FreeBSD/Linux Kernel Cross Reference
sys/altq/altq_subr.c
1 /* $NetBSD: altq_subr.c,v 1.11 2004/02/13 11:36:09 wiz Exp $ */
2 /* $KAME: altq_subr.c,v 1.11 2002/01/11 08:11:49 kjc Exp $ */
3
4 /*
5 * Copyright (C) 1997-2002
6 * Sony Computer Science Laboratories Inc. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.11 2004/02/13 11:36:09 wiz Exp $");
32
33 #if defined(__FreeBSD__) || defined(__NetBSD__)
34 #include "opt_altq.h"
35 #if (__FreeBSD__ != 2)
36 #include "opt_inet.h"
37 #ifdef __FreeBSD__
38 #include "opt_inet6.h"
39 #endif
40 #endif
41 #endif /* __FreeBSD__ || __NetBSD__ */
42
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/kernel.h>
51 #include <sys/errno.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/queue.h>
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_types.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #ifdef INET6
64 #include <netinet/ip6.h>
65 #endif
66 #include <netinet/tcp.h>
67 #include <netinet/udp.h>
68
69 #include <altq/altq.h>
70 #include <altq/altq_conf.h>
71
72 /* machine dependent clock related includes */
73 #ifdef __FreeBSD__
74 #include "opt_cpu.h" /* for FreeBSD-2.2.8 to get i586_ctr_freq */
75 #include <machine/clock.h>
76 #endif
77 #if defined(__i386__)
78 #include <machine/specialreg.h> /* for CPUID_TSC */
79 #ifdef __FreeBSD__
80 #include <machine/md_var.h> /* for cpu_feature */
81 #elif defined(__NetBSD__) || defined(__OpenBSD__)
82 #include <machine/cpu.h> /* for cpu_feature */
83 #endif
84 #endif /* __i386__ */
85
86 /*
87 * internal function prototypes
88 */
89 static void tbr_timeout __P((void *));
90 static int extract_ports4 __P((struct mbuf *, struct ip *,
91 struct flowinfo_in *));
92 #ifdef INET6
93 static int extract_ports6 __P((struct mbuf *, struct ip6_hdr *,
94 struct flowinfo_in6 *));
95 #endif
96 static int apply_filter4 __P((u_int32_t, struct flow_filter *,
97 struct flowinfo_in *));
98 static int apply_ppfilter4 __P((u_int32_t, struct flow_filter *,
99 struct flowinfo_in *));
100 #ifdef INET6
101 static int apply_filter6 __P((u_int32_t, struct flow_filter6 *,
102 struct flowinfo_in6 *));
103 #endif
104 static int apply_tosfilter4 __P((u_int32_t, struct flow_filter *,
105 struct flowinfo_in *));
106 static u_long get_filt_handle __P((struct acc_classifier *, int));
107 static struct acc_filter *filth_to_filtp __P((struct acc_classifier *,
108 u_long));
109 static u_int32_t filt2fibmask __P((struct flow_filter *));
110
111 static void ip4f_cache __P((struct ip *, struct flowinfo_in *));
112 static int ip4f_lookup __P((struct ip *, struct flowinfo_in *));
113 static int ip4f_init __P((void));
114 static struct ip4_frag *ip4f_alloc __P((void));
115 static void ip4f_free __P((struct ip4_frag *));
116
117 int (*altq_input) __P((struct mbuf *, int)) = NULL;
118 static int tbr_timer = 0; /* token bucket regulator timer */
119 static struct callout tbr_callout = CALLOUT_INITIALIZER;
120
121 /*
122 * alternate queueing support routines
123 */
124
125 /* look up the queue state by the interface name and the queuing type. */
126 void *
127 altq_lookup(name, type)
128 char *name;
129 int type;
130 {
131 struct ifnet *ifp;
132
133 if ((ifp = ifunit(name)) != NULL) {
134 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
135 return (ifp->if_snd.altq_disc);
136 }
137
138 return NULL;
139 }
140
141 int
142 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
143 struct ifaltq *ifq;
144 int type;
145 void *discipline;
146 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
147 struct mbuf *(*dequeue)(struct ifaltq *, int);
148 int (*request)(struct ifaltq *, int, void *);
149 void *clfier;
150 void *(*classify)(void *, struct mbuf *, int);
151 {
152 if (!ALTQ_IS_READY(ifq))
153 return ENXIO;
154 if (ALTQ_IS_ENABLED(ifq))
155 return EBUSY;
156 if (ALTQ_IS_ATTACHED(ifq))
157 return EEXIST;
158 ifq->altq_type = type;
159 ifq->altq_disc = discipline;
160 ifq->altq_enqueue = enqueue;
161 ifq->altq_dequeue = dequeue;
162 ifq->altq_request = request;
163 ifq->altq_clfier = clfier;
164 ifq->altq_classify = classify;
165 ifq->altq_flags &= ALTQF_CANTCHANGE;
166 #ifdef ALTQ_KLD
167 altq_module_incref(type);
168 #endif
169 return 0;
170 }
171
172 int
173 altq_detach(ifq)
174 struct ifaltq *ifq;
175 {
176 if (!ALTQ_IS_READY(ifq))
177 return ENXIO;
178 if (ALTQ_IS_ENABLED(ifq))
179 return EBUSY;
180 if (!ALTQ_IS_ATTACHED(ifq))
181 return (0);
182
183 #ifdef ALTQ_KLD
184 altq_module_declref(ifq->altq_type);
185 #endif
186 ifq->altq_type = ALTQT_NONE;
187 ifq->altq_disc = NULL;
188 ifq->altq_enqueue = NULL;
189 ifq->altq_dequeue = NULL;
190 ifq->altq_request = NULL;
191 ifq->altq_clfier = NULL;
192 ifq->altq_classify = NULL;
193 ifq->altq_flags &= ALTQF_CANTCHANGE;
194 return 0;
195 }
196
197 int
198 altq_enable(ifq)
199 struct ifaltq *ifq;
200 {
201 int s;
202
203 if (!ALTQ_IS_READY(ifq))
204 return ENXIO;
205 if (ALTQ_IS_ENABLED(ifq))
206 return 0;
207
208 s = splnet();
209 IFQ_PURGE(ifq);
210 ASSERT(ifq->ifq_len == 0);
211 ifq->altq_flags |= ALTQF_ENABLED;
212 if (ifq->altq_clfier != NULL)
213 ifq->altq_flags |= ALTQF_CLASSIFY;
214 splx(s);
215
216 return 0;
217 }
218
219 int
220 altq_disable(ifq)
221 struct ifaltq *ifq;
222 {
223 int s;
224
225 if (!ALTQ_IS_ENABLED(ifq))
226 return 0;
227
228 s = splnet();
