The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/Documentation/ftrace.txt

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1                 ftrace - Function Tracer
    2                 ========================
    3 
    4 Copyright 2008 Red Hat Inc.
    5    Author:   Steven Rostedt <srostedt@redhat.com>
    6   License:   The GNU Free Documentation License, Version 1.2
    7                (dual licensed under the GPL v2)
    8 Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
    9              John Kacur, and David Teigland.
   10 
   11 Written for: 2.6.28-rc2
   12 
   13 Introduction
   14 ------------
   15 
   16 Ftrace is an internal tracer designed to help out developers and
   17 designers of systems to find what is going on inside the kernel.
   18 It can be used for debugging or analyzing latencies and performance
   19 issues that take place outside of user-space.
   20 
   21 Although ftrace is the function tracer, it also includes an
   22 infrastructure that allows for other types of tracing. Some of the
   23 tracers that are currently in ftrace include a tracer to trace
   24 context switches, the time it takes for a high priority task to
   25 run after it was woken up, the time interrupts are disabled, and
   26 more (ftrace allows for tracer plugins, which means that the list of
   27 tracers can always grow).
   28 
   29 
   30 The File System
   31 ---------------
   32 
   33 Ftrace uses the debugfs file system to hold the control files as well
   34 as the files to display output.
   35 
   36 To mount the debugfs system:
   37 
   38   # mkdir /debug
   39   # mount -t debugfs nodev /debug
   40 
   41 (Note: it is more common to mount at /sys/kernel/debug, but for simplicity
   42  this document will use /debug)
   43 
   44 That's it! (assuming that you have ftrace configured into your kernel)
   45 
   46 After mounting the debugfs, you can see a directory called
   47 "tracing".  This directory contains the control and output files
   48 of ftrace. Here is a list of some of the key files:
   49 
   50 
   51  Note: all time values are in microseconds.
   52 
   53   current_tracer: This is used to set or display the current tracer
   54                 that is configured.
   55 
   56   available_tracers: This holds the different types of tracers that
   57                 have been compiled into the kernel. The tracers
   58                 listed here can be configured by echoing their name
   59                 into current_tracer.
   60 
   61   tracing_enabled: This sets or displays whether the current_tracer
   62                 is activated and tracing or not. Echo 0 into this
   63                 file to disable the tracer or 1 to enable it.
   64 
   65   trace: This file holds the output of the trace in a human readable
   66                 format (described below).
   67 
   68   latency_trace: This file shows the same trace but the information
   69                 is organized more to display possible latencies
   70                 in the system (described below).
   71 
   72   trace_pipe: The output is the same as the "trace" file but this
   73                 file is meant to be streamed with live tracing.
   74                 Reads from this file will block until new data
   75                 is retrieved. Unlike the "trace" and "latency_trace"
   76                 files, this file is a consumer. This means reading
   77                 from this file causes sequential reads to display
   78                 more current data. Once data is read from this
   79                 file, it is consumed, and will not be read
   80                 again with a sequential read. The "trace" and
   81                 "latency_trace" files are static, and if the
   82                 tracer is not adding more data, they will display
   83                 the same information every time they are read.
   84 
   85   iter_ctrl: This file lets the user control the amount of data
   86                 that is displayed in one of the above output
   87                 files.
   88 
   89   trace_max_latency: Some of the tracers record the max latency.
   90                 For example, the time interrupts are disabled.
   91                 This time is saved in this file. The max trace
   92                 will also be stored, and displayed by either
   93                 "trace" or "latency_trace".  A new max trace will
   94                 only be recorded if the latency is greater than
   95                 the value in this file. (in microseconds)
   96 
   97   trace_entries: This sets or displays the number of bytes each CPU
   98                 buffer can hold. The tracer buffers are the same size
   99                 for each CPU. The displayed number is the size of the
  100                  CPU buffer and not total size of all buffers. The
  101                 trace buffers are allocated in pages (blocks of memory
  102                 that the kernel uses for allocation, usually 4 KB in size).
  103                 If the last page allocated has room for more bytes
  104                 than requested, the rest of the page will be used,
  105                 making the actual allocation bigger than requested.
  106                 (Note, the size may not be a multiple of the page size due
  107                 to buffer managment overhead.)
  108 
  109                 This can only be updated when the current_tracer
  110                 is set to "nop".
  111 
  112   tracing_cpumask: This is a mask that lets the user only trace
  113                 on specified CPUS. The format is a hex string
  114                 representing the CPUS.
  115 
  116   set_ftrace_filter: When dynamic ftrace is configured in (see the
  117                 section below "dynamic ftrace"), the code is dynamically
  118                 modified (code text rewrite) to disable calling of the
  119                 function profiler (mcount). This lets tracing be configured
  120                 in with practically no overhead in performance.  This also
  121                 has a side effect of enabling or disabling specific functions
  122                 to be traced. Echoing names of functions into this file
  123                 will limit the trace to only those functions.
  124 
  125   set_ftrace_notrace: This has an effect opposite to that of
  126                 set_ftrace_filter. Any function that is added here will not
  127                 be traced. If a function exists in both set_ftrace_filter
  128                 and set_ftrace_notrace, the function will _not_ be traced.
  129 
  130   available_filter_functions: This lists the functions that ftrace
  131                 has processed and can trace. These are the function
  132                 names that you can pass to "set_ftrace_filter" or
  133                 "set_ftrace_notrace". (See the section "dynamic ftrace"
  134                 below for more details.)
  135 
  136 
  137 The Tracers
  138 -----------
  139 
  140 Here is the list of current tracers that may be configured.
  141 
  142   function - function tracer that uses mcount to trace all functions.
  143 
  144   sched_switch - traces the context switches between tasks.
  145 
  146   irqsoff - traces the areas that disable interrupts and saves
  147                 the trace with the longest max latency.
  148                 See tracing_max_latency.  When a new max is recorded,
  149                 it replaces the old trace. It is best to view this
  150                 trace via the latency_trace file.
  151 
  152   preemptoff - Similar to irqsoff but traces and records the amount of
  153                 time for which preemption is disabled.
  154 
  155   preemptirqsoff - Similar to irqsoff and preemptoff, but traces and
  156                  records the largest time for which irqs and/or preemption
  157                  is disabled.
  158 
  159   wakeup - Traces and records the max latency that it takes for
  160                 the highest priority task to get scheduled after
  161                 it has been woken up.
  162 
  163   nop - This is not a tracer. To remove all tracers from tracing
  164                 simply echo "nop" into current_tracer.
  165 
  166 
  167 Examples of using the tracer
  168 ----------------------------
  169 
  170 Here are typical examples of using the tracers when controlling them only
  171 with the debugfs interface (without using any user-land utilities).
  172 
  173 Output format:
  174 --------------
  175 
  176 Here is an example of the output format of the file "trace"
  177 
  178                              --------
  179 # tracer: function
  180 #
  181 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
  182 #              | |      |          |         |
  183             bash-4251  [01] 10152.583854: path_put <-path_walk
  184             bash-4251  [01] 10152.583855: dput <-path_put
  185             bash-4251  [01] 10152.583855: _atomic_dec_and_lock <-dput
  186                              --------
  187 
  188 A header is printed with the tracer name that is represented by the trace.
  189 In this case the tracer is "function". Then a header showing the format. Task
  190 name "bash", the task PID "4251", the CPU that it was running on
  191 "01", the timestamp in <secs>.<usecs> format, the function name that was
  192 traced "path_put" and the parent function that called this function
  193 "path_walk". The timestamp is the time at which the function was
  194 entered.
  195 
  196 The sched_switch tracer also includes tracing of task wakeups and
  197 context switches.
