The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/Documentation/rbtree.txt

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 Red-black Trees (rbtree) in Linux
    2 January 18, 2007
    3 Rob Landley <rob@landley.net>
    4 =============================
    5 
    6 What are red-black trees, and what are they for?
    7 ------------------------------------------------
    8 
    9 Red-black trees are a type of self-balancing binary search tree, used for
   10 storing sortable key/value data pairs.  This differs from radix trees (which
   11 are used to efficiently store sparse arrays and thus use long integer indexes
   12 to insert/access/delete nodes) and hash tables (which are not kept sorted to
   13 be easily traversed in order, and must be tuned for a specific size and
   14 hash function where rbtrees scale gracefully storing arbitrary keys).
   15 
   16 Red-black trees are similar to AVL trees, but provide faster real-time bounded
   17 worst case performance for insertion and deletion (at most two rotations and
   18 three rotations, respectively, to balance the tree), with slightly slower
   19 (but still O(log n)) lookup time.
   20 
   21 To quote Linux Weekly News:
   22 
   23     There are a number of red-black trees in use in the kernel.
   24     The deadline and CFQ I/O schedulers employ rbtrees to
   25     track requests; the packet CD/DVD driver does the same.
   26     The high-resolution timer code uses an rbtree to organize outstanding
   27     timer requests.  The ext3 filesystem tracks directory entries in a
   28     red-black tree.  Virtual memory areas (VMAs) are tracked with red-black
   29     trees, as are epoll file descriptors, cryptographic keys, and network
   30     packets in the "hierarchical token bucket" scheduler.
   31 
   32 This document covers use of the Linux rbtree implementation.  For more
   33 information on the nature and implementation of Red Black Trees,  see:
   34 
   35   Linux Weekly News article on red-black trees
   36     http://lwn.net/Articles/184495/
   37 
   38   Wikipedia entry on red-black trees
   39     http://en.wikipedia.org/wiki/Red-black_tree
   40 
   41 Linux implementation of red-black trees
   42 ---------------------------------------
   43 
   44 Linux's rbtree implementation lives in the file "lib/rbtree.c".  To use it,
   45 "#include <linux/rbtree.h>".
   46 
   47 The Linux rbtree implementation is optimized for speed, and thus has one
   48 less layer of indirection (and better cache locality) than more traditional
   49 tree implementations.  Instead of using pointers to separate rb_node and data
   50 structures, each instance of struct rb_node is embedded in the data structure
   51 it organizes.  And instead of using a comparison callback function pointer,
   52 users are expected to write their own tree search and insert functions
   53 which call the provided rbtree functions.  Locking is also left up to the
   54 user of the rbtree code.
   55 
   56 Creating a new rbtree
   57 ---------------------
   58 
   59 Data nodes in an rbtree tree are structures containing a struct rb_node member:
   60 
   61   struct mytype {
   62         struct rb_node node;
   63         char *keystring;
   64   };
   65 
   66 When dealing with a pointer to the embedded struct rb_node, the containing data
   67 structure may be accessed with the standard container_of() macro.  In addition,
   68 individual members may be accessed directly via rb_entry(node, type, member).
   69 
   70 At the root of each rbtree is an rb_root structure, which is initialized to be
   71 empty via:
   72 
   73   struct rb_root mytree = RB_ROOT;
   74 
   75 Searching for a value in an rbtree
   76 ----------------------------------
   77 
   78 Writing a search function for your tree is fairly straightforward: start at the
   79 root, compare each value, and follow the left or right branch as necessary.
   80 
   81 Example:
   82 
   83   struct mytype *my_search(struct rb_root *root, char *string)
   84   {
   85         struct rb_node *node = root->rb_node;
   86 
   87         while (node) {
   88                 struct mytype *data = container_of(node, struct mytype, node);
   89                 int result;
   90 
   91                 result = strcmp(string, data->keystring);
   92 
   93                 if (result < 0)
   94                         node = node->rb_left;
   95                 else if (result > 0)
   96                         node = node->rb_right;
   97                 else
   98                         return data;
   99         }
  100         return NULL;
  101   }
  102 
  103 Inserting data into an rbtree
  104 -----------------------------
  105 
  106 Inserting data in the tree involves first searching for the place to insert the
  107 new node, then inserting the node and rebalancing ("recoloring") the tree.