229 IFQ_PURGE(ifq);
230 ASSERT(ifq->ifq_len == 0);
231 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
232 splx(s);
233 return 0;
234 }
235
236 void
237 altq_assert(file, line, failedexpr)
238 const char *file, *failedexpr;
239 int line;
240 {
241 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
242 failedexpr, file, line);
243 panic("altq assertion");
244 /* NOTREACHED */
245 }
246
247 /*
248 * internal representation of token bucket parameters
249 * rate: byte_per_unittime << 32
250 * (((bits_per_sec) / 8) << 32) / machclk_freq
251 * depth: byte << 32
252 *
253 */
254 #define TBR_SHIFT 32
255 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
256 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
257
258 struct mbuf *
259 tbr_dequeue(ifq, op)
260 struct ifaltq *ifq;
261 int op;
262 {
263 struct tb_regulator *tbr;
264 struct mbuf *m;
265 int64_t interval;
266 u_int64_t now;
267
268 tbr = ifq->altq_tbr;
269 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
270 /* if this is a remove after poll, bypass tbr check */
271 } else {
272 /* update token only when it is negative */
273 if (tbr->tbr_token <= 0) {
274 now = read_machclk();
275 interval = now - tbr->tbr_last;
276 if (interval >= tbr->tbr_filluptime)
277 tbr->tbr_token = tbr->tbr_depth;
278 else {
279 tbr->tbr_token += interval * tbr->tbr_rate;
280 if (tbr->tbr_token > tbr->tbr_depth)
281 tbr->tbr_token = tbr->tbr_depth;
282 }
283 tbr->tbr_last = now;
284 }
285 /* if token is still negative, don't allow dequeue */
286 if (tbr->tbr_token <= 0)
287 return (NULL);
288 }
289
290 if (ALTQ_IS_ENABLED(ifq))
291 m = (*ifq->altq_dequeue)(ifq, op);
292 else {
293 if (op == ALTDQ_POLL)
294 IF_POLL(ifq, m);
295 else
296 IF_DEQUEUE(ifq, m);
297 }
298
299 if (m != NULL && op == ALTDQ_REMOVE)
300 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
301 tbr->tbr_lastop = op;
302 return (m);
303 }
304
305 /*
306 * set a token bucket regulator.
307 * if the specified rate is zero, the token bucket regulator is deleted.
308 */
309 int
310 tbr_set(ifq, profile)
311 struct ifaltq *ifq;
312 struct tb_profile *profile;
313 {
314 struct tb_regulator *tbr, *otbr;
315
316 if (machclk_freq == 0)
317 init_machclk();
318 if (machclk_freq == 0) {
319 printf("tbr_set: no CPU clock available!\n");
320 return (ENXIO);
321 }
322
323 if (profile->rate == 0) {
324 /* delete this tbr */
325 if ((tbr = ifq->altq_tbr) == NULL)
326 return (ENOENT);
327 ifq->altq_tbr = NULL;
328 FREE(tbr, M_DEVBUF);
329 return (0);
330 }
331
332 MALLOC(tbr, struct tb_regulator *, sizeof(struct tb_regulator),
333 M_DEVBUF, M_WAITOK);
334 if (tbr == NULL)
335 return (ENOMEM);
336 (void)memset(tbr, 0, sizeof(struct tb_regulator));
337
338 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
339 tbr->tbr_depth = TBR_SCALE(profile->depth);
340 if (tbr->tbr_rate > 0)
341 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
342 else
343 tbr->tbr_filluptime = 0xffffffffffffffffLL;
344 tbr->tbr_token = tbr->tbr_depth;
345 tbr->tbr_last = read_machclk();
346 tbr->tbr_lastop = ALTDQ_REMOVE;
347
348 otbr = ifq->altq_tbr;
349 ifq->altq_tbr = tbr; /* set the new tbr */
350
351 if (otbr != NULL)
352 FREE(otbr, M_DEVBUF);
353 else {
354 if (tbr_timer == 0) {
355 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
356 tbr_timer = 1;
357 }
358 }
359 return (0);
360 }
361
362 /*
363 * tbr_timeout goes through the interface list, and kicks the drivers
364 * if necessary.
365 */
366 static void
367 tbr_timeout(arg)
368 void *arg;
369 {
370 struct ifnet *ifp;
371 int active, s;
372
373 active = 0;
374 s = splnet();
375 #ifdef __FreeBSD__
376 #if (__FreeBSD_version < 300000)
377 for (ifp = ifnet; ifp; ifp = ifp->if_next)
378 #else
379 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_link.tqe_next)
380 #endif
381 #else /* !FreeBSD */
382 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_list.tqe_next)
383 #endif
384 {
385 if (!TBR_IS_ENABLED(&ifp->if_snd))
386 continue;
387 active++;
388 if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
389 (*ifp->if_start)(ifp);
390 }
391 splx(s);
392 if (active > 0)
393 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
394 else
395 tbr_timer = 0; /* don't need tbr_timer anymore */
396 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
397 {
398 /*
399 * XXX read out the machine dependent clock once a second
400 * to detect counter wrap-around.
401 */
402 static u_int cnt;
403
404 if (++cnt >= hz) {
405 (void)read_machclk();
406 cnt = 0;
407 }
408 }
409 #endif /* __alpha__ && !ALTQ_NOPCC */
410 }
411
412 /*
413 * get token bucket regulator profile
414 */
415 int
416 tbr_get(ifq, profile)
417 struct ifaltq *ifq;
418 struct tb_profile *profile;
419 {
420 struct tb_regulator *tbr;
421
422 if ((tbr = ifq->altq_tbr) == NULL) {
423 profile->rate = 0;
424 profile->depth = 0;
425 } else {
426 profile->rate =
427 (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
428 profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
429 }
430 return (0);
431 }
432
433
434 #ifndef IPPROTO_ESP
435 #define IPPROTO_ESP 50 /* encapsulating security payload */
436 #endif
437 #ifndef IPPROTO_AH
438 #define IPPROTO_AH 51 /* authentication header */
439 #endif
440
441 /*
442 * extract flow information from a given packet.