  198 
  199      ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +  2916:115:S
  200      ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +    10:115:S
  201      ksoftirqd/1-7     [01]  1453.070013:      7:115:R ==>    10:115:R
  202         events/1-10    [01]  1453.070013:     10:115:S ==>  2916:115:R
  203      kondemand/1-2916  [01]  1453.070013:   2916:115:S ==>     7:115:R
  204      ksoftirqd/1-7     [01]  1453.070013:      7:115:S ==>     0:140:R
  205 
  206 Wake ups are represented by a "+" and the context switches are shown as
  207 "==>".  The format is:
  208 
  209  Context switches:
  210 
  211        Previous task              Next Task
  212 
  213   <pid>:<prio>:<state>  ==>  <pid>:<prio>:<state>
  214 
  215  Wake ups:
  216 
  217        Current task               Task waking up
  218 
  219   <pid>:<prio>:<state>    +  <pid>:<prio>:<state>
  220 
  221 The prio is the internal kernel priority, which is the inverse of the
  222 priority that is usually displayed by user-space tools. Zero represents
  223 the highest priority (99). Prio 100 starts the "nice" priorities with
  224 100 being equal to nice -20 and 139 being nice 19. The prio "140" is
  225 reserved for the idle task which is the lowest priority thread (pid 0).
  226 
  227 
  228 Latency trace format
  229 --------------------
  230 
  231 For traces that display latency times, the latency_trace file gives
  232 somewhat more information to see why a latency happened. Here is a typical
  233 trace.
  234 
  235 # tracer: irqsoff
  236 #
  237 irqsoff latency trace v1.1.5 on 2.6.26-rc8
  238 --------------------------------------------------------------------
  239  latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  240     -----------------
  241     | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
  242     -----------------
  243  => started at: apic_timer_interrupt
  244  => ended at:   do_softirq
  245 
  246 #                _------=> CPU#
  247 #               / _-----=> irqs-off
  248 #              | / _----=> need-resched
  249 #              || / _---=> hardirq/softirq
  250 #              ||| / _--=> preempt-depth
  251 #              |||| /
  252 #              |||||     delay
  253 #  cmd     pid ||||| time  |   caller
  254 #     \   /    |||||   \   |   /
  255   <idle>-0     0d..1    0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
  256   <idle>-0     0d.s.   97us : __do_softirq (do_softirq)
  257   <idle>-0     0d.s1   98us : trace_hardirqs_on (do_softirq)
  258 
  259 
  260 
  261 This shows that the current tracer is "irqsoff" tracing the time for which
  262 interrupts were disabled. It gives the trace version and the version
  263 of the kernel upon which this was executed on (2.6.26-rc8). Then it displays
  264 the max latency in microsecs (97 us). The number of trace entries displayed
  265 and the total number recorded (both are three: #3/3). The type of
  266 preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero
  267 and are reserved for later use. #P is the number of online CPUS (#P:2).
  268 
  269 The task is the process that was running when the latency occurred.
  270 (swapper pid: 0).
  271 
  272 The start and stop (the functions in which the interrupts were disabled and
  273 enabled respectively) that caused the latencies:
  274 
  275   apic_timer_interrupt is where the interrupts were disabled.
  276   do_softirq is where they were enabled again.
  277 
  278 The next lines after the header are the trace itself. The header
  279 explains which is which.
  280 
  281   cmd: The name of the process in the trace.
  282 
  283   pid: The PID of that process.
  284 
  285   CPU#: The CPU which the process was running on.
  286 
  287   irqs-off: 'd' interrupts are disabled. '.' otherwise.
  288             Note: If the architecture does not support a way to
  289                   read the irq flags variable, an 'X' will always
  290                   be printed here.
  291 
  292   need-resched: 'N' task need_resched is set, '.' otherwise.
  293 
  294   hardirq/softirq:
  295         'H' - hard irq occurred inside a softirq.
  296         'h' - hard irq is running
  297         's' - soft irq is running
  298         '.' - normal context.
  299 
  300   preempt-depth: The level of preempt_disabled
  301 
  302 The above is mostly meaningful for kernel developers.
  303 
  304   time: This differs from the trace file output. The trace file output
  305         includes an absolute timestamp. The timestamp used by the
  306         latency_trace file is relative to the start of the trace.
  307 
  308   delay: This is just to help catch your eye a bit better. And
  309         needs to be fixed to be only relative to the same CPU.
  310         The marks are determined by the difference between this
  311         current trace and the next trace.
  312          '!' - greater than preempt_mark_thresh (default 100)
  313          '+' - greater than 1 microsecond
  314          ' ' - less than or equal to 1 microsecond.
  315 
  316   The rest is the same as the 'trace' file.
  317 
  318 
  319 iter_ctrl
  320 ---------
  321 
  322 The iter_ctrl file is used to control what gets printed in the trace
  323 output. To see what is available, simply cat the file:
  324 
  325   cat /debug/tracing/iter_ctrl
  326   print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
  327  noblock nostacktrace nosched-tree
  328 
  329 To disable one of the options, echo in the option prepended with "no".
  330 
  331   echo noprint-parent > /debug/tracing/iter_ctrl
  332 
  333 To enable an option, leave off the "no".
  334 
  335   echo sym-offset > /debug/tracing/iter_ctrl
  336 
  337 Here are the available options:
  338 
  339   print-parent - On function traces, display the calling function
  340                 as well as the function being traced.
  341 
  342   print-parent:
  343    bash-4000  [01]  1477.606694: simple_strtoul <-strict_strtoul
  344 
  345   noprint-parent:
  346    bash-4000  [01]  1477.606694: simple_strtoul
  347 
  348 
  349   sym-offset - Display not only the function name, but also the offset
  350                 in the function. For example, instead of seeing just
  351                 "ktime_get", you will see "ktime_get+0xb/0x20".
  352 
  353   sym-offset:
  354    bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
  355 
  356   sym-addr - this will also display the function address as well as
  357                 the function name.
  358 
  359   sym-addr:
  360    bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
  361 
  362   verbose - This deals with the latency_trace file.
  363 
  364     bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
  365     (+0.000ms): simple_strtoul (strict_strtoul)
  366 
  367   raw - This will display raw numbers. This option is best for use with
  368         user applications that can translate the raw numbers better than
  369         having it done in the kernel.
  370 
  371   hex - Similar to raw, but the numbers will be in a hexadecimal format.
  372 
  373   bin - This will print out the formats in raw binary.
  374 
  375   block - TBD (needs update)
  376 
  377   stacktrace - This is one of the options that changes the trace itself.
  378                 When a trace is recorded, so is the stack of functions.
  379                 This allows for back traces of trace sites.
  380 
  381   sched-tree - TBD (any users??)
  382 
  383 
  384 sched_switch
  385 ------------
  386 
  387 This tracer simply records schedule switches. Here is an example
  388 of how to use it.