  108 
  109 The search for insertion differs from the previous search by finding the
  110 location of the pointer on which to graft the new node.  The new node also
  111 needs a link to its parent node for rebalancing purposes.
  112 
  113 Example:
  114 
  115   int my_insert(struct rb_root *root, struct mytype *data)
  116   {
  117         struct rb_node **new = &(root->rb_node), *parent = NULL;
  118 
  119         /* Figure out where to put new node */
  120         while (*new) {
  121                 struct mytype *this = container_of(*new, struct mytype, node);
  122                 int result = strcmp(data->keystring, this->keystring);
  123 
  124                 parent = *new;
  125                 if (result < 0)
  126                         new = &((*new)->rb_left);
  127                 else if (result > 0)
  128                         new = &((*new)->rb_right);
  129                 else
  130                         return FALSE;
  131         }
  132 
  133         /* Add new node and rebalance tree. */
  134         rb_link_node(&data->node, parent, new);
  135         rb_insert_color(&data->node, root);
  136 
  137         return TRUE;
  138   }
  139 
  140 Removing or replacing existing data in an rbtree
  141 ------------------------------------------------
  142 
  143 To remove an existing node from a tree, call:
  144 
  145   void rb_erase(struct rb_node *victim, struct rb_root *tree);
  146 
  147 Example:
  148 
  149   struct mytype *data = mysearch(&mytree, "walrus");
  150 
  151   if (data) {
  152         rb_erase(&data->node, &mytree);
  153         myfree(data);
  154   }
  155 
  156 To replace an existing node in a tree with a new one with the same key, call:
  157 
  158   void rb_replace_node(struct rb_node *old, struct rb_node *new,
  159                         struct rb_root *tree);
  160 
  161 Replacing a node this way does not re-sort the tree: If the new node doesn't
  162 have the same key as the old node, the rbtree will probably become corrupted.
  163 
  164 Iterating through the elements stored in an rbtree (in sort order)
  165 ------------------------------------------------------------------
  166 
  167 Four functions are provided for iterating through an rbtree's contents in
  168 sorted order.  These work on arbitrary trees, and should not need to be
  169 modified or wrapped (except for locking purposes):
  170 
  171   struct rb_node *rb_first(struct rb_root *tree);
  172   struct rb_node *rb_last(struct rb_root *tree);
  173   struct rb_node *rb_next(struct rb_node *node);
  174   struct rb_node *rb_prev(struct rb_node *node);
  175 
  176 To start iterating, call rb_first() or rb_last() with a pointer to the root
  177 of the tree, which will return a pointer to the node structure contained in
  178 the first or last element in the tree.  To continue, fetch the next or previous
  179 node by calling rb_next() or rb_prev() on the current node.  This will return
  180 NULL when there are no more nodes left.
  181 
  182 The iterator functions return a pointer to the embedded struct rb_node, from
  183 which the containing data structure may be accessed with the container_of()
  184 macro, and individual members may be accessed directly via
  185 rb_entry(node, type, member).
  186 
  187 Example:
  188 
  189   struct rb_node *node;
  190   for (node = rb_first(&mytree); node; node = rb_next(node))
  191         printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);
  192 
  193 Support for Augmented rbtrees
  194 -----------------------------
  195 
  196 Augmented rbtree is an rbtree with "some" additional data stored in
  197 each node, where the additional data for node N must be a function of
  198 the contents of all nodes in the subtree rooted at N. This data can
  199 be used to augment some new functionality to rbtree. Augmented rbtree
  200 is an optional feature built on top of basic rbtree infrastructure.
