782          * can be over-estimated without destroying integrity when the file
10783          * moves into the indirect blocks (i.e., is large). If we want to
10784          * postpone fsck, we are stuck with this argument.
10785          */
10786         for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10787                 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10788         ffs_update_dinode_ckhash(fs, dp);
10789 }
10790 
10791 /*
10792  * Cancel an indirdep as a result of truncation.  Release all of the
10793  * children allocindirs and place their journal work on the appropriate
10794  * list.
10795  */
10796 static void
10797 cancel_indirdep(
10798         struct indirdep *indirdep,
10799         struct buf *bp,
10800         struct freeblks *freeblks)
10801 {
10802         struct allocindir *aip;
10803 
10804         /*
10805          * None of the indirect pointers will ever be visible,
10806          * so they can simply be tossed. GOINGAWAY ensures
10807          * that allocated pointers will be saved in the buffer
10808          * cache until they are freed. Note that they will
10809          * only be able to be found by their physical address
10810          * since the inode mapping the logical address will
10811          * be gone. The save buffer used for the safe copy
10812          * was allocated in setup_allocindir_phase2 using
10813          * the physical address so it could be used for this
10814          * purpose. Hence we swap the safe copy with the real
10815          * copy, allowing the safe copy to be freed and holding
10816          * on to the real copy for later use in indir_trunc.
10817          */
10818         if (indirdep->ir_state & GOINGAWAY)
10819                 panic("cancel_indirdep: already gone");
10820         if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10821                 indirdep->ir_state |= DEPCOMPLETE;
10822                 LIST_REMOVE(indirdep, ir_next);
10823         }
10824         indirdep->ir_state |= GOINGAWAY;
10825         /*
10826          * Pass in bp for blocks still have journal writes
10827          * pending so we can cancel them on their own.
10828          */
10829         while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10830                 cancel_allocindir(aip, bp, freeblks, 0);
10831         while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10832                 cancel_allocindir(aip, NULL, freeblks, 0);
10833         while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10834                 cancel_allocindir(aip, NULL, freeblks, 0);
10835         while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10836                 cancel_allocindir(aip, NULL, freeblks, 0);
10837         /*
10838          * If there are pending partial truncations we need to keep the
10839          * old block copy around until they complete.  This is because
10840          * the current b_data is not a perfect superset of the available
10841          * blocks.
10842          */
10843         if (TAILQ_EMPTY(&indirdep->ir_trunc))
10844                 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10845         else
10846                 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10847         WORKLIST_REMOVE(&indirdep->ir_list);
10848         WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10849         indirdep->ir_bp = NULL;
10850         indirdep->ir_freeblks = freeblks;
10851 }
10852 
10853 /*
10854  * Free an indirdep once it no longer has new pointers to track.
10855  */
10856 static void
10857 free_indirdep(struct indirdep *indirdep)
10858 {
10859 
10860         KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10861             ("free_indirdep: Indir trunc list not empty."));
10862         KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10863             ("free_indirdep: Complete head not empty."));
10864         KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10865             ("free_indirdep: write head not empty."));
10866         KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10867             ("free_indirdep: done head not empty."));
10868         KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10869             ("free_indirdep: deplist head not empty."));
10870         KASSERT((indirdep->ir_state & DEPCOMPLETE),
10871             ("free_indirdep: %p still on newblk list.", indirdep));
10872         KASSERT(indirdep->ir_saveddata == NULL,
10873             ("free_indirdep: %p still has saved data.", indirdep));
10874         KASSERT(indirdep->ir_savebp == NULL,
10875             ("free_indirdep: %p still has savebp buffer.", indirdep));
10876         if (indirdep->ir_state & ONWORKLIST)
10877                 WORKLIST_REMOVE(&indirdep->ir_list);
10878         WORKITEM_FREE(indirdep, D_INDIRDEP);
10879 }
10880 
10881 /*
10882  * Called before a write to an indirdep.  This routine is responsible for
10883  * rolling back pointers to a safe state which includes only those
10884  * allocindirs which have been completed.
10885  */
10886 static void
10887 initiate_write_indirdep(struct indirdep *indirdep, struct buf *bp)
10888 {
10889         struct ufsmount *ump;
10890 
10891         indirdep->ir_state |= IOSTARTED;
10892         if (indirdep->ir_state & GOINGAWAY)
10893                 panic("disk_io_initiation: indirdep gone");
10894         /*
10895          * If there are no remaining dependencies, this will be writing
10896          * the real pointers.
10897          */
10898         if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10899             TAILQ_EMPTY(&indirdep->ir_trunc))
10900                 return;
10901         /*
10902          * Replace up-to-date version with safe version.
10903          */
10904         if (indirdep->ir_saveddata == NULL) {
10905                 ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10906                 LOCK_OWNED(ump);
10907                 FREE_LOCK(ump);
10908                 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10909                     M_SOFTDEP_FLAGS);
10910                 ACQUIRE_LOCK(ump);
10911         }
10912         indirdep->ir_state &= ~ATTACHED;
10913         indirdep->ir_state |= UNDONE;
10914         bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10915         bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10916             bp->b_bcount);
10917 }
10918 
10919 /*
10920  * Called when an inode has been cleared in a cg bitmap.  This finally
10921  * eliminates any canceled jaddrefs
10922  */
10923 void
10924 softdep_setup_inofree(struct mount *mp,
10925         struct buf *bp,
10926         ino_t ino,
10927         struct workhead *wkhd)
10928 {
10929         struct worklist *wk, *wkn;
10930         struct inodedep *inodedep;
10931         struct ufsmount *ump;
10932         uint8_t *inosused;
10933         struct cg *cgp;
10934         struct fs *fs;
10935 
10936         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10937             ("softdep_setup_inofree called on non-softdep filesystem"));
10938         ump = VFSTOUFS(mp);
10939         ACQUIRE_LOCK(ump);
10940         if (!ffs_fsfail_cleanup(ump, 0)) {
10941                 fs = ump->um_fs;
10942                 cgp = (struct cg *)bp->b_data;
10943                 inosused = cg_inosused(cgp);
10944                 if (isset(inosused, ino % fs->fs_ipg))
10945                         panic("softdep_setup_inofree: inode %ju not freed.",
10946                             (uintmax_t)ino);
10947         }
10948         if (inodedep_lookup(mp, ino, 0, &inodedep))
10949                 panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10950                     (uintmax_t)ino, inodedep);
10951         if (wkhd) {
10952                 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10953                         if (wk->wk_type != D_JADDREF)
10954                                 continue;
10955                         WORKLIST_REMOVE(wk);
10956                         /*
10957                          * We can free immediately even if the jaddref
10958                          * isn't attached in a background write as now
10959                          * the bitmaps are reconciled.
10960                          */
10961                         wk->wk_state |= COMPLETE | ATTACHED;
10962                         free_jaddref(WK_JADDREF(wk));
10963                 }
10964                 jwork_move(&bp->b_dep, wkhd);
10965         }
10966         FREE_LOCK(ump);
10967 }
10968 
10969 /*
10970  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10971  * map.  Any dependencies waiting for the write to clear are added to the
10972  * buf's list and any jnewblks that are being canceled are discarded
10973  * immediately.
10974  */
10975 void
10976 softdep_setup_blkfree(
10977         struct mount *mp,
10978         struct buf *bp,
10979         ufs2_daddr_t blkno,
10980         int frags,
10981         struct workhead *wkhd)
10982 {
10983         struct bmsafemap *bmsafemap;
10984         struct jnewblk *jnewblk;
10985         struct ufsmount *ump;
10986         struct worklist *wk;
10987         struct fs *fs;
10988 #ifdef INVARIANTS
10989         uint8_t *blksfree;
10990         struct cg *cgp;
10991         ufs2_daddr_t jstart;
10992         ufs2_daddr_t jend;
10993         ufs2_daddr_t end;
10994         long bno;
10995         int i;
10996 #endif
10997 
10998         CTR3(KTR_SUJ,
10999             "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
11000             blkno, frags, wkhd);
11001 
11002         ump = VFSTOUFS(mp);
11003         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
11004             ("softdep_setup_blkfree called on non-softdep filesystem"));
11005         ACQUIRE_LOCK(ump);
11006         /* Lookup the bmsafemap so we track when it is dirty. */
11007         fs = ump->um_fs;
11008         bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11009         /*
11010          * Detach any jnewblks which have been canceled.  They must linger
11011          * until the bitmap is cleared again by ffs_blkfree() to prevent
11012          * an unjournaled allocation from hitting the disk.
11013          */
11014         if (wkhd) {
11015                 while ((wk = LIST_FIRST(wkhd)) != NULL) {
11016                         CTR2(KTR_SUJ,
11017                             "softdep_setup_blkfree: blkno %jd wk type %d",
11018                             blkno, wk->wk_type);
11019                         WORKLIST_REMOVE(wk);
11020                         if (wk->wk_type != D_JNEWBLK) {
11021                                 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11022                                 continue;
11023                         }
11024                         jnewblk = WK_JNEWBLK(wk);
11025                         KASSERT(jnewblk->jn_state & GOINGAWAY,
11026                             ("softdep_setup_blkfree: jnewblk not canceled."));
11027 #ifdef INVARIANTS
11028                         /*
11029                          * Assert that this block is free in the bitmap
11030                          * before we discard the jnewblk.
11031                          */
11032                         cgp = (struct cg *)bp->b_data;
11033                         blksfree = cg_blksfree(cgp);
11034                         bno = dtogd(fs, jnewblk->jn_blkno);
11035                         for (i = jnewblk->jn_oldfrags;
11036                             i < jnewblk->jn_frags; i++) {
11037                                 if (isset(blksfree, bno + i))
11038                                         continue;
11039                                 panic("softdep_setup_blkfree: not free");
11040                         }
11041 #endif
11042                         /*
11043                          * Even if it's not attached we can free immediately
11044                          * as the new bitmap is correct.
11045                          */
11046                         wk->wk_state |= COMPLETE | ATTACHED;
11047                         free_jnewblk(jnewblk);
11048                 }
11049         }
11050 
11051 #ifdef INVARIANTS
11052         /*
11053          * Assert that we are not freeing a block which has an outstanding
11054          * allocation dependency.
11055          */
11056         fs = VFSTOUFS(mp)->um_fs;
11057         bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11058         end = blkno + frags;
11059         LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11060                 /*
11061                  * Don't match against blocks that will be freed when the
11062                  * background write is done.
11063                  */
11064                 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11065                     (COMPLETE | DEPCOMPLETE))
11066                         continue;
11067                 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11068                 jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11069                 if ((blkno >= jstart && blkno < jend) ||
11070                     (end > jstart && end <= jend)) {
11071                         printf("state 0x%X %jd - %d %d dep %p\n",
11072                             jnewblk->jn_state, jnewblk->jn_blkno,
11073                             jnewblk->jn_oldfrags, jnewblk->jn_frags,
11074                             jnewblk->jn_dep);
11075                         panic("softdep_setup_blkfree: "
11076                             "%jd-%jd(%d) overlaps with %jd-%jd",
11077                             blkno, end, frags, jstart, jend);
11078                 }
11079         }
11080 #endif
11081         FREE_LOCK(ump);
11082 }
11083 
11084 /*
11085  * Revert a block allocation when the journal record that describes it
11086  * is not yet written.
11087  */
11088 static int
11089 jnewblk_rollback(
11090         struct jnewblk *jnewblk,
11091         struct fs *fs,
11092         struct cg *cgp,
11093         uint8_t *blksfree)
11094 {
11095         ufs1_daddr_t fragno;
11096         long cgbno, bbase;
11097         int frags, blk;
11098         int i;
11099 
11100         frags = 0;
11101         cgbno = dtogd(fs, jnewblk->jn_blkno);
11102         /*
11103          * We have to test which frags need to be rolled back.  We may
11104          * be operating on a stale copy when doing background writes.
11105          */
11106         for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11107                 if (isclr(blksfree, cgbno + i))
11108                         frags++;
11109         if (frags == 0)
11110                 return (0);
11111         /*
11112          * This is mostly ffs_blkfree() sans some validation and
11113          * superblock updates.
11114          */
11115         if (frags == fs->fs_frag) {
11116                 fragno = fragstoblks(fs, cgbno);
11117                 ffs_setblock(fs, blksfree, fragno);
11118                 ffs_clusteracct(fs, cgp, fragno, 1);
11119                 cgp->cg_cs.cs_nbfree++;
11120         } else {
11121                 cgbno += jnewblk->jn_oldfrags;
11122                 bbase = cgbno - fragnum(fs, cgbno);
11123                 /* Decrement the old frags.  */
11124                 blk = blkmap(fs, blksfree, bbase);
11125                 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11126                 /* Deallocate the fragment */
11127                 for (i = 0; i < frags; i++)
11128                         setbit(blksfree, cgbno + i);
11129                 cgp->cg_cs.cs_nffree += frags;
11130                 /* Add back in counts associated with the new frags */
11131                 blk = blkmap(fs, blksfree, bbase);
11132                 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11133                 /* If a complete block has been reassembled, account for it. */
11134                 fragno = fragstoblks(fs, bbase);
11135                 if (ffs_isblock(fs, blksfree, fragno)) {
11136                         cgp->cg_cs.cs_nffree -= fs->fs_frag;
11137                         ffs_clusteracct(fs, cgp, fragno, 1);
11138                         cgp->cg_cs.cs_nbfree++;
11139                 }
11140         }
11141         stat_jnewblk++;
11142         jnewblk->jn_state &= ~ATTACHED;
11143         jnewblk->jn_state |= UNDONE;
11144 
11145         return (frags);
11146 }
11147 
11148 static void
11149 initiate_write_bmsafemap(
11150         struct bmsafemap *bmsafemap,
11151         struct buf *bp)                 /* The cg block. */
11152 {
11153         struct jaddref *jaddref;
11154         struct jnewblk *jnewblk;
11155         uint8_t *inosused;
11156         uint8_t *blksfree;
11157         struct cg *cgp;
11158         struct fs *fs;
11159         ino_t ino;
11160 
11161         /*
11162          * If this is a background write, we did this at the time that
11163          * the copy was made, so do not need to do it again.
11164          */
11165         if (bmsafemap->sm_state & IOSTARTED)
11166                 return;
11167         bmsafemap->sm_state |= IOSTARTED;
11168         /*
11169          * Clear any inode allocations which are pending journal writes.
11170          */
11171         if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11172                 cgp = (struct cg *)bp->b_data;
11173                 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11174                 inosused = cg_inosused(cgp);
11175                 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11176                         ino = jaddref->ja_ino % fs->fs_ipg;
11177                         if (isset(inosused, ino)) {
11178                                 if ((jaddref->ja_mode & IFMT) == IFDIR)
11179                                         cgp->cg_cs.cs_ndir--;
11180                                 cgp->cg_cs.cs_nifree++;
11181                                 clrbit(inosused, ino);
11182                                 jaddref->ja_state &= ~ATTACHED;
11183                                 jaddref->ja_state |= UNDONE;
11184                                 stat_jaddref++;
11185                         } else
11186                                 panic("initiate_write_bmsafemap: inode %ju "
11187                                     "marked free", (uintmax_t)jaddref->ja_ino);
11188                 }
11189         }
11190         /*
11191          * Clear any block allocations which are pending journal writes.
11192          */
11193         if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11194                 cgp = (struct cg *)bp->b_data;
11195                 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11196                 blksfree = cg_blksfree(cgp);
11197                 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11198                         if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11199                                 continue;
11200                         panic("initiate_write_bmsafemap: block %jd "
11201                             "marked free", jnewblk->jn_blkno);
11202                 }
11203         }
11204         /*
11205          * Move allocation lists to the written lists so they can be
11206          * cleared once the block write is complete.
11207          */
11208         LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11209             inodedep, id_deps);
11210         LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11211             newblk, nb_deps);
11212         LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11213             wk_list);
11214 }
11215 
11216 void
11217 softdep_handle_error(struct buf *bp)
11218 {
11219         struct ufsmount *ump;
11220 
11221         ump = softdep_bp_to_mp(bp);
11222         if (ump == NULL)
11223                 return;
11224 
11225         if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11226                 /*
11227                  * No future writes will succeed, so the on-disk image is safe.
11228                  * Pretend that this write succeeded so that the softdep state
11229                  * will be cleaned up naturally.
11230                  */
11231                 bp->b_ioflags &= ~BIO_ERROR;
11232                 bp->b_error = 0;
11233         }
11234 }
11235 
11236 /*
11237  * This routine is called during the completion interrupt
11238  * service routine for a disk write (from the procedure called
11239  * by the device driver to inform the filesystem caches of
11240  * a request completion).  It should be called early in this
11241  * procedure, before the block is made available to other
11242  * processes or other routines are called.
11243  *
11244  */
11245 static void 
11246 softdep_disk_write_complete(
11247         struct buf *bp)         /* describes the completed disk write */
11248 {
11249         struct worklist *wk;
11250         struct worklist *owk;
11251         struct ufsmount *ump;
11252         struct workhead reattach;
11253         struct freeblks *freeblks;
11254         struct buf *sbp;
11255 
11256         ump = softdep_bp_to_mp(bp);
11257         KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11258             ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11259              "with outstanding dependencies for buffer %p", bp));
11260         if (ump == NULL)
11261                 return;
11262         if ((bp->b_ioflags & BIO_ERROR) != 0)
11263                 softdep_handle_error(bp);
11264         /*
11265          * If an error occurred while doing the write, then the data
11266          * has not hit the disk and the dependencies cannot be processed.
11267          * But we do have to go through and roll forward any dependencies
11268          * that were rolled back before the disk write.
11269          */
11270         sbp = NULL;
11271         ACQUIRE_LOCK(ump);
11272         if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11273                 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11274                         switch (wk->wk_type) {
11275                         case D_PAGEDEP:
11276                                 handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11277                                 continue;
11278 
11279                         case D_INODEDEP:
11280                                 handle_written_inodeblock(WK_INODEDEP(wk),
11281                                     bp, 0);
11282                                 continue;
11283 
11284                         case D_BMSAFEMAP:
11285                                 handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11286                                     bp, 0);
11287                                 continue;
11288 
11289                         case D_INDIRDEP:
11290                                 handle_written_indirdep(WK_INDIRDEP(wk),
11291                                     bp, &sbp, 0);
11292                                 continue;
11293                         default:
11294                                 /* nothing to roll forward */
11295                                 continue;
11296                         }
11297                 }
11298                 FREE_LOCK(ump);
11299                 if (sbp)
11300                         brelse(sbp);
11301                 return;
11302         }
11303         LIST_INIT(&reattach);
11304 
11305         /*
11306          * Ump SU lock must not be released anywhere in this code segment.
