The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/altq/altq_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: altq_subr.c,v 1.19 2006/11/16 01:32:37 christos Exp $  */
    2 /*      $KAME: altq_subr.c,v 1.24 2005/04/13 03:44:25 suz Exp $ */
    3 
    4 /*
    5  * Copyright (C) 1997-2003
    6  *      Sony Computer Science Laboratories Inc.  All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.19 2006/11/16 01:32:37 christos Exp $");
   32 
   33 #ifdef _KERNEL_OPT
   34 #include "opt_altq.h"
   35 #include "opt_inet.h"
   36 #include "pf.h"
   37 #endif
   38 
   39 #include <sys/param.h>
   40 #include <sys/malloc.h>
   41 #include <sys/mbuf.h>
   42 #include <sys/systm.h>
   43 #include <sys/proc.h>
   44 #include <sys/socket.h>
   45 #include <sys/socketvar.h>
   46 #include <sys/kernel.h>
   47 #include <sys/errno.h>
   48 #include <sys/syslog.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/queue.h>
   51 
   52 #include <net/if.h>
   53 #include <net/if_dl.h>
   54 #include <net/if_types.h>
   55 
   56 #include <netinet/in.h>
   57 #include <netinet/in_systm.h>
   58 #include <netinet/ip.h>
   59 #ifdef INET6
   60 #include <netinet/ip6.h>
   61 #endif
   62 #include <netinet/tcp.h>
   63 #include <netinet/udp.h>
   64 
   65 #if NPF > 0
   66 #include <net/pfvar.h>
   67 #endif
   68 #include <altq/altq.h>
   69 #ifdef ALTQ3_COMPAT
   70 #include <altq/altq_conf.h>
   71 #endif
   72 
   73 /* machine dependent clock related includes */
   74 #ifdef __FreeBSD__
   75 #include "opt_cpu.h"    /* for FreeBSD-2.2.8 to get i586_ctr_freq */
   76 #include <machine/clock.h>
   77 #endif
   78 #if defined(__i386__)
   79 #include <machine/cpufunc.h>            /* for pentium tsc */
   80 #include <machine/specialreg.h>         /* for CPUID_TSC */
   81 #ifdef __FreeBSD__
   82 #include <machine/md_var.h>             /* for cpu_feature */
   83 #elif defined(__NetBSD__) || defined(__OpenBSD__)
   84 #include <machine/cpu.h>                /* for cpu_feature */
   85 #endif
   86 #endif /* __i386__ */
   87 
   88 /*
   89  * internal function prototypes
   90  */
   91 static void     tbr_timeout(void *);
   92 int (*altq_input)(struct mbuf *, int) = NULL;
   93 static int tbr_timer = 0;       /* token bucket regulator timer */
   94 static struct callout tbr_callout = CALLOUT_INITIALIZER;
   95 
   96 #ifdef ALTQ3_CLFIER_COMPAT
   97 static int      extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
   98 #ifdef INET6
   99 static int      extract_ports6(struct mbuf *, struct ip6_hdr *,
  100                                struct flowinfo_in6 *);
  101 #endif
  102 static int      apply_filter4(u_int32_t, struct flow_filter *,
  103                               struct flowinfo_in *);
  104 static int      apply_ppfilter4(u_int32_t, struct flow_filter *,
  105                                 struct flowinfo_in *);
  106 #ifdef INET6
  107 static int      apply_filter6(u_int32_t, struct flow_filter6 *,
  108                               struct flowinfo_in6 *);
  109 #endif
  110 static int      apply_tosfilter4(u_int32_t, struct flow_filter *,
  111                                  struct flowinfo_in *);
  112 static u_long   get_filt_handle(struct acc_classifier *, int);
  113 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
  114 static u_int32_t filt2fibmask(struct flow_filter *);
  115 
  116 static void     ip4f_cache(struct ip *, struct flowinfo_in *);
  117 static int      ip4f_lookup(struct ip *, struct flowinfo_in *);
  118 static int      ip4f_init(void);
  119 static struct ip4_frag  *ip4f_alloc(void);
  120 static void     ip4f_free(struct ip4_frag *);
  121 #endif /* ALTQ3_CLFIER_COMPAT */
  122 
  123 /*
  124  * alternate queueing support routines
  125  */
  126 
  127 /* look up the queue state by the interface name and the queueing type. */
  128 void *
  129 altq_lookup(char *name, int type)
  130 {
  131         struct ifnet *ifp;
  132 
  133         if ((ifp = ifunit(name)) != NULL) {
  134                 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
  135                         return (ifp->if_snd.altq_disc);
  136         }
  137 
  138         return NULL;
  139 }
  140 
  141 int
  142 altq_attach(struct ifaltq *ifq, int type, void *discipline,
  143     int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *),
  144     struct mbuf *(*dequeue)(struct ifaltq *, int),
  145     int (*request)(struct ifaltq *, int, void *),
  146     void *clfier, void *(*classify)(void *, struct mbuf *, int))
  147 {
  148         if (!ALTQ_IS_READY(ifq))
  149                 return ENXIO;
  150 
  151 #ifdef ALTQ3_COMPAT
  152         /*
  153          * pfaltq can override the existing discipline, but altq3 cannot.
  154          * check these if clfier is not NULL (which implies altq3).