443 * filt_mask shows flowinfo fields required.
444 * we assume the ip header is in one mbuf, and addresses and ports are
445 * in network byte order.
446 */
447 int
448 altq_extractflow(m, af, flow, filt_bmask)
449 struct mbuf *m;
450 int af;
451 struct flowinfo *flow;
452 u_int32_t filt_bmask;
453 {
454
455 switch (af) {
456 case PF_INET: {
457 struct flowinfo_in *fin;
458 struct ip *ip;
459
460 ip = mtod(m, struct ip *);
461
462 if (ip->ip_v != 4)
463 break;
464
465 fin = (struct flowinfo_in *)flow;
466 fin->fi_len = sizeof(struct flowinfo_in);
467 fin->fi_family = AF_INET;
468
469 fin->fi_proto = ip->ip_p;
470 fin->fi_tos = ip->ip_tos;
471
472 fin->fi_src.s_addr = ip->ip_src.s_addr;
473 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
474
475 if (filt_bmask & FIMB4_PORTS)
476 /* if port info is required, extract port numbers */
477 extract_ports4(m, ip, fin);
478 else {
479 fin->fi_sport = 0;
480 fin->fi_dport = 0;
481 fin->fi_gpi = 0;
482 }
483 return (1);
484 }
485
486 #ifdef INET6
487 case PF_INET6: {
488 struct flowinfo_in6 *fin6;
489 struct ip6_hdr *ip6;
490
491 ip6 = mtod(m, struct ip6_hdr *);
492 /* should we check the ip version? */
493
494 fin6 = (struct flowinfo_in6 *)flow;
495 fin6->fi6_len = sizeof(struct flowinfo_in6);
496 fin6->fi6_family = AF_INET6;
497
498 fin6->fi6_proto = ip6->ip6_nxt;
499 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
500
501 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
502 fin6->fi6_src = ip6->ip6_src;
503 fin6->fi6_dst = ip6->ip6_dst;
504
505 if ((filt_bmask & FIMB6_PORTS) ||
506 ((filt_bmask & FIMB6_PROTO)
507 && ip6->ip6_nxt > IPPROTO_IPV6))
508 /*
509 * if port info is required, or proto is required
510 * but there are option headers, extract port
511 * and protocol numbers.
512 */
513 extract_ports6(m, ip6, fin6);
514 else {
515 fin6->fi6_sport = 0;
516 fin6->fi6_dport = 0;
517 fin6->fi6_gpi = 0;
518 }
519 return (1);
520 }
521 #endif /* INET6 */
522
523 default:
524 break;
525 }
526
527 /* failed */
528 flow->fi_len = sizeof(struct flowinfo);
529 flow->fi_family = AF_UNSPEC;
530 return (0);
531 }
532
533 /*
534 * helper routine to extract port numbers
535 */
536 /* structure for ipsec and ipv6 option header template */
537 struct _opt6 {
538 u_int8_t opt6_nxt; /* next header */
539 u_int8_t opt6_hlen; /* header extension length */
540 u_int16_t _pad;
541 u_int32_t ah_spi; /* security parameter index
542 for authentication header */
543 };
544
545 /*
546 * extract port numbers from a ipv4 packet.
547 */
548 static int
549 extract_ports4(m, ip, fin)
550 struct mbuf *m;
551 struct ip *ip;
552 struct flowinfo_in *fin;
553 {
554 struct mbuf *m0;
555 u_short ip_off;
556 u_int8_t proto;
557 int off;
558
559 fin->fi_sport = 0;
560 fin->fi_dport = 0;
561 fin->fi_gpi = 0;
562
563 ip_off = ntohs(ip->ip_off);
564 /* if it is a fragment, try cached fragment info */
565 if (ip_off & IP_OFFMASK) {
566 ip4f_lookup(ip, fin);
567 return (1);
568 }
569
570 /* locate the mbuf containing the protocol header */
571 for (m0 = m; m0 != NULL; m0 = m0->m_next)
572 if (((caddr_t)ip >= m0->m_data) &&
573 ((caddr_t)ip < m0->m_data + m0->m_len))
574 break;
575 if (m0 == NULL) {
576 #ifdef ALTQ_DEBUG
577 printf("extract_ports4: can't locate header! ip=%p\n", ip);
578 #endif
579 return (0);
580 }
581 off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
582 proto = ip->ip_p;
583
584 #ifdef ALTQ_IPSEC
585 again:
586 #endif
587 while (off >= m0->m_len) {
588 off -= m0->m_len;
589 m0 = m0->m_next;
590 if (m0 == NULL)
591 return (0); /* bogus ip_hl! */
592 }
593 if (m0->m_len < off + 4)
594 return (0);
595
596 switch (proto) {
597 case IPPROTO_TCP:
598 case IPPROTO_UDP: {
599 struct udphdr *udp;
600
601 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
602 fin->fi_sport = udp->uh_sport;
603 fin->fi_dport = udp->uh_dport;
604 fin->fi_proto = proto;
605 }
606 break;
607
608 #ifdef ALTQ_IPSEC
609 case IPPROTO_ESP:
610 if (fin->fi_gpi == 0){
611 u_int32_t *gpi;
612
613 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
614 fin->fi_gpi = *gpi;
615 }
616 fin->fi_proto = proto;
617 break;
618
619 case IPPROTO_AH: {
620 /* get next header and header length */
621 struct _opt6 *opt6;
622
623 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
624 proto = opt6->opt6_nxt;
625 off += 8 + (opt6->opt6_hlen * 4);
626 if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
627 fin->fi_gpi = opt6->ah_spi;
628 }
629 /* goto the next header */
630 goto again;
631 #endif /* ALTQ_IPSEC */
632
633 default:
634 fin->fi_proto = proto;
635 return (0);
636 }
637
638 /* if this is a first fragment, cache it. */
639 if (ip_off & IP_MF)
640 ip4f_cache(ip, fin);
641
642 return (1);
643 }
644
645 #ifdef INET6
646 static int
647 extract_ports6(m, ip6, fin6)
648 struct mbuf *m;
649 struct ip6_hdr *ip6;
650 struct flowinfo_in6 *fin6;
651 {
652 struct mbuf *m0;
653 int off;
654 u_int8_t proto;
655
656 fin6->fi6_gpi = 0;
657 fin6->fi6_sport = 0;
658 fin6->fi6_dport = 0;
659
660 /* locate the mbuf containing the protocol header */
661 for (m0 = m; m0 != NULL; m0 = m0->m_next)
662 if (((caddr_t)ip6 >= m0->m_data) &&
663 ((caddr_t)ip6 < m0->m_data + m0->m_len))