11307          */
11308         owk = NULL;
11309         while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11310                 WORKLIST_REMOVE(wk);
11311                 atomic_add_long(&dep_write[wk->wk_type], 1);
11312                 if (wk == owk)
11313                         panic("duplicate worklist: %p\n", wk);
11314                 owk = wk;
11315                 switch (wk->wk_type) {
11316                 case D_PAGEDEP:
11317                         if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11318                             WRITESUCCEEDED))
11319                                 WORKLIST_INSERT(&reattach, wk);
11320                         continue;
11321 
11322                 case D_INODEDEP:
11323                         if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11324                             WRITESUCCEEDED))
11325                                 WORKLIST_INSERT(&reattach, wk);
11326                         continue;
11327 
11328                 case D_BMSAFEMAP:
11329                         if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11330                             WRITESUCCEEDED))
11331                                 WORKLIST_INSERT(&reattach, wk);
11332                         continue;
11333 
11334                 case D_MKDIR:
11335                         handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11336                         continue;
11337 
11338                 case D_ALLOCDIRECT:
11339                         wk->wk_state |= COMPLETE;
11340                         handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11341                         continue;
11342 
11343                 case D_ALLOCINDIR:
11344                         wk->wk_state |= COMPLETE;
11345                         handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11346                         continue;
11347 
11348                 case D_INDIRDEP:
11349                         if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11350                             WRITESUCCEEDED))
11351                                 WORKLIST_INSERT(&reattach, wk);
11352                         continue;
11353 
11354                 case D_FREEBLKS:
11355                         wk->wk_state |= COMPLETE;
11356                         freeblks = WK_FREEBLKS(wk);
11357                         if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11358                             LIST_EMPTY(&freeblks->fb_jblkdephd))
11359                                 add_to_worklist(wk, WK_NODELAY);
11360                         continue;
11361 
11362                 case D_FREEWORK:
11363                         handle_written_freework(WK_FREEWORK(wk));
11364                         break;
11365 
11366                 case D_JSEGDEP:
11367                         free_jsegdep(WK_JSEGDEP(wk));
11368                         continue;
11369 
11370                 case D_JSEG:
11371                         handle_written_jseg(WK_JSEG(wk), bp);
11372                         continue;
11373 
11374                 case D_SBDEP:
11375                         if (handle_written_sbdep(WK_SBDEP(wk), bp))
11376                                 WORKLIST_INSERT(&reattach, wk);
11377                         continue;
11378 
11379                 case D_FREEDEP:
11380                         free_freedep(WK_FREEDEP(wk));
11381                         continue;
11382 
11383                 default:
11384                         panic("handle_disk_write_complete: Unknown type %s",
11385                             TYPENAME(wk->wk_type));
11386                         /* NOTREACHED */
11387                 }
11388         }
11389         /*
11390          * Reattach any requests that must be redone.
11391          */
11392         while ((wk = LIST_FIRST(&reattach)) != NULL) {
11393                 WORKLIST_REMOVE(wk);
11394                 WORKLIST_INSERT(&bp->b_dep, wk);
11395         }
11396         FREE_LOCK(ump);
11397         if (sbp)
11398                 brelse(sbp);
11399 }
11400 
11401 /*
11402  * Called from within softdep_disk_write_complete above.
11403  */
11404 static void 
11405 handle_allocdirect_partdone(
11406         struct allocdirect *adp,        /* the completed allocdirect */
11407         struct workhead *wkhd)          /* Work to do when inode is writtne. */
11408 {
11409         struct allocdirectlst *listhead;
11410         struct allocdirect *listadp;
11411         struct inodedep *inodedep;
11412         long bsize;
11413 
11414         LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11415         if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11416                 return;
11417         /*
11418          * The on-disk inode cannot claim to be any larger than the last
11419          * fragment that has been written. Otherwise, the on-disk inode
11420          * might have fragments that were not the last block in the file
11421          * which would corrupt the filesystem. Thus, we cannot free any
11422          * allocdirects after one whose ad_oldblkno claims a fragment as
11423          * these blocks must be rolled back to zero before writing the inode.
11424          * We check the currently active set of allocdirects in id_inoupdt
11425          * or id_extupdt as appropriate.
11426          */
11427         inodedep = adp->ad_inodedep;
11428         bsize = inodedep->id_fs->fs_bsize;
11429         if (adp->ad_state & EXTDATA)
11430                 listhead = &inodedep->id_extupdt;
11431         else
11432                 listhead = &inodedep->id_inoupdt;
11433         TAILQ_FOREACH(listadp, listhead, ad_next) {
11434                 /* found our block */
11435                 if (listadp == adp)
11436                         break;
11437                 /* continue if ad_oldlbn is not a fragment */
11438                 if (listadp->ad_oldsize == 0 ||
11439                     listadp->ad_oldsize == bsize)
11440                         continue;
11441                 /* hit a fragment */
11442                 return;
11443         }
11444         /*
11445          * If we have reached the end of the current list without
11446          * finding the just finished dependency, then it must be
11447          * on the future dependency list. Future dependencies cannot
11448          * be freed until they are moved to the current list.
11449          */
11450         if (listadp == NULL) {
11451 #ifdef INVARIANTS
11452                 if (adp->ad_state & EXTDATA)
11453                         listhead = &inodedep->id_newextupdt;
11454                 else
11455                         listhead = &inodedep->id_newinoupdt;
11456                 TAILQ_FOREACH(listadp, listhead, ad_next)
11457                         /* found our block */
11458                         if (listadp == adp)
11459                                 break;
11460                 if (listadp == NULL)
11461                         panic("handle_allocdirect_partdone: lost dep");
11462 #endif /* INVARIANTS */
11463                 return;
11464         }
11465         /*
11466          * If we have found the just finished dependency, then queue
11467          * it along with anything that follows it that is complete.
11468          * Since the pointer has not yet been written in the inode
11469          * as the dependency prevents it, place the allocdirect on the
11470          * bufwait list where it will be freed once the pointer is
11471          * valid.
11472          */
11473         if (wkhd == NULL)
11474                 wkhd = &inodedep->id_bufwait;
11475         for (; adp; adp = listadp) {
11476                 listadp = TAILQ_NEXT(adp, ad_next);
11477                 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11478                         return;
11479                 TAILQ_REMOVE(listhead, adp, ad_next);
11480                 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11481         }
11482 }
11483 
11484 /*
11485  * Called from within softdep_disk_write_complete above.  This routine
11486  * completes successfully written allocindirs.
11487  */
11488 static void
11489 handle_allocindir_partdone(
11490         struct allocindir *aip)         /* the completed allocindir */
11491 {
11492         struct indirdep *indirdep;
11493 
11494         if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11495                 return;
11496         indirdep = aip->ai_indirdep;
11497         LIST_REMOVE(aip, ai_next);
11498         /*
11499          * Don't set a pointer while the buffer is undergoing IO or while
11500          * we have active truncations.
11501          */
11502         if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11503                 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11504                 return;
11505         }
11506         if (indirdep->ir_state & UFS1FMT)
11507                 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11508                     aip->ai_newblkno;
11509         else
11510                 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11511                     aip->ai_newblkno;
11512         /*
11513          * Await the pointer write before freeing the allocindir.
11514          */
11515         LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11516 }
11517 
11518 /*
11519  * Release segments held on a jwork list.
11520  */
11521 static void
11522 handle_jwork(struct workhead *wkhd)
11523 {
11524         struct worklist *wk;
11525 
11526         while ((wk = LIST_FIRST(wkhd)) != NULL) {
11527                 WORKLIST_REMOVE(wk);
11528                 switch (wk->wk_type) {
11529                 case D_JSEGDEP:
11530                         free_jsegdep(WK_JSEGDEP(wk));
11531                         continue;
11532                 case D_FREEDEP:
11533                         free_freedep(WK_FREEDEP(wk));
11534                         continue;
11535                 case D_FREEFRAG:
11536                         rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11537                         WORKITEM_FREE(wk, D_FREEFRAG);
11538                         continue;
11539                 case D_FREEWORK:
11540                         handle_written_freework(WK_FREEWORK(wk));
11541                         continue;
11542                 default:
11543                         panic("handle_jwork: Unknown type %s\n",
11544                             TYPENAME(wk->wk_type));
11545                 }
11546         }
11547 }
11548 
11549 /*
11550  * Handle the bufwait list on an inode when it is safe to release items
11551  * held there.  This normally happens after an inode block is written but
11552  * may be delayed and handled later if there are pending journal items that
11553  * are not yet safe to be released.
11554  */
11555 static struct freefile *
11556 handle_bufwait(
11557         struct inodedep *inodedep,
11558         struct workhead *refhd)
11559 {
11560         struct jaddref *jaddref;
11561         struct freefile *freefile;
11562         struct worklist *wk;
11563 
11564         freefile = NULL;
11565         while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11566                 WORKLIST_REMOVE(wk);
11567                 switch (wk->wk_type) {
11568                 case D_FREEFILE:
11569                         /*
11570                          * We defer adding freefile to the worklist
11571                          * until all other additions have been made to
11572                          * ensure that it will be done after all the
11573                          * old blocks have been freed.
11574                          */
11575                         if (freefile != NULL)
11576                                 panic("handle_bufwait: freefile");
11577                         freefile = WK_FREEFILE(wk);
11578                         continue;
11579 
11580                 case D_MKDIR:
11581                         handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11582                         continue;
11583 
11584                 case D_DIRADD:
11585                         diradd_inode_written(WK_DIRADD(wk), inodedep);
11586                         continue;
11587 
11588                 case D_FREEFRAG:
11589                         wk->wk_state |= COMPLETE;
11590                         if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11591                                 add_to_worklist(wk, 0);
11592                         continue;
11593 
11594                 case D_DIRREM:
11595                         wk->wk_state |= COMPLETE;
11596                         add_to_worklist(wk, 0);
11597                         continue;
11598 
11599                 case D_ALLOCDIRECT:
11600                 case D_ALLOCINDIR:
11601                         free_newblk(WK_NEWBLK(wk));
11602                         continue;
11603 
11604                 case D_JNEWBLK:
11605                         wk->wk_state |= COMPLETE;
11606                         free_jnewblk(WK_JNEWBLK(wk));
11607                         continue;
11608 
11609                 /*
11610                  * Save freed journal segments and add references on
11611                  * the supplied list which will delay their release
11612                  * until the cg bitmap is cleared on disk.
11613                  */
11614                 case D_JSEGDEP:
11615                         if (refhd == NULL)
11616                                 free_jsegdep(WK_JSEGDEP(wk));
11617                         else
11618                                 WORKLIST_INSERT(refhd, wk);
11619                         continue;
11620 
11621                 case D_JADDREF:
11622                         jaddref = WK_JADDREF(wk);
11623                         TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11624                             if_deps);
11625                         /*
11626                          * Transfer any jaddrefs to the list to be freed with
11627                          * the bitmap if we're handling a removed file.
11628                          */
11629                         if (refhd == NULL) {
11630                                 wk->wk_state |= COMPLETE;
11631                                 free_jaddref(jaddref);
11632                         } else
11633                                 WORKLIST_INSERT(refhd, wk);
11634                         continue;
11635 
11636                 default:
11637                         panic("handle_bufwait: Unknown type %p(%s)",
11638                             wk, TYPENAME(wk->wk_type));
11639                         /* NOTREACHED */
11640                 }
11641         }
11642         return (freefile);
11643 }
11644 /*
11645  * Called from within softdep_disk_write_complete above to restore
11646  * in-memory inode block contents to their most up-to-date state. Note
11647  * that this routine is always called from interrupt level with further
11648  * interrupts from this device blocked.
11649  *
11650  * If the write did not succeed, we will do all the roll-forward
11651  * operations, but we will not take the actions that will allow its
11652  * dependencies to be processed.
11653  */
11654 static int 
11655 handle_written_inodeblock(
11656         struct inodedep *inodedep,
11657         struct buf *bp,         /* buffer containing the inode block */
11658         int flags)
11659 {
11660         struct freefile *freefile;
11661         struct allocdirect *adp, *nextadp;
11662         struct ufs1_dinode *dp1 = NULL;
11663         struct ufs2_dinode *dp2 = NULL;
11664         struct workhead wkhd;
11665         int hadchanges, fstype;
11666         ino_t freelink;
11667 
11668         LIST_INIT(&wkhd);
11669         hadchanges = 0;
11670         freefile = NULL;
11671         if ((inodedep->id_state & IOSTARTED) == 0)
11672                 panic("handle_written_inodeblock: not started");
11673         inodedep->id_state &= ~IOSTARTED;
11674         if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11675                 fstype = UFS1;
11676                 dp1 = (struct ufs1_dinode *)bp->b_data +
11677                     ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11678                 freelink = dp1->di_freelink;
11679         } else {
11680                 fstype = UFS2;
11681                 dp2 = (struct ufs2_dinode *)bp->b_data +
11682                     ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11683                 freelink = dp2->di_freelink;
11684         }
11685         /*
11686          * Leave this inodeblock dirty until it's in the list.
11687          */
11688         if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11689             (flags & WRITESUCCEEDED)) {
11690                 struct inodedep *inon;
11691 
11692                 inon = TAILQ_NEXT(inodedep, id_unlinked);
11693                 if ((inon == NULL && freelink == 0) ||
11694                     (inon && inon->id_ino == freelink)) {
11695                         if (inon)
11696                                 inon->id_state |= UNLINKPREV;
11697                         inodedep->id_state |= UNLINKNEXT;
11698                 }
11699                 hadchanges = 1;
11700         }
11701         /*
11702          * If we had to rollback the inode allocation because of
11703          * bitmaps being incomplete, then simply restore it.
11704          * Keep the block dirty so that it will not be reclaimed until
11705          * all associated dependencies have been cleared and the
11706          * corresponding updates written to disk.
11707          */
11708         if (inodedep->id_savedino1 != NULL) {
11709                 hadchanges = 1;
11710                 if (fstype == UFS1)
11711                         *dp1 = *inodedep->id_savedino1;
11712                 else
11713                         *dp2 = *inodedep->id_savedino2;
11714                 free(inodedep->id_savedino1, M_SAVEDINO);
11715                 inodedep->id_savedino1 = NULL;
11716                 if ((bp->b_flags & B_DELWRI) == 0)
11717                         stat_inode_bitmap++;
11718                 bdirty(bp);
11719                 /*
11720                  * If the inode is clear here and GOINGAWAY it will never
11721                  * be written.  Process the bufwait and clear any pending
11722                  * work which may include the freefile.
11723                  */
11724                 if (inodedep->id_state & GOINGAWAY)
11725                         goto bufwait;
11726                 return (1);
11727         }
11728         if (flags & WRITESUCCEEDED)
11729                 inodedep->id_state |= COMPLETE;
11730         /*
11731          * Roll forward anything that had to be rolled back before 
11732          * the inode could be updated.
11733          */
11734         for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11735                 nextadp = TAILQ_NEXT(adp, ad_next);
11736                 if (adp->ad_state & ATTACHED)
11737                         panic("handle_written_inodeblock: new entry");
11738                 if (fstype == UFS1) {
11739                         if (adp->ad_offset < UFS_NDADDR) {
11740                                 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11741                                         panic("%s %s #%jd mismatch %d != %jd",
11742                                             "handle_written_inodeblock:",
11743                                             "direct pointer",
11744                                             (intmax_t)adp->ad_offset,
11745                                             dp1->di_db[adp->ad_offset],
11746                                             (intmax_t)adp->ad_oldblkno);
11747                                 dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11748                         } else {
11749                                 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11750                                     0)
11751                                         panic("%s: %s #%jd allocated as %d",
11752                                             "handle_written_inodeblock",
11753                                             "indirect pointer",
11754                                             (intmax_t)adp->ad_offset -
11755                                             UFS_NDADDR,
11756                                             dp1->di_ib[adp->ad_offset -
11757                                             UFS_NDADDR]);
11758                                 dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11759                                     adp->ad_newblkno;
11760                         }
11761                 } else {
11762                         if (adp->ad_offset < UFS_NDADDR) {
11763                                 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11764                                         panic("%s: %s #%jd %s %jd != %jd",
11765                                             "handle_written_inodeblock",
11766                                             "direct pointer",
11767                                             (intmax_t)adp->ad_offset, "mismatch",
11768                                             (intmax_t)dp2->di_db[adp->ad_offset],
11769                                             (intmax_t)adp->ad_oldblkno);
11770                                 dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11771                         } else {
11772                                 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11773                                     0)
11774                                         panic("%s: %s #%jd allocated as %jd",
11775                                             "handle_written_inodeblock",
11776                                             "indirect pointer",
11777                                             (intmax_t)adp->ad_offset -
11778                                             UFS_NDADDR,
11779                                             (intmax_t)
11780                                             dp2->di_ib[adp->ad_offset -
11781                                             UFS_NDADDR]);
11782                                 dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11783                                     adp->ad_newblkno;
11784                         }
11785                 }
11786                 adp->ad_state &= ~UNDONE;
11787                 adp->ad_state |= ATTACHED;
11788                 hadchanges = 1;
11789         }
11790         for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11791                 nextadp = TAILQ_NEXT(adp, ad_next);
11792                 if (adp->ad_state & ATTACHED)
11793                         panic("handle_written_inodeblock: new entry");
11794                 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11795                         panic("%s: direct pointers #%jd %s %jd != %jd",
11796                             "handle_written_inodeblock",
11797                             (intmax_t)adp->ad_offset, "mismatch",
11798                             (intmax_t)dp2->di_extb[adp->ad_offset],
11799                             (intmax_t)adp->ad_oldblkno);
11800                 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11801                 adp->ad_state &= ~UNDONE;
11802                 adp->ad_state |= ATTACHED;
11803                 hadchanges = 1;
11804         }
11805         if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11806                 stat_direct_blk_ptrs++;
11807         /*
11808          * Reset the file size to its most up-to-date value.