  155          */
  156         if (clfier != NULL) {
  157                 if (ALTQ_IS_ENABLED(ifq))
  158                         return EBUSY;
  159                 if (ALTQ_IS_ATTACHED(ifq))
  160                         return EEXIST;
  161         }
  162 #endif
  163         ifq->altq_type     = type;
  164         ifq->altq_disc     = discipline;
  165         ifq->altq_enqueue  = enqueue;
  166         ifq->altq_dequeue  = dequeue;
  167         ifq->altq_request  = request;
  168         ifq->altq_clfier   = clfier;
  169         ifq->altq_classify = classify;
  170         ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
  171 #ifdef ALTQ3_COMPAT
  172 #ifdef ALTQ_KLD
  173         altq_module_incref(type);
  174 #endif
  175 #endif
  176         return 0;
  177 }
  178 
  179 int
  180 altq_detach(struct ifaltq *ifq)
  181 {
  182         if (!ALTQ_IS_READY(ifq))
  183                 return ENXIO;
  184         if (ALTQ_IS_ENABLED(ifq))
  185                 return EBUSY;
  186         if (!ALTQ_IS_ATTACHED(ifq))
  187                 return (0);
  188 #ifdef ALTQ3_COMPAT
  189 #ifdef ALTQ_KLD
  190         altq_module_declref(ifq->altq_type);
  191 #endif
  192 #endif
  193 
  194         ifq->altq_type     = ALTQT_NONE;
  195         ifq->altq_disc     = NULL;
  196         ifq->altq_enqueue  = NULL;
  197         ifq->altq_dequeue  = NULL;
  198         ifq->altq_request  = NULL;
  199         ifq->altq_clfier   = NULL;
  200         ifq->altq_classify = NULL;
  201         ifq->altq_flags &= ALTQF_CANTCHANGE;
  202         return 0;
  203 }
  204 
  205 int
  206 altq_enable(struct ifaltq *ifq)
  207 {
  208         int s;
  209 
  210         if (!ALTQ_IS_READY(ifq))
  211                 return ENXIO;
  212         if (ALTQ_IS_ENABLED(ifq))
  213                 return 0;
  214 
  215         s = splnet();
  216         IFQ_PURGE(ifq);
  217         ASSERT(ifq->ifq_len == 0);
  218         ifq->altq_flags |= ALTQF_ENABLED;
  219         if (ifq->altq_clfier != NULL)
  220                 ifq->altq_flags |= ALTQF_CLASSIFY;
  221         splx(s);
  222 
  223         return 0;
  224 }
  225 
  226 int
  227 altq_disable(struct ifaltq *ifq)
  228 {
  229         int s;
  230 
  231         if (!ALTQ_IS_ENABLED(ifq))
  232                 return 0;
  233 
  234         s = splnet();
  235         IFQ_PURGE(ifq);
  236         ASSERT(ifq->ifq_len == 0);
  237         ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
  238         splx(s);
  239         return 0;
  240 }
  241 
  242 #ifdef ALTQ_DEBUG
  243 void
  244 altq_assert(const char *file, int line, const char *failedexpr)
  245 {
  246         (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
  247                      failedexpr, file, line);
  248         panic("altq assertion");
  249         /* NOTREACHED */
  250 }
  251 #endif
  252 
  253 /*
  254  * internal representation of token bucket parameters
  255  *      rate:   byte_per_unittime << 32
  256  *              (((bits_per_sec) / 8) << 32) / machclk_freq
  257  *      depth:  byte << 32
  258  *
  259  */
  260 #define TBR_SHIFT       32
  261 #define TBR_SCALE(x)    ((int64_t)(x) << TBR_SHIFT)
  262 #define TBR_UNSCALE(x)  ((x) >> TBR_SHIFT)
  263 
  264 struct mbuf *
  265 tbr_dequeue(struct ifaltq *ifq, int op)
  266 {
  267         struct tb_regulator *tbr;
  268         struct mbuf *m;
  269         int64_t interval;
  270         u_int64_t now;
  271 
  272         tbr = ifq->altq_tbr;
  273         if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
  274                 /* if this is a remove after poll, bypass tbr check */
  275         } else {
  276                 /* update token only when it is negative */
  277                 if (tbr->tbr_token <= 0) {
  278                         now = read_machclk();
  279                         interval = now - tbr->tbr_last;
  280                         if (interval >= tbr->tbr_filluptime)
  281                                 tbr->tbr_token = tbr->tbr_depth;
  282                         else {
  283                                 tbr->tbr_token += interval * tbr->tbr_rate;
  284                                 if (tbr->tbr_token > tbr->tbr_depth)
  285                                         tbr->tbr_token = tbr->tbr_depth;
  286                         }
  287                         tbr->tbr_last = now;
  288                 }
  289                 /* if token is still negative, don't allow dequeue */
  290                 if (tbr->tbr_token <= 0)
  291                         return (NULL);
  292         }
  293 
  294         if (ALTQ_IS_ENABLED(ifq))
  295                 m = (*ifq->altq_dequeue)(ifq, op);
  296         else {
  297                 if (op == ALTDQ_POLL)
  298                         IF_POLL(ifq, m);
  299                 else
  300                         IF_DEQUEUE(ifq, m);
  301         }
  302 
  303         if (m != NULL && op == ALTDQ_REMOVE)
  304                 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
  305         tbr->tbr_lastop = op;
  306         return (m);
  307 }
  308 
  309 /*
  310  * set a token bucket regulator.
  311  * if the specified rate is zero, the token bucket regulator is deleted.
  312  */
  313 int
  314 tbr_set(struct ifaltq *ifq, struct tb_profile *profile)
  315 {
  316         struct tb_regulator *tbr, *otbr;
  317 
  318         if (machclk_freq == 0)
  319                 init_machclk();
  320         if (machclk_freq == 0) {
  321                 printf("tbr_set: no CPU clock available!\n");
  322                 return (ENXIO);
  323         }
  324 
  325         if (profile->rate == 0) {
  326                 /* delete this tbr */
  327                 if ((tbr = ifq->altq_tbr) == NULL)
  328                         return (ENOENT);
  329                 ifq->altq_tbr = NULL;
  330                 free(tbr, M_DEVBUF);
  331                 return (0);
  332         }
  333 
  334         tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_WAITOK|M_ZERO);
  335         if (tbr == NULL)
  336                 return (ENOMEM);
  337 
  338         tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
  339         tbr->tbr_depth = TBR_SCALE(profile->depth);
  340         if (tbr->tbr_rate > 0)
  341                 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
  342         else
  343                 tbr->tbr_filluptime = 0xffffffffffffffffLL;
  344         tbr->tbr_token = tbr->tbr_depth;
  345         tbr->tbr_last = read_machclk();
  346         tbr->tbr_lastop = ALTDQ_REMOVE;
  347 
  348         otbr = ifq->altq_tbr;
  349         ifq->altq_tbr = tbr;    /* set the new tbr */
  350 
  351         if (otbr != NULL)
  352                 free(otbr, M_DEVBUF);
  353         else {
  354                 if (tbr_timer == 0) {
  355                         CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
  356                         tbr_timer = 1;
  357                 }
  358         }
  359         return (0);
  360 }
  361 
  362 /*
  363  * tbr_timeout goes through the interface list, and kicks the drivers
  364  * if necessary.
  365  */
  366 static void
  367 tbr_timeout(void *arg)
  368 {
  369         struct ifnet *ifp;
  370         int active, s;
  371 
  372         active = 0;
  373         s = splnet();
  374         for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
  375                 if (!TBR_IS_ENABLED(&ifp->if_snd))
  376                         continue;
  377                 active++;
  378                 if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
  379                         (*ifp->if_start)(ifp);
  380         }
  381         splx(s);
  382         if (active > 0)
  383                 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
  384         else
  385                 tbr_timer = 0;  /* don't need tbr_timer anymore */
  386 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
  387         {
  388                 /*
  389                  * XXX read out the machine dependent clock once a second
  390                  * to detect counter wrap-around.