664 break;
665 if (m0 == NULL) {
666 #ifdef ALTQ_DEBUG
667 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
668 #endif
669 return (0);
670 }
671 off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
672
673 proto = ip6->ip6_nxt;
674 do {
675 while (off >= m0->m_len) {
676 off -= m0->m_len;
677 m0 = m0->m_next;
678 if (m0 == NULL)
679 return (0);
680 }
681 if (m0->m_len < off + 4)
682 return (0);
683
684 switch (proto) {
685 case IPPROTO_TCP:
686 case IPPROTO_UDP: {
687 struct udphdr *udp;
688
689 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
690 fin6->fi6_sport = udp->uh_sport;
691 fin6->fi6_dport = udp->uh_dport;
692 fin6->fi6_proto = proto;
693 }
694 return (1);
695
696 case IPPROTO_ESP:
697 if (fin6->fi6_gpi == 0) {
698 u_int32_t *gpi;
699
700 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
701 fin6->fi6_gpi = *gpi;
702 }
703 fin6->fi6_proto = proto;
704 return (1);
705
706 case IPPROTO_AH: {
707 /* get next header and header length */
708 struct _opt6 *opt6;
709
710 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
711 if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
712 fin6->fi6_gpi = opt6->ah_spi;
713 proto = opt6->opt6_nxt;
714 off += 8 + (opt6->opt6_hlen * 4);
715 /* goto the next header */
716 break;
717 }
718
719 case IPPROTO_HOPOPTS:
720 case IPPROTO_ROUTING:
721 case IPPROTO_DSTOPTS: {
722 /* get next header and header length */
723 struct _opt6 *opt6;
724
725 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
726 proto = opt6->opt6_nxt;
727 off += (opt6->opt6_hlen + 1) * 8;
728 /* goto the next header */
729 break;
730 }
731
732 case IPPROTO_FRAGMENT:
733 /* ipv6 fragmentations are not supported yet */
734 default:
735 fin6->fi6_proto = proto;
736 return (0);
737 }
738 } while (1);
739 /*NOTREACHED*/
740 }
741 #endif /* INET6 */
742
743 /*
744 * altq common classifier
745 */
746 int
747 acc_add_filter(classifier, filter, class, phandle)
748 struct acc_classifier *classifier;
749 struct flow_filter *filter;
750 void *class;
751 u_long *phandle;
752 {
753 struct acc_filter *afp, *prev, *tmp;
754 int i, s;
755
756 #ifdef INET6
757 if (filter->ff_flow.fi_family != AF_INET &&
758 filter->ff_flow.fi_family != AF_INET6)
759 return (EINVAL);
760 #else
761 if (filter->ff_flow.fi_family != AF_INET)
762 return (EINVAL);
763 #endif
764
765 MALLOC(afp, struct acc_filter *, sizeof(struct acc_filter),
766 M_DEVBUF, M_WAITOK);
767 if (afp == NULL)
768 return (ENOMEM);
769 (void)memset(afp, 0, sizeof(struct acc_filter));
770
771 afp->f_filter = *filter;
772 afp->f_class = class;
773
774 i = ACC_WILDCARD_INDEX;
775 if (filter->ff_flow.fi_family == AF_INET) {
776 struct flow_filter *filter4 = &afp->f_filter;
777
778 /*
779 * if address is 0, it's a wildcard. if address mask
780 * isn't set, use full mask.
781 */
782 if (filter4->ff_flow.fi_dst.s_addr == 0)
783 filter4->ff_mask.mask_dst.s_addr = 0;
784 else if (filter4->ff_mask.mask_dst.s_addr == 0)
785 filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
786 if (filter4->ff_flow.fi_src.s_addr == 0)
787 filter4->ff_mask.mask_src.s_addr = 0;
788 else if (filter4->ff_mask.mask_src.s_addr == 0)
789 filter4->ff_mask.mask_src.s_addr = 0xffffffff;
790
791 /* clear extra bits in addresses */
792 filter4->ff_flow.fi_dst.s_addr &=
793 filter4->ff_mask.mask_dst.s_addr;
794 filter4->ff_flow.fi_src.s_addr &=
795 filter4->ff_mask.mask_src.s_addr;
796
797 /*
798 * if dst address is a wildcard, use hash-entry
799 * ACC_WILDCARD_INDEX.
800 */
801 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
802 i = ACC_WILDCARD_INDEX;
803 else
804 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
805 }
806 #ifdef INET6
807 else if (filter->ff_flow.fi_family == AF_INET6) {
808 struct flow_filter6 *filter6 =
809 (struct flow_filter6 *)&afp->f_filter;
810 #ifndef IN6MASK0 /* taken from kame ipv6 */
811 #define IN6MASK0 {{{ 0, 0, 0, 0 }}}
812 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
813 const struct in6_addr in6mask0 = IN6MASK0;
814 const struct in6_addr in6mask128 = IN6MASK128;
815 #endif
816
817 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
818 filter6->ff_mask6.mask6_dst = in6mask0;
819 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
820 filter6->ff_mask6.mask6_dst = in6mask128;
821 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
822 filter6->ff_mask6.mask6_src = in6mask0;
823 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
824 filter6->ff_mask6.mask6_src = in6mask128;
825
826 /* clear extra bits in addresses */
827 for (i = 0; i < 16; i++)
828 filter6->ff_flow6.fi6_dst.s6_addr[i] &=
829 filter6->ff_mask6.mask6_dst.s6_addr[i];
830 for (i = 0; i < 16; i++)
831 filter6->ff_flow6.fi6_src.s6_addr[i] &=
832 filter6->ff_mask6.mask6_src.s6_addr[i];
833
834 if (filter6->ff_flow6.fi6_flowlabel == 0)
835 i = ACC_WILDCARD_INDEX;
836 else
837 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
838 }
839 #endif /* INET6 */
840
841 afp->f_handle = get_filt_handle(classifier, i);
842
843 /* update filter bitmask */
844 afp->f_fbmask = filt2fibmask(filter);
845 classifier->acc_fbmask |= afp->f_fbmask;
846
847 /*
848 * add this filter to the filter list.