  201 An rbtree user who wants this feature will have to call the augmentation
  202 functions with the user provided augmentation callback when inserting
  203 and erasing nodes.
  204 
  205 C files implementing augmented rbtree manipulation must include
  206 <linux/rbtree_augmented.h> instead of <linus/rbtree.h>. Note that
  207 linux/rbtree_augmented.h exposes some rbtree implementations details
  208 you are not expected to rely on; please stick to the documented APIs
  209 there and do not include <linux/rbtree_augmented.h> from header files
  210 either so as to minimize chances of your users accidentally relying on
  211 such implementation details.
  212 
  213 On insertion, the user must update the augmented information on the path
  214 leading to the inserted node, then call rb_link_node() as usual and
  215 rb_augment_inserted() instead of the usual rb_insert_color() call.
  216 If rb_augment_inserted() rebalances the rbtree, it will callback into
  217 a user provided function to update the augmented information on the
  218 affected subtrees.
  219 
  220 When erasing a node, the user must call rb_erase_augmented() instead of
  221 rb_erase(). rb_erase_augmented() calls back into user provided functions
  222 to updated the augmented information on affected subtrees.
  223 
  224 In both cases, the callbacks are provided through struct rb_augment_callbacks.
  225 3 callbacks must be defined:
  226 
  227 - A propagation callback, which updates the augmented value for a given
  228   node and its ancestors, up to a given stop point (or NULL to update
  229   all the way to the root).
  230 
  231 - A copy callback, which copies the augmented value for a given subtree
  232   to a newly assigned subtree root.
  233 
  234 - A tree rotation callback, which copies the augmented value for a given
  235   subtree to a newly assigned subtree root AND recomputes the augmented
  236   information for the former subtree root.
  237 
  238 The compiled code for rb_erase_augmented() may inline the propagation and
  239 copy callbacks, which results in a large function, so each augmented rbtree
  240 user should have a single rb_erase_augmented() call site in order to limit
  241 compiled code size.
  242 
  243 
  244 Sample usage:
  245 
  246 Interval tree is an example of augmented rb tree. Reference -
  247 "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein.
  248 More details about interval trees:
  249 
  250 Classical rbtree has a single key and it cannot be directly used to store
  251 interval ranges like [lo:hi] and do a quick lookup for any overlap with a new
  252 lo:hi or to find whether there is an exact match for a new lo:hi.
  253 
  254 However, rbtree can be augmented to store such interval ranges in a structured
  255 way making it possible to do efficient lookup and exact match.
  256 
  257 This "extra information" stored in each node is the maximum hi
  258 (max_hi) value among all the nodes that are its descendents. This
  259 information can be maintained at each node just be looking at the node
  260 and its immediate children. And this will be used in O(log n) lookup
  261 for lowest match (lowest start address among all possible matches)
  262 with something like:
  263 
  264 struct interval_tree_node *
  265 interval_tree_first_match(struct rb_root *root,
  266                           unsigned long start, unsigned long last)
  267 {
  268         struct interval_tree_node *node;
  269 
  270         if (!root->rb_node)
  271                 return NULL;
  272         node = rb_entry(root->rb_node, struct interval_tree_node, rb);
  273 
  274         while (true) {
  275                 if (node->rb.rb_left) {
  276                         struct interval_tree_node *left =
  277                                 rb_entry(node->rb.rb_left,
  278                                          struct interval_tree_node, rb);
  279                         if (left->__subtree_last >= start) {
  280                                 /*
  281                                  * Some nodes in left subtree satisfy Cond2.
  282                                  * Iterate to find the leftmost such node N.
  283                                  * If it also satisfies Cond1, that's the match
  284                                  * we are looking for. Otherwise, there is no
  285                                  * matching interval as nodes to the right of N
  286                                  * can't satisfy Cond1 either.