  391                  */
  392                 static u_int cnt;
  393 
  394                 if (++cnt >= hz) {
  395                         (void)read_machclk();
  396                         cnt = 0;
  397                 }
  398         }
  399 #endif /* __alpha__ && !ALTQ_NOPCC */
  400 }
  401 
  402 /*
  403  * get token bucket regulator profile
  404  */
  405 int
  406 tbr_get(struct ifaltq *ifq, struct tb_profile *profile)
  407 {
  408         struct tb_regulator *tbr;
  409 
  410         if ((tbr = ifq->altq_tbr) == NULL) {
  411                 profile->rate = 0;
  412                 profile->depth = 0;
  413         } else {
  414                 profile->rate =
  415                     (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
  416                 profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
  417         }
  418         return (0);
  419 }
  420 
  421 #if NPF > 0
  422 /*
  423  * attach a discipline to the interface.  if one already exists, it is
  424  * overridden.
  425  */
  426 int
  427 altq_pfattach(struct pf_altq *a)
  428 {
  429         int error = 0;
  430 
  431         switch (a->scheduler) {
  432         case ALTQT_NONE:
  433                 break;
  434 #ifdef ALTQ_CBQ
  435         case ALTQT_CBQ:
  436                 error = cbq_pfattach(a);
  437                 break;
  438 #endif
  439 #ifdef ALTQ_PRIQ
  440         case ALTQT_PRIQ:
  441                 error = priq_pfattach(a);
  442                 break;
  443 #endif
  444 #ifdef ALTQ_HFSC
  445         case ALTQT_HFSC:
  446                 error = hfsc_pfattach(a);
  447                 break;
  448 #endif
  449         default:
  450                 error = ENXIO;
  451         }
  452 
  453         return (error);
  454 }
  455 
  456 /*
  457  * detach a discipline from the interface.
  458  * it is possible that the discipline was already overridden by another
  459  * discipline.
  460  */
  461 int
  462 altq_pfdetach(struct pf_altq *a)
  463 {
  464         struct ifnet *ifp;
  465         int s, error = 0;
  466 
  467         if ((ifp = ifunit(a->ifname)) == NULL)
  468                 return (EINVAL);
  469 
  470         /* if this discipline is no longer referenced, just return */
  471         if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
  472                 return (0);
  473 
  474         s = splnet();
  475         if (ALTQ_IS_ENABLED(&ifp->if_snd))
  476                 error = altq_disable(&ifp->if_snd);
  477         if (error == 0)
  478                 error = altq_detach(&ifp->if_snd);
  479         splx(s);
  480 
  481         return (error);
  482 }
  483 
  484 /*
  485  * add a discipline or a queue
  486  */
  487 int
  488 altq_add(struct pf_altq *a)
  489 {
  490         int error = 0;
  491 
  492         if (a->qname[0] != 0)
  493                 return (altq_add_queue(a));
  494 
  495         if (machclk_freq == 0)
  496                 init_machclk();
  497         if (machclk_freq == 0)
  498                 panic("altq_add: no CPU clock");
  499 
  500         switch (a->scheduler) {
  501 #ifdef ALTQ_CBQ
  502         case ALTQT_CBQ:
  503                 error = cbq_add_altq(a);
  504                 break;
  505 #endif
  506 #ifdef ALTQ_PRIQ
  507         case ALTQT_PRIQ:
  508                 error = priq_add_altq(a);
  509                 break;
  510 #endif
  511 #ifdef ALTQ_HFSC
  512         case ALTQT_HFSC:
  513                 error = hfsc_add_altq(a);
  514                 break;
  515 #endif
  516         default:
  517                 error = ENXIO;
  518         }
  519 
  520         return (error);
  521 }
  522 
  523 /*
  524  * remove a discipline or a queue
  525  */
  526 int
  527 altq_remove(struct pf_altq *a)
  528 {
  529         int error = 0;
  530 
  531         if (a->qname[0] != 0)
  532                 return (altq_remove_queue(a));
  533 
  534         switch (a->scheduler) {
  535 #ifdef ALTQ_CBQ
  536         case ALTQT_CBQ:
  537                 error = cbq_remove_altq(a);
  538                 break;
  539 #endif
  540 #ifdef ALTQ_PRIQ
  541         case ALTQT_PRIQ:
  542                 error = priq_remove_altq(a);
  543                 break;
  544 #endif
  545 #ifdef ALTQ_HFSC
  546         case ALTQT_HFSC:
  547                 error = hfsc_remove_altq(a);
  548                 break;
  549 #endif
  550         default:
  551                 error = ENXIO;
  552         }
  553 
  554         return (error);
  555 }
  556 
  557 /*
  558  * add a queue to the discipline
  559  */
  560 int
  561 altq_add_queue(struct pf_altq *a)
  562 {
  563         int error = 0;
  564 
  565         switch (a->scheduler) {
  566 #ifdef ALTQ_CBQ
  567         case ALTQT_CBQ:
  568                 error = cbq_add_queue(a);
  569                 break;
  570 #endif
  571 #ifdef ALTQ_PRIQ
  572         case ALTQT_PRIQ:
  573                 error = priq_add_queue(a);
  574                 break;
  575 #endif
  576 #ifdef ALTQ_HFSC
  577         case ALTQT_HFSC:
  578                 error = hfsc_add_queue(a);
  579                 break;
  580 #endif
  581         default:
  582                 error = ENXIO;
  583         }
  584 
  585         return (error);
  586 }
  587 
  588 /*
  589  * remove a queue from the discipline
  590  */
  591 int
  592 altq_remove_queue(struct pf_altq *a)
  593 {
  594         int error = 0;
  595 
  596         switch (a->scheduler) {
  597 #ifdef ALTQ_CBQ
  598         case ALTQT_CBQ:
  599                 error = cbq_remove_queue(a);
  600                 break;
  601 #endif
  602 #ifdef ALTQ_PRIQ
  603         case ALTQT_PRIQ:
  604                 error = priq_remove_queue(a);
  605                 break;
  606 #endif
  607 #ifdef ALTQ_HFSC
  608         case ALTQT_HFSC:
  609                 error = hfsc_remove_queue(a);
  610                 break;
  611 #endif
  612         default:
  613                 error = ENXIO;
  614         }
  615 
  616         return (error);
  617 }
  618 
  619 /*
  620  * get queue statistics
  621  */
  622 int
  623 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
  624 {
  625         int error = 0;
  626 
  627         switch (a->scheduler) {
  628 #ifdef ALTQ_CBQ
  629         case ALTQT_CBQ:
  630                 error = cbq_getqstats(a, ubuf, nbytes);
  631                 break;
  632 #endif
  633 #ifdef ALTQ_PRIQ
  634         case ALTQT_PRIQ:
  635                 error = priq_getqstats(a, ubuf, nbytes);
  636                 break;
  637 #endif
  638 #ifdef ALTQ_HFSC