849 * filters are ordered from the highest rule number.
850 */
851 s = splnet();
852 prev = NULL;
853 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
854 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
855 prev = tmp;
856 else
857 break;
858 }
859 if (prev == NULL)
860 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
861 else
862 LIST_INSERT_AFTER(prev, afp, f_chain);
863 splx(s);
864
865 *phandle = afp->f_handle;
866 return (0);
867 }
868
869 int
870 acc_delete_filter(classifier, handle)
871 struct acc_classifier *classifier;
872 u_long handle;
873 {
874 struct acc_filter *afp;
875 int s;
876
877 if ((afp = filth_to_filtp(classifier, handle)) == NULL)
878 return (EINVAL);
879
880 s = splnet();
881 LIST_REMOVE(afp, f_chain);
882 splx(s);
883
884 FREE(afp, M_DEVBUF);
885
886 /* todo: update filt_bmask */
887
888 return (0);
889 }
890
891 /*
892 * delete filters referencing to the specified class.
893 * if the all flag is not 0, delete all the filters.
894 */
895 int
896 acc_discard_filters(classifier, class, all)
897 struct acc_classifier *classifier;
898 void *class;
899 int all;
900 {
901 struct acc_filter *afp;
902 int i, s;
903
904 s = splnet();
905 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
906 do {
907 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
908 if (all || afp->f_class == class) {
909 LIST_REMOVE(afp, f_chain);
910 FREE(afp, M_DEVBUF);
911 /* start again from the head */
912 break;
913 }
914 } while (afp != NULL);
915 }
916 splx(s);
917
918 if (all)
919 classifier->acc_fbmask = 0;
920
921 return (0);
922 }
923
924 void *
925 acc_classify(clfier, m, af)
926 void *clfier;
927 struct mbuf *m;
928 int af;
929 {
930 struct acc_classifier *classifier;
931 struct flowinfo flow;
932 struct acc_filter *afp;
933 int i;
934
935 classifier = (struct acc_classifier *)clfier;
936 altq_extractflow(m, af, &flow, classifier->acc_fbmask);
937
938 if (flow.fi_family == AF_INET) {
939 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
940
941 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
942 /* only tos is used */
943 LIST_FOREACH(afp,
944 &classifier->acc_filters[ACC_WILDCARD_INDEX],
945 f_chain)
946 if (apply_tosfilter4(afp->f_fbmask,
947 &afp->f_filter, fp))
948 /* filter matched */
949 return (afp->f_class);
950 } else if ((classifier->acc_fbmask &
951 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
952 == 0) {
953 /* only proto and ports are used */
954 LIST_FOREACH(afp,
955 &classifier->acc_filters[ACC_WILDCARD_INDEX],
956 f_chain)
957 if (apply_ppfilter4(afp->f_fbmask,
958 &afp->f_filter, fp))
959 /* filter matched */
960 return (afp->f_class);
961 } else {
962 /* get the filter hash entry from its dest address */
963 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
964 do {
965 /*
966 * go through this loop twice. first for dst
967 * hash, second for wildcards.
968 */
969 LIST_FOREACH(afp, &classifier->acc_filters[i],
970 f_chain)
971 if (apply_filter4(afp->f_fbmask,
972 &afp->f_filter, fp))
973 /* filter matched */
974 return (afp->f_class);
975
976 /*
977 * check again for filters with a dst addr
978 * wildcard.
979 * (daddr == 0 || dmask != 0xffffffff).
980 */
981 if (i != ACC_WILDCARD_INDEX)
982 i = ACC_WILDCARD_INDEX;
983 else
984 break;
985 } while (1);
986 }
987 }
988 #ifdef INET6
989 else if (flow.fi_family == AF_INET6) {
990 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
991
992 /* get the filter hash entry from its flow ID */
993 if (fp6->fi6_flowlabel != 0)
994 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
995 else
996 /* flowlable can be zero */
997 i = ACC_WILDCARD_INDEX;
998
999 /* go through this loop twice. first for flow hash, second
1000 for wildcards. */
1001 do {
1002 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1003 if (apply_filter6(afp->f_fbmask,
1004 (struct flow_filter6 *)&afp->f_filter,
1005 fp6))
1006 /* filter matched */
1007 return (afp->f_class);
1008
1009 /*
1010 * check again for filters with a wildcard.
1011 */
1012 if (i != ACC_WILDCARD_INDEX)
1013 i = ACC_WILDCARD_INDEX;
1014 else
1015 break;
1016 } while (1);
1017 }
1018 #endif /* INET6 */
1019
1020 /* no filter matched */
1021 return (NULL);
1022 }
1023
1024 static int
1025 apply_filter4(fbmask, filt, pkt)
1026 u_int32_t fbmask;
1027 struct flow_filter *filt;
1028 struct flowinfo_in *pkt;
1029 {
1030 if (filt->ff_flow.fi_family != AF_INET)
1031 return (0);
1032 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1033 return (0);
1034 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1035 return (0);
1036 if ((fbmask & FIMB4_DADDR) &&
1037 filt->ff_flow.fi_dst.s_addr !=
1038 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1039 return (0);
1040 if ((fbmask & FIMB4_SADDR) &&
1041 filt->ff_flow.fi_src.s_addr !=
1042 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1043 return (0);
1044 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1045 return (0);
1046 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1047 (pkt->fi_tos & filt->ff_mask.mask_tos))
1048 return (0);
1049 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1050 return (0);
1051 /* match */
1052 return (1);
1053 }
1054
1055 /*
1056 * filter matching function optimized for a common case that checks
1057 * only protocol and port numbers
1058 */
1059 static int
1060 apply_ppfilter4(fbmask, filt, pkt)
1061 u_int32_t fbmask;
1062 struct flow_filter *filt;
1063 struct flowinfo_in *pkt;
1064 {
1065 if (filt->ff_flow.fi_family != AF_INET)
1066 return (0);
1067 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1068 return (0);
1069 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1070 return (0);
1071 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1072 return (0);
1073 /* match */
1074 return (1);
1075 }
1076
1077 /*
1078 * filter matching function only for tos field.