  389 
  390  # echo sched_switch > /debug/tracing/current_tracer
  391  # echo 1 > /debug/tracing/tracing_enabled
  392  # sleep 1
  393  # echo 0 > /debug/tracing/tracing_enabled
  394  # cat /debug/tracing/trace
  395 
  396 # tracer: sched_switch
  397 #
  398 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
  399 #              | |      |          |         |
  400             bash-3997  [01]   240.132281:   3997:120:R   +  4055:120:R
  401             bash-3997  [01]   240.132284:   3997:120:R ==>  4055:120:R
  402            sleep-4055  [01]   240.132371:   4055:120:S ==>  3997:120:R
  403             bash-3997  [01]   240.132454:   3997:120:R   +  4055:120:S
  404             bash-3997  [01]   240.132457:   3997:120:R ==>  4055:120:R
  405            sleep-4055  [01]   240.132460:   4055:120:D ==>  3997:120:R
  406             bash-3997  [01]   240.132463:   3997:120:R   +  4055:120:D
  407             bash-3997  [01]   240.132465:   3997:120:R ==>  4055:120:R
  408           <idle>-0     [00]   240.132589:      0:140:R   +     4:115:S
  409           <idle>-0     [00]   240.132591:      0:140:R ==>     4:115:R
  410      ksoftirqd/0-4     [00]   240.132595:      4:115:S ==>     0:140:R
  411           <idle>-0     [00]   240.132598:      0:140:R   +     4:115:S
  412           <idle>-0     [00]   240.132599:      0:140:R ==>     4:115:R
  413      ksoftirqd/0-4     [00]   240.132603:      4:115:S ==>     0:140:R
  414            sleep-4055  [01]   240.133058:   4055:120:S ==>  3997:120:R
  415  [...]
  416 
  417 
  418 As we have discussed previously about this format, the header shows
  419 the name of the trace and points to the options. The "FUNCTION"
  420 is a misnomer since here it represents the wake ups and context
  421 switches.
  422 
  423 The sched_switch file only lists the wake ups (represented with '+')
  424 and context switches ('==>') with the previous task or current task
  425 first followed by the next task or task waking up. The format for both
  426 of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO
  427 is the inverse of the actual priority with zero (0) being the highest
  428 priority and the nice values starting at 100 (nice -20). Below is
  429 a quick chart to map the kernel priority to user land priorities.
  430 
  431   Kernel priority: 0 to 99    ==> user RT priority 99 to 0
  432   Kernel priority: 100 to 139 ==> user nice -20 to 19
  433   Kernel priority: 140        ==> idle task priority
  434 
  435 The task states are:
  436 
  437  R - running : wants to run, may not actually be running
  438  S - sleep   : process is waiting to be woken up (handles signals)
  439  D - disk sleep (uninterruptible sleep) : process must be woken up
  440                                         (ignores signals)
  441  T - stopped : process suspended
  442  t - traced  : process is being traced (with something like gdb)
  443  Z - zombie  : process waiting to be cleaned up
  444  X - unknown
  445 
  446 
  447 ftrace_enabled
  448 --------------
  449 
  450 The following tracers (listed below) give different output depending
  451 on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled,
  452 one can either use the sysctl function or set it via the proc
  453 file system interface.
  454 
  455   sysctl kernel.ftrace_enabled=1
  456 
  457  or
  458 
  459   echo 1 > /proc/sys/kernel/ftrace_enabled
  460 
  461 To disable ftrace_enabled simply replace the '1' with '0' in
  462 the above commands.
  463 
  464 When ftrace_enabled is set the tracers will also record the functions
  465 that are within the trace. The descriptions of the tracers
  466 will also show an example with ftrace enabled.
  467 
  468 
  469 irqsoff
  470 -------
  471 
  472 When interrupts are disabled, the CPU can not react to any other
  473 external event (besides NMIs and SMIs). This prevents the timer
  474 interrupt from triggering or the mouse interrupt from letting the
  475 kernel know of a new mouse event. The result is a latency with the
  476 reaction time.
  477 
  478 The irqsoff tracer tracks the time for which interrupts are disabled.
  479 When a new maximum latency is hit, the tracer saves the trace leading up
  480 to that latency point so that every time a new maximum is reached, the old
  481 saved trace is discarded and the new trace is saved.
  482 
  483 To reset the maximum, echo 0 into tracing_max_latency. Here is an
  484 example:
  485 
  486  # echo irqsoff > /debug/tracing/current_tracer
  487  # echo 0 > /debug/tracing/tracing_max_latency
  488  # echo 1 > /debug/tracing/tracing_enabled
  489  # ls -ltr
  490  [...]
  491  # echo 0 > /debug/tracing/tracing_enabled
  492  # cat /debug/tracing/latency_trace
  493 # tracer: irqsoff
  494 #
  495 irqsoff latency trace v1.1.5 on 2.6.26
  496 --------------------------------------------------------------------
  497  latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  498     -----------------
  499     | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
  500     -----------------
  501  => started at: sys_setpgid
  502  => ended at:   sys_setpgid
  503 
  504 #                _------=> CPU#
  505 #               / _-----=> irqs-off
  506 #              | / _----=> need-resched
  507 #              || / _---=> hardirq/softirq
  508 #              ||| / _--=> preempt-depth
  509 #              |||| /
  510 #              |||||     delay
  511 #  cmd     pid ||||| time  |   caller
  512 #     \   /    |||||   \   |   /
  513     bash-3730  1d...    0us : _write_lock_irq (sys_setpgid)
  514     bash-3730  1d..1    1us+: _write_unlock_irq (sys_setpgid)
  515     bash-3730  1d..2   14us : trace_hardirqs_on (sys_setpgid)
  516 
  517 
  518 Here we see that that we had a latency of 12 microsecs (which is
  519 very good). The _write_lock_irq in sys_setpgid disabled interrupts.
  520 The difference between the 12 and the displayed timestamp 14us occurred
  521 because the clock was incremented between the time of recording the max
  522 latency and the time of recording the function that had that latency.
  523 
  524 Note the above example had ftrace_enabled not set. If we set the
  525 ftrace_enabled, we get a much larger output:
  526 
  527 # tracer: irqsoff
  528 #
  529 irqsoff latency trace v1.1.5 on 2.6.26-rc8
  530 --------------------------------------------------------------------
  531  latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  532     -----------------
  533     | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
  534     -----------------
  535  => started at: __alloc_pages_internal
  536  => ended at:   __alloc_pages_internal
  537 
  538 #                _------=> CPU#
  539 #               / _-----=> irqs-off
  540 #              | / _----=> need-resched
  541 #              || / _---=> hardirq/softirq
  542 #              ||| / _--=> preempt-depth
  543 #              |||| /
  544 #              |||||     delay
  545 #  cmd     pid ||||| time  |   caller
  546 #     \   /    |||||   \   |   /
  547       ls-4339  0...1    0us+: get_page_from_freelist (__alloc_pages_internal)
  548       ls-4339  0d..1    3us : rmqueue_bulk (get_page_from_freelist)
  549       ls-4339  0d..1    3us : _spin_lock (rmqueue_bulk)
  550       ls-4339  0d..1    4us : add_preempt_count (_spin_lock)
  551       ls-4339  0d..2    4us : __rmqueue (rmqueue_bulk)
  552       ls-4339  0d..2    5us : __rmqueue_smallest (__rmqueue)
  553       ls-4339  0d..2    5us : __mod_zone_page_state (__rmqueue_smallest)
  554       ls-4339  0d..2    6us : __rmqueue (rmqueue_bulk)
  555       ls-4339  0d..2    6us : __rmqueue_smallest (__rmqueue)
  556       ls-4339  0d..2    7us : __mod_zone_page_state (__rmqueue_smallest)
  557       ls-4339  0d..2    7us : __rmqueue (rmqueue_bulk)
  558       ls-4339  0d..2    8us : __rmqueue_smallest (__rmqueue)
  559 [...]
  560       ls-4339  0d..2   46us : __rmqueue_smallest (__rmqueue)
  561       ls-4339  0d..2   47us : __mod_zone_page_state (__rmqueue_smallest)
  562       ls-4339  0d..2   47us : __rmqueue (rmqueue_bulk)
  563       ls-4339  0d..2   48us : __rmqueue_smallest (__rmqueue)
  564       ls-4339  0d..2   48us : __mod_zone_page_state (__rmqueue_smallest)
  565       ls-4339  0d..2   49us : _spin_unlock (rmqueue_bulk)
  566       ls-4339  0d..2   49us : sub_preempt_count (_spin_unlock)
  567       ls-4339  0d..1   50us : get_page_from_freelist (__alloc_pages_internal)
  568       ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)
  569 
  570 
  571 
  572 Here we traced a 50 microsecond latency. But we also see all the
  573 functions that were called during that time. Note that by enabling
  574 function tracing, we incur an added overhead. This overhead may
  575 extend the latency times. But nevertheless, this trace has provided
  576 some very helpful debugging information.