  639         case ALTQT_HFSC:
  640                 error = hfsc_getqstats(a, ubuf, nbytes);
  641                 break;
  642 #endif
  643         default:
  644                 error = ENXIO;
  645         }
  646 
  647         return (error);
  648 }
  649 #endif /* NPF > 0 */
  650 
  651 /*
  652  * read and write diffserv field in IPv4 or IPv6 header
  653  */
  654 u_int8_t
  655 read_dsfield(struct mbuf *m, struct altq_pktattr *pktattr)
  656 {
  657         struct mbuf *m0;
  658         u_int8_t ds_field = 0;
  659 
  660         if (pktattr == NULL ||
  661             (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
  662                 return ((u_int8_t)0);
  663 
  664         /* verify that pattr_hdr is within the mbuf data */
  665         for (m0 = m; m0 != NULL; m0 = m0->m_next)
  666                 if ((pktattr->pattr_hdr >= m0->m_data) &&
  667                     (pktattr->pattr_hdr < m0->m_data + m0->m_len))
  668                         break;
  669         if (m0 == NULL) {
  670                 /* ick, pattr_hdr is stale */
  671                 pktattr->pattr_af = AF_UNSPEC;
  672 #ifdef ALTQ_DEBUG
  673                 printf("read_dsfield: can't locate header!\n");
  674 #endif
  675                 return ((u_int8_t)0);
  676         }
  677 
  678         if (pktattr->pattr_af == AF_INET) {
  679                 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
  680 
  681                 if (ip->ip_v != 4)
  682                         return ((u_int8_t)0);   /* version mismatch! */
  683                 ds_field = ip->ip_tos;
  684         }
  685 #ifdef INET6
  686         else if (pktattr->pattr_af == AF_INET6) {
  687                 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
  688                 u_int32_t flowlabel;
  689 
  690                 flowlabel = ntohl(ip6->ip6_flow);
  691                 if ((flowlabel >> 28) != 6)
  692                         return ((u_int8_t)0);   /* version mismatch! */
  693                 ds_field = (flowlabel >> 20) & 0xff;
  694         }
  695 #endif
  696         return (ds_field);
  697 }
  698 
  699 void
  700 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
  701 {
  702         struct mbuf *m0;
  703 
  704         if (pktattr == NULL ||
  705             (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
  706                 return;
  707 
  708         /* verify that pattr_hdr is within the mbuf data */
  709         for (m0 = m; m0 != NULL; m0 = m0->m_next)
  710                 if ((pktattr->pattr_hdr >= m0->m_data) &&
  711                     (pktattr->pattr_hdr < m0->m_data + m0->m_len))
  712                         break;
  713         if (m0 == NULL) {
  714                 /* ick, pattr_hdr is stale */
  715                 pktattr->pattr_af = AF_UNSPEC;
  716 #ifdef ALTQ_DEBUG
  717                 printf("write_dsfield: can't locate header!\n");
  718 #endif
  719                 return;
  720         }
  721 
  722         if (pktattr->pattr_af == AF_INET) {
  723                 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
  724                 u_int8_t old;
  725                 int32_t sum;
  726 
  727                 if (ip->ip_v != 4)
  728                         return;         /* version mismatch! */
  729                 old = ip->ip_tos;
  730                 dsfield |= old & 3;     /* leave CU bits */
  731                 if (old == dsfield)
  732                         return;
  733                 ip->ip_tos = dsfield;
  734                 /*
  735                  * update checksum (from RFC1624)
  736                  *         HC' = ~(~HC + ~m + m')
  737                  */
  738                 sum = ~ntohs(ip->ip_sum) & 0xffff;
  739                 sum += 0xff00 + (~old & 0xff) + dsfield;
  740                 sum = (sum >> 16) + (sum & 0xffff);
  741                 sum += (sum >> 16);  /* add carry */
  742 
  743                 ip->ip_sum = htons(~sum & 0xffff);
  744         }
  745 #ifdef INET6
  746         else if (pktattr->pattr_af == AF_INET6) {
  747                 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
  748                 u_int32_t flowlabel;
  749 
  750                 flowlabel = ntohl(ip6->ip6_flow);
  751                 if ((flowlabel >> 28) != 6)
  752                         return;         /* version mismatch! */
  753                 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
  754                 ip6->ip6_flow = htonl(flowlabel);
  755         }
  756 #endif
  757         return;
  758 }
  759 
  760 
  761 /*
  762  * high resolution clock support taking advantage of a machine dependent
  763  * high resolution time counter (e.g., timestamp counter of intel pentium).
  764  * we assume
  765  *  - 64-bit-long monotonically-increasing counter
  766  *  - frequency range is 100M-4GHz (CPU speed)
  767  */
  768 /* if pcc is not available or disabled, emulate 256MHz using microtime() */
  769 #define MACHCLK_SHIFT   8
  770 
  771 int machclk_usepcc;
  772 u_int32_t machclk_freq = 0;
  773 u_int32_t machclk_per_tick = 0;
  774 
  775 #ifdef __alpha__
  776 #ifdef __FreeBSD__
  777 extern u_int32_t cycles_per_sec;        /* alpha cpu clock frequency */
  778 #elif defined(__NetBSD__) || defined(__OpenBSD__)
  779 extern u_int64_t cycles_per_usec;       /* alpha cpu clock frequency */
  780 #endif
  781 #endif /* __alpha__ */
  782 
  783 void
  784 init_machclk(void)
  785 {
  786         machclk_usepcc = 1;
  787 
  788 #if (!defined(__i386__) && !defined(__alpha__)) || defined(ALTQ_NOPCC)
  789         machclk_usepcc = 0;
  790 #endif
  791 #if defined(__FreeBSD__) && defined(SMP)
  792         machclk_usepcc = 0;
  793 #endif
  794 #if defined(__NetBSD__) && defined(MULTIPROCESSOR)
  795         machclk_usepcc = 0;
  796 #endif
  797 #ifdef __i386__
  798         /* check if TSC is available */
  799         if (machclk_usepcc == 1 && (cpu_feature & CPUID_TSC) == 0)
  800                 machclk_usepcc = 0;
  801 #endif
  802 
  803         if (machclk_usepcc == 0) {
  804                 /* emulate 256MHz using microtime() */
  805                 machclk_freq = 1000000 << MACHCLK_SHIFT;
  806                 machclk_per_tick = machclk_freq / hz;
  807 #ifdef ALTQ_DEBUG
  808                 printf("altq: emulate %uHz CPU clock\n", machclk_freq);
  809 #endif
  810                 return;
  811         }
  812 
  813         /*
  814          * if the clock frequency (of Pentium TSC or Alpha PCC) is
  815          * accessible, just use it.