11809          */
11810         if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11811                 panic("handle_written_inodeblock: bad size");
11812         if (inodedep->id_savednlink > UFS_LINK_MAX)
11813                 panic("handle_written_inodeblock: Invalid link count "
11814                     "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11815                     inodedep);
11816         if (fstype == UFS1) {
11817                 if (dp1->di_nlink != inodedep->id_savednlink) { 
11818                         dp1->di_nlink = inodedep->id_savednlink;
11819                         hadchanges = 1;
11820                 }
11821                 if (dp1->di_size != inodedep->id_savedsize) {
11822                         dp1->di_size = inodedep->id_savedsize;
11823                         hadchanges = 1;
11824                 }
11825         } else {
11826                 if (dp2->di_nlink != inodedep->id_savednlink) { 
11827                         dp2->di_nlink = inodedep->id_savednlink;
11828                         hadchanges = 1;
11829                 }
11830                 if (dp2->di_size != inodedep->id_savedsize) {
11831                         dp2->di_size = inodedep->id_savedsize;
11832                         hadchanges = 1;
11833                 }
11834                 if (dp2->di_extsize != inodedep->id_savedextsize) {
11835                         dp2->di_extsize = inodedep->id_savedextsize;
11836                         hadchanges = 1;
11837                 }
11838         }
11839         inodedep->id_savedsize = -1;
11840         inodedep->id_savedextsize = -1;
11841         inodedep->id_savednlink = -1;
11842         /*
11843          * If there were any rollbacks in the inode block, then it must be
11844          * marked dirty so that its will eventually get written back in
11845          * its correct form.
11846          */
11847         if (hadchanges) {
11848                 if (fstype == UFS2)
11849                         ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11850                 bdirty(bp);
11851         }
11852 bufwait:
11853         /*
11854          * If the write did not succeed, we have done all the roll-forward
11855          * operations, but we cannot take the actions that will allow its
11856          * dependencies to be processed.
11857          */
11858         if ((flags & WRITESUCCEEDED) == 0)
11859                 return (hadchanges);
11860         /*
11861          * Process any allocdirects that completed during the update.
11862          */
11863         if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11864                 handle_allocdirect_partdone(adp, &wkhd);
11865         if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11866                 handle_allocdirect_partdone(adp, &wkhd);
11867         /*
11868          * Process deallocations that were held pending until the
11869          * inode had been written to disk. Freeing of the inode
11870          * is delayed until after all blocks have been freed to
11871          * avoid creation of new <vfsid, inum, lbn> triples
11872          * before the old ones have been deleted.  Completely
11873          * unlinked inodes are not processed until the unlinked
11874          * inode list is written or the last reference is removed.
11875          */
11876         if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11877                 freefile = handle_bufwait(inodedep, NULL);
11878                 if (freefile && !LIST_EMPTY(&wkhd)) {
11879                         WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11880                         freefile = NULL;
11881                 }
11882         }
11883         /*
11884          * Move rolled forward dependency completions to the bufwait list
11885          * now that those that were already written have been processed.
11886          */
11887         if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11888                 panic("handle_written_inodeblock: bufwait but no changes");
11889         jwork_move(&inodedep->id_bufwait, &wkhd);
11890 
11891         if (freefile != NULL) {
11892                 /*
11893                  * If the inode is goingaway it was never written.  Fake up
11894                  * the state here so free_inodedep() can succeed.
11895                  */
11896                 if (inodedep->id_state & GOINGAWAY)
11897                         inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11898                 if (free_inodedep(inodedep) == 0)
11899                         panic("handle_written_inodeblock: live inodedep %p",
11900                             inodedep);
11901                 add_to_worklist(&freefile->fx_list, 0);
11902                 return (0);
11903         }
11904 
11905         /*
11906          * If no outstanding dependencies, free it.
11907          */
11908         if (free_inodedep(inodedep) ||
11909             (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11910              TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11911              TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11912              LIST_FIRST(&inodedep->id_bufwait) == 0))
11913                 return (0);
11914         return (hadchanges);
11915 }
11916 
11917 /*
11918  * Perform needed roll-forwards and kick off any dependencies that
11919  * can now be processed.
11920  *
11921  * If the write did not succeed, we will do all the roll-forward
11922  * operations, but we will not take the actions that will allow its
11923  * dependencies to be processed.
11924  */
11925 static int
11926 handle_written_indirdep(
11927         struct indirdep *indirdep,
11928         struct buf *bp,
11929         struct buf **bpp,
11930         int flags)
11931 {
11932         struct allocindir *aip;
11933         struct buf *sbp;
11934         int chgs;
11935 
11936         if (indirdep->ir_state & GOINGAWAY)
11937                 panic("handle_written_indirdep: indirdep gone");
11938         if ((indirdep->ir_state & IOSTARTED) == 0)
11939                 panic("handle_written_indirdep: IO not started");
11940         chgs = 0;
11941         /*
11942          * If there were rollbacks revert them here.
11943          */
11944         if (indirdep->ir_saveddata) {
11945                 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11946                 if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11947                         free(indirdep->ir_saveddata, M_INDIRDEP);
11948                         indirdep->ir_saveddata = NULL;
11949                 }
11950                 chgs = 1;
11951         }
11952         indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11953         indirdep->ir_state |= ATTACHED;
11954         /*
11955          * If the write did not succeed, we have done all the roll-forward
11956          * operations, but we cannot take the actions that will allow its
11957          * dependencies to be processed.
11958          */
11959         if ((flags & WRITESUCCEEDED) == 0) {
11960                 stat_indir_blk_ptrs++;
11961                 bdirty(bp);
11962                 return (1);
11963         }
11964         /*
11965          * Move allocindirs with written pointers to the completehd if
11966          * the indirdep's pointer is not yet written.  Otherwise
11967          * free them here.
11968          */
11969         while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11970                 LIST_REMOVE(aip, ai_next);
11971                 if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11972                         LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11973                             ai_next);
11974                         newblk_freefrag(&aip->ai_block);
11975                         continue;
11976                 }
11977                 free_newblk(&aip->ai_block);
11978         }
11979         /*
11980          * Move allocindirs that have finished dependency processing from
11981          * the done list to the write list after updating the pointers.
11982          */
11983         if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11984                 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11985                         handle_allocindir_partdone(aip);
11986                         if (aip == LIST_FIRST(&indirdep->ir_donehd))
11987                                 panic("disk_write_complete: not gone");
11988                         chgs = 1;
11989                 }
11990         }
11991         /*
11992          * Preserve the indirdep if there were any changes or if it is not
11993          * yet valid on disk.
11994          */
11995         if (chgs) {
11996                 stat_indir_blk_ptrs++;
11997                 bdirty(bp);
11998                 return (1);
11999         }
12000         /*
12001          * If there were no changes we can discard the savedbp and detach
12002          * ourselves from the buf.  We are only carrying completed pointers
12003          * in this case.
12004          */
12005         sbp = indirdep->ir_savebp;
12006         sbp->b_flags |= B_INVAL | B_NOCACHE;
12007         indirdep->ir_savebp = NULL;
12008         indirdep->ir_bp = NULL;
12009         if (*bpp != NULL)
12010                 panic("handle_written_indirdep: bp already exists.");
12011         *bpp = sbp;
12012         /*
12013          * The indirdep may not be freed until its parent points at it.
12014          */
12015         if (indirdep->ir_state & DEPCOMPLETE)
12016                 free_indirdep(indirdep);
12017 
12018         return (0);
12019 }
12020 
12021 /*
12022  * Process a diradd entry after its dependent inode has been written.
12023  */
12024 static void
12025 diradd_inode_written(
12026         struct diradd *dap,
12027         struct inodedep *inodedep)
12028 {
12029 
12030         LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12031         dap->da_state |= COMPLETE;
12032         complete_diradd(dap);
12033         WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12034 }
12035 
12036 /*
12037  * Returns true if the bmsafemap will have rollbacks when written.  Must only
12038  * be called with the per-filesystem lock and the buf lock on the cg held.
12039  */
12040 static int
12041 bmsafemap_backgroundwrite(
12042         struct bmsafemap *bmsafemap,
12043         struct buf *bp)
12044 {
12045         int dirty;
12046 
12047         LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12048         dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 
12049             !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12050         /*
12051          * If we're initiating a background write we need to process the
12052          * rollbacks as they exist now, not as they exist when IO starts.
12053          * No other consumers will look at the contents of the shadowed
12054          * buf so this is safe to do here.
12055          */
12056         if (bp->b_xflags & BX_BKGRDMARKER)
12057                 initiate_write_bmsafemap(bmsafemap, bp);
12058 
12059         return (dirty);
12060 }
12061 
12062 /*
12063  * Re-apply an allocation when a cg write is complete.
12064  */
12065 static int
12066 jnewblk_rollforward(
12067         struct jnewblk *jnewblk,
12068         struct fs *fs,
12069         struct cg *cgp,
12070         uint8_t *blksfree)
12071 {
12072         ufs1_daddr_t fragno;
12073         ufs2_daddr_t blkno;
12074         long cgbno, bbase;
12075         int frags, blk;
12076         int i;
12077 
12078         frags = 0;
12079         cgbno = dtogd(fs, jnewblk->jn_blkno);
12080         for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12081                 if (isclr(blksfree, cgbno + i))
12082                         panic("jnewblk_rollforward: re-allocated fragment");
12083                 frags++;
12084         }
12085         if (frags == fs->fs_frag) {
12086                 blkno = fragstoblks(fs, cgbno);
12087                 ffs_clrblock(fs, blksfree, (long)blkno);
12088                 ffs_clusteracct(fs, cgp, blkno, -1);
12089                 cgp->cg_cs.cs_nbfree--;
12090         } else {
12091                 bbase = cgbno - fragnum(fs, cgbno);
12092                 cgbno += jnewblk->jn_oldfrags;
12093                 /* If a complete block had been reassembled, account for it. */
12094                 fragno = fragstoblks(fs, bbase);
12095                 if (ffs_isblock(fs, blksfree, fragno)) {
12096                         cgp->cg_cs.cs_nffree += fs->fs_frag;
12097                         ffs_clusteracct(fs, cgp, fragno, -1);
12098                         cgp->cg_cs.cs_nbfree--;
12099                 }
12100                 /* Decrement the old frags.  */
12101                 blk = blkmap(fs, blksfree, bbase);
12102                 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12103                 /* Allocate the fragment */
12104                 for (i = 0; i < frags; i++)
12105                         clrbit(blksfree, cgbno + i);
12106                 cgp->cg_cs.cs_nffree -= frags;
12107                 /* Add back in counts associated with the new frags */
12108                 blk = blkmap(fs, blksfree, bbase);
12109                 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12110         }
12111         return (frags);
12112 }
12113 
12114 /*
12115  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12116  * changes if it's not a background write.  Set all written dependencies 
12117  * to DEPCOMPLETE and free the structure if possible.
12118  *
12119  * If the write did not succeed, we will do all the roll-forward
12120  * operations, but we will not take the actions that will allow its
12121  * dependencies to be processed.
12122  */
12123 static int
12124 handle_written_bmsafemap(
12125         struct bmsafemap *bmsafemap,
12126         struct buf *bp,
12127         int flags)
12128 {
12129         struct newblk *newblk;
12130         struct inodedep *inodedep;
12131         struct jaddref *jaddref, *jatmp;
12132         struct jnewblk *jnewblk, *jntmp;
12133         struct ufsmount *ump;
12134         uint8_t *inosused;
12135         uint8_t *blksfree;
12136         struct cg *cgp;
12137         struct fs *fs;
12138         ino_t ino;
12139         int foreground;
12140         int chgs;
12141 
12142         if ((bmsafemap->sm_state & IOSTARTED) == 0)
12143                 panic("handle_written_bmsafemap: Not started\n");
12144         ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12145         chgs = 0;
12146         bmsafemap->sm_state &= ~IOSTARTED;
12147         foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12148         /*
12149          * If write was successful, release journal work that was waiting
12150          * on the write. Otherwise move the work back.
12151          */
12152         if (flags & WRITESUCCEEDED)
12153                 handle_jwork(&bmsafemap->sm_freewr);
12154         else
12155                 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12156                     worklist, wk_list);
12157 
12158         /*
12159          * Restore unwritten inode allocation pending jaddref writes.
12160          */
12161         if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12162                 cgp = (struct cg *)bp->b_data;
12163                 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12164                 inosused = cg_inosused(cgp);
12165                 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12166                     ja_bmdeps, jatmp) {
12167                         if ((jaddref->ja_state & UNDONE) == 0)
12168                                 continue;
12169                         ino = jaddref->ja_ino % fs->fs_ipg;
12170                         if (isset(inosused, ino))
12171                                 panic("handle_written_bmsafemap: "
12172                                     "re-allocated inode");
12173                         /* Do the roll-forward only if it's a real copy. */
12174                         if (foreground) {
12175                                 if ((jaddref->ja_mode & IFMT) == IFDIR)
12176                                         cgp->cg_cs.cs_ndir++;
12177                                 cgp->cg_cs.cs_nifree--;
12178                                 setbit(inosused, ino);
12179                                 chgs = 1;
12180                         }
12181                         jaddref->ja_state &= ~UNDONE;
12182                         jaddref->ja_state |= ATTACHED;
12183                         free_jaddref(jaddref);
12184                 }
12185         }
12186         /*
12187          * Restore any block allocations which are pending journal writes.
12188          */
12189         if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12190                 cgp = (struct cg *)bp->b_data;
12191                 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12192                 blksfree = cg_blksfree(cgp);
12193                 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12194                     jntmp) {
12195                         if ((jnewblk->jn_state & UNDONE) == 0)
12196                                 continue;
12197                         /* Do the roll-forward only if it's a real copy. */
12198                         if (foreground &&
12199                             jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12200                                 chgs = 1;
12201                         jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12202                         jnewblk->jn_state |= ATTACHED;
12203                         free_jnewblk(jnewblk);
12204                 }
12205         }
12206         /*
12207          * If the write did not succeed, we have done all the roll-forward
12208          * operations, but we cannot take the actions that will allow its
12209          * dependencies to be processed.
12210          */
12211         if ((flags & WRITESUCCEEDED) == 0) {
12212                 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12213                     newblk, nb_deps);
12214                 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12215                     worklist, wk_list);
12216                 if (foreground)
12217                         bdirty(bp);
12218                 return (1);
12219         }
12220         while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12221                 newblk->nb_state |= DEPCOMPLETE;
12222                 newblk->nb_state &= ~ONDEPLIST;
12223                 newblk->nb_bmsafemap = NULL;
12224                 LIST_REMOVE(newblk, nb_deps);
12225                 if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12226                         handle_allocdirect_partdone(
12227                             WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12228                 else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12229                         handle_allocindir_partdone(
12230                             WK_ALLOCINDIR(&newblk->nb_list));
12231                 else if (newblk->nb_list.wk_type != D_NEWBLK)
12232                         panic("handle_written_bmsafemap: Unexpected type: %s",
12233                             TYPENAME(newblk->nb_list.wk_type));
12234         }
12235         while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12236                 inodedep->id_state |= DEPCOMPLETE;
12237                 inodedep->id_state &= ~ONDEPLIST;
12238                 LIST_REMOVE(inodedep, id_deps);
12239                 inodedep->id_bmsafemap = NULL;
12240         }
12241         LIST_REMOVE(bmsafemap, sm_next);
12242         if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12243             LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12244             LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12245             LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12246             LIST_EMPTY(&bmsafemap->sm_freehd)) {
12247                 LIST_REMOVE(bmsafemap, sm_hash);
12248                 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12249                 return (0);
12250         }
12251         LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12252         if (foreground)
12253                 bdirty(bp);
12254         return (1);
12255 }
12256 
12257 /*
12258  * Try to free a mkdir dependency.
12259  */
12260 static void
12261 complete_mkdir(struct mkdir *mkdir)
12262 {
12263         struct diradd *dap;
12264 
12265         if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12266                 return;
12267         LIST_REMOVE(mkdir, md_mkdirs);
12268         dap = mkdir->md_diradd;
12269         dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12270         if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12271                 dap->da_state |= DEPCOMPLETE;
12272                 complete_diradd(dap);
12273         }
12274         WORKITEM_FREE(mkdir, D_MKDIR);
12275 }
12276 
12277 /*
12278  * Handle the completion of a mkdir dependency.
12279  */
12280 static void
12281 handle_written_mkdir(struct mkdir *mkdir, int type)
12282 {
12283 
12284         if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12285                 panic("handle_written_mkdir: bad type");
12286         mkdir->md_state |= COMPLETE;
12287         complete_mkdir(mkdir);
12288 }
12289 
12290 static int
12291 free_pagedep(struct pagedep *pagedep)
12292 {
12293         int i;
12294 
12295         if (pagedep->pd_state & NEWBLOCK)
12296                 return (0);
12297         if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12298                 return (0);
12299         for (i = 0; i < DAHASHSZ; i++)
12300                 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12301                         return (0);
12302         if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12303                 return (0);
12304         if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12305                 return (0);
12306         if (pagedep->pd_state & ONWORKLIST)
12307                 WORKLIST_REMOVE(&pagedep->pd_list);
12308         LIST_REMOVE(pagedep, pd_hash);
12309         WORKITEM_FREE(pagedep, D_PAGEDEP);
12310 
12311         return (1);
12312 }
12313 
12314 /*
12315  * Called from within softdep_disk_write_complete above.
12316  * A write operation was just completed. Removed inodes can
12317  * now be freed and associated block pointers may be committed.
12318  * Note that this routine is always called from interrupt level
12319  * with further interrupts from this device blocked.
12320  *
12321  * If the write did not succeed, we will do all the roll-forward
12322  * operations, but we will not take the actions that will allow its
12323  * dependencies to be processed.