  577 
  578 
  579 preemptoff
  580 ----------
  581 
  582 When preemption is disabled, we may be able to receive interrupts but
  583 the task cannot be preempted and a higher priority task must wait
  584 for preemption to be enabled again before it can preempt a lower
  585 priority task.
  586 
  587 The preemptoff tracer traces the places that disable preemption.
  588 Like the irqsoff tracer, it records the maximum latency for which preemption
  589 was disabled. The control of preemptoff tracer is much like the irqsoff
  590 tracer.
  591 
  592  # echo preemptoff > /debug/tracing/current_tracer
  593  # echo 0 > /debug/tracing/tracing_max_latency
  594  # echo 1 > /debug/tracing/tracing_enabled
  595  # ls -ltr
  596  [...]
  597  # echo 0 > /debug/tracing/tracing_enabled
  598  # cat /debug/tracing/latency_trace
  599 # tracer: preemptoff
  600 #
  601 preemptoff latency trace v1.1.5 on 2.6.26-rc8
  602 --------------------------------------------------------------------
  603  latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  604     -----------------
  605     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  606     -----------------
  607  => started at: do_IRQ
  608  => ended at:   __do_softirq
  609 
  610 #                _------=> CPU#
  611 #               / _-----=> irqs-off
  612 #              | / _----=> need-resched
  613 #              || / _---=> hardirq/softirq
  614 #              ||| / _--=> preempt-depth
  615 #              |||| /
  616 #              |||||     delay
  617 #  cmd     pid ||||| time  |   caller
  618 #     \   /    |||||   \   |   /
  619     sshd-4261  0d.h.    0us+: irq_enter (do_IRQ)
  620     sshd-4261  0d.s.   29us : _local_bh_enable (__do_softirq)
  621     sshd-4261  0d.s1   30us : trace_preempt_on (__do_softirq)
  622 
  623 
  624 This has some more changes. Preemption was disabled when an interrupt
  625 came in (notice the 'h'), and was enabled while doing a softirq.
  626 (notice the 's'). But we also see that interrupts have been disabled
  627 when entering the preempt off section and leaving it (the 'd').
  628 We do not know if interrupts were enabled in the mean time.
  629 
  630 # tracer: preemptoff
  631 #
  632 preemptoff latency trace v1.1.5 on 2.6.26-rc8
  633 --------------------------------------------------------------------
  634  latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  635     -----------------
  636     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  637     -----------------
  638  => started at: remove_wait_queue
  639  => ended at:   __do_softirq
  640 
  641 #                _------=> CPU#
  642 #               / _-----=> irqs-off
  643 #              | / _----=> need-resched
  644 #              || / _---=> hardirq/softirq
  645 #              ||| / _--=> preempt-depth
  646 #              |||| /
  647 #              |||||     delay
  648 #  cmd     pid ||||| time  |   caller
  649 #     \   /    |||||   \   |   /
  650     sshd-4261  0d..1    0us : _spin_lock_irqsave (remove_wait_queue)
  651     sshd-4261  0d..1    1us : _spin_unlock_irqrestore (remove_wait_queue)
  652     sshd-4261  0d..1    2us : do_IRQ (common_interrupt)
  653     sshd-4261  0d..1    2us : irq_enter (do_IRQ)
  654     sshd-4261  0d..1    2us : idle_cpu (irq_enter)
  655     sshd-4261  0d..1    3us : add_preempt_count (irq_enter)
  656     sshd-4261  0d.h1    3us : idle_cpu (irq_enter)
  657     sshd-4261  0d.h.    4us : handle_fasteoi_irq (do_IRQ)
  658 [...]
  659     sshd-4261  0d.h.   12us : add_preempt_count (_spin_lock)
  660     sshd-4261  0d.h1   12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
  661     sshd-4261  0d.h1   13us : move_native_irq (ack_ioapic_quirk_irq)
  662     sshd-4261  0d.h1   13us : _spin_unlock (handle_fasteoi_irq)
  663     sshd-4261  0d.h1   14us : sub_preempt_count (_spin_unlock)
  664     sshd-4261  0d.h1   14us : irq_exit (do_IRQ)
  665     sshd-4261  0d.h1   15us : sub_preempt_count (irq_exit)
  666     sshd-4261  0d..2   15us : do_softirq (irq_exit)
  667     sshd-4261  0d...   15us : __do_softirq (do_softirq)
  668     sshd-4261  0d...   16us : __local_bh_disable (__do_softirq)
  669     sshd-4261  0d...   16us+: add_preempt_count (__local_bh_disable)
  670     sshd-4261  0d.s4   20us : add_preempt_count (__local_bh_disable)
  671     sshd-4261  0d.s4   21us : sub_preempt_count (local_bh_enable)
  672     sshd-4261  0d.s5   21us : sub_preempt_count (local_bh_enable)
  673 [...]
  674     sshd-4261  0d.s6   41us : add_preempt_count (__local_bh_disable)
  675     sshd-4261  0d.s6   42us : sub_preempt_count (local_bh_enable)
  676     sshd-4261  0d.s7   42us : sub_preempt_count (local_bh_enable)
  677     sshd-4261  0d.s5   43us : add_preempt_count (__local_bh_disable)
  678     sshd-4261  0d.s5   43us : sub_preempt_count (local_bh_enable_ip)
  679     sshd-4261  0d.s6   44us : sub_preempt_count (local_bh_enable_ip)
  680     sshd-4261  0d.s5   44us : add_preempt_count (__local_bh_disable)
  681     sshd-4261  0d.s5   45us : sub_preempt_count (local_bh_enable)
  682 [...]
  683     sshd-4261  0d.s.   63us : _local_bh_enable (__do_softirq)
  684     sshd-4261  0d.s1   64us : trace_preempt_on (__do_softirq)
  685 
  686 
  687 The above is an example of the preemptoff trace with ftrace_enabled
  688 set. Here we see that interrupts were disabled the entire time.
  689 The irq_enter code lets us know that we entered an interrupt 'h'.
  690 Before that, the functions being traced still show that it is not
  691 in an interrupt, but we can see from the functions themselves that
  692 this is not the case.
  693 
  694 Notice that __do_softirq when called does not have a preempt_count.
  695 It may seem that we missed a preempt enabling. What really happened
  696 is that the preempt count is held on the thread's stack and we
  697 switched to the softirq stack (4K stacks in effect). The code
  698 does not copy the preempt count, but because interrupts are disabled,
  699 we do not need to worry about it. Having a tracer like this is good
  700 for letting people know what really happens inside the kernel.
  701 
  702 
  703 preemptirqsoff
  704 --------------
  705 
  706 Knowing the locations that have interrupts disabled or preemption
  707 disabled for the longest times is helpful. But sometimes we would
  708 like to know when either preemption and/or interrupts are disabled.
  709 
  710 Consider the following code:
  711 
  712     local_irq_disable();
  713     call_function_with_irqs_off();
  714     preempt_disable();
  715     call_function_with_irqs_and_preemption_off();
  716     local_irq_enable();
  717     call_function_with_preemption_off();
  718     preempt_enable();
  719 
  720 The irqsoff tracer will record the total length of
  721 call_function_with_irqs_off() and
  722 call_function_with_irqs_and_preemption_off().