  287                                  */
  288                                 node = left;
  289                                 continue;
  290                         }
  291                 }
  292                 if (node->start <= last) {              /* Cond1 */
  293                         if (node->last >= start)        /* Cond2 */
  294                                 return node;    /* node is leftmost match */
  295                         if (node->rb.rb_right) {
  296                                 node = rb_entry(node->rb.rb_right,
  297                                         struct interval_tree_node, rb);
  298                                 if (node->__subtree_last >= start)
  299                                         continue;
  300                         }
  301                 }
  302                 return NULL;    /* No match */
  303         }
  304 }
  305 
  306 Insertion/removal are defined using the following augmented callbacks:
  307 
  308 static inline unsigned long
  309 compute_subtree_last(struct interval_tree_node *node)
  310 {
  311         unsigned long max = node->last, subtree_last;
  312         if (node->rb.rb_left) {
  313                 subtree_last = rb_entry(node->rb.rb_left,
  314                         struct interval_tree_node, rb)->__subtree_last;
  315                 if (max < subtree_last)
  316                         max = subtree_last;
  317         }
  318         if (node->rb.rb_right) {
  319                 subtree_last = rb_entry(node->rb.rb_right,
  320                         struct interval_tree_node, rb)->__subtree_last;
  321                 if (max < subtree_last)
  322                         max = subtree_last;
  323         }
  324         return max;
  325 }
  326 
  327 static void augment_propagate(struct rb_node *rb, struct rb_node *stop)
  328 {
  329         while (rb != stop) {
  330                 struct interval_tree_node *node =
  331                         rb_entry(rb, struct interval_tree_node, rb);
  332                 unsigned long subtree_last = compute_subtree_last(node);
  333                 if (node->__subtree_last == subtree_last)
  334                         break;
  335                 node->__subtree_last = subtree_last;
  336                 rb = rb_parent(&node->rb);
  337         }
  338 }
  339 
  340 static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new)
  341 {
  342         struct interval_tree_node *old =
  343                 rb_entry(rb_old, struct interval_tree_node, rb);
  344         struct interval_tree_node *new =
  345                 rb_entry(rb_new, struct interval_tree_node, rb);
  346 
  347         new->__subtree_last = old->__subtree_last;
  348 }
  349 
  350 static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new)
  351 {
  352         struct interval_tree_node *old =
  353                 rb_entry(rb_old, struct interval_tree_node, rb);
  354         struct interval_tree_node *new =
  355                 rb_entry(rb_new, struct interval_tree_node, rb);
  356 
  357         new->__subtree_last = old->__subtree_last;
  358         old->__subtree_last = compute_subtree_last(old);
  359 }
  360 
  361 static const struct rb_augment_callbacks augment_callbacks = {
  362         augment_propagate, augment_copy, augment_rotate
  363 };
  364 
  365 void interval_tree_insert(struct interval_tree_node *node,
  366                           struct rb_root *root)
  367 {
  368         struct rb_node **link = &root->rb_node, *rb_parent = NULL;
  369         unsigned long start = node->start, last = node->last;
  370         struct interval_tree_node *parent;
  371 
  372         while (*link) {
  373                 rb_parent = *link;
  374                 parent = rb_entry(rb_parent, struct interval_tree_node, rb);
  375                 if (parent->__subtree_last < last)
  376                         parent->__subtree_last = last;
  377                 if (start < parent->start)
  378                         link = &parent->rb.rb_left;
  379                 else
  380                         link = &parent->rb.rb_right;
  381         }
  382 
  383         node->__subtree_last = last;
  384         rb_link_node(&node->rb, rb_parent, link);
  385         rb_insert_augmented(&node->rb, root, &augment_callbacks);
  386 }
  387 
  388 void interval_tree_remove(struct interval_tree_node *node,
  389                           struct rb_root *root)
  390 {
  391         rb_erase_augmented(&node->rb, root, &augment_callbacks);
  392 }

Cache object: 24fa0f84b9cbb8d2f3acb3e6ec643d2b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.