12324  */
12325 static int 
12326 handle_written_filepage(
12327         struct pagedep *pagedep,
12328         struct buf *bp,         /* buffer containing the written page */
12329         int flags)
12330 {
12331         struct dirrem *dirrem;
12332         struct diradd *dap, *nextdap;
12333         struct direct *ep;
12334         int i, chgs;
12335 
12336         if ((pagedep->pd_state & IOSTARTED) == 0)
12337                 panic("handle_written_filepage: not started");
12338         pagedep->pd_state &= ~IOSTARTED;
12339         if ((flags & WRITESUCCEEDED) == 0)
12340                 goto rollforward;
12341         /*
12342          * Process any directory removals that have been committed.
12343          */
12344         while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12345                 LIST_REMOVE(dirrem, dm_next);
12346                 dirrem->dm_state |= COMPLETE;
12347                 dirrem->dm_dirinum = pagedep->pd_ino;
12348                 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12349                     ("handle_written_filepage: Journal entries not written."));
12350                 add_to_worklist(&dirrem->dm_list, 0);
12351         }
12352         /*
12353          * Free any directory additions that have been committed.
12354          * If it is a newly allocated block, we have to wait until
12355          * the on-disk directory inode claims the new block.
12356          */
12357         if ((pagedep->pd_state & NEWBLOCK) == 0)
12358                 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12359                         free_diradd(dap, NULL);
12360 rollforward:
12361         /*
12362          * Uncommitted directory entries must be restored.
12363          */
12364         for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12365                 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12366                      dap = nextdap) {
12367                         nextdap = LIST_NEXT(dap, da_pdlist);
12368                         if (dap->da_state & ATTACHED)
12369                                 panic("handle_written_filepage: attached");
12370                         ep = (struct direct *)
12371                             ((char *)bp->b_data + dap->da_offset);
12372                         ep->d_ino = dap->da_newinum;
12373                         dap->da_state &= ~UNDONE;
12374                         dap->da_state |= ATTACHED;
12375                         chgs = 1;
12376                         /*
12377                          * If the inode referenced by the directory has
12378                          * been written out, then the dependency can be
12379                          * moved to the pending list.
12380                          */
12381                         if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12382                                 LIST_REMOVE(dap, da_pdlist);
12383                                 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12384                                     da_pdlist);
12385                         }
12386                 }
12387         }
12388         /*
12389          * If there were any rollbacks in the directory, then it must be
12390          * marked dirty so that its will eventually get written back in
12391          * its correct form.
12392          */
12393         if (chgs || (flags & WRITESUCCEEDED) == 0) {
12394                 if ((bp->b_flags & B_DELWRI) == 0)
12395                         stat_dir_entry++;
12396                 bdirty(bp);
12397                 return (1);
12398         }
12399         /*
12400          * If we are not waiting for a new directory block to be
12401          * claimed by its inode, then the pagedep will be freed.
12402          * Otherwise it will remain to track any new entries on
12403          * the page in case they are fsync'ed.
12404          */
12405         free_pagedep(pagedep);
12406         return (0);
12407 }
12408 
12409 /*
12410  * Writing back in-core inode structures.
12411  * 
12412  * The filesystem only accesses an inode's contents when it occupies an
12413  * "in-core" inode structure.  These "in-core" structures are separate from
12414  * the page frames used to cache inode blocks.  Only the latter are
12415  * transferred to/from the disk.  So, when the updated contents of the
12416  * "in-core" inode structure are copied to the corresponding in-memory inode
12417  * block, the dependencies are also transferred.  The following procedure is
12418  * called when copying a dirty "in-core" inode to a cached inode block.
12419  */
12420 
12421 /*
12422  * Called when an inode is loaded from disk. If the effective link count
12423  * differed from the actual link count when it was last flushed, then we
12424  * need to ensure that the correct effective link count is put back.
12425  */
12426 void 
12427 softdep_load_inodeblock(
12428         struct inode *ip)       /* the "in_core" copy of the inode */
12429 {
12430         struct inodedep *inodedep;
12431         struct ufsmount *ump;
12432 
12433         ump = ITOUMP(ip);
12434         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12435             ("softdep_load_inodeblock called on non-softdep filesystem"));
12436         /*
12437          * Check for alternate nlink count.
12438          */
12439         ip->i_effnlink = ip->i_nlink;
12440         ACQUIRE_LOCK(ump);
12441         if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12442                 FREE_LOCK(ump);
12443                 return;
12444         }
12445         if (ip->i_nlink != inodedep->id_nlinkwrote &&
12446             inodedep->id_nlinkwrote != -1) {
12447                 KASSERT(ip->i_nlink == 0 &&
12448                     (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12449                     ("read bad i_nlink value"));
12450                 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12451         }
12452         ip->i_effnlink -= inodedep->id_nlinkdelta;
12453         KASSERT(ip->i_effnlink >= 0,
12454             ("softdep_load_inodeblock: negative i_effnlink"));
12455         FREE_LOCK(ump);
12456 }
12457 
12458 /*
12459  * This routine is called just before the "in-core" inode
12460  * information is to be copied to the in-memory inode block.
12461  * Recall that an inode block contains several inodes. If
12462  * the force flag is set, then the dependencies will be
12463  * cleared so that the update can always be made. Note that
12464  * the buffer is locked when this routine is called, so we
12465  * will never be in the middle of writing the inode block 
12466  * to disk.
12467  */
12468 void 
12469 softdep_update_inodeblock(
12470         struct inode *ip,       /* the "in_core" copy of the inode */
12471         struct buf *bp,         /* the buffer containing the inode block */
12472         int waitfor)            /* nonzero => update must be allowed */
12473 {
12474         struct inodedep *inodedep;
12475         struct inoref *inoref;
12476         struct ufsmount *ump;
12477         struct worklist *wk;
12478         struct mount *mp;
12479         struct buf *ibp;
12480         struct fs *fs;
12481         int error;
12482 
12483         ump = ITOUMP(ip);
12484         mp = UFSTOVFS(ump);
12485         KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12486             ("softdep_update_inodeblock called on non-softdep filesystem"));
12487         fs = ump->um_fs;
12488         /*
12489          * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12490          * does not have access to the in-core ip so must write directly into
12491          * the inode block buffer when setting freelink.
12492          */
12493         if (fs->fs_magic == FS_UFS1_MAGIC)
12494                 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12495                     ino_to_fsbo(fs, ip->i_number))->di_freelink);
12496         else
12497                 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12498                     ino_to_fsbo(fs, ip->i_number))->di_freelink);
12499         /*
12500          * If the effective link count is not equal to the actual link
12501          * count, then we must track the difference in an inodedep while
12502          * the inode is (potentially) tossed out of the cache. Otherwise,
12503          * if there is no existing inodedep, then there are no dependencies
12504          * to track.
12505          */
12506         ACQUIRE_LOCK(ump);
12507 again:
12508         if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12509                 FREE_LOCK(ump);
12510                 if (ip->i_effnlink != ip->i_nlink)
12511                         panic("softdep_update_inodeblock: bad link count");
12512                 return;
12513         }
12514         KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12515             ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12516             "inodedep %p id_nlinkdelta %jd",
12517             ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12518         inodedep->id_nlinkwrote = ip->i_nlink;
12519         if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12520                 panic("softdep_update_inodeblock: bad delta");
12521         /*
12522          * If we're flushing all dependencies we must also move any waiting
12523          * for journal writes onto the bufwait list prior to I/O.
12524          */
12525         if (waitfor) {
12526                 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12527                         if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12528                             == DEPCOMPLETE) {
12529                                 jwait(&inoref->if_list, MNT_WAIT);
12530                                 goto again;
12531                         }
12532                 }
12533         }
12534         /*
12535          * Changes have been initiated. Anything depending on these
12536          * changes cannot occur until this inode has been written.
12537          */
12538         inodedep->id_state &= ~COMPLETE;
12539         if ((inodedep->id_state & ONWORKLIST) == 0)
12540                 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12541         /*
12542          * Any new dependencies associated with the incore inode must 
12543          * now be moved to the list associated with the buffer holding
12544          * the in-memory copy of the inode. Once merged process any
12545          * allocdirects that are completed by the merger.
12546          */
12547         merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12548         if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12549                 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12550                     NULL);
12551         merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12552         if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12553                 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12554                     NULL);
12555         /*
12556          * Now that the inode has been pushed into the buffer, the
12557          * operations dependent on the inode being written to disk
12558          * can be moved to the id_bufwait so that they will be
12559          * processed when the buffer I/O completes.
12560          */
12561         while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12562                 WORKLIST_REMOVE(wk);
12563                 WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12564         }
12565         /*
12566          * Newly allocated inodes cannot be written until the bitmap
12567          * that allocates them have been written (indicated by
12568          * DEPCOMPLETE being set in id_state). If we are doing a
12569          * forced sync (e.g., an fsync on a file), we force the bitmap
12570          * to be written so that the update can be done.
12571          */
12572         if (waitfor == 0) {
12573                 FREE_LOCK(ump);
12574                 return;
12575         }
12576 retry:
12577         if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12578                 FREE_LOCK(ump);
12579                 return;
12580         }
12581         ibp = inodedep->id_bmsafemap->sm_buf;
12582         ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12583         if (ibp == NULL) {
12584                 /*
12585                  * If ibp came back as NULL, the dependency could have been
12586                  * freed while we slept.  Look it up again, and check to see
12587                  * that it has completed.
12588                  */
12589                 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12590                         goto retry;
12591                 FREE_LOCK(ump);
12592                 return;
12593         }
12594         FREE_LOCK(ump);
12595         if ((error = bwrite(ibp)) != 0)
12596                 softdep_error("softdep_update_inodeblock: bwrite", error);
12597 }
12598 
12599 /*
12600  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12601  * old inode dependency list (such as id_inoupdt).
12602  */
12603 static void
12604 merge_inode_lists(
12605         struct allocdirectlst *newlisthead,
12606         struct allocdirectlst *oldlisthead)
12607 {
12608         struct allocdirect *listadp, *newadp;
12609 
12610         newadp = TAILQ_FIRST(newlisthead);
12611         if (newadp != NULL)
12612                 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12613         for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12614                 if (listadp->ad_offset < newadp->ad_offset) {
12615                         listadp = TAILQ_NEXT(listadp, ad_next);
12616                         continue;
12617                 }
12618                 TAILQ_REMOVE(newlisthead, newadp, ad_next);
12619                 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12620                 if (listadp->ad_offset == newadp->ad_offset) {
12621                         allocdirect_merge(oldlisthead, newadp,
12622                             listadp);
12623                         listadp = newadp;
12624                 }
12625                 newadp = TAILQ_FIRST(newlisthead);
12626         }
12627         while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12628                 TAILQ_REMOVE(newlisthead, newadp, ad_next);
12629                 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12630         }
12631 }
12632 
12633 /*
12634  * If we are doing an fsync, then we must ensure that any directory
12635  * entries for the inode have been written after the inode gets to disk.
12636  */
12637 int
12638 softdep_fsync(
12639         struct vnode *vp)       /* the "in_core" copy of the inode */
12640 {
12641         struct inodedep *inodedep;
12642         struct pagedep *pagedep;
12643         struct inoref *inoref;
12644         struct ufsmount *ump;
12645         struct worklist *wk;
12646         struct diradd *dap;
12647         struct mount *mp;
12648         struct vnode *pvp;
12649         struct inode *ip;
12650         struct buf *bp;
12651         struct fs *fs;
12652         struct thread *td = curthread;
12653         int error, flushparent, pagedep_new_block;
12654         ino_t parentino;
12655         ufs_lbn_t lbn;
12656 
12657         ip = VTOI(vp);
12658         mp = vp->v_mount;
12659         ump = VFSTOUFS(mp);
12660         fs = ump->um_fs;
12661         if (MOUNTEDSOFTDEP(mp) == 0)
12662                 return (0);
12663         ACQUIRE_LOCK(ump);
12664 restart:
12665         if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12666                 FREE_LOCK(ump);
12667                 return (0);
12668         }
12669         TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12670                 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12671                     == DEPCOMPLETE) {
12672                         jwait(&inoref->if_list, MNT_WAIT);
12673                         goto restart;
12674                 }
12675         }
12676         if (!LIST_EMPTY(&inodedep->id_inowait) ||
12677             !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12678             !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12679             !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12680             !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12681                 panic("softdep_fsync: pending ops %p", inodedep);
12682         for (error = 0, flushparent = 0; ; ) {
12683                 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12684                         break;
12685                 if (wk->wk_type != D_DIRADD)
12686                         panic("softdep_fsync: Unexpected type %s",
12687                             TYPENAME(wk->wk_type));
12688                 dap = WK_DIRADD(wk);
12689                 /*
12690                  * Flush our parent if this directory entry has a MKDIR_PARENT
12691                  * dependency or is contained in a newly allocated block.
12692                  */
12693                 if (dap->da_state & DIRCHG)
12694                         pagedep = dap->da_previous->dm_pagedep;
12695                 else
12696                         pagedep = dap->da_pagedep;
12697                 parentino = pagedep->pd_ino;
12698                 lbn = pagedep->pd_lbn;
12699                 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12700                         panic("softdep_fsync: dirty");
12701                 if ((dap->da_state & MKDIR_PARENT) ||
12702                     (pagedep->pd_state & NEWBLOCK))
12703                         flushparent = 1;
12704                 else
12705                         flushparent = 0;
12706                 /*
12707                  * If we are being fsync'ed as part of vgone'ing this vnode,
12708                  * then we will not be able to release and recover the
12709                  * vnode below, so we just have to give up on writing its
12710                  * directory entry out. It will eventually be written, just
12711                  * not now, but then the user was not asking to have it
12712                  * written, so we are not breaking any promises.
12713                  */
12714                 if (VN_IS_DOOMED(vp))
12715                         break;
12716                 /*
12717                  * We prevent deadlock by always fetching inodes from the
12718                  * root, moving down the directory tree. Thus, when fetching
12719                  * our parent directory, we first try to get the lock. If
12720                  * that fails, we must unlock ourselves before requesting
12721                  * the lock on our parent. See the comment in ufs_lookup
12722                  * for details on possible races.
12723                  */
12724                 FREE_LOCK(ump);
12725                 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12726                     &pvp);
12727                 if (error == ERELOOKUP)
12728                         error = 0;
12729                 if (error != 0)
12730                         return (error);
12731                 /*
12732                  * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12733                  * that are contained in direct blocks will be resolved by 
12734                  * doing a ffs_update. Pagedeps contained in indirect blocks
12735                  * may require a complete sync'ing of the directory. So, we
12736                  * try the cheap and fast ffs_update first, and if that fails,
12737                  * then we do the slower ffs_syncvnode of the directory.
12738                  */
12739                 if (flushparent) {
12740                         int locked;
12741 
12742                         if ((error = ffs_update(pvp, 1)) != 0) {
12743                                 vput(pvp);
12744                                 return (error);
12745                         }
12746                         ACQUIRE_LOCK(ump);
12747                         locked = 1;
12748                         if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12749                                 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12750                                         if (wk->wk_type != D_DIRADD)
12751                                                 panic("softdep_fsync: Unexpected type %s",
12752                                                       TYPENAME(wk->wk_type));
12753                                         dap = WK_DIRADD(wk);
12754                                         if (dap->da_state & DIRCHG)
12755                                                 pagedep = dap->da_previous->dm_pagedep;
12756                                         else
12757                                                 pagedep = dap->da_pagedep;
12758                                         pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12759                                         FREE_LOCK(ump);
12760                                         locked = 0;
12761                                         if (pagedep_new_block) {
12762                                                 VOP_UNLOCK(vp);
12763                                                 error = ffs_syncvnode(pvp,
12764                                                     MNT_WAIT, 0);
12765                                                 if (error == 0)
12766                                                         error = ERELOOKUP;
12767                                                 vput(pvp);
12768                                                 vn_lock(vp, LK_EXCLUSIVE |
12769                                                     LK_RETRY);
12770                                                 return (error);
12771                                         }
12772                                 }
12773                         }
12774                         if (locked)
12775                                 FREE_LOCK(ump);
12776                 }
12777                 /*
12778                  * Flush directory page containing the inode's name.
12779                  */
12780                 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12781                     &bp);
12782                 if (error == 0)
12783                         error = bwrite(bp);
12784                 else
12785                         brelse(bp);
12786                 vput(pvp);
12787                 if (!ffs_fsfail_cleanup(ump, error))
12788                         return (error);
12789                 ACQUIRE_LOCK(ump);
12790                 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12791                         break;
12792         }
12793         FREE_LOCK(ump);
12794         return (0);
12795 }
12796 
12797 /*
12798  * Flush all the dirty bitmaps associated with the block device
12799  * before flushing the rest of the dirty blocks so as to reduce
12800  * the number of dependencies that will have to be rolled back.
12801  *
12802  * XXX Unused?
12803  */
12804 void
12805 softdep_fsync_mountdev(struct vnode *vp)
12806 {
12807         struct buf *bp, *nbp;
12808         struct worklist *wk;
12809         struct bufobj *bo;
12810 
12811         if (!vn_isdisk(vp))
12812                 panic("softdep_fsync_mountdev: vnode not a disk");
12813         bo = &vp->v_bufobj;
12814 restart:
12815         BO_LOCK(bo);
12816         TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12817                 /* 
12818                  * If it is already scheduled, skip to the next buffer.
12819                  */
12820                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12821                         continue;
12822 
12823                 if ((bp->b_flags & B_DELWRI) == 0)
12824                         panic("softdep_fsync_mountdev: not dirty");
12825                 /*
12826                  * We are only interested in bitmaps with outstanding
12827                  * dependencies.
12828                  */
12829                 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12830                     wk->wk_type != D_BMSAFEMAP ||
12831                     (bp->b_vflags & BV_BKGRDINPROG)) {
12832                         BUF_UNLOCK(bp);
12833                         continue;
12834                 }
12835                 BO_UNLOCK(bo);
12836                 bremfree(bp);
12837                 (void) bawrite(bp);
12838                 goto restart;
12839         }
12840         drain_output(vp);
12841         BO_UNLOCK(bo);
12842 }
12843 
12844 /*
12845  * Sync all cylinder groups that were dirty at the time this function is
12846  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12847  * is used to flush freedep activity that may be holding up writes to a
12848  * indirect block.