1079 */
1080 static int
1081 apply_tosfilter4(fbmask, filt, pkt)
1082 u_int32_t fbmask;
1083 struct flow_filter *filt;
1084 struct flowinfo_in *pkt;
1085 {
1086 if (filt->ff_flow.fi_family != AF_INET)
1087 return (0);
1088 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1089 (pkt->fi_tos & filt->ff_mask.mask_tos))
1090 return (0);
1091 /* match */
1092 return (1);
1093 }
1094
1095 #ifdef INET6
1096 static int
1097 apply_filter6(fbmask, filt, pkt)
1098 u_int32_t fbmask;
1099 struct flow_filter6 *filt;
1100 struct flowinfo_in6 *pkt;
1101 {
1102 int i;
1103
1104 if (filt->ff_flow6.fi6_family != AF_INET6)
1105 return (0);
1106 if ((fbmask & FIMB6_FLABEL) &&
1107 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1108 return (0);
1109 if ((fbmask & FIMB6_PROTO) &&
1110 filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1111 return (0);
1112 if ((fbmask & FIMB6_SPORT) &&
1113 filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1114 return (0);
1115 if ((fbmask & FIMB6_DPORT) &&
1116 filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1117 return (0);
1118 if (fbmask & FIMB6_SADDR) {
1119 for (i = 0; i < 4; i++)
1120 if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1121 (pkt->fi6_src.s6_addr32[i] &
1122 filt->ff_mask6.mask6_src.s6_addr32[i]))
1123 return (0);
1124 }
1125 if (fbmask & FIMB6_DADDR) {
1126 for (i = 0; i < 4; i++)
1127 if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1128 (pkt->fi6_dst.s6_addr32[i] &
1129 filt->ff_mask6.mask6_dst.s6_addr32[i]))
1130 return (0);
1131 }
1132 if ((fbmask & FIMB6_TCLASS) &&
1133 filt->ff_flow6.fi6_tclass !=
1134 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1135 return (0);
1136 if ((fbmask & FIMB6_GPI) &&
1137 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1138 return (0);
1139 /* match */
1140 return (1);
1141 }
1142 #endif /* INET6 */
1143
1144 /*
1145 * filter handle:
1146 * bit 20-28: index to the filter hash table
1147 * bit 0-19: unique id in the hash bucket.
1148 */
1149 static u_long
1150 get_filt_handle(classifier, i)
1151 struct acc_classifier *classifier;
1152 int i;
1153 {
1154 static u_long handle_number = 1;
1155 u_long handle;
1156 struct acc_filter *afp;
1157
1158 while (1) {
1159 handle = handle_number++ & 0x000fffff;
1160
1161 if (LIST_EMPTY(&classifier->acc_filters[i]))
1162 break;
1163
1164 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1165 if ((afp->f_handle & 0x000fffff) == handle)
1166 break;
1167 if (afp == NULL)
1168 break;
1169 /* this handle is already used, try again */
1170 }
1171
1172 return ((i << 20) | handle);
1173 }
1174
1175 /* convert filter handle to filter pointer */
1176 static struct acc_filter *
1177 filth_to_filtp(classifier, handle)
1178 struct acc_classifier *classifier;
1179 u_long handle;
1180 {
1181 struct acc_filter *afp;
1182 int i;
1183
1184 i = ACC_GET_HINDEX(handle);
1185
1186 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1187 if (afp->f_handle == handle)
1188 return (afp);
1189
1190 return (NULL);
1191 }
1192
1193 /* create flowinfo bitmask */
1194 static u_int32_t
1195 filt2fibmask(filt)
1196 struct flow_filter *filt;
1197 {
1198 u_int32_t mask = 0;
1199 #ifdef INET6
1200 struct flow_filter6 *filt6;
1201 #endif
1202
1203 switch (filt->ff_flow.fi_family) {
1204 case AF_INET:
1205 if (filt->ff_flow.fi_proto != 0)
1206 mask |= FIMB4_PROTO;
1207 if (filt->ff_flow.fi_tos != 0)
1208 mask |= FIMB4_TOS;
1209 if (filt->ff_flow.fi_dst.s_addr != 0)
1210 mask |= FIMB4_DADDR;
1211 if (filt->ff_flow.fi_src.s_addr != 0)
1212 mask |= FIMB4_SADDR;
1213 if (filt->ff_flow.fi_sport != 0)
1214 mask |= FIMB4_SPORT;
1215 if (filt->ff_flow.fi_dport != 0)
1216 mask |= FIMB4_DPORT;
1217 if (filt->ff_flow.fi_gpi != 0)
1218 mask |= FIMB4_GPI;
1219 break;
1220 #ifdef INET6
1221 case AF_INET6:
1222 filt6 = (struct flow_filter6 *)filt;
1223
1224 if (filt6->ff_flow6.fi6_proto != 0)
1225 mask |= FIMB6_PROTO;
1226 if (filt6->ff_flow6.fi6_tclass != 0)
1227 mask |= FIMB6_TCLASS;
1228 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1229 mask |= FIMB6_DADDR;
1230 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1231 mask |= FIMB6_SADDR;
1232 if (filt6->ff_flow6.fi6_sport != 0)
1233 mask |= FIMB6_SPORT;
1234 if (filt6->ff_flow6.fi6_dport != 0)
1235 mask |= FIMB6_DPORT;
1236 if (filt6->ff_flow6.fi6_gpi != 0)
1237 mask |= FIMB6_GPI;
1238 if (filt6->ff_flow6.fi6_flowlabel != 0)
1239 mask |= FIMB6_FLABEL;
1240 break;
1241 #endif /* INET6 */
1242 }
1243 return (mask);
1244 }
1245
1246
1247 /*
1248 * helper functions to handle IPv4 fragments.