  816          */
  817 #ifdef __i386__
  818 #ifdef __FreeBSD__
  819 #if (__FreeBSD_version > 300000)
  820         machclk_freq = tsc_freq;
  821 #else
  822         machclk_freq = i586_ctr_freq;
  823 #endif
  824 #elif defined(__NetBSD__)
  825         machclk_freq = (u_int32_t)curcpu()->ci_tsc_freq;
  826 #elif defined(__OpenBSD__) && (defined(I586_CPU) || defined(I686_CPU))
  827         machclk_freq = pentium_mhz * 1000000;
  828 #endif
  829 #elif defined(__alpha__)
  830 #ifdef __FreeBSD__
  831         machclk_freq = cycles_per_sec;
  832 #elif defined(__NetBSD__) || defined(__OpenBSD__)
  833         machclk_freq = (u_int32_t)(cycles_per_usec * 1000000);
  834 #endif
  835 #endif /* __alpha__ */
  836 
  837         /*
  838          * if we don't know the clock frequency, measure it.
  839          */
  840         if (machclk_freq == 0) {
  841                 static int      wait;
  842                 struct timeval  tv_start, tv_end;
  843                 u_int64_t       start, end, diff;
  844                 int             timo;
  845 
  846                 microtime(&tv_start);
  847                 start = read_machclk();
  848                 timo = hz;      /* 1 sec */
  849                 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
  850                 microtime(&tv_end);
  851                 end = read_machclk();
  852                 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
  853                     + tv_end.tv_usec - tv_start.tv_usec;
  854                 if (diff != 0)
  855                         machclk_freq = (u_int)((end - start) * 1000000 / diff);
  856         }
  857 
  858         machclk_per_tick = machclk_freq / hz;
  859 
  860 #ifdef ALTQ_DEBUG
  861         printf("altq: CPU clock: %uHz\n", machclk_freq);
  862 #endif
  863 }
  864 
  865 #if defined(__OpenBSD__) && defined(__i386__)
  866 static inline u_int64_t
  867 rdtsc(void)
  868 {
  869         u_int64_t rv;
  870         __asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
  871         return (rv);
  872 }
  873 #endif /* __OpenBSD__ && __i386__ */
  874 
  875 u_int64_t
  876 read_machclk(void)
  877 {
  878         u_int64_t val;
  879 
  880         if (machclk_usepcc) {
  881 #if defined(__i386__)
  882                 val = rdtsc();
  883 #elif defined(__alpha__)
  884                 static u_int32_t last_pcc, upper;
  885                 u_int32_t pcc;
  886 
  887                 /*
  888                  * for alpha, make a 64bit counter value out of the 32bit
  889                  * alpha processor cycle counter.
  890                  * read_machclk must be called within a half of its
  891                  * wrap-around cycle (about 5 sec for 400MHz cpu) to properly
  892                  * detect a counter wrap-around.
  893                  * tbr_timeout calls read_machclk once a second.
  894                  */
  895                 pcc = (u_int32_t)alpha_rpcc();
  896                 if (pcc <= last_pcc)
  897                         upper++;
  898                 last_pcc = pcc;
  899                 val = ((u_int64_t)upper << 32) + pcc;
  900 #else
  901                 panic("read_machclk");
  902 #endif
  903         } else {
  904                 struct timeval tv;
  905 
  906                 microtime(&tv);
  907                 val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
  908                     + tv.tv_usec) << MACHCLK_SHIFT);
  909         }
  910         return (val);
  911 }
  912 
  913 #ifdef ALTQ3_CLFIER_COMPAT
  914 
  915 #ifndef IPPROTO_ESP
  916 #define IPPROTO_ESP     50              /* encapsulating security payload */
  917 #endif
  918 #ifndef IPPROTO_AH
  919 #define IPPROTO_AH      51              /* authentication header */
  920 #endif
  921 
  922 /*
  923  * extract flow information from a given packet.
  924  * filt_mask shows flowinfo fields required.
  925  * we assume the ip header is in one mbuf, and addresses and ports are
  926  * in network byte order.
  927  */
  928 int
  929 altq_extractflow(struct mbuf *m, int af, struct flowinfo *flow,
  930     u_int32_t filt_bmask)
  931 {
  932 
  933         switch (af) {
  934         case PF_INET: {
  935                 struct flowinfo_in *fin;
  936                 struct ip *ip;
  937 
  938                 ip = mtod(m, struct ip *);
  939 
  940                 if (ip->ip_v != 4)
  941                         break;
  942 
  943                 fin = (struct flowinfo_in *)flow;
  944                 fin->fi_len = sizeof(struct flowinfo_in);
  945                 fin->fi_family = AF_INET;
  946 
  947                 fin->fi_proto = ip->ip_p;
  948                 fin->fi_tos = ip->ip_tos;
  949 
  950                 fin->fi_src.s_addr = ip->ip_src.s_addr;
  951                 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
  952 
  953                 if (filt_bmask & FIMB4_PORTS)
  954                         /* if port info is required, extract port numbers */
  955                         extract_ports4(m, ip, fin);
  956                 else {
  957                         fin->fi_sport = 0;
  958                         fin->fi_dport = 0;
  959                         fin->fi_gpi = 0;
  960                 }
  961                 return (1);
  962         }
  963 
  964 #ifdef INET6
  965         case PF_INET6: {
  966                 struct flowinfo_in6 *fin6;
  967                 struct ip6_hdr *ip6;
  968 
  969                 ip6 = mtod(m, struct ip6_hdr *);
  970                 /* should we check the ip version? */
  971 
  972                 fin6 = (struct flowinfo_in6 *)flow;
  973                 fin6->fi6_len = sizeof(struct flowinfo_in6);
  974                 fin6->fi6_family = AF_INET6;
  975 
  976                 fin6->fi6_proto = ip6->ip6_nxt;
  977                 fin6->fi6_tclass   = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
  978 
  979                 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
  980                 fin6->fi6_src = ip6->ip6_src;
  981                 fin6->fi6_dst = ip6->ip6_dst;
  982 
  983                 if ((filt_bmask & FIMB6_PORTS) ||
  984                     ((filt_bmask & FIMB6_PROTO)
  985                      && ip6->ip6_nxt > IPPROTO_IPV6))
  986                         /*
  987                          * if port info is required, or proto is required
  988                          * but there are option headers, extract port
  989                          * and protocol numbers.