12849  */
12850 static int
12851 sync_cgs(struct mount *mp, int waitfor)
12852 {
12853         struct bmsafemap *bmsafemap;
12854         struct bmsafemap *sentinel;
12855         struct ufsmount *ump;
12856         struct buf *bp;
12857         int error;
12858 
12859         sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12860         sentinel->sm_cg = -1;
12861         ump = VFSTOUFS(mp);
12862         error = 0;
12863         ACQUIRE_LOCK(ump);
12864         LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12865         for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12866             bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12867                 /* Skip sentinels and cgs with no work to release. */
12868                 if (bmsafemap->sm_cg == -1 ||
12869                     (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12870                     LIST_EMPTY(&bmsafemap->sm_freewr))) {
12871                         LIST_REMOVE(sentinel, sm_next);
12872                         LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12873                         continue;
12874                 }
12875                 /*
12876                  * If we don't get the lock and we're waiting try again, if
12877                  * not move on to the next buf and try to sync it.
12878                  */
12879                 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12880                 if (bp == NULL && waitfor == MNT_WAIT)
12881                         continue;
12882                 LIST_REMOVE(sentinel, sm_next);
12883                 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12884                 if (bp == NULL)
12885                         continue;
12886                 FREE_LOCK(ump);
12887                 if (waitfor == MNT_NOWAIT)
12888                         bawrite(bp);
12889                 else
12890                         error = bwrite(bp);
12891                 ACQUIRE_LOCK(ump);
12892                 if (error)
12893                         break;
12894         }
12895         LIST_REMOVE(sentinel, sm_next);
12896         FREE_LOCK(ump);
12897         free(sentinel, M_BMSAFEMAP);
12898         return (error);
12899 }
12900 
12901 /*
12902  * This routine is called when we are trying to synchronously flush a
12903  * file. This routine must eliminate any filesystem metadata dependencies
12904  * so that the syncing routine can succeed.
12905  */
12906 int
12907 softdep_sync_metadata(struct vnode *vp)
12908 {
12909         struct inode *ip;
12910         int error;
12911 
12912         ip = VTOI(vp);
12913         KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12914             ("softdep_sync_metadata called on non-softdep filesystem"));
12915         /*
12916          * Ensure that any direct block dependencies have been cleared,
12917          * truncations are started, and inode references are journaled.
12918          */
12919         ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12920         /*
12921          * Write all journal records to prevent rollbacks on devvp.
12922          */
12923         if (vp->v_type == VCHR)
12924                 softdep_flushjournal(vp->v_mount);
12925         error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12926         /*
12927          * Ensure that all truncates are written so we won't find deps on
12928          * indirect blocks.
12929          */
12930         process_truncates(vp);
12931         FREE_LOCK(VFSTOUFS(vp->v_mount));
12932 
12933         return (error);
12934 }
12935 
12936 /*
12937  * This routine is called when we are attempting to sync a buf with
12938  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12939  * other IO it can but returns EBUSY if the buffer is not yet able to
12940  * be written.  Dependencies which will not cause rollbacks will always
12941  * return 0.
12942  */
12943 int
12944 softdep_sync_buf(struct vnode *vp,
12945         struct buf *bp,
12946         int waitfor)
12947 {
12948         struct indirdep *indirdep;
12949         struct pagedep *pagedep;
12950         struct allocindir *aip;
12951         struct newblk *newblk;
12952         struct ufsmount *ump;
12953         struct buf *nbp;
12954         struct worklist *wk;
12955         int i, error;
12956 
12957         KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12958             ("softdep_sync_buf called on non-softdep filesystem"));
12959         /*
12960          * For VCHR we just don't want to force flush any dependencies that
12961          * will cause rollbacks.
12962          */
12963         if (vp->v_type == VCHR) {
12964                 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12965                         return (EBUSY);
12966                 return (0);
12967         }
12968         ump = VFSTOUFS(vp->v_mount);
12969         ACQUIRE_LOCK(ump);
12970         /*
12971          * As we hold the buffer locked, none of its dependencies
12972          * will disappear.
12973          */
12974         error = 0;
12975 top:
12976         LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12977                 switch (wk->wk_type) {
12978                 case D_ALLOCDIRECT:
12979                 case D_ALLOCINDIR:
12980                         newblk = WK_NEWBLK(wk);
12981                         if (newblk->nb_jnewblk != NULL) {
12982                                 if (waitfor == MNT_NOWAIT) {
12983                                         error = EBUSY;
12984                                         goto out_unlock;
12985                                 }
12986                                 jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12987                                 goto top;
12988                         }
12989                         if (newblk->nb_state & DEPCOMPLETE ||
12990                             waitfor == MNT_NOWAIT)
12991                                 continue;
12992                         nbp = newblk->nb_bmsafemap->sm_buf;
12993                         nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12994                         if (nbp == NULL)
12995                                 goto top;
12996                         FREE_LOCK(ump);
12997                         if ((error = bwrite(nbp)) != 0)
12998                                 goto out;
12999                         ACQUIRE_LOCK(ump);
13000                         continue;
13001 
13002                 case D_INDIRDEP:
13003                         indirdep = WK_INDIRDEP(wk);
13004                         if (waitfor == MNT_NOWAIT) {
13005                                 if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13006                                     !LIST_EMPTY(&indirdep->ir_deplisthd)) {
13007                                         error = EBUSY;
13008                                         goto out_unlock;
13009                                 }
13010                         }
13011                         if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13012                                 panic("softdep_sync_buf: truncation pending.");
13013                 restart:
13014                         LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13015                                 newblk = (struct newblk *)aip;
13016                                 if (newblk->nb_jnewblk != NULL) {
13017                                         jwait(&newblk->nb_jnewblk->jn_list,
13018                                             waitfor);
13019                                         goto restart;
13020                                 }
13021                                 if (newblk->nb_state & DEPCOMPLETE)
13022                                         continue;
13023                                 nbp = newblk->nb_bmsafemap->sm_buf;
13024                                 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13025                                 if (nbp == NULL)
13026                                         goto restart;
13027                                 FREE_LOCK(ump);
13028                                 if ((error = bwrite(nbp)) != 0)
13029                                         goto out;
13030                                 ACQUIRE_LOCK(ump);
13031                                 goto restart;
13032                         }
13033                         continue;
13034 
13035                 case D_PAGEDEP:
13036                         /*
13037                          * Only flush directory entries in synchronous passes.
13038                          */
13039                         if (waitfor != MNT_WAIT) {
13040                                 error = EBUSY;
13041                                 goto out_unlock;
13042                         }
13043                         /*
13044                          * While syncing snapshots, we must allow recursive
13045                          * lookups.
13046                          */
13047                         BUF_AREC(bp);
13048                         /*
13049                          * We are trying to sync a directory that may
13050                          * have dependencies on both its own metadata
13051                          * and/or dependencies on the inodes of any
13052                          * recently allocated files. We walk its diradd
13053                          * lists pushing out the associated inode.
13054                          */
13055                         pagedep = WK_PAGEDEP(wk);
13056                         for (i = 0; i < DAHASHSZ; i++) {
13057                                 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13058                                         continue;
13059                                 error = flush_pagedep_deps(vp, wk->wk_mp,
13060                                     &pagedep->pd_diraddhd[i], bp);
13061                                 if (error != 0) {
13062                                         if (error != ERELOOKUP)
13063                                                 BUF_NOREC(bp);
13064                                         goto out_unlock;
13065                                 }
13066                         }
13067                         BUF_NOREC(bp);
13068                         continue;
13069 
13070                 case D_FREEWORK:
13071                 case D_FREEDEP:
13072                 case D_JSEGDEP:
13073                 case D_JNEWBLK:
13074                         continue;
13075 
13076                 default:
13077                         panic("softdep_sync_buf: Unknown type %s",
13078                             TYPENAME(wk->wk_type));
13079                         /* NOTREACHED */
13080                 }
13081         }
13082 out_unlock:
13083         FREE_LOCK(ump);
13084 out:
13085         return (error);
13086 }
13087 
13088 /*
13089  * Flush the dependencies associated with an inodedep.
13090  */
13091 static int
13092 flush_inodedep_deps(
13093         struct vnode *vp,
13094         struct mount *mp,
13095         ino_t ino)
13096 {
13097         struct inodedep *inodedep;
13098         struct inoref *inoref;
13099         struct ufsmount *ump;
13100         int error, waitfor;
13101 
13102         /*
13103          * This work is done in two passes. The first pass grabs most
13104          * of the buffers and begins asynchronously writing them. The
13105          * only way to wait for these asynchronous writes is to sleep
13106          * on the filesystem vnode which may stay busy for a long time
13107          * if the filesystem is active. So, instead, we make a second
13108          * pass over the dependencies blocking on each write. In the
13109          * usual case we will be blocking against a write that we
13110          * initiated, so when it is done the dependency will have been
13111          * resolved. Thus the second pass is expected to end quickly.
13112          * We give a brief window at the top of the loop to allow
13113          * any pending I/O to complete.
13114          */
13115         ump = VFSTOUFS(mp);
13116         LOCK_OWNED(ump);
13117         for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13118                 if (error)
13119                         return (error);
13120                 FREE_LOCK(ump);
13121                 ACQUIRE_LOCK(ump);
13122 restart:
13123                 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13124                         return (0);
13125                 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13126                         if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13127                             == DEPCOMPLETE) {
13128                                 jwait(&inoref->if_list, MNT_WAIT);
13129                                 goto restart;
13130                         }
13131                 }
13132                 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13133                     flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13134                     flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13135                     flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13136                         continue;
13137                 /*
13138                  * If pass2, we are done, otherwise do pass 2.
13139                  */
13140                 if (waitfor == MNT_WAIT)
13141                         break;
13142                 waitfor = MNT_WAIT;
13143         }
13144         /*
13145          * Try freeing inodedep in case all dependencies have been removed.
13146          */
13147         if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13148                 (void) free_inodedep(inodedep);
13149         return (0);
13150 }
13151 
13152 /*
13153  * Flush an inode dependency list.
13154  */
13155 static int
13156 flush_deplist(
13157         struct allocdirectlst *listhead,
13158         int waitfor,
13159         int *errorp)
13160 {
13161         struct allocdirect *adp;
13162         struct newblk *newblk;
13163         struct ufsmount *ump;
13164         struct buf *bp;
13165 
13166         if ((adp = TAILQ_FIRST(listhead)) == NULL)
13167                 return (0);
13168         ump = VFSTOUFS(adp->ad_list.wk_mp);
13169         LOCK_OWNED(ump);
13170         TAILQ_FOREACH(adp, listhead, ad_next) {
13171                 newblk = (struct newblk *)adp;
13172                 if (newblk->nb_jnewblk != NULL) {
13173                         jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13174                         return (1);
13175                 }
13176                 if (newblk->nb_state & DEPCOMPLETE)
13177                         continue;
13178                 bp = newblk->nb_bmsafemap->sm_buf;
13179                 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13180                 if (bp == NULL) {
13181                         if (waitfor == MNT_NOWAIT)
13182                                 continue;
13183                         return (1);
13184                 }
13185                 FREE_LOCK(ump);
13186                 if (waitfor == MNT_NOWAIT)
13187                         bawrite(bp);
13188                 else 
13189                         *errorp = bwrite(bp);
13190                 ACQUIRE_LOCK(ump);
13191                 return (1);
13192         }
13193         return (0);
13194 }
13195 
13196 /*
13197  * Flush dependencies associated with an allocdirect block.
13198  */
13199 static int
13200 flush_newblk_dep(
13201         struct vnode *vp,
13202         struct mount *mp,
13203         ufs_lbn_t lbn)
13204 {
13205         struct newblk *newblk;
13206         struct ufsmount *ump;
13207         struct bufobj *bo;
13208         struct inode *ip;
13209         struct buf *bp;
13210         ufs2_daddr_t blkno;
13211         int error;
13212 
13213         error = 0;
13214         bo = &vp->v_bufobj;
13215         ip = VTOI(vp);
13216         blkno = DIP(ip, i_db[lbn]);
13217         if (blkno == 0)
13218                 panic("flush_newblk_dep: Missing block");
13219         ump = VFSTOUFS(mp);
13220         ACQUIRE_LOCK(ump);
13221         /*
13222          * Loop until all dependencies related to this block are satisfied.
13223          * We must be careful to restart after each sleep in case a write
13224          * completes some part of this process for us.
13225          */
13226         for (;;) {
13227                 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13228                         FREE_LOCK(ump);
13229                         break;
13230                 }
13231                 if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13232                         panic("flush_newblk_dep: Bad newblk %p", newblk);
13233                 /*
13234                  * Flush the journal.
13235                  */
13236                 if (newblk->nb_jnewblk != NULL) {
13237                         jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13238                         continue;
13239                 }
13240                 /*
13241                  * Write the bitmap dependency.
13242                  */
13243                 if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13244                         bp = newblk->nb_bmsafemap->sm_buf;
13245                         bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13246                         if (bp == NULL)
13247                                 continue;
13248                         FREE_LOCK(ump);
13249                         error = bwrite(bp);
13250                         if (error)
13251                                 break;
13252                         ACQUIRE_LOCK(ump);
13253                         continue;
13254                 }
13255                 /*
13256                  * Write the buffer.
13257                  */
13258                 FREE_LOCK(ump);
13259                 BO_LOCK(bo);
13260                 bp = gbincore(bo, lbn);
13261                 if (bp != NULL) {
13262                         error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13263                             LK_INTERLOCK, BO_LOCKPTR(bo));
13264                         if (error == ENOLCK) {
13265                                 ACQUIRE_LOCK(ump);
13266                                 error = 0;
13267                                 continue; /* Slept, retry */
13268                         }
13269                         if (error != 0)
13270                                 break;  /* Failed */
13271                         if (bp->b_flags & B_DELWRI) {
13272                                 bremfree(bp);
13273                                 error = bwrite(bp);
13274                                 if (error)
13275                                         break;
13276                         } else
13277                                 BUF_UNLOCK(bp);
13278                 } else
13279                         BO_UNLOCK(bo);
13280                 /*
13281                  * We have to wait for the direct pointers to
13282                  * point at the newdirblk before the dependency
13283                  * will go away.
13284                  */
13285                 error = ffs_update(vp, 1);
13286                 if (error)
13287                         break;
13288                 ACQUIRE_LOCK(ump);
13289         }
13290         return (error);
13291 }
13292 
13293 /*
13294  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13295  */
13296 static int
13297 flush_pagedep_deps(
13298         struct vnode *pvp,
13299         struct mount *mp,
13300         struct diraddhd *diraddhdp,
13301         struct buf *locked_bp)
13302 {
13303         struct inodedep *inodedep;
13304         struct inoref *inoref;
13305         struct ufsmount *ump;
13306         struct diradd *dap;
13307         struct vnode *vp;
13308         int error = 0;
13309         struct buf *bp;
13310         ino_t inum;
13311         struct diraddhd unfinished;
13312 
13313         LIST_INIT(&unfinished);
13314         ump = VFSTOUFS(mp);
13315         LOCK_OWNED(ump);
13316 restart:
13317         while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13318                 /*
13319                  * Flush ourselves if this directory entry
13320                  * has a MKDIR_PARENT dependency.
13321                  */
13322                 if (dap->da_state & MKDIR_PARENT) {
13323                         FREE_LOCK(ump);
13324                         if ((error = ffs_update(pvp, 1)) != 0)
13325                                 break;
13326                         ACQUIRE_LOCK(ump);
13327                         /*
13328                          * If that cleared dependencies, go on to next.
13329                          */
13330                         if (dap != LIST_FIRST(diraddhdp))
13331                                 continue;
13332                         /*
13333                          * All MKDIR_PARENT dependencies and all the
13334                          * NEWBLOCK pagedeps that are contained in direct
13335                          * blocks were resolved by doing above ffs_update.
13336                          * Pagedeps contained in indirect blocks may
13337                          * require a complete sync'ing of the directory.
13338                          * We are in the midst of doing a complete sync,
13339                          * so if they are not resolved in this pass we
13340                          * defer them for now as they will be sync'ed by
13341                          * our caller shortly.
13342                          */
13343                         LIST_REMOVE(dap, da_pdlist);
13344                         LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13345                         continue;
13346                 }
13347                 /*
13348                  * A newly allocated directory must have its "." and
13349                  * ".." entries written out before its name can be
13350                  * committed in its parent. 
13351                  */
13352                 inum = dap->da_newinum;
13353                 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13354                         panic("flush_pagedep_deps: lost inode1");
13355                 /*
13356                  * Wait for any pending journal adds to complete so we don't
13357                  * cause rollbacks while syncing.
13358                  */
13359                 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13360                         if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13361                             == DEPCOMPLETE) {
13362                                 jwait(&inoref->if_list, MNT_WAIT);
13363                                 goto restart;
13364                         }
13365                 }
13366                 if (dap->da_state & MKDIR_BODY) {
13367                         FREE_LOCK(ump);
13368                         error = get_parent_vp(pvp, mp, inum, locked_bp,
13369                             diraddhdp, &unfinished, &vp);
13370                         if (error != 0)
13371                                 break;
13372                         error = flush_newblk_dep(vp, mp, 0);
13373                         /*
13374                          * If we still have the dependency we might need to
13375                          * update the vnode to sync the new link count to
13376                          * disk.
13377                          */
13378                         if (error == 0 && dap == LIST_FIRST(diraddhdp))
13379                                 error = ffs_update(vp, 1);
13380                         vput(vp);
13381                         if (error != 0)
13382                                 break;
13383                         ACQUIRE_LOCK(ump);
13384                         /*
13385                          * If that cleared dependencies, go on to next.
13386                          */
13387                         if (dap != LIST_FIRST(diraddhdp))
13388                                 continue;
13389                         if (dap->da_state & MKDIR_BODY) {
13390                                 inodedep_lookup(UFSTOVFS(ump), inum, 0,
13391                                     &inodedep);
13392                                 panic("flush_pagedep_deps: MKDIR_BODY "
13393                                     "inodedep %p dap %p vp %p",
13394                                     inodedep, dap, vp);
13395                         }
13396                 }
13397                 /*
13398                  * Flush the inode on which the directory entry depends.
13399                  * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13400                  * the only remaining dependency is that the updated inode
13401                  * count must get pushed to disk. The inode has already
13402                  * been pushed into its inode buffer (via VOP_UPDATE) at
13403                  * the time of the reference count change. So we need only
13404                  * locate that buffer, ensure that there will be no rollback
13405                  * caused by a bitmap dependency, then write the inode buffer.