  723 
  724 The preemptoff tracer will record the total length of
  725 call_function_with_irqs_and_preemption_off() and
  726 call_function_with_preemption_off().
  727 
  728 But neither will trace the time that interrupts and/or preemption
  729 is disabled. This total time is the time that we can not schedule.
  730 To record this time, use the preemptirqsoff tracer.
  731 
  732 Again, using this trace is much like the irqsoff and preemptoff tracers.
  733 
  734  # echo preemptirqsoff > /debug/tracing/current_tracer
  735  # echo 0 > /debug/tracing/tracing_max_latency
  736  # echo 1 > /debug/tracing/tracing_enabled
  737  # ls -ltr
  738  [...]
  739  # echo 0 > /debug/tracing/tracing_enabled
  740  # cat /debug/tracing/latency_trace
  741 # tracer: preemptirqsoff
  742 #
  743 preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
  744 --------------------------------------------------------------------
  745  latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  746     -----------------
  747     | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
  748     -----------------
  749  => started at: apic_timer_interrupt
  750  => ended at:   __do_softirq
  751 
  752 #                _------=> CPU#
  753 #               / _-----=> irqs-off
  754 #              | / _----=> need-resched
  755 #              || / _---=> hardirq/softirq
  756 #              ||| / _--=> preempt-depth
  757 #              |||| /
  758 #              |||||     delay
  759 #  cmd     pid ||||| time  |   caller
  760 #     \   /    |||||   \   |   /
  761       ls-4860  0d...    0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
  762       ls-4860  0d.s.  294us : _local_bh_enable (__do_softirq)
  763       ls-4860  0d.s1  294us : trace_preempt_on (__do_softirq)
  764 
  765 
  766 
  767 The trace_hardirqs_off_thunk is called from assembly on x86 when
  768 interrupts are disabled in the assembly code. Without the function
  769 tracing, we do not know if interrupts were enabled within the preemption
  770 points. We do see that it started with preemption enabled.
  771 
  772 Here is a trace with ftrace_enabled set:
  773 
  774 
  775 # tracer: preemptirqsoff
  776 #
  777 preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
  778 --------------------------------------------------------------------
  779  latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  780     -----------------
  781     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  782     -----------------
  783  => started at: write_chan
  784  => ended at:   __do_softirq
  785 
  786 #                _------=> CPU#
  787 #               / _-----=> irqs-off
  788 #              | / _----=> need-resched
  789 #              || / _---=> hardirq/softirq
  790 #              ||| / _--=> preempt-depth
  791 #              |||| /
  792 #              |||||     delay
  793 #  cmd     pid ||||| time  |   caller
  794 #     \   /    |||||   \   |   /
  795       ls-4473  0.N..    0us : preempt_schedule (write_chan)
  796       ls-4473  0dN.1    1us : _spin_lock (schedule)
  797       ls-4473  0dN.1    2us : add_preempt_count (_spin_lock)
  798       ls-4473  0d..2    2us : put_prev_task_fair (schedule)
  799 [...]
  800       ls-4473  0d..2   13us : set_normalized_timespec (ktime_get_ts)
  801       ls-4473  0d..2   13us : __switch_to (schedule)
  802     sshd-4261  0d..2   14us : finish_task_switch (schedule)
  803     sshd-4261  0d..2   14us : _spin_unlock_irq (finish_task_switch)
  804     sshd-4261  0d..1   15us : add_preempt_count (_spin_lock_irqsave)
  805     sshd-4261  0d..2   16us : _spin_unlock_irqrestore (hrtick_set)
  806     sshd-4261  0d..2   16us : do_IRQ (common_interrupt)
  807     sshd-4261  0d..2   17us : irq_enter (do_IRQ)
  808     sshd-4261  0d..2   17us : idle_cpu (irq_enter)
  809     sshd-4261  0d..2   18us : add_preempt_count (irq_enter)
  810     sshd-4261  0d.h2   18us : idle_cpu (irq_enter)
  811     sshd-4261  0d.h.   18us : handle_fasteoi_irq (do_IRQ)
  812     sshd-4261  0d.h.   19us : _spin_lock (handle_fasteoi_irq)
  813     sshd-4261  0d.h.   19us : add_preempt_count (_spin_lock)
  814     sshd-4261  0d.h1   20us : _spin_unlock (handle_fasteoi_irq)
  815     sshd-4261  0d.h1   20us : sub_preempt_count (_spin_unlock)
  816 [...]
  817     sshd-4261  0d.h1   28us : _spin_unlock (handle_fasteoi_irq)
  818     sshd-4261  0d.h1   29us : sub_preempt_count (_spin_unlock)
  819     sshd-4261  0d.h2   29us : irq_exit (do_IRQ)
  820     sshd-4261  0d.h2   29us : sub_preempt_count (irq_exit)
  821     sshd-4261  0d..3   30us : do_softirq (irq_exit)
  822     sshd-4261  0d...   30us : __do_softirq (do_softirq)
  823     sshd-4261  0d...   31us : __local_bh_disable (__do_softirq)
  824     sshd-4261  0d...   31us+: add_preempt_count (__local_bh_disable)
  825     sshd-4261  0d.s4   34us : add_preempt_count (__local_bh_disable)
  826 [...]
  827     sshd-4261  0d.s3   43us : sub_preempt_count (local_bh_enable_ip)
  828     sshd-4261  0d.s4   44us : sub_preempt_count (local_bh_enable_ip)
  829     sshd-4261  0d.s3   44us : smp_apic_timer_interrupt (apic_timer_interrupt)
  830     sshd-4261  0d.s3   45us : irq_enter (smp_apic_timer_interrupt)
  831     sshd-4261  0d.s3   45us : idle_cpu (irq_enter)
  832     sshd-4261  0d.s3   46us : add_preempt_count (irq_enter)
  833     sshd-4261  0d.H3   46us : idle_cpu (irq_enter)
  834     sshd-4261  0d.H3   47us : hrtimer_interrupt (smp_apic_timer_interrupt)
  835     sshd-4261  0d.H3   47us : ktime_get (hrtimer_interrupt)
  836 [...]
  837     sshd-4261  0d.H3   81us : tick_program_event (hrtimer_interrupt)
  838     sshd-4261  0d.H3   82us : ktime_get (tick_program_event)
  839     sshd-4261  0d.H3   82us : ktime_get_ts (ktime_get)
  840     sshd-4261  0d.H3   83us : getnstimeofday (ktime_get_ts)
  841     sshd-4261  0d.H3   83us : set_normalized_timespec (ktime_get_ts)
  842     sshd-4261  0d.H3   84us : clockevents_program_event (tick_program_event)
  843     sshd-4261  0d.H3   84us : lapic_next_event (clockevents_program_event)
  844     sshd-4261  0d.H3   85us : irq_exit (smp_apic_timer_interrupt)
  845     sshd-4261  0d.H3   85us : sub_preempt_count (irq_exit)
  846     sshd-4261  0d.s4   86us : sub_preempt_count (irq_exit)
  847     sshd-4261  0d.s3   86us : add_preempt_count (__local_bh_disable)
  848 [...]