  990                          */
  991                         extract_ports6(m, ip6, fin6);
  992                 else {
  993                         fin6->fi6_sport = 0;
  994                         fin6->fi6_dport = 0;
  995                         fin6->fi6_gpi = 0;
  996                 }
  997                 return (1);
  998         }
  999 #endif /* INET6 */
 1000 
 1001         default:
 1002                 break;
 1003         }
 1004 
 1005         /* failed */
 1006         flow->fi_len = sizeof(struct flowinfo);
 1007         flow->fi_family = AF_UNSPEC;
 1008         return (0);
 1009 }
 1010 
 1011 /*
 1012  * helper routine to extract port numbers
 1013  */
 1014 /* structure for ipsec and ipv6 option header template */
 1015 struct _opt6 {
 1016         u_int8_t        opt6_nxt;       /* next header */
 1017         u_int8_t        opt6_hlen;      /* header extension length */
 1018         u_int16_t       _pad;
 1019         u_int32_t       ah_spi;         /* security parameter index
 1020                                            for authentication header */
 1021 };
 1022 
 1023 /*
 1024  * extract port numbers from a ipv4 packet.
 1025  */
 1026 static int
 1027 extract_ports4(struct mbuf *m, struct ip *ip, struct flowinfo_in *fin)
 1028 {
 1029         struct mbuf *m0;
 1030         u_short ip_off;
 1031         u_int8_t proto;
 1032         int     off;
 1033 
 1034         fin->fi_sport = 0;
 1035         fin->fi_dport = 0;
 1036         fin->fi_gpi = 0;
 1037 
 1038         ip_off = ntohs(ip->ip_off);
 1039         /* if it is a fragment, try cached fragment info */
 1040         if (ip_off & IP_OFFMASK) {
 1041                 ip4f_lookup(ip, fin);
 1042                 return (1);
 1043         }
 1044 
 1045         /* locate the mbuf containing the protocol header */
 1046         for (m0 = m; m0 != NULL; m0 = m0->m_next)
 1047                 if (((caddr_t)ip >= m0->m_data) &&
 1048                     ((caddr_t)ip < m0->m_data + m0->m_len))
 1049                         break;
 1050         if (m0 == NULL) {
 1051 #ifdef ALTQ_DEBUG
 1052                 printf("extract_ports4: can't locate header! ip=%p\n", ip);
 1053 #endif
 1054                 return (0);
 1055         }
 1056         off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
 1057         proto = ip->ip_p;
 1058 
 1059 #ifdef ALTQ_IPSEC
 1060  again:
 1061 #endif
 1062         while (off >= m0->m_len) {
 1063                 off -= m0->m_len;
 1064                 m0 = m0->m_next;
 1065                 if (m0 == NULL)
 1066                         return (0);  /* bogus ip_hl! */
 1067         }
 1068         if (m0->m_len < off + 4)
 1069                 return (0);
 1070 
 1071         switch (proto) {
 1072         case IPPROTO_TCP:
 1073         case IPPROTO_UDP: {
 1074                 struct udphdr *udp;
 1075 
 1076                 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
 1077                 fin->fi_sport = udp->uh_sport;
 1078                 fin->fi_dport = udp->uh_dport;
 1079                 fin->fi_proto = proto;
 1080                 }
 1081                 break;
 1082 
 1083 #ifdef ALTQ_IPSEC
 1084         case IPPROTO_ESP:
 1085                 if (fin->fi_gpi == 0){
 1086                         u_int32_t *gpi;
 1087 
 1088                         gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
 1089                         fin->fi_gpi   = *gpi;
 1090                 }
 1091                 fin->fi_proto = proto;
 1092                 break;
 1093 
 1094         case IPPROTO_AH: {
 1095                         /* get next header and header length */
 1096                         struct _opt6 *opt6;
 1097 
 1098                         opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 1099                         proto = opt6->opt6_nxt;
 1100                         off += 8 + (opt6->opt6_hlen * 4);
 1101                         if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
 1102                                 fin->fi_gpi = opt6->ah_spi;
 1103                 }
 1104                 /* goto the next header */
 1105                 goto again;
 1106 #endif  /* ALTQ_IPSEC */
 1107 
 1108         default:
 1109                 fin->fi_proto = proto;
 1110                 return (0);
 1111         }
 1112 
 1113         /* if this is a first fragment, cache it. */
 1114         if (ip_off & IP_MF)
 1115                 ip4f_cache(ip, fin);
 1116 
 1117         return (1);
 1118 }
 1119 
 1120 #ifdef INET6
 1121 static int
 1122 extract_ports6(struct mbuf *m, struct ip6_hdr *ip6, struct flowinfo_in6 *fin6)
 1123 {
 1124         struct mbuf *m0;
 1125         int     off;
 1126         u_int8_t proto;
 1127 
 1128         fin6->fi6_gpi   = 0;
 1129         fin6->fi6_sport = 0;
 1130         fin6->fi6_dport = 0;
 1131 
 1132         /* locate the mbuf containing the protocol header */
 1133         for (m0 = m; m0 != NULL; m0 = m0->m_next)
 1134                 if (((caddr_t)ip6 >= m0->m_data) &&
 1135                     ((caddr_t)ip6 < m0->m_data + m0->m_len))
 1136                         break;
 1137         if (m0 == NULL) {
 1138 #ifdef ALTQ_DEBUG
 1139                 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
 1140 #endif
 1141                 return (0);
 1142         }
 1143         off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
 1144 
 1145         proto = ip6->ip6_nxt;
 1146         do {
 1147                 while (off >= m0->m_len) {
 1148                         off -= m0->m_len;
 1149                         m0 = m0->m_next;
 1150                         if (m0 == NULL)
 1151                                 return (0);
 1152                 }
 1153                 if (m0->m_len < off + 4)
 1154                         return (0);
 1155 
 1156                 switch (proto) {
 1157                 case IPPROTO_TCP:
 1158                 case IPPROTO_UDP: {
 1159                         struct udphdr *udp;
 1160 
 1161                         udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
 1162                         fin6->fi6_sport = udp->uh_sport;
 1163                         fin6->fi6_dport = udp->uh_dport;
 1164                         fin6->fi6_proto = proto;
 1165                         }
 1166                         return (1);
 1167 
 1168                 case IPPROTO_ESP:
 1169                         if (fin6->fi6_gpi == 0) {
 1170                                 u_int32_t *gpi;
 1171 
 1172                                 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