13406                  */
13407 retry:
13408                 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13409                         panic("flush_pagedep_deps: lost inode");
13410                 /*
13411                  * If the inode still has bitmap dependencies,
13412                  * push them to disk.
13413                  */
13414                 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13415                         bp = inodedep->id_bmsafemap->sm_buf;
13416                         bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13417                         if (bp == NULL)
13418                                 goto retry;
13419                         FREE_LOCK(ump);
13420                         if ((error = bwrite(bp)) != 0)
13421                                 break;
13422                         ACQUIRE_LOCK(ump);
13423                         if (dap != LIST_FIRST(diraddhdp))
13424                                 continue;
13425                 }
13426                 /*
13427                  * If the inode is still sitting in a buffer waiting
13428                  * to be written or waiting for the link count to be
13429                  * adjusted update it here to flush it to disk.
13430                  */
13431                 if (dap == LIST_FIRST(diraddhdp)) {
13432                         FREE_LOCK(ump);
13433                         error = get_parent_vp(pvp, mp, inum, locked_bp,
13434                             diraddhdp, &unfinished, &vp);
13435                         if (error != 0)
13436                                 break;
13437                         error = ffs_update(vp, 1);
13438                         vput(vp);
13439                         if (error)
13440                                 break;
13441                         ACQUIRE_LOCK(ump);
13442                 }
13443                 /*
13444                  * If we have failed to get rid of all the dependencies
13445                  * then something is seriously wrong.
13446                  */
13447                 if (dap == LIST_FIRST(diraddhdp)) {
13448                         inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13449                         panic("flush_pagedep_deps: failed to flush " 
13450                             "inodedep %p ino %ju dap %p",
13451                             inodedep, (uintmax_t)inum, dap);
13452                 }
13453         }
13454         if (error)
13455                 ACQUIRE_LOCK(ump);
13456         while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13457                 LIST_REMOVE(dap, da_pdlist);
13458                 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13459         }
13460         return (error);
13461 }
13462 
13463 /*
13464  * A large burst of file addition or deletion activity can drive the
13465  * memory load excessively high. First attempt to slow things down
13466  * using the techniques below. If that fails, this routine requests
13467  * the offending operations to fall back to running synchronously
13468  * until the memory load returns to a reasonable level.
13469  */
13470 int
13471 softdep_slowdown(struct vnode *vp)
13472 {
13473         struct ufsmount *ump;
13474         int jlow;
13475         int max_softdeps_hard;
13476 
13477         KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13478             ("softdep_slowdown called on non-softdep filesystem"));
13479         ump = VFSTOUFS(vp->v_mount);
13480         ACQUIRE_LOCK(ump);
13481         jlow = 0;
13482         /*
13483          * Check for journal space if needed.
13484          */
13485         if (DOINGSUJ(vp)) {
13486                 if (journal_space(ump, 0) == 0)
13487                         jlow = 1;
13488         }
13489         /*
13490          * If the system is under its limits and our filesystem is
13491          * not responsible for more than our share of the usage and
13492          * we are not low on journal space, then no need to slow down.
13493          */
13494         max_softdeps_hard = max_softdeps * 11 / 10;
13495         if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13496             dep_current[D_INODEDEP] < max_softdeps_hard &&
13497             dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13498             dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13499             ump->softdep_curdeps[D_DIRREM] <
13500             (max_softdeps_hard / 2) / stat_flush_threads &&
13501             ump->softdep_curdeps[D_INODEDEP] <
13502             max_softdeps_hard / stat_flush_threads &&
13503             ump->softdep_curdeps[D_INDIRDEP] <
13504             (max_softdeps_hard / 1000) / stat_flush_threads &&
13505             ump->softdep_curdeps[D_FREEBLKS] <
13506             max_softdeps_hard / stat_flush_threads) {
13507                 FREE_LOCK(ump);
13508                 return (0);
13509         }
13510         /*
13511          * If the journal is low or our filesystem is over its limit
13512          * then speedup the cleanup.
13513          */
13514         if (ump->softdep_curdeps[D_INDIRDEP] <
13515             (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13516                 softdep_speedup(ump);
13517         stat_sync_limit_hit += 1;
13518         FREE_LOCK(ump);
13519         /*
13520          * We only slow down the rate at which new dependencies are
13521          * generated if we are not using journaling. With journaling,
13522          * the cleanup should always be sufficient to keep things
13523          * under control.
13524          */
13525         if (DOINGSUJ(vp))
13526                 return (0);
13527         return (1);
13528 }
13529 
13530 static int
13531 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13532 {
13533         return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13534             ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13535 }
13536 
13537 static void
13538 softdep_request_cleanup_inactivate(struct mount *mp)
13539 {
13540         struct vnode *vp, *mvp;
13541         int error;
13542 
13543         MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13544             NULL) {
13545                 vholdl(vp);
13546                 vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13547                 VI_LOCK(vp);
13548                 if (IS_UFS(vp) && vp->v_usecount == 0) {
13549                         while ((vp->v_iflag & VI_OWEINACT) != 0) {
13550                                 error = vinactive(vp);
13551                                 if (error != 0 && error != ERELOOKUP)
13552                                         break;
13553                         }
13554                         atomic_add_int(&stat_delayed_inact, 1);
13555                 }
13556                 VOP_UNLOCK(vp);
13557                 vdropl(vp);
13558         }
13559 }
13560 
13561 /*
13562  * Called by the allocation routines when they are about to fail
13563  * in the hope that we can free up the requested resource (inodes
13564  * or disk space).
13565  * 
13566  * First check to see if the work list has anything on it. If it has,
13567  * clean up entries until we successfully free the requested resource.
13568  * Because this process holds inodes locked, we cannot handle any remove
13569  * requests that might block on a locked inode as that could lead to
13570  * deadlock. If the worklist yields none of the requested resource,
13571  * start syncing out vnodes to free up the needed space.
13572  */
13573 int
13574 softdep_request_cleanup(
13575         struct fs *fs,
13576         struct vnode *vp,
13577         struct ucred *cred,
13578         int resource)
13579 {
13580         struct ufsmount *ump;
13581         struct mount *mp;
13582         long starttime;
13583         ufs2_daddr_t needed;
13584         int error, failed_vnode;
13585 
13586         /*
13587          * If we are being called because of a process doing a
13588          * copy-on-write, then it is not safe to process any
13589          * worklist items as we will recurse into the copyonwrite
13590          * routine.  This will result in an incoherent snapshot.
13591          * If the vnode that we hold is a snapshot, we must avoid
13592          * handling other resources that could cause deadlock.
13593          */
13594         if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13595                 return (0);
13596 
13597         if (resource == FLUSH_BLOCKS_WAIT)
13598                 stat_cleanup_blkrequests += 1;
13599         else
13600                 stat_cleanup_inorequests += 1;
13601 
13602         mp = vp->v_mount;
13603         ump = VFSTOUFS(mp);
13604         mtx_assert(UFS_MTX(ump), MA_OWNED);
13605         UFS_UNLOCK(ump);
13606         error = ffs_update(vp, 1);
13607         if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13608                 UFS_LOCK(ump);
13609                 return (0);
13610         }
13611         /*
13612          * If we are in need of resources, start by cleaning up
13613          * any block removals associated with our inode.
13614          */
13615         ACQUIRE_LOCK(ump);
13616         process_removes(vp);
13617         process_truncates(vp);
13618         FREE_LOCK(ump);
13619         /*
13620          * Now clean up at least as many resources as we will need.
13621          *
13622          * When requested to clean up inodes, the number that are needed
13623          * is set by the number of simultaneous writers (mnt_writeopcount)
13624          * plus a bit of slop (2) in case some more writers show up while
13625          * we are cleaning.
13626          *
13627          * When requested to free up space, the amount of space that
13628          * we need is enough blocks to allocate a full-sized segment
13629          * (fs_contigsumsize). The number of such segments that will
13630          * be needed is set by the number of simultaneous writers
13631          * (mnt_writeopcount) plus a bit of slop (2) in case some more
13632          * writers show up while we are cleaning.
13633          *
13634          * Additionally, if we are unpriviledged and allocating space,
13635          * we need to ensure that we clean up enough blocks to get the
13636          * needed number of blocks over the threshold of the minimum
13637          * number of blocks required to be kept free by the filesystem
13638          * (fs_minfree).
13639          */
13640         if (resource == FLUSH_INODES_WAIT) {
13641                 needed = vfs_mount_fetch_counter(vp->v_mount,
13642                     MNT_COUNT_WRITEOPCOUNT) + 2;
13643         } else if (resource == FLUSH_BLOCKS_WAIT) {
13644                 needed = (vfs_mount_fetch_counter(vp->v_mount,
13645                     MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13646                 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13647                         needed += fragstoblks(fs,
13648                             roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13649                             fs->fs_cstotal.cs_nffree, fs->fs_frag));
13650         } else {
13651                 printf("softdep_request_cleanup: Unknown resource type %d\n",
13652                     resource);
13653                 UFS_LOCK(ump);
13654                 return (0);
13655         }
13656         starttime = time_second;
13657 retry:
13658         if (resource == FLUSH_BLOCKS_WAIT &&
13659             fs->fs_cstotal.cs_nbfree <= needed)
13660                 softdep_send_speedup(ump, needed * fs->fs_bsize,
13661                     BIO_SPEEDUP_TRIM);
13662         if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13663             fs->fs_cstotal.cs_nbfree <= needed) ||
13664             (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13665             fs->fs_cstotal.cs_nifree <= needed)) {
13666                 ACQUIRE_LOCK(ump);
13667                 if (ump->softdep_on_worklist > 0 &&
13668                     process_worklist_item(UFSTOVFS(ump),
13669                     ump->softdep_on_worklist, LK_NOWAIT) != 0)
13670                         stat_worklist_push += 1;
13671                 FREE_LOCK(ump);
13672         }
13673 
13674         /*
13675          * Check that there are vnodes pending inactivation.  As they
13676          * have been unlinked, inactivating them will free up their
13677          * inodes.
13678          */
13679         ACQUIRE_LOCK(ump);
13680         if (resource == FLUSH_INODES_WAIT &&
13681             fs->fs_cstotal.cs_nifree <= needed &&
13682             fs->fs_pendinginodes <= needed) {
13683                 if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13684                         ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13685                         FREE_LOCK(ump);
13686                         softdep_request_cleanup_inactivate(mp);
13687                         ACQUIRE_LOCK(ump);
13688                         ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13689                         wakeup(&ump->um_softdep->sd_flags);
13690                 } else {
13691                         while ((ump->um_softdep->sd_flags &
13692                             FLUSH_DI_ACTIVE) != 0) {
13693                                 msleep(&ump->um_softdep->sd_flags,
13694                                     LOCK_PTR(ump), PVM, "ffsvina", hz);
13695                         }
13696                 }
13697         }
13698         FREE_LOCK(ump);
13699 
13700         /*
13701          * If we still need resources and there are no more worklist
13702          * entries to process to obtain them, we have to start flushing
13703          * the dirty vnodes to force the release of additional requests
13704          * to the worklist that we can then process to reap addition
13705          * resources. We walk the vnodes associated with the mount point
13706          * until we get the needed worklist requests that we can reap.
13707          *
13708          * If there are several threads all needing to clean the same
13709          * mount point, only one is allowed to walk the mount list.
13710          * When several threads all try to walk the same mount list,
13711          * they end up competing with each other and often end up in
13712          * livelock. This approach ensures that forward progress is
13713          * made at the cost of occational ENOSPC errors being returned
13714          * that might otherwise have been avoided.
13715          */
13716         error = 1;
13717         if ((resource == FLUSH_BLOCKS_WAIT && 
13718              fs->fs_cstotal.cs_nbfree <= needed) ||
13719             (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13720              fs->fs_cstotal.cs_nifree <= needed)) {
13721                 ACQUIRE_LOCK(ump);
13722                 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13723                         ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13724                         FREE_LOCK(ump);
13725                         failed_vnode = softdep_request_cleanup_flush(mp, ump);
13726                         ACQUIRE_LOCK(ump);
13727                         ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13728                         wakeup(&ump->um_softdep->sd_flags);
13729                         FREE_LOCK(ump);
13730                         if (ump->softdep_on_worklist > 0) {
13731                                 stat_cleanup_retries += 1;
13732                                 if (!failed_vnode)
13733                                         goto retry;
13734                         }
13735                 } else {
13736                         while ((ump->um_softdep->sd_flags &
13737                             FLUSH_RC_ACTIVE) != 0) {
13738                                 msleep(&ump->um_softdep->sd_flags,
13739                                     LOCK_PTR(ump), PVM, "ffsrca", hz);
13740                         }
13741                         FREE_LOCK(ump);
13742                         error = 0;
13743                 }
13744                 stat_cleanup_failures += 1;
13745         }
13746         if (time_second - starttime > stat_cleanup_high_delay)
13747                 stat_cleanup_high_delay = time_second - starttime;
13748         UFS_LOCK(ump);
13749         return (error);
13750 }
13751 
13752 /*
13753  * Scan the vnodes for the specified mount point flushing out any
13754  * vnodes that can be locked without waiting. Finally, try to flush
13755  * the device associated with the mount point if it can be locked
13756  * without waiting.
13757  *
13758  * We return 0 if we were able to lock every vnode in our scan.
13759  * If we had to skip one or more vnodes, we return 1.
13760  */
13761 static int
13762 softdep_request_cleanup_flush(struct mount *mp, struct ufsmount *ump)
13763 {
13764         struct thread *td;
13765         struct vnode *lvp, *mvp;
13766         int failed_vnode;
13767 
13768         failed_vnode = 0;
13769         td = curthread;
13770         MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13771                 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13772                         VI_UNLOCK(lvp);
13773                         continue;
13774                 }
13775                 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
13776                         failed_vnode = 1;
13777                         continue;
13778                 }
13779                 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */
13780                         vput(lvp);
13781                         continue;
13782                 }
13783                 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13784                 vput(lvp);
13785         }
13786         lvp = ump->um_devvp;
13787         if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13788                 VOP_FSYNC(lvp, MNT_NOWAIT, td);
13789                 VOP_UNLOCK(lvp);
13790         }
13791         return (failed_vnode);
13792 }
13793 
13794 static bool
13795 softdep_excess_items(struct ufsmount *ump, int item)
13796 {
13797 
13798         KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13799         return (dep_current[item] > max_softdeps &&
13800             ump->softdep_curdeps[item] > max_softdeps /
13801             stat_flush_threads);
13802 }
13803 
13804 static void
13805 schedule_cleanup(struct mount *mp)
13806 {
13807         struct ufsmount *ump;
13808         struct thread *td;
13809 
13810         ump = VFSTOUFS(mp);
13811         LOCK_OWNED(ump);
13812         FREE_LOCK(ump);
13813         td = curthread;
13814         if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13815             (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13816                 /*
13817                  * No ast is delivered to kernel threads, so nobody
13818                  * would deref the mp.  Some kernel threads
13819                  * explicitly check for AST, e.g. NFS daemon does
13820                  * this in the serving loop.
13821                  */
13822                 return;
13823         }
13824         if (td->td_su != NULL)
13825                 vfs_rel(td->td_su);
13826         vfs_ref(mp);
13827         td->td_su = mp;
13828         ast_sched(td, TDA_UFS);
13829 }
13830 
13831 static void
13832 softdep_ast_cleanup_proc(struct thread *td, int ast __unused)
13833 {
13834         struct mount *mp;
13835         struct ufsmount *ump;
13836         int error;
13837         bool req;
13838 
13839         while ((mp = td->td_su) != NULL) {
13840                 td->td_su = NULL;
13841                 error = vfs_busy(mp, MBF_NOWAIT);
13842                 vfs_rel(mp);
13843                 if (error != 0)
13844                         return;
13845                 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13846                         ump = VFSTOUFS(mp);
13847                         for (;;) {
13848                                 req = false;
13849                                 ACQUIRE_LOCK(ump);
13850                                 if (softdep_excess_items(ump, D_INODEDEP)) {
13851                                         req = true;
13852                                         request_cleanup(mp, FLUSH_INODES);
13853                                 }
13854                                 if (softdep_excess_items(ump, D_DIRREM)) {
13855                                         req = true;
13856                                         request_cleanup(mp, FLUSH_BLOCKS);
13857                                 }
13858                                 FREE_LOCK(ump);
13859                                 if (softdep_excess_items(ump, D_NEWBLK) ||
13860                                     softdep_excess_items(ump, D_ALLOCDIRECT) ||
13861                                     softdep_excess_items(ump, D_ALLOCINDIR)) {
13862                                         error = vn_start_write(NULL, &mp,
13863                                             V_WAIT);
13864                                         if (error == 0) {
13865                                                 req = true;
13866                                                 VFS_SYNC(mp, MNT_WAIT);
13867                                                 vn_finished_write(mp);
13868                                         }
13869                                 }
13870                                 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13871                                         break;
13872                         }
13873                 }
13874                 vfs_unbusy(mp);
13875         }
13876         if ((mp = td->td_su) != NULL) {
13877                 td->td_su = NULL;
13878                 vfs_rel(mp);
13879         }
13880 }
13881 
13882 /*
13883  * If memory utilization has gotten too high, deliberately slow things
13884  * down and speed up the I/O processing.
13885  */
13886 static int
13887 request_cleanup(struct mount *mp, int resource)
13888 {
13889         struct thread *td = curthread;
13890         struct ufsmount *ump;
13891 
13892         ump = VFSTOUFS(mp);
13893         LOCK_OWNED(ump);
13894         /*
13895          * We never hold up the filesystem syncer or buf daemon.
13896          */
13897         if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13898                 return (0);
13899         /*
13900          * First check to see if the work list has gotten backlogged.
13901          * If it has, co-opt this process to help clean up two entries.
13902          * Because this process may hold inodes locked, we cannot
13903          * handle any remove requests that might block on a locked
13904          * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13905          * to avoid recursively processing the worklist.