1249 * currently only in-sequence fragments are handled.
1250 * - fragment info is cached in a LRU list.
1251 * - when a first fragment is found, cache its flow info.
1252 * - when a non-first fragment is found, lookup the cache.
1253 */
1254
1255 struct ip4_frag {
1256 TAILQ_ENTRY(ip4_frag) ip4f_chain;
1257 char ip4f_valid;
1258 u_short ip4f_id;
1259 struct flowinfo_in ip4f_info;
1260 };
1261
1262 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1263
1264 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1265
1266
1267 static void
1268 ip4f_cache(ip, fin)
1269 struct ip *ip;
1270 struct flowinfo_in *fin;
1271 {
1272 struct ip4_frag *fp;
1273
1274 if (TAILQ_EMPTY(&ip4f_list)) {
1275 /* first time call, allocate fragment cache entries. */
1276 if (ip4f_init() < 0)
1277 /* allocation failed! */
1278 return;
1279 }
1280
1281 fp = ip4f_alloc();
1282 fp->ip4f_id = ip->ip_id;
1283 fp->ip4f_info.fi_proto = ip->ip_p;
1284 fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1285 fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1286
1287 /* save port numbers */
1288 fp->ip4f_info.fi_sport = fin->fi_sport;
1289 fp->ip4f_info.fi_dport = fin->fi_dport;
1290 fp->ip4f_info.fi_gpi = fin->fi_gpi;
1291 }
1292
1293 static int
1294 ip4f_lookup(ip, fin)
1295 struct ip *ip;
1296 struct flowinfo_in *fin;
1297 {
1298 struct ip4_frag *fp;
1299
1300 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1301 fp = TAILQ_NEXT(fp, ip4f_chain))
1302 if (ip->ip_id == fp->ip4f_id &&
1303 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1304 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1305 ip->ip_p == fp->ip4f_info.fi_proto) {
1306
1307 /* found the matching entry */
1308 fin->fi_sport = fp->ip4f_info.fi_sport;
1309 fin->fi_dport = fp->ip4f_info.fi_dport;
1310 fin->fi_gpi = fp->ip4f_info.fi_gpi;
1311
1312 if ((ntohs(ip->ip_off) & IP_MF) == 0)
1313 /* this is the last fragment,
1314 release the entry. */
1315 ip4f_free(fp);
1316
1317 return (1);
1318 }
1319
1320 /* no matching entry found */
1321 return (0);
1322 }
1323
1324 static int
1325 ip4f_init(void)
1326 {
1327 struct ip4_frag *fp;
1328 int i;
1329
1330 TAILQ_INIT(&ip4f_list);
1331 for (i=0; i<IP4F_TABSIZE; i++) {
1332 MALLOC(fp, struct ip4_frag *, sizeof(struct ip4_frag),
1333 M_DEVBUF, M_NOWAIT);
1334 if (fp == NULL) {
1335 printf("ip4f_init: can't alloc %dth entry!\n", i);
1336 if (i == 0)
1337 return (-1);
1338 return (0);
1339 }
1340 fp->ip4f_valid = 0;
1341 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1342 }
1343 return (0);
1344 }
1345
1346 static struct ip4_frag *
1347 ip4f_alloc(void)
1348 {
1349 struct ip4_frag *fp;
1350
1351 /* reclaim an entry at the tail, put it at the head */
1352 fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1353 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1354 fp->ip4f_valid = 1;
1355 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1356 return (fp);
1357 }
1358
1359 static void
1360 ip4f_free(fp)
1361 struct ip4_frag *fp;
1362 {
1363 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1364 fp->ip4f_valid = 0;
1365 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1366 }
1367
1368 /*
1369 * read and write diffserv field in IPv4 or IPv6 header
1370 */
1371 u_int8_t
1372 read_dsfield(m, pktattr)
1373 struct mbuf *m;
1374 struct altq_pktattr *pktattr;
1375 {
1376 struct mbuf *m0;
1377 u_int8_t ds_field = 0;
1378
1379 if (pktattr == NULL ||
1380 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1381 return ((u_int8_t)0);
1382
1383 /* verify that pattr_hdr is within the mbuf data */
1384 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1385 if ((pktattr->pattr_hdr >= m0->m_data) &&
1386 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1387 break;
1388 if (m0 == NULL) {
1389 /* ick, pattr_hdr is stale */
1390 pktattr->pattr_af = AF_UNSPEC;
1391 #ifdef ALTQ_DEBUG
1392 printf("read_dsfield: can't locate header!\n");
1393 #endif
1394 return ((u_int8_t)0);
1395 }
1396
1397 if (pktattr->pattr_af == AF_INET) {
1398 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1399
1400 if (ip->ip_v != 4)
1401 return ((u_int8_t)0); /* version mismatch! */
1402 ds_field = ip->ip_tos;
1403 }
1404 #ifdef INET6
1405 else if (pktattr->pattr_af == AF_INET6) {
1406 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1407 u_int32_t flowlabel;
1408
1409 flowlabel = ntohl(ip6->ip6_flow);
1410 if ((flowlabel >> 28) != 6)
1411 return ((u_int8_t)0); /* version mismatch! */
1412 ds_field = (flowlabel >> 20) & 0xff;
1413 }
1414 #endif
1415 return (ds_field);
1416 }
1417
1418 void
1419 write_dsfield(m, pktattr, dsfield)
1420 struct mbuf *m;
1421 struct altq_pktattr *pktattr;
1422 u_int8_t dsfield;
1423 {
1424 struct mbuf *m0;
1425
1426 if (pktattr == NULL ||
1427 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1428 return;
1429
1430 /* verify that pattr_hdr is within the mbuf data */
1431 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1432 if ((pktattr->pattr_hdr >= m0->m_data) &&
1433 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1434 break;
1435 if (m0 == NULL) {
1436 /* ick, pattr_hdr is stale */
1437 pktattr->pattr_af = AF_UNSPEC;
1438 #ifdef ALTQ_DEBUG
1439 printf("write_dsfield: can't locate header!\n");
1440 #endif
1441 return;
1442 }
1443
1444 if (pktattr->pattr_af == AF_INET) {
1445 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1446 u_int8_t old;
1447 int32_t sum;
1448
1449 if (ip->ip_v != 4)
1450 return; /* version mismatch! */
1451 old = ip->ip_tos;
1452 dsfield |= old & 3; /* leave CU bits */
1453 if (old == dsfield)
1454 return;
1455 ip->ip_tos = dsfield;
1456 /*
1457 * update checksum (from RFC1624)
1458 * HC' = ~(~HC + ~m + m')
1459 */
1460 sum = ~ntohs(ip->ip_sum) & 0xffff;
1461 sum += 0xff00 + (~old & 0xff) + dsfield;
1462 sum = (sum >> 16) + (sum & 0xffff);
1463 sum += (sum >> 16); /* add carry */
1464
1465 ip->ip_sum = htons(~sum & 0xffff);
1466 }
1467 #ifdef INET6
1468 else if (pktattr->pattr_af == AF_INET6) {
1469 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1470 u_int32_t flowlabel;
1471
1472 flowlabel = ntohl(ip6->ip6_flow);
1473 if ((flowlabel >> 28) != 6)
1474 return; /* version mismatch! */
1475 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
1476 ip6->ip6_flow = htonl(flowlabel);
1477 }
1478 #endif
1479 return;
1480 }
1481
1482
1483 /*
1484 * high resolution clock support taking advantage of a machine dependent
1485 * high resolution time counter (e.g., timestamp counter of intel pentium).