 1173                                 fin6->fi6_gpi   = *gpi;
 1174                         }
 1175                         fin6->fi6_proto = proto;
 1176                         return (1);
 1177 
 1178                 case IPPROTO_AH: {
 1179                         /* get next header and header length */
 1180                         struct _opt6 *opt6;
 1181 
 1182                         opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 1183                         if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
 1184                                 fin6->fi6_gpi = opt6->ah_spi;
 1185                         proto = opt6->opt6_nxt;
 1186                         off += 8 + (opt6->opt6_hlen * 4);
 1187                         /* goto the next header */
 1188                         break;
 1189                         }
 1190 
 1191                 case IPPROTO_HOPOPTS:
 1192                 case IPPROTO_ROUTING:
 1193                 case IPPROTO_DSTOPTS: {
 1194                         /* get next header and header length */
 1195                         struct _opt6 *opt6;
 1196 
 1197                         opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 1198                         proto = opt6->opt6_nxt;
 1199                         off += (opt6->opt6_hlen + 1) * 8;
 1200                         /* goto the next header */
 1201                         break;
 1202                         }
 1203 
 1204                 case IPPROTO_FRAGMENT:
 1205                         /* ipv6 fragmentations are not supported yet */
 1206                 default:
 1207                         fin6->fi6_proto = proto;
 1208                         return (0);
 1209                 }
 1210         } while (1);
 1211         /*NOTREACHED*/
 1212 }
 1213 #endif /* INET6 */
 1214 
 1215 /*
 1216  * altq common classifier
 1217  */
 1218 int
 1219 acc_add_filter(struct acc_classifier *classifier, struct flow_filter *filter,
 1220     void *class, u_long *phandle)
 1221 {
 1222         struct acc_filter *afp, *prev, *tmp;
 1223         int     i, s;
 1224 
 1225 #ifdef INET6
 1226         if (filter->ff_flow.fi_family != AF_INET &&
 1227             filter->ff_flow.fi_family != AF_INET6)
 1228                 return (EINVAL);
 1229 #else
 1230         if (filter->ff_flow.fi_family != AF_INET)
 1231                 return (EINVAL);
 1232 #endif
 1233 
 1234         afp = malloc(sizeof(struct acc_filter), M_DEVBUF, M_WAITOK|M_ZERO);
 1235         if (afp == NULL)
 1236                 return (ENOMEM);
 1237 
 1238         afp->f_filter = *filter;
 1239         afp->f_class = class;
 1240 
 1241         i = ACC_WILDCARD_INDEX;
 1242         if (filter->ff_flow.fi_family == AF_INET) {
 1243                 struct flow_filter *filter4 = &afp->f_filter;
 1244 
 1245                 /*
 1246                  * if address is 0, it's a wildcard.  if address mask
 1247                  * isn't set, use full mask.
 1248                  */
 1249                 if (filter4->ff_flow.fi_dst.s_addr == 0)
 1250                         filter4->ff_mask.mask_dst.s_addr = 0;
 1251                 else if (filter4->ff_mask.mask_dst.s_addr == 0)
 1252                         filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
 1253                 if (filter4->ff_flow.fi_src.s_addr == 0)
 1254                         filter4->ff_mask.mask_src.s_addr = 0;
 1255                 else if (filter4->ff_mask.mask_src.s_addr == 0)
 1256                         filter4->ff_mask.mask_src.s_addr = 0xffffffff;
 1257 
 1258                 /* clear extra bits in addresses  */
 1259                    filter4->ff_flow.fi_dst.s_addr &=
 1260                        filter4->ff_mask.mask_dst.s_addr;
 1261                    filter4->ff_flow.fi_src.s_addr &=
 1262                        filter4->ff_mask.mask_src.s_addr;
 1263 
 1264                 /*
 1265                  * if dst address is a wildcard, use hash-entry
 1266                  * ACC_WILDCARD_INDEX.
 1267                  */
 1268                 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
 1269                         i = ACC_WILDCARD_INDEX;
 1270                 else
 1271                         i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
 1272         }
 1273 #ifdef INET6
 1274         else if (filter->ff_flow.fi_family == AF_INET6) {
 1275                 struct flow_filter6 *filter6 =
 1276                         (struct flow_filter6 *)&afp->f_filter;
 1277 #ifndef IN6MASK0 /* taken from kame ipv6 */
 1278 #define IN6MASK0        {{{ 0, 0, 0, 0 }}}
 1279 #define IN6MASK128      {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
 1280                 const struct in6_addr in6mask0 = IN6MASK0;
 1281                 const struct in6_addr in6mask128 = IN6MASK128;
 1282 #endif
 1283 
 1284                 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
 1285                         filter6->ff_mask6.mask6_dst = in6mask0;
 1286                 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
 1287                         filter6->ff_mask6.mask6_dst = in6mask128;
 1288                 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
 1289                         filter6->ff_mask6.mask6_src = in6mask0;
 1290                 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
 1291                         filter6->ff_mask6.mask6_src = in6mask128;
 1292 
 1293                 /* clear extra bits in addresses  */
 1294                 for (i = 0; i < 16; i++)
 1295                         filter6->ff_flow6.fi6_dst.s6_addr[i] &=
 1296                             filter6->ff_mask6.mask6_dst.s6_addr[i];
 1297                 for (i = 0; i < 16; i++)
 1298                         filter6->ff_flow6.fi6_src.s6_addr[i] &=
 1299                             filter6->ff_mask6.mask6_src.s6_addr[i];
 1300 
 1301                 if (filter6->ff_flow6.fi6_flowlabel == 0)
 1302                         i = ACC_WILDCARD_INDEX;
 1303                 else
 1304                         i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
 1305         }
 1306 #endif /* INET6 */
 1307 
 1308         afp->f_handle = get_filt_handle(classifier, i);
 1309 
 1310         /* update filter bitmask */
 1311         afp->f_fbmask = filt2fibmask(filter);
 1312         classifier->acc_fbmask |= afp->f_fbmask;
 1313 
 1314         /*
 1315          * add this filter to the filter list.
 1316          * filters are ordered from the highest rule number.