13906          */
13907         if (ump->softdep_on_worklist > max_softdeps / 10) {
13908                 td->td_pflags |= TDP_SOFTDEP;
13909                 process_worklist_item(mp, 2, LK_NOWAIT);
13910                 td->td_pflags &= ~TDP_SOFTDEP;
13911                 stat_worklist_push += 2;
13912                 return(1);
13913         }
13914         /*
13915          * Next, we attempt to speed up the syncer process. If that
13916          * is successful, then we allow the process to continue.
13917          */
13918         if (softdep_speedup(ump) &&
13919             resource != FLUSH_BLOCKS_WAIT &&
13920             resource != FLUSH_INODES_WAIT)
13921                 return(0);
13922         /*
13923          * If we are resource constrained on inode dependencies, try
13924          * flushing some dirty inodes. Otherwise, we are constrained
13925          * by file deletions, so try accelerating flushes of directories
13926          * with removal dependencies. We would like to do the cleanup
13927          * here, but we probably hold an inode locked at this point and 
13928          * that might deadlock against one that we try to clean. So,
13929          * the best that we can do is request the syncer daemon to do
13930          * the cleanup for us.
13931          */
13932         switch (resource) {
13933         case FLUSH_INODES:
13934         case FLUSH_INODES_WAIT:
13935                 ACQUIRE_GBLLOCK(&lk);
13936                 stat_ino_limit_push += 1;
13937                 req_clear_inodedeps += 1;
13938                 FREE_GBLLOCK(&lk);
13939                 stat_countp = &stat_ino_limit_hit;
13940                 break;
13941 
13942         case FLUSH_BLOCKS:
13943         case FLUSH_BLOCKS_WAIT:
13944                 ACQUIRE_GBLLOCK(&lk);
13945                 stat_blk_limit_push += 1;
13946                 req_clear_remove += 1;
13947                 FREE_GBLLOCK(&lk);
13948                 stat_countp = &stat_blk_limit_hit;
13949                 break;
13950 
13951         default:
13952                 panic("request_cleanup: unknown type");
13953         }
13954         /*
13955          * Hopefully the syncer daemon will catch up and awaken us.
13956          * We wait at most tickdelay before proceeding in any case.
13957          */
13958         ACQUIRE_GBLLOCK(&lk);
13959         FREE_LOCK(ump);
13960         proc_waiting += 1;
13961         if (callout_pending(&softdep_callout) == FALSE)
13962                 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13963                     pause_timer, 0);
13964 
13965         if ((td->td_pflags & TDP_KTHREAD) == 0)
13966                 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13967         proc_waiting -= 1;
13968         FREE_GBLLOCK(&lk);
13969         ACQUIRE_LOCK(ump);
13970         return (1);
13971 }
13972 
13973 /*
13974  * Awaken processes pausing in request_cleanup and clear proc_waiting
13975  * to indicate that there is no longer a timer running. Pause_timer
13976  * will be called with the global softdep mutex (&lk) locked.
13977  */
13978 static void
13979 pause_timer(void *arg)
13980 {
13981 
13982         GBLLOCK_OWNED(&lk);
13983         /*
13984          * The callout_ API has acquired mtx and will hold it around this
13985          * function call.
13986          */
13987         *stat_countp += proc_waiting;
13988         wakeup(&proc_waiting);
13989 }
13990 
13991 /*
13992  * If requested, try removing inode or removal dependencies.
13993  */
13994 static void
13995 check_clear_deps(struct mount *mp)
13996 {
13997         struct ufsmount *ump;
13998         bool suj_susp;
13999 
14000         /*
14001          * Tell the lower layers that any TRIM or WRITE transactions that have
14002          * been delayed for performance reasons should proceed to help alleviate
14003          * the shortage faster. The race between checking req_* and the softdep
14004          * mutex (lk) is fine since this is an advisory operation that at most
14005          * causes deferred work to be done sooner.
14006          */
14007         ump = VFSTOUFS(mp);
14008         suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14009             ump->softdep_jblocks->jb_suspended;
14010         if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14011                 FREE_LOCK(ump);
14012                 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14013                 ACQUIRE_LOCK(ump);
14014         }
14015 
14016         /*
14017          * If we are suspended, it may be because of our using
14018          * too many inodedeps, so help clear them out.
14019          */
14020         if (suj_susp)
14021                 clear_inodedeps(mp);
14022 
14023         /*
14024          * General requests for cleanup of backed up dependencies
14025          */
14026         ACQUIRE_GBLLOCK(&lk);
14027         if (req_clear_inodedeps) {
14028                 req_clear_inodedeps -= 1;
14029                 FREE_GBLLOCK(&lk);
14030                 clear_inodedeps(mp);
14031                 ACQUIRE_GBLLOCK(&lk);
14032                 wakeup(&proc_waiting);
14033         }
14034         if (req_clear_remove) {
14035                 req_clear_remove -= 1;
14036                 FREE_GBLLOCK(&lk);
14037                 clear_remove(mp);
14038                 ACQUIRE_GBLLOCK(&lk);
14039                 wakeup(&proc_waiting);
14040         }
14041         FREE_GBLLOCK(&lk);
14042 }
14043 
14044 /*
14045  * Flush out a directory with at least one removal dependency in an effort to
14046  * reduce the number of dirrem, freefile, and freeblks dependency structures.
14047  */
14048 static void
14049 clear_remove(struct mount *mp)
14050 {
14051         struct pagedep_hashhead *pagedephd;
14052         struct pagedep *pagedep;
14053         struct ufsmount *ump;
14054         struct vnode *vp;
14055         struct bufobj *bo;
14056         int error, cnt;
14057         ino_t ino;
14058 
14059         ump = VFSTOUFS(mp);
14060         LOCK_OWNED(ump);
14061 
14062         for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14063                 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14064                 if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14065                         ump->pagedep_nextclean = 0;
14066                 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14067                         if (LIST_EMPTY(&pagedep->pd_dirremhd))
14068                                 continue;
14069                         ino = pagedep->pd_ino;
14070                         if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14071                                 continue;
14072                         FREE_LOCK(ump);
14073 
14074                         /*
14075                          * Let unmount clear deps
14076                          */
14077                         error = vfs_busy(mp, MBF_NOWAIT);
14078                         if (error != 0)
14079                                 goto finish_write;
14080                         error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14081                              FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14082                         vfs_unbusy(mp);
14083                         if (error != 0) {
14084                                 softdep_error("clear_remove: vget", error);
14085                                 goto finish_write;
14086                         }
14087                         MPASS(VTOI(vp)->i_mode != 0);
14088                         if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14089                                 softdep_error("clear_remove: fsync", error);
14090                         bo = &vp->v_bufobj;
14091                         BO_LOCK(bo);
14092                         drain_output(vp);
14093                         BO_UNLOCK(bo);
14094                         vput(vp);
14095                 finish_write:
14096                         vn_finished_write(mp);
14097                         ACQUIRE_LOCK(ump);
14098                         return;
14099                 }
14100         }
14101 }
14102 
14103 /*
14104  * Clear out a block of dirty inodes in an effort to reduce
14105  * the number of inodedep dependency structures.
14106  */
14107 static void
14108 clear_inodedeps(struct mount *mp)
14109 {
14110         struct inodedep_hashhead *inodedephd;
14111         struct inodedep *inodedep;
14112         struct ufsmount *ump;
14113         struct vnode *vp;
14114         struct fs *fs;
14115         int error, cnt;
14116         ino_t firstino, lastino, ino;
14117 
14118         ump = VFSTOUFS(mp);
14119         fs = ump->um_fs;
14120         LOCK_OWNED(ump);
14121         /*
14122          * Pick a random inode dependency to be cleared.
14123          * We will then gather up all the inodes in its block 
14124          * that have dependencies and flush them out.
14125          */
14126         for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14127                 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14128                 if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14129                         ump->inodedep_nextclean = 0;
14130                 if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14131                         break;
14132         }
14133         if (inodedep == NULL)
14134                 return;
14135         /*
14136          * Find the last inode in the block with dependencies.
14137          */
14138         firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14139         for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14140                 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14141                         break;
14142         /*
14143          * Asynchronously push all but the last inode with dependencies.
14144          * Synchronously push the last inode with dependencies to ensure
14145          * that the inode block gets written to free up the inodedeps.
14146          */
14147         for (ino = firstino; ino <= lastino; ino++) {
14148                 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14149                         continue;
14150                 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14151                         continue;
14152                 FREE_LOCK(ump);
14153                 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14154                 if (error != 0) {
14155                         vn_finished_write(mp);
14156                         ACQUIRE_LOCK(ump);
14157                         return;
14158                 }
14159                 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14160                     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14161                         softdep_error("clear_inodedeps: vget", error);
14162                         vfs_unbusy(mp);
14163                         vn_finished_write(mp);
14164                         ACQUIRE_LOCK(ump);
14165                         return;
14166                 }
14167                 vfs_unbusy(mp);
14168                 if (VTOI(vp)->i_mode == 0) {
14169                         vgone(vp);
14170                 } else if (ino == lastino) {
14171                         do {
14172                                 error = ffs_syncvnode(vp, MNT_WAIT, 0);
14173                         } while (error == ERELOOKUP);
14174                         if (error != 0)
14175                                 softdep_error("clear_inodedeps: fsync1", error);
14176                 } else {
14177                         if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14178                                 softdep_error("clear_inodedeps: fsync2", error);
14179                         BO_LOCK(&vp->v_bufobj);
14180                         drain_output(vp);
14181                         BO_UNLOCK(&vp->v_bufobj);
14182                 }
14183                 vput(vp);
14184                 vn_finished_write(mp);
14185                 ACQUIRE_LOCK(ump);
14186         }
14187 }
14188 
14189 void
14190 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
14191 {
14192         struct worklist *wk;
14193         struct ufsmount *ump;
14194 
14195         if ((wk = LIST_FIRST(wkhd)) == NULL)
14196                 return;
14197         KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14198             ("softdep_buf_append called on non-softdep filesystem"));
14199         ump = VFSTOUFS(wk->wk_mp);
14200         ACQUIRE_LOCK(ump);
14201         while ((wk = LIST_FIRST(wkhd)) != NULL) {
14202                 WORKLIST_REMOVE(wk);
14203                 WORKLIST_INSERT(&bp->b_dep, wk);
14204         }
14205         FREE_LOCK(ump);
14206 
14207 }
14208 
14209 void
14210 softdep_inode_append(
14211         struct inode *ip,
14212         struct ucred *cred,
14213         struct workhead *wkhd)
14214 {
14215         struct buf *bp;
14216         struct fs *fs;
14217         struct ufsmount *ump;
14218         int error;
14219 
14220         ump = ITOUMP(ip);
14221         KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14222             ("softdep_inode_append called on non-softdep filesystem"));
14223         fs = ump->um_fs;
14224         error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14225             (int)fs->fs_bsize, cred, &bp);
14226         if (error) {
14227                 bqrelse(bp);
14228                 softdep_freework(wkhd);
14229                 return;
14230         }
14231         softdep_buf_append(bp, wkhd);
14232         bqrelse(bp);
14233 }
14234 
14235 void
14236 softdep_freework(struct workhead *wkhd)
14237 {
14238         struct worklist *wk;
14239         struct ufsmount *ump;
14240 
14241         if ((wk = LIST_FIRST(wkhd)) == NULL)
14242                 return;
14243         KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14244             ("softdep_freework called on non-softdep filesystem"));
14245         ump = VFSTOUFS(wk->wk_mp);
14246         ACQUIRE_LOCK(ump);
14247         handle_jwork(wkhd);
14248         FREE_LOCK(ump);
14249 }
14250 
14251 static struct ufsmount *
14252 softdep_bp_to_mp(struct buf *bp)
14253 {
14254         struct mount *mp;
14255         struct vnode *vp;
14256 
14257         if (LIST_EMPTY(&bp->b_dep))
14258                 return (NULL);
14259         vp = bp->b_vp;
14260         KASSERT(vp != NULL,
14261             ("%s, buffer with dependencies lacks vnode", __func__));
14262 
14263         /*
14264          * The ump mount point is stable after we get a correct
14265          * pointer, since bp is locked and this prevents unmount from
14266          * proceeding.  But to get to it, we cannot dereference bp->b_dep
14267          * head wk_mp, because we do not yet own SU ump lock and
14268          * workitem might be freed while dereferenced.
14269          */
14270 retry:
14271         switch (vp->v_type) {
14272         case VCHR:
14273                 VI_LOCK(vp);
14274                 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14275                 VI_UNLOCK(vp);
14276                 if (mp == NULL)
14277                         goto retry;
14278                 break;
14279         case VREG:
14280         case VDIR:
14281         case VLNK:
14282         case VFIFO:
14283         case VSOCK:
14284                 mp = vp->v_mount;
14285                 break;
14286         case VBLK:
14287                 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14288                 /* FALLTHROUGH */
14289         case VNON:
14290         case VBAD:
14291         case VMARKER:
14292                 mp = NULL;
14293                 break;
14294         default:
14295                 vn_printf(vp, "unknown vnode type");
14296                 mp = NULL;
14297                 break;
14298         }
14299         return (VFSTOUFS(mp));
14300 }
14301 
14302 /*
14303  * Function to determine if the buffer has outstanding dependencies
14304  * that will cause a roll-back if the buffer is written. If wantcount
14305  * is set, return number of dependencies, otherwise just yes or no.
14306  */
14307 static int
14308 softdep_count_dependencies(struct buf *bp, int wantcount)
14309 {
14310         struct worklist *wk;
14311         struct ufsmount *ump;
14312         struct bmsafemap *bmsafemap;
14313         struct freework *freework;
14314         struct inodedep *inodedep;
14315         struct indirdep *indirdep;
14316         struct freeblks *freeblks;
14317         struct allocindir *aip;
14318         struct pagedep *pagedep;
14319         struct dirrem *dirrem;
14320         struct newblk *newblk;
14321         struct mkdir *mkdir;
14322         struct diradd *dap;
14323         int i, retval;
14324 
14325         ump = softdep_bp_to_mp(bp);
14326         if (ump == NULL)
14327                 return (0);
14328         retval = 0;
14329         ACQUIRE_LOCK(ump);
14330         LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14331                 switch (wk->wk_type) {
14332                 case D_INODEDEP:
14333                         inodedep = WK_INODEDEP(wk);
14334                         if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14335                                 /* bitmap allocation dependency */
14336                                 retval += 1;
14337                                 if (!wantcount)
14338                                         goto out;
14339                         }
14340                         if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14341                                 /* direct block pointer dependency */
14342                                 retval += 1;
14343                                 if (!wantcount)
14344                                         goto out;
14345                         }
14346                         if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14347                                 /* direct block pointer dependency */
14348                                 retval += 1;
14349                                 if (!wantcount)
14350                                         goto out;
14351                         }
14352                         if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14353                                 /* Add reference dependency. */
14354                                 retval += 1;
14355                                 if (!wantcount)
14356                                         goto out;
14357                         }
14358                         continue;
14359 
14360                 case D_INDIRDEP:
14361                         indirdep = WK_INDIRDEP(wk);
14362 
14363                         TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14364                                 /* indirect truncation dependency */
14365                                 retval += 1;
14366                                 if (!wantcount)
14367                                         goto out;
14368                         }
14369 
14370                         LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14371                                 /* indirect block pointer dependency */
14372                                 retval += 1;
14373                                 if (!wantcount)
14374                                         goto out;
14375                         }
14376                         continue;
14377 
14378                 case D_PAGEDEP:
14379                         pagedep = WK_PAGEDEP(wk);
14380                         LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14381                                 if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14382                                         /* Journal remove ref dependency. */
14383                                         retval += 1;
14384                                         if (!wantcount)
14385                                                 goto out;
14386                                 }
14387                         }
14388                         for (i = 0; i < DAHASHSZ; i++) {
14389                                 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14390                                         /* directory entry dependency */
14391                                         retval += 1;
14392                                         if (!wantcount)
14393                                                 goto out;
14394                                 }
14395                         }
14396                         continue;
14397 
14398                 case D_BMSAFEMAP:
14399                         bmsafemap = WK_BMSAFEMAP(wk);
14400                         if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14401                                 /* Add reference dependency. */
14402                                 retval += 1;
14403                                 if (!wantcount)
14404                                         goto out;
14405                         }
14406                         if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14407                                 /* Allocate block dependency. */
14408                                 retval += 1;
14409                                 if (!wantcount)
14410                                         goto out;
14411                         }
14412                         continue;
14413 
14414                 case D_FREEBLKS:
14415                         freeblks = WK_FREEBLKS(wk);
14416                         if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14417                                 /* Freeblk journal dependency. */
14418                                 retval += 1;
14419                                 if (!wantcount)
14420                                         goto out;
14421                         }
14422                         continue;
14423 
14424                 case D_ALLOCDIRECT:
14425                 case D_ALLOCINDIR:
14426                         newblk = WK_NEWBLK(wk);
14427                         if (newblk->nb_jnewblk) {
14428                                 /* Journal allocate dependency. */
14429                                 retval += 1;
14430                                 if (!wantcount)
14431                                         goto out;
14432                         }
14433                         continue;
14434 
14435                 case D_MKDIR:
14436                         mkdir = WK_MKDIR(wk);
14437                         if (mkdir->md_jaddref) {
14438                                 /* Journal reference dependency. */
14439                                 retval += 1;
14440                                 if (!wantcount)
14441                                         goto out;
14442                         }
14443                         continue;
14444 
14445                 case D_FREEWORK:
14446                 case D_FREEDEP:
14447                 case D_JSEGDEP:
14448                 case D_JSEG:
14449                 case D_SBDEP:
14450                         /* never a dependency on these blocks */
14451                         continue;
14452 
14453                 default:
14454                         panic("softdep_count_dependencies: Unexpected type %s",
14455                             TYPENAME(wk->wk_type));
14456                         /* NOTREACHED */
14457                 }
14458         }
14459 out:
14460         FREE_LOCK(ump);
14461         return (retval);
14462 }
14463 
14464 /*
14465  * Acquire exclusive access to a buffer.
14466  * Must be called with a locked mtx parameter.
14467  * Return acquired buffer or NULL on failure.