  849     sshd-4261  0d.s1   98us : sub_preempt_count (net_rx_action)
  850     sshd-4261  0d.s.   99us : add_preempt_count (_spin_lock_irq)
  851     sshd-4261  0d.s1   99us+: _spin_unlock_irq (run_timer_softirq)
  852     sshd-4261  0d.s.  104us : _local_bh_enable (__do_softirq)
  853     sshd-4261  0d.s.  104us : sub_preempt_count (_local_bh_enable)
  854     sshd-4261  0d.s.  105us : _local_bh_enable (__do_softirq)
  855     sshd-4261  0d.s1  105us : trace_preempt_on (__do_softirq)
  856 
  857 
  858 This is a very interesting trace. It started with the preemption of
  859 the ls task. We see that the task had the "need_resched" bit set
  860 via the 'N' in the trace.  Interrupts were disabled before the spin_lock
  861 at the beginning of the trace. We see that a schedule took place to run
  862 sshd.  When the interrupts were enabled, we took an interrupt.
  863 On return from the interrupt handler, the softirq ran. We took another
  864 interrupt while running the softirq as we see from the capital 'H'.
  865 
  866 
  867 wakeup
  868 ------
  869 
  870 In a Real-Time environment it is very important to know the wakeup
  871 time it takes for the highest priority task that is woken up to the
  872 time that it executes. This is also known as "schedule latency".
  873 I stress the point that this is about RT tasks. It is also important
  874 to know the scheduling latency of non-RT tasks, but the average
  875 schedule latency is better for non-RT tasks. Tools like
  876 LatencyTop are more appropriate for such measurements.
  877 
  878 Real-Time environments are interested in the worst case latency.
  879 That is the longest latency it takes for something to happen, and
  880 not the average. We can have a very fast scheduler that may only
  881 have a large latency once in a while, but that would not work well
  882 with Real-Time tasks.  The wakeup tracer was designed to record
  883 the worst case wakeups of RT tasks. Non-RT tasks are not recorded
  884 because the tracer only records one worst case and tracing non-RT
  885 tasks that are unpredictable will overwrite the worst case latency
  886 of RT tasks.
  887 
  888 Since this tracer only deals with RT tasks, we will run this slightly
  889 differently than we did with the previous tracers. Instead of performing
  890 an 'ls', we will run 'sleep 1' under 'chrt' which changes the
  891 priority of the task.
  892 
  893  # echo wakeup > /debug/tracing/current_tracer
  894  # echo 0 > /debug/tracing/tracing_max_latency
  895  # echo 1 > /debug/tracing/tracing_enabled
  896  # chrt -f 5 sleep 1
  897  # echo 0 > /debug/tracing/tracing_enabled
  898  # cat /debug/tracing/latency_trace
  899 # tracer: wakeup
  900 #
  901 wakeup latency trace v1.1.5 on 2.6.26-rc8
  902 --------------------------------------------------------------------
  903  latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  904     -----------------
  905     | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
  906     -----------------
  907 
  908 #                _------=> CPU#
  909 #               / _-----=> irqs-off
  910 #              | / _----=> need-resched
  911 #              || / _---=> hardirq/softirq
  912 #              ||| / _--=> preempt-depth
  913 #              |||| /
  914 #              |||||     delay
  915 #  cmd     pid ||||| time  |   caller
  916 #     \   /    |||||   \   |   /
  917   <idle>-0     1d.h4    0us+: try_to_wake_up (wake_up_process)
  918   <idle>-0     1d..4    4us : schedule (cpu_idle)
  919 
  920 
  921 
  922 Running this on an idle system, we see that it only took 4 microseconds
  923 to perform the task switch.  Note, since the trace marker in the
  924 schedule is before the actual "switch", we stop the tracing when
  925 the recorded task is about to schedule in. This may change if
  926 we add a new marker at the end of the scheduler.
  927 
  928 Notice that the recorded task is 'sleep' with the PID of 4901 and it
  929 has an rt_prio of 5. This priority is user-space priority and not
  930 the internal kernel priority. The policy is 1 for SCHED_FIFO and 2
  931 for SCHED_RR.
  932 
  933 Doing the same with chrt -r 5 and ftrace_enabled set.
  934 
  935 # tracer: wakeup
  936 #
  937 wakeup latency trace v1.1.5 on 2.6.26-rc8
  938 --------------------------------------------------------------------
  939  latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  940     -----------------
  941     | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
  942     -----------------
  943 
  944 #                _------=> CPU#
  945 #               / _-----=> irqs-off
  946 #              | / _----=> need-resched
  947 #              || / _---=> hardirq/softirq
  948 #              ||| / _--=> preempt-depth
  949 #              |||| /
  950 #              |||||     delay
  951 #  cmd     pid ||||| time  |   caller
  952 #     \   /    |||||   \   |   /
  953 ksoftirq-7     1d.H3    0us : try_to_wake_up (wake_up_process)
  954 ksoftirq-7     1d.H4    1us : sub_preempt_count (marker_probe_cb)
  955 ksoftirq-7     1d.H3    2us : check_preempt_wakeup (try_to_wake_up)
  956 ksoftirq-7     1d.H3    3us : update_curr (check_preempt_wakeup)
  957 ksoftirq-7     1d.H3    4us : calc_delta_mine (update_curr)
  958 ksoftirq-7     1d.H3    5us : __resched_task (check_preempt_wakeup)
  959 ksoftirq-7     1d.H3    6us : task_wake_up_rt (try_to_wake_up)
  960 ksoftirq-7     1d.H3    7us : _spin_unlock_irqrestore (try_to_wake_up)
  961 [...]
  962 ksoftirq-7     1d.H2   17us : irq_exit (smp_apic_timer_interrupt)
  963 ksoftirq-7     1d.H2   18us : sub_preempt_count (irq_exit)
  964 ksoftirq-7     1d.s3   19us : sub_preempt_count (irq_exit)
  965 ksoftirq-7     1..s2   20us : rcu_process_callbacks (__do_softirq)
  966 [...]
  967 ksoftirq-7     1..s2   26us : __rcu_process_callbacks (rcu_process_callbacks)
  968 ksoftirq-7     1d.s2   27us : _local_bh_enable (__do_softirq)
  969 ksoftirq-7     1d.s2   28us : sub_preempt_count (_local_bh_enable)
  970 ksoftirq-7     1.N.3   29us : sub_preempt_count (ksoftirqd)
  971 ksoftirq-7     1.N.2   30us : _cond_resched (ksoftirqd)
  972 ksoftirq-7     1.N.2   31us : __cond_resched (_cond_resched)
  973 ksoftirq-7     1.N.2   32us : add_preempt_count (__cond_resched)
  974 ksoftirq-7     1.N.2   33us : schedule (__cond_resched)
  975 ksoftirq-7     1.N.2   33us : add_preempt_count (schedule)
  976 ksoftirq-7     1.N.3   34us : hrtick_clear (schedule)
  977 ksoftirq-7     1dN.3   35us : _spin_lock (schedule)
  978 ksoftirq-7     1dN.3   36us : add_preempt_count (_spin_lock)
  979 ksoftirq-7     1d..4   37us : put_prev_task_fair (schedule)
  980 ksoftirq-7     1d..4   38us : update_curr (put_prev_task_fair)
  981 [...]
  982 ksoftirq-7     1d..5   47us : _spin_trylock (tracing_record_cmdline)
  983 ksoftirq-7     1d..5   48us : add_preempt_count (_spin_trylock)
  984 ksoftirq-7     1d..6   49us : _spin_unlock (tracing_record_cmdline)
  985 ksoftirq-7     1d..6   49us : sub_preempt_count (_spin_unlock)
  986 ksoftirq-7     1d..4   50us : schedule (__cond_resched)
  987 
  988 The interrupt went off while running ksoftirqd. This task runs at
  989 SCHED_OTHER. Why did not we see the 'N' set early? This may be
  990 a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks
  991 configured, the interrupt and softirq run with their own stack.