1486 * we assume
1487 * - 64-bit-long monotonically-increasing counter
1488 * - frequency range is 100M-4GHz (CPU speed)
1489 */
1490 u_int32_t machclk_freq = 0;
1491 u_int32_t machclk_per_tick = 0;
1492
1493 #if (defined(__i386__) || defined(__alpha__)) && !defined(ALTQ_NOPCC)
1494
1495 #if defined(__FreeBSD__) && defined(SMP)
1496 #error SMP system! use ALTQ_NOPCC option.
1497 #endif
1498
1499 #ifdef __alpha__
1500 #ifdef __FreeBSD__
1501 extern u_int32_t cycles_per_sec; /* alpha CPU clock frequency */
1502 #elif defined(__NetBSD__) || defined(__OpenBSD__)
1503 extern u_int64_t cycles_per_usec; /* alpha CPU clock frequency */
1504 #endif
1505 #endif /* __alpha__ */
1506
1507 void
1508 init_machclk(void)
1509 {
1510 /* sanity check */
1511 #ifdef __i386__
1512 /* check if TSC is available */
1513 if ((cpu_feature & CPUID_TSC) == 0) {
1514 printf("altq: TSC isn't available! use ALTQ_NOPCC option.\n");
1515 return;
1516 }
1517 #endif
1518
1519 /*
1520 * if the clock frequency (of Pentium TSC or Alpha PCC) is
1521 * accessible, just use it.
1522 */
1523 #ifdef __i386__
1524 #ifdef __FreeBSD__
1525 #if (__FreeBSD_version > 300000)
1526 machclk_freq = tsc_freq;
1527 #else
1528 machclk_freq = i586_ctr_freq;
1529 #endif
1530 #elif defined(__NetBSD__)
1531 machclk_freq = (u_int32_t)curcpu()->ci_tsc_freq;
1532 #elif defined(__OpenBSD__)
1533 machclk_freq = pentium_mhz * 1000000;
1534 #endif
1535 #elif defined(__alpha__)
1536 #ifdef __FreeBSD__
1537 machclk_freq = cycles_per_sec;
1538 #elif defined(__NetBSD__) || defined(__OpenBSD__)
1539 machclk_freq = (u_int32_t)(cycles_per_usec * 1000000);
1540 #endif
1541 #endif /* __alpha__ */
1542
1543 /*
1544 * if we don't know the clock frequency, measure it.
1545 */
1546 if (machclk_freq == 0) {
1547 static int wait;
1548 struct timeval tv_start, tv_end;
1549 u_int64_t start, end, diff;
1550 int timo;
1551
1552 microtime(&tv_start);
1553 start = read_machclk();
1554 timo = hz; /* 1 sec */
1555 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
1556 microtime(&tv_end);
1557 end = read_machclk();
1558 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
1559 + tv_end.tv_usec - tv_start.tv_usec;
1560 if (diff != 0)
1561 machclk_freq = (u_int)((end - start) * 1000000 / diff);
1562 }
1563
1564 machclk_per_tick = machclk_freq / hz;
1565
1566 #ifdef ALTQ_DEBUG
1567 printf("altq: CPU clock: %uHz\n", machclk_freq);
1568 #endif
1569 }
1570
1571 #ifdef __alpha__
1572 /*
1573 * make a 64bit counter value out of the 32bit alpha processor cycle counter.
1574 * read_machclk must be called within a half of its wrap-around cycle
1575 * (about 5 sec for 400MHz CPU) to properly detect a counter wrap-around.
1576 * tbr_timeout calls read_machclk once a second.
1577 */
1578 u_int64_t
1579 read_machclk(void)
1580 {
1581 static u_int32_t last_pcc, upper;
1582 u_int32_t pcc;
1583
1584 pcc = (u_int32_t)alpha_rpcc();
1585 if (pcc <= last_pcc)
1586 upper++;
1587 last_pcc = pcc;
1588 return (((u_int64_t)upper << 32) + pcc);
1589 }
1590 #endif /* __alpha__ */
1591 #else /* !i386 && !alpha */
1592 /* use microtime() for now */
1593 void
1594 init_machclk(void)
1595 {
1596 machclk_freq = 1000000 << MACHCLK_SHIFT;
1597 machclk_per_tick = machclk_freq / hz;
1598 printf("altq: emulate %uHz CPU clock\n", machclk_freq);
1599 }
1600 #endif /* !i386 && !alpha */
Cache object: be6f18232de1bd4b760c2c68ea4d0ff9
|