14468  */
14469 static struct buf *
14470 getdirtybuf(struct buf *bp,
14471         struct rwlock *lock,
14472         int waitfor)
14473 {
14474         int error;
14475 
14476         if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14477                 if (waitfor != MNT_WAIT)
14478                         return (NULL);
14479                 error = BUF_LOCK(bp,
14480                     LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14481                 /*
14482                  * Even if we successfully acquire bp here, we have dropped
14483                  * lock, which may violates our guarantee.
14484                  */
14485                 if (error == 0)
14486                         BUF_UNLOCK(bp);
14487                 else if (error != ENOLCK)
14488                         panic("getdirtybuf: inconsistent lock: %d", error);
14489                 rw_wlock(lock);
14490                 return (NULL);
14491         }
14492         if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14493                 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14494                         rw_wunlock(lock);
14495                         BO_LOCK(bp->b_bufobj);
14496                         BUF_UNLOCK(bp);
14497                         if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14498                                 bp->b_vflags |= BV_BKGRDWAIT;
14499                                 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14500                                        PRIBIO | PDROP, "getbuf", 0);
14501                         } else
14502                                 BO_UNLOCK(bp->b_bufobj);
14503                         rw_wlock(lock);
14504                         return (NULL);
14505                 }
14506                 BUF_UNLOCK(bp);
14507                 if (waitfor != MNT_WAIT)
14508                         return (NULL);
14509 #ifdef DEBUG_VFS_LOCKS
14510                 if (bp->b_vp->v_type != VCHR)
14511                         ASSERT_BO_WLOCKED(bp->b_bufobj);
14512 #endif
14513                 bp->b_vflags |= BV_BKGRDWAIT;
14514                 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14515                 return (NULL);
14516         }
14517         if ((bp->b_flags & B_DELWRI) == 0) {
14518                 BUF_UNLOCK(bp);
14519                 return (NULL);
14520         }
14521         bremfree(bp);
14522         return (bp);
14523 }
14524 
14525 /*
14526  * Check if it is safe to suspend the file system now.  On entry,
14527  * the vnode interlock for devvp should be held.  Return 0 with
14528  * the mount interlock held if the file system can be suspended now,
14529  * otherwise return EAGAIN with the mount interlock held.
14530  */
14531 int
14532 softdep_check_suspend(struct mount *mp,
14533                       struct vnode *devvp,
14534                       int softdep_depcnt,
14535                       int softdep_accdepcnt,
14536                       int secondary_writes,
14537                       int secondary_accwrites)
14538 {
14539         struct buf *bp;
14540         struct bufobj *bo;
14541         struct ufsmount *ump;
14542         struct inodedep *inodedep;
14543         struct indirdep *indirdep;
14544         struct worklist *wk, *nextwk;
14545         int error, unlinked;
14546 
14547         bo = &devvp->v_bufobj;
14548         ASSERT_BO_WLOCKED(bo);
14549 
14550         /*
14551          * If we are not running with soft updates, then we need only
14552          * deal with secondary writes as we try to suspend.
14553          */
14554         if (MOUNTEDSOFTDEP(mp) == 0) {
14555                 MNT_ILOCK(mp);
14556                 while (mp->mnt_secondary_writes != 0) {
14557                         BO_UNLOCK(bo);
14558                         msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14559                             (PUSER - 1) | PDROP, "secwr", 0);
14560                         BO_LOCK(bo);
14561                         MNT_ILOCK(mp);
14562                 }
14563 
14564                 /*
14565                  * Reasons for needing more work before suspend:
14566                  * - Dirty buffers on devvp.
14567                  * - Secondary writes occurred after start of vnode sync loop
14568                  */
14569                 error = 0;
14570                 if (bo->bo_numoutput > 0 ||
14571                     bo->bo_dirty.bv_cnt > 0 ||
14572                     secondary_writes != 0 ||
14573                     mp->mnt_secondary_writes != 0 ||
14574                     secondary_accwrites != mp->mnt_secondary_accwrites)
14575                         error = EAGAIN;
14576                 BO_UNLOCK(bo);
14577                 return (error);
14578         }
14579 
14580         /*
14581          * If we are running with soft updates, then we need to coordinate
14582          * with them as we try to suspend.
14583          */
14584         ump = VFSTOUFS(mp);
14585         for (;;) {
14586                 if (!TRY_ACQUIRE_LOCK(ump)) {
14587                         BO_UNLOCK(bo);
14588                         ACQUIRE_LOCK(ump);
14589                         FREE_LOCK(ump);
14590                         BO_LOCK(bo);
14591                         continue;
14592                 }
14593                 MNT_ILOCK(mp);
14594                 if (mp->mnt_secondary_writes != 0) {
14595                         FREE_LOCK(ump);
14596                         BO_UNLOCK(bo);
14597                         msleep(&mp->mnt_secondary_writes,
14598                                MNT_MTX(mp),
14599                                (PUSER - 1) | PDROP, "secwr", 0);
14600                         BO_LOCK(bo);
14601                         continue;
14602                 }
14603                 break;
14604         }
14605 
14606         unlinked = 0;
14607         if (MOUNTEDSUJ(mp)) {
14608                 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14609                     inodedep != NULL;
14610                     inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14611                         if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14612                             UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14613                             UNLINKONLIST) ||
14614                             !check_inodedep_free(inodedep))
14615                                 continue;
14616                         unlinked++;
14617                 }
14618         }
14619 
14620         /*
14621          * XXX Check for orphaned indirdep dependency structures.
14622          *
14623          * During forcible unmount after a disk failure there is a
14624          * bug that causes one or more indirdep dependency structures
14625          * to fail to be deallocated. We check for them here and clean
14626          * them up so that the unmount can succeed.
14627          */
14628         if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 &&
14629             ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) {
14630                 LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP],
14631                     wk_all, nextwk) {
14632                         indirdep = WK_INDIRDEP(wk);
14633                         if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) !=
14634                             (GOINGAWAY | DEPCOMPLETE) ||
14635                             !TAILQ_EMPTY(&indirdep->ir_trunc) ||
14636                             !LIST_EMPTY(&indirdep->ir_completehd) ||
14637                             !LIST_EMPTY(&indirdep->ir_writehd) ||
14638                             !LIST_EMPTY(&indirdep->ir_donehd) ||
14639                             !LIST_EMPTY(&indirdep->ir_deplisthd) ||
14640                             indirdep->ir_saveddata != NULL ||
14641                             indirdep->ir_savebp == NULL) {
14642                                 printf("%s: skipping orphaned indirdep %p\n",
14643                                     __FUNCTION__, indirdep);
14644                                 continue;
14645                         }
14646                         printf("%s: freeing orphaned indirdep %p\n",
14647                             __FUNCTION__, indirdep);
14648                         bp = indirdep->ir_savebp;
14649                         indirdep->ir_savebp = NULL;
14650                         free_indirdep(indirdep);
14651                         FREE_LOCK(ump);
14652                         brelse(bp);
14653                         while (!TRY_ACQUIRE_LOCK(ump)) {
14654                                 BO_UNLOCK(bo);
14655                                 ACQUIRE_LOCK(ump);
14656                                 FREE_LOCK(ump);
14657                                 BO_LOCK(bo);
14658                         }
14659                 }
14660         }
14661 
14662         /*
14663          * Reasons for needing more work before suspend:
14664          * - Dirty buffers on devvp.
14665          * - Dependency structures still exist
14666          * - Softdep activity occurred after start of vnode sync loop
14667          * - Secondary writes occurred after start of vnode sync loop
14668          */
14669         error = 0;
14670         if (bo->bo_numoutput > 0 ||
14671             bo->bo_dirty.bv_cnt > 0 ||
14672             softdep_depcnt != unlinked ||
14673             ump->softdep_deps != unlinked ||
14674             softdep_accdepcnt != ump->softdep_accdeps ||
14675             secondary_writes != 0 ||
14676             mp->mnt_secondary_writes != 0 ||
14677             secondary_accwrites != mp->mnt_secondary_accwrites)
14678                 error = EAGAIN;
14679         FREE_LOCK(ump);
14680         BO_UNLOCK(bo);
14681         return (error);
14682 }
14683 
14684 /*
14685  * Get the number of dependency structures for the file system, both
14686  * the current number and the total number allocated.  These will
14687  * later be used to detect that softdep processing has occurred.
14688  */
14689 void
14690 softdep_get_depcounts(struct mount *mp,
14691                       int *softdep_depsp,
14692                       int *softdep_accdepsp)
14693 {
14694         struct ufsmount *ump;
14695 
14696         if (MOUNTEDSOFTDEP(mp) == 0) {
14697                 *softdep_depsp = 0;
14698                 *softdep_accdepsp = 0;
14699                 return;
14700         }
14701         ump = VFSTOUFS(mp);
14702         ACQUIRE_LOCK(ump);
14703         *softdep_depsp = ump->softdep_deps;
14704         *softdep_accdepsp = ump->softdep_accdeps;
14705         FREE_LOCK(ump);
14706 }
14707 
14708 /*
14709  * Wait for pending output on a vnode to complete.
14710  */
14711 static void
14712 drain_output(struct vnode *vp)
14713 {
14714 
14715         ASSERT_VOP_LOCKED(vp, "drain_output");
14716         (void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14717 }
14718 
14719 /*
14720  * Called whenever a buffer that is being invalidated or reallocated
14721  * contains dependencies. This should only happen if an I/O error has
14722  * occurred. The routine is called with the buffer locked.
14723  */ 
14724 static void
14725 softdep_deallocate_dependencies(struct buf *bp)
14726 {
14727 
14728         if ((bp->b_ioflags & BIO_ERROR) == 0)
14729                 panic("softdep_deallocate_dependencies: dangling deps");
14730         if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14731                 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14732         else
14733                 printf("softdep_deallocate_dependencies: "
14734                     "got error %d while accessing filesystem\n", bp->b_error);
14735         if (bp->b_error != ENXIO)
14736                 panic("softdep_deallocate_dependencies: unrecovered I/O error");
14737 }
14738 
14739 /*
14740  * Function to handle asynchronous write errors in the filesystem.
14741  */
14742 static void
14743 softdep_error(char *func, int error)
14744 {
14745 
14746         /* XXX should do something better! */
14747         printf("%s: got error %d while accessing filesystem\n", func, error);
14748 }
14749 
14750 #ifdef DDB
14751 
14752 /* exported to ffs_vfsops.c */
14753 extern void db_print_ffs(struct ufsmount *ump);
14754 void
14755 db_print_ffs(struct ufsmount *ump)
14756 {
14757         db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14758             ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14759         db_printf("    fs %p ", ump->um_fs);
14760 
14761         if (ump->um_softdep != NULL) {
14762                 db_printf("su_wl %d su_deps %d su_req %d\n",
14763                     ump->softdep_on_worklist, ump->softdep_deps,
14764                     ump->softdep_req);
14765         } else {
14766                 db_printf("su disabled\n");
14767         }
14768 }
14769 
14770 static void
14771 worklist_print(struct worklist *wk, int verbose)
14772 {
14773 
14774         if (!verbose) {
14775                 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14776                     (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14777                 return;
14778         }
14779         db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14780             TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14781             LIST_NEXT(wk, wk_list));
14782         db_print_ffs(VFSTOUFS(wk->wk_mp));
14783 }
14784 
14785 static void
14786 inodedep_print(struct inodedep *inodedep, int verbose)
14787 {
14788 
14789         worklist_print(&inodedep->id_list, 0);
14790         db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14791             inodedep->id_fs,
14792             (intmax_t)inodedep->id_ino,
14793             (intmax_t)fsbtodb(inodedep->id_fs,
14794                 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14795             (intmax_t)inodedep->id_nlinkdelta,
14796             (intmax_t)inodedep->id_savednlink);
14797 
14798         if (verbose == 0)
14799                 return;
14800 
14801         db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14802             inodedep->id_bmsafemap,
14803             inodedep->id_mkdiradd,
14804             TAILQ_FIRST(&inodedep->id_inoreflst));
14805         db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14806             LIST_FIRST(&inodedep->id_dirremhd),
14807             LIST_FIRST(&inodedep->id_pendinghd),
14808             LIST_FIRST(&inodedep->id_bufwait));
14809         db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14810             LIST_FIRST(&inodedep->id_inowait),
14811             TAILQ_FIRST(&inodedep->id_inoupdt),
14812             TAILQ_FIRST(&inodedep->id_newinoupdt));
14813         db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14814             TAILQ_FIRST(&inodedep->id_extupdt),
14815             TAILQ_FIRST(&inodedep->id_newextupdt),
14816             TAILQ_FIRST(&inodedep->id_freeblklst));
14817         db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14818             inodedep->id_savedino1,
14819             (intmax_t)inodedep->id_savedsize,
14820             (intmax_t)inodedep->id_savedextsize);
14821 }
14822 
14823 static void
14824 newblk_print(struct newblk *nbp)
14825 {
14826 
14827         worklist_print(&nbp->nb_list, 0);
14828         db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14829         db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14830             &nbp->nb_jnewblk,
14831             &nbp->nb_bmsafemap,
14832             &nbp->nb_freefrag);
14833         db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14834             LIST_FIRST(&nbp->nb_indirdeps),
14835             LIST_FIRST(&nbp->nb_newdirblk),
14836             LIST_FIRST(&nbp->nb_jwork));
14837 }
14838 
14839 static void
14840 allocdirect_print(struct allocdirect *adp)
14841 {
14842 
14843         newblk_print(&adp->ad_block);
14844         db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14845             adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14846         db_printf("    offset %d, inodedep %p\n",
14847             adp->ad_offset, adp->ad_inodedep);
14848 }
14849 
14850 static void
14851 allocindir_print(struct allocindir *aip)
14852 {
14853 
14854         newblk_print(&aip->ai_block);
14855         db_printf("    oldblkno %jd, lbn %jd\n",
14856             (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14857         db_printf("    offset %d, indirdep %p\n",
14858             aip->ai_offset, aip->ai_indirdep);
14859 }
14860 
14861 static void
14862 mkdir_print(struct mkdir *mkdir)
14863 {
14864 
14865         worklist_print(&mkdir->md_list, 0);
14866         db_printf("    diradd %p, jaddref %p, buf %p\n",
14867                 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14868 }
14869 
14870 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14871 {
14872 
14873         if (have_addr == 0) {
14874                 db_printf("inodedep address required\n");
14875                 return;
14876         }
14877         inodedep_print((struct inodedep*)addr, 1);
14878 }
14879 
14880 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14881 {
14882         struct inodedep_hashhead *inodedephd;
14883         struct inodedep *inodedep;
14884         struct ufsmount *ump;
14885         int cnt;
14886 
14887         if (have_addr == 0) {
14888                 db_printf("ufsmount address required\n");
14889                 return;
14890         }
14891         ump = (struct ufsmount *)addr;
14892         for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14893                 inodedephd = &ump->inodedep_hashtbl[cnt];
14894                 LIST_FOREACH(inodedep, inodedephd, id_hash) {
14895                         inodedep_print(inodedep, 0);
14896                 }
14897         }
14898 }
14899 
14900 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14901 {
14902 
14903         if (have_addr == 0) {
14904                 db_printf("worklist address required\n");
14905                 return;
14906         }
14907         worklist_print((struct worklist *)addr, 1);
14908 }
14909 
14910 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14911 {
14912         struct worklist *wk;
14913         struct workhead *wkhd;
14914 
14915         if (have_addr == 0) {
14916                 db_printf("worklist address required "
14917                     "(for example value in bp->b_dep)\n");
14918                 return;
14919         }
14920         /*
14921          * We often do not have the address of the worklist head but
14922          * instead a pointer to its first entry (e.g., we have the
14923          * contents of bp->b_dep rather than &bp->b_dep). But the back
14924          * pointer of bp->b_dep will point at the head of the list, so
14925          * we cheat and use that instead. If we are in the middle of
14926          * a list we will still get the same result, so nothing
14927          * unexpected will result.
14928          */
14929         wk = (struct worklist *)addr;
14930         if (wk == NULL)
14931                 return;
14932         wkhd = (struct workhead *)wk->wk_list.le_prev;
14933         LIST_FOREACH(wk, wkhd, wk_list) {
14934                 switch(wk->wk_type) {
14935                 case D_INODEDEP:
14936                         inodedep_print(WK_INODEDEP(wk), 0);
14937                         continue;
14938                 case D_ALLOCDIRECT:
14939                         allocdirect_print(WK_ALLOCDIRECT(wk));
14940                         continue;
14941                 case D_ALLOCINDIR:
14942                         allocindir_print(WK_ALLOCINDIR(wk));
14943                         continue;
14944                 case D_MKDIR:
14945                         mkdir_print(WK_MKDIR(wk));
14946                         continue;
14947                 default:
14948                         worklist_print(wk, 0);
14949                         continue;
14950                 }
14951         }
14952 }
14953 
14954 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14955 {
14956         if (have_addr == 0) {
14957                 db_printf("mkdir address required\n");
14958                 return;
14959         }
14960         mkdir_print((struct mkdir *)addr);
14961 }
14962 
14963 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14964 {
14965         struct mkdirlist *mkdirlisthd;
14966         struct mkdir *mkdir;
14967 
14968         if (have_addr == 0) {
14969                 db_printf("mkdir listhead address required\n");
14970                 return;
14971         }
14972         mkdirlisthd = (struct mkdirlist *)addr;
14973         LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14974                 mkdir_print(mkdir);
14975                 if (mkdir->md_diradd != NULL) {
14976                         db_printf("    ");
14977                         worklist_print(&mkdir->md_diradd->da_list, 0);
14978                 }
14979                 if (mkdir->md_jaddref != NULL) {
14980                         db_printf("    ");
14981                         worklist_print(&mkdir->md_jaddref->ja_list, 0);
14982                 }
14983         }
14984 }
14985 
14986 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14987 {
14988         if (have_addr == 0) {
14989                 db_printf("allocdirect address required\n");
14990                 return;
14991         }
14992         allocdirect_print((struct allocdirect *)addr);
14993 }
14994 
14995 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14996 {
14997         if (have_addr == 0) {
14998                 db_printf("allocindir address required\n");
14999                 return;
15000         }
15001         allocindir_print((struct allocindir *)addr);
15002 }
15003 
15004 #endif /* DDB */
15005 
15006 #endif /* SOFTUPDATES */

Cache object: 93b35717bd270b599aa838f86b771135


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.