  992 Some information is held on the top of the task's stack (need_resched
  993 and preempt_count are both stored there). The setting of the NEED_RESCHED
  994 bit is done directly to the task's stack, but the reading of the
  995 NEED_RESCHED is done by looking at the current stack, which in this case
  996 is the stack for the hard interrupt. This hides the fact that NEED_RESCHED
  997 has been set. We do not see the 'N' until we switch back to the task's
  998 assigned stack.
  999 
 1000 function
 1001 --------
 1002 
 1003 This tracer is the function tracer. Enabling the function tracer
 1004 can be done from the debug file system. Make sure the ftrace_enabled is
 1005 set; otherwise this tracer is a nop.
 1006 
 1007  # sysctl kernel.ftrace_enabled=1
 1008  # echo function > /debug/tracing/current_tracer
 1009  # echo 1 > /debug/tracing/tracing_enabled
 1010  # usleep 1
 1011  # echo 0 > /debug/tracing/tracing_enabled
 1012  # cat /debug/tracing/trace
 1013 # tracer: function
 1014 #
 1015 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
 1016 #              | |      |          |         |
 1017             bash-4003  [00]   123.638713: finish_task_switch <-schedule
 1018             bash-4003  [00]   123.638714: _spin_unlock_irq <-finish_task_switch
 1019             bash-4003  [00]   123.638714: sub_preempt_count <-_spin_unlock_irq
 1020             bash-4003  [00]   123.638715: hrtick_set <-schedule
 1021             bash-4003  [00]   123.638715: _spin_lock_irqsave <-hrtick_set
 1022             bash-4003  [00]   123.638716: add_preempt_count <-_spin_lock_irqsave
 1023             bash-4003  [00]   123.638716: _spin_unlock_irqrestore <-hrtick_set
 1024             bash-4003  [00]   123.638717: sub_preempt_count <-_spin_unlock_irqrestore
 1025             bash-4003  [00]   123.638717: hrtick_clear <-hrtick_set
 1026             bash-4003  [00]   123.638718: sub_preempt_count <-schedule
 1027             bash-4003  [00]   123.638718: sub_preempt_count <-preempt_schedule
 1028             bash-4003  [00]   123.638719: wait_for_completion <-__stop_machine_run
 1029             bash-4003  [00]   123.638719: wait_for_common <-wait_for_completion
 1030             bash-4003  [00]   123.638720: _spin_lock_irq <-wait_for_common
 1031             bash-4003  [00]   123.638720: add_preempt_count <-_spin_lock_irq
 1032 [...]
 1033 
 1034 
 1035 Note: function tracer uses ring buffers to store the above entries.
 1036 The newest data may overwrite the oldest data. Sometimes using echo to
 1037 stop the trace is not sufficient because the tracing could have overwritten
 1038 the data that you wanted to record. For this reason, it is sometimes better to
 1039 disable tracing directly from a program. This allows you to stop the
 1040 tracing at the point that you hit the part that you are interested in.
 1041 To disable the tracing directly from a C program, something like following
 1042 code snippet can be used:
 1043 
 1044 int trace_fd;
 1045 [...]
 1046 int main(int argc, char *argv[]) {
 1047         [...]
 1048         trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY);
 1049         [...]
 1050         if (condition_hit()) {
 1051                 write(trace_fd, "0", 1);
 1052         }
 1053         [...]
 1054 }
 1055 
 1056 Note: Here we hard coded the path name. The debugfs mount is not
 1057 guaranteed to be at /debug (and is more commonly at /sys/kernel/debug).
 1058 For simple one time traces, the above is sufficent. For anything else,
 1059 a search through /proc/mounts may be needed to find where the debugfs
 1060 file-system is mounted.
 1061 
 1062 dynamic ftrace
 1063 --------------
 1064 
 1065 If CONFIG_DYNAMIC_FTRACE is set, the system will run with
 1066 virtually no overhead when function tracing is disabled. The way
 1067 this works is the mcount function call (placed at the start of
 1068 every kernel function, produced by the -pg switch in gcc), starts
 1069 of pointing to a simple return. (Enabling FTRACE will include the
 1070 -pg switch in the compiling of the kernel.)
 1071 
 1072 At compile time every C file object is run through the
 1073 recordmcount.pl script (located in the scripts directory). This
 1074 script will process the C object using objdump to find all the
 1075 locations in the .text section that call mcount. (Note, only
 1076 the .text section is processed, since processing other sections
 1077 like .init.text may cause races due to those sections being freed).
 1078 
 1079 A new section called "__mcount_loc" is created that holds references
 1080 to all the mcount call sites in the .text section. This section is
 1081 compiled back into the original object. The final linker will add
 1082 all these references into a single table.
 1083 
 1084 On boot up, before SMP is initialized, the dynamic ftrace code
 1085 scans this table and updates all the locations into nops. It also
 1086 records the locations, which are added to the available_filter_functions
 1087 list.  Modules are processed as they are loaded and before they are
 1088 executed.  When a module is unloaded, it also removes its functions from
 1089 the ftrace function list. This is automatic in the module unload
 1090 code, and the module author does not need to worry about it.
 1091 
 1092 When tracing is enabled, kstop_machine is called to prevent races
 1093 with the CPUS executing code being modified (which can cause the
 1094 CPU to do undesireable things), and the nops are patched back
 1095 to calls. But this time, they do not call mcount (which is just
 1096 a function stub). They now call into the ftrace infrastructure.
 1097 
 1098 One special side-effect to the recording of the functions being
 1099 traced is that we can now selectively choose which functions we
 1100 wish to trace and which ones we want the mcount calls to remain as
 1101 nops.
 1102 
 1103 Two files are used, one for enabling and one for disabling the tracing
 1104 of specified functions. They are:
 1105 
 1106   set_ftrace_filter
 1107 
 1108 and
 1109 
 1110   set_ftrace_notrace
 1111 
 1112 A list of available functions that you can add to these files is listed
 1113 in:
 1114 
 1115    available_filter_functions
 1116 
 1117  # cat /debug/tracing/available_filter_functions
 1118 put_prev_task_idle
 1119 kmem_cache_create
 1120 pick_next_task_rt
 1121 get_online_cpus
 1122 pick_next_task_fair
 1123 mutex_lock
 1124 [...]
 1125 
 1126 If I am only interested in sys_nanosleep and hrtimer_interrupt:
 1127 
 1128  # echo sys_nanosleep hrtimer_interrupt \
 1129                 > /debug/tracing/set_ftrace_filter
 1130  # echo ftrace > /debug/tracing/current_tracer
 1131  # echo 1 > /debug/tracing/tracing_enabled
 1132  # usleep 1
 1133  # echo 0 > /debug/tracing/tracing_enabled
 1134  # cat /debug/tracing/trace
 1135 # tracer: ftrace
 1136 #
 1137 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
 1138 #              | |      |          |         |
 1139           usleep-4134  [00]  1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
 1140           usleep-4134  [00]  1317.070111: sys_nanosleep <-syscall_call
 1141           <idle>-0     [00]  1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
 1142 
 1143 To see which functions are being traced, you can cat the file:
 1144 
 1145  # cat /debug/tracing/set_ftrace_filter
 1146 hrtimer_interrupt
 1147 sys_nanosleep
 1148 
 1149 
 1150 Perhaps this is not enough. The filters also allow simple wild cards.
 1151 Only the following are currently available
 1152 
 1153   <match>*  - will match functions that begin with <match>
 1154   *<match>  - will match functions that end with <match>
 1155   *<match>* - will match functions that have <match> in it
 1156 
 1157 These are the only wild cards which are supported.
 1158 
 1159   <match>*<match> will not work.
 1160 
 1161  # echo hrtimer_* > /debug/tracing/set_ftrace_filter
 1162 
 1163 Produces:
 1164 
 1165 # tracer: ftrace
 1166 #
 1167 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
 1168 #              | |      |          |         |
 1169             bash-4003  [00]  1480.611794: hrtimer_init <-copy_process
 1170             bash-4003  [00]  1480.611941: hrtimer_start <-hrtick_set
 1171             bash-4003  [00]  1480.611956: hrtimer_cancel <-hrtick_clear
 1172             bash-4003  [00]  1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
 1173           <idle>-0     [00]  1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
 1174           <idle>-0     [00]  1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
 1175           <idle>-0     [00]  1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
 1176           <idle>-0     [00]  1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
 1177           <idle>-0     [00]  1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt
 1178 
 1179 
 1180 Notice that we lost the sys_nanosleep.
 1181 
 1182  # cat /debug/tracing/set_ftrace_filter
 1183 hrtimer_run_queues
 1184 hrtimer_run_pending
 1185 hrtimer_init
 1186 hrtimer_cancel
 1187 hrtimer_try_to_cancel
 1188 hrtimer_forward
 1189 hrtimer_start
 1190 hrtimer_reprogram
 1191 hrtimer_force_reprogram
 1192 hrtimer_get_next_event
 1193 hrtimer_interrupt
 1194 hrtimer_nanosleep
 1195 hrtimer_wakeup
 1196 hrtimer_get_remaining
 1197 hrtimer_get_res
 1198 hrtimer_init_sleeper
 1199 
 1200 
 1201 This is because the '>' and '>>' act just like they do in bash.
 1202 To rewrite the filters, use '>'
 1203 To append to the filters, use '>>'
 1204 
 1205 To clear out a filter so that all functions will be recorded again:
 1206 
 1207  # echo > /debug/tracing/set_ftrace_filter
 1208  # cat /debug/tracing/set_ftrace_filter
 1209  #
 1210 
 1211 Again, now we want to append.
 1212 
 1213  # echo sys_nanosleep > /debug/tracing/set_ftrace_filter
 1214  # cat /debug/tracing/set_ftrace_filter
 1215 sys_nanosleep
 1216  # echo hrtimer_* >> /debug/tracing/set_ftrace_filter
 1217  # cat /debug/tracing/set_ftrace_filter
 1218 hrtimer_run_queues
 1219 hrtimer_run_pending
 1220 hrtimer_init
 1221 hrtimer_cancel
 1222 hrtimer_try_to_cancel
 1223 hrtimer_forward
 1224 hrtimer_start
 1225 hrtimer_reprogram
 1226 hrtimer_force_reprogram
 1227 hrtimer_get_next_event
 1228 hrtimer_interrupt
 1229 sys_nanosleep
 1230 hrtimer_nanosleep
 1231 hrtimer_wakeup
 1232 hrtimer_get_remaining
 1233 hrtimer_get_res
 1234 hrtimer_init_sleeper
 1235 
 1236 
 1237 The set_ftrace_notrace prevents those functions from being traced.
 1238 
 1239  # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace
 1240 
 1241 Produces:
 1242 
 1243 # tracer: ftrace
 1244 #
 1245 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
 1246 #              | |      |          |         |
 1247             bash-4043  [01]   115.281644: finish_task_switch <-schedule
 1248             bash-4043  [01]   115.281645: hrtick_set <-schedule
 1249             bash-4043  [01]   115.281645: hrtick_clear <-hrtick_set
 1250             bash-4043  [01]   115.281646: wait_for_completion <-__stop_machine_run
 1251             bash-4043  [01]   115.281647: wait_for_common <-wait_for_completion
 1252             bash-4043  [01]   115.281647: kthread_stop <-stop_machine_run
 1253             bash-4043  [01]   115.281648: init_waitqueue_head <-kthread_stop
 1254             bash-4043  [01]   115.281648: wake_up_process <-kthread_stop
 1255             bash-4043  [01]   115.281649: try_to_wake_up <-wake_up_process
 1256 
 1257 We can see that there's no more lock or preempt tracing.
 1258 
 1259 trace_pipe
 1260 ----------
 1261 
 1262 The trace_pipe outputs the same content as the trace file, but the effect
 1263 on the tracing is different. Every read from trace_pipe is consumed.
 1264 This means that subsequent reads will be different. The trace
 1265 is live.
 1266 
 1267  # echo function > /debug/tracing/current_tracer
 1268  # cat /debug/tracing/trace_pipe > /tmp/trace.out &
 1269 [1] 4153
 1270  # echo 1 > /debug/tracing/tracing_enabled
 1271  # usleep 1
 1272  # echo 0 > /debug/tracing/tracing_enabled
 1273  # cat /debug/tracing/trace
 1274 # tracer: function
 1275 #
 1276 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
 1277 #              | |      |          |         |
 1278 
 1279  #
 1280  # cat /tmp/trace.out
 1281             bash-4043  [00] 41.267106: finish_task_switch <-schedule
 1282             bash-4043  [00] 41.267106: hrtick_set <-schedule
 1283             bash-4043  [00] 41.267107: hrtick_clear <-hrtick_set
 1284             bash-4043  [00] 41.267108: wait_for_completion <-__stop_machine_run
 1285             bash-4043  [00] 41.267108: wait_for_common <-wait_for_completion
 1286             bash-4043  [00] 41.267109: kthread_stop <-stop_machine_run
 1287             bash-4043  [00] 41.267109: init_waitqueue_head <-kthread_stop
 1288             bash-4043  [00] 41.267110: wake_up_process <-kthread_stop
 1289             bash-4043  [00] 41.267110: try_to_wake_up <-wake_up_process
 1290             bash-4043  [00] 41.267111: select_task_rq_rt <-try_to_wake_up
 1291 
 1292 
 1293 Note, reading the trace_pipe file will block until more input is added.
 1294 By changing the tracer, trace_pipe will issue an EOF. We needed
 1295 to set the function tracer _before_ we "cat" the trace_pipe file.
 1296 
 1297 
 1298 trace entries
 1299 -------------
 1300 
 1301 Having too much or not enough data can be troublesome in diagnosing
 1302 an issue in the kernel. The file trace_entries is used to modify
 1303 the size of the internal trace buffers. The number listed
 1304 is the number of entries that can be recorded per CPU. To know
 1305 the full size, multiply the number of possible CPUS with the
 1306 number of entries.
 1307 
 1308  # cat /debug/tracing/trace_entries
 1309 65620
 1310 
 1311 Note, to modify this, you must have tracing completely disabled. To do that,
 1312 echo "nop" into the current_tracer. If the current_tracer is not set
 1313 to "nop", an EINVAL error will be returned.
 1314 
 1315  # echo nop > /debug/tracing/current_tracer
 1316  # echo 100000 > /debug/tracing/trace_entries
 1317  # cat /debug/tracing/trace_entries
 1318 100045
 1319 
 1320 
 1321 Notice that we echoed in 100,000 but the size is 100,045. The entries
 1322 are held in individual pages. It allocates the number of pages it takes
 1323 to fulfill the request. If more entries may fit on the last page
 1324 then they will be added.
 1325 
 1326  # echo 1 > /debug/tracing/trace_entries
 1327  # cat /debug/tracing/trace_entries
 1328 85
 1329 
 1330 This shows us that 85 entries can fit in a single page.
 1331 
 1332 The number of pages which will be allocated is limited to a percentage
 1333 of available memory. Allocating too much will produce an error.
 1334 
 1335  # echo 1000000000000 > /debug/tracing/trace_entries
 1336 -bash: echo: write error: Cannot allocate memory
 1337  # cat /debug/tracing/trace_entries
 1338 85
 1339 

Cache object: 9fa78d00e0300553f4be264049ff41ad


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.