 1317          */
 1318         s = splnet();
 1319         prev = NULL;
 1320         LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
 1321                 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
 1322                         prev = tmp;
 1323                 else
 1324                         break;
 1325         }
 1326         if (prev == NULL)
 1327                 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
 1328         else
 1329                 LIST_INSERT_AFTER(prev, afp, f_chain);
 1330         splx(s);
 1331 
 1332         *phandle = afp->f_handle;
 1333         return (0);
 1334 }
 1335 
 1336 int
 1337 acc_delete_filter(struct acc_classifier *classifier, u_long handle)
 1338 {
 1339         struct acc_filter *afp;
 1340         int     s;
 1341 
 1342         if ((afp = filth_to_filtp(classifier, handle)) == NULL)
 1343                 return (EINVAL);
 1344 
 1345         s = splnet();
 1346         LIST_REMOVE(afp, f_chain);
 1347         splx(s);
 1348 
 1349         free(afp, M_DEVBUF);
 1350 
 1351         /* todo: update filt_bmask */
 1352 
 1353         return (0);
 1354 }
 1355 
 1356 /*
 1357  * delete filters referencing to the specified class.
 1358  * if the all flag is not 0, delete all the filters.
 1359  */
 1360 int
 1361 acc_discard_filters(struct acc_classifier *classifier, void *class, int all)
 1362 {
 1363         struct acc_filter *afp;
 1364         int     i, s;
 1365 
 1366         s = splnet();
 1367         for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
 1368                 do {
 1369                         LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 1370                                 if (all || afp->f_class == class) {
 1371                                         LIST_REMOVE(afp, f_chain);
 1372                                         free(afp, M_DEVBUF);
 1373                                         /* start again from the head */
 1374                                         break;
 1375                                 }
 1376                 } while (afp != NULL);
 1377         }
 1378         splx(s);
 1379 
 1380         if (all)
 1381                 classifier->acc_fbmask = 0;
 1382 
 1383         return (0);
 1384 }
 1385 
 1386 void *
 1387 acc_classify(void *clfier, struct mbuf *m, int af)
 1388 {
 1389         struct acc_classifier *classifier;
 1390         struct flowinfo flow;
 1391         struct acc_filter *afp;
 1392         int     i;
 1393 
 1394         classifier = (struct acc_classifier *)clfier;
 1395         altq_extractflow(m, af, &flow, classifier->acc_fbmask);
 1396 
 1397         if (flow.fi_family == AF_INET) {
 1398                 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
 1399 
 1400                 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
 1401                         /* only tos is used */
 1402                         LIST_FOREACH(afp,
 1403                                  &classifier->acc_filters[ACC_WILDCARD_INDEX],
 1404                                  f_chain)
 1405                                 if (apply_tosfilter4(afp->f_fbmask,
 1406                                                      &afp->f_filter, fp))
 1407                                         /* filter matched */
 1408                                         return (afp->f_class);
 1409                 } else if ((classifier->acc_fbmask &
 1410                         (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
 1411                     == 0) {
 1412                         /* only proto and ports are used */
 1413                         LIST_FOREACH(afp,
 1414                                  &classifier->acc_filters[ACC_WILDCARD_INDEX],
 1415                                  f_chain)
 1416                                 if (apply_ppfilter4(afp->f_fbmask,
 1417                                                     &afp->f_filter, fp))
 1418                                         /* filter matched */
 1419                                         return (afp->f_class);
 1420                 } else {
 1421                         /* get the filter hash entry from its dest address */
 1422                         i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
 1423                         do {
 1424                                 /*
 1425                                  * go through this loop twice.  first for dst
 1426                                  * hash, second for wildcards.
 1427                                  */
 1428                                 LIST_FOREACH(afp, &classifier->acc_filters[i],
 1429                                              f_chain)
 1430                                         if (apply_filter4(afp->f_fbmask,
 1431                                                           &afp->f_filter, fp))
 1432                                                 /* filter matched */
 1433                                                 return (afp->f_class);
 1434 
 1435                                 /*
 1436                                  * check again for filters with a dst addr
 1437                                  * wildcard.
 1438                                  * (daddr == 0 || dmask != 0xffffffff).
 1439                                  */
 1440                                 if (i != ACC_WILDCARD_INDEX)
 1441                                         i = ACC_WILDCARD_INDEX;
 1442                                 else
 1443                                         break;
 1444                         } while (1);
 1445                 }
 1446         }
 1447 #ifdef INET6
 1448         else if (flow.fi_family == AF_INET6) {
 1449                 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
 1450 
 1451                 /* get the filter hash entry from its flow ID */
 1452                 if (fp6->fi6_flowlabel != 0)
 1453                         i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
 1454                 else
 1455                         /* flowlable can be zero */
 1456                         i = ACC_WILDCARD_INDEX;
 1457 
 1458                 /* go through this loop twice.  first for flow hash, second
 1459                    for wildcards. */
 1460                 do {
 1461                         LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 1462                                 if (apply_filter6(afp->f_fbmask,
 1463                                         (struct flow_filter6 *)&afp->f_filter,
 1464                                         fp6))
 1465                                         /* filter matched */
 1466                                         return (afp->f_class);
 1467 
 1468                         /*
 1469                          * check again for filters with a wildcard.
 1470                          */
 1471                         if (i != ACC_WILDCARD_INDEX)
 1472                                 i = ACC_WILDCARD_INDEX;
 1473                         else
 1474                                 break;
 1475                 } while (1);
 1476         }
 1477 #endif /* INET6 */
 1478 
 1479         /* no filter matched */
 1480         return (NULL);
 1481 }
 1482 
 1483 static int
 1484 apply_filter4(u_int32_t fbmask, struct flow_filter *filt,
 1485     struct flowinfo_in *pkt)
 1486 {
 1487         if (filt->ff_flow.fi_family != AF_INET)
 1488                 return (0);
 1489         if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
 1490                 return (0);
 1491         if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
 1492                 return (0);
 1493         if ((fbmask & FIMB4_DADDR) &&
 1494             filt->ff_flow.fi_dst.s_addr !=
 1495             (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
 1496                 return (0);
 1497         if ((fbmask & FIMB4_SADDR) &&
 1498             filt->ff_flow.fi_src.s_addr !=
 1499             (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
 1500                 return (0);
 1501         if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
 1502                 return (0);
 1503         if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
 1504             (pkt->fi_tos & filt->ff_mask.mask_tos))
 1505                 return (0);
 1506         if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
 1507                 return (0);
 1508         /* match */
 1509         return (1);
 1510 }
 1511 
 1512 /*
 1513  * filter matching function optimized for a common case that checks
 1514  * only protocol and port numbers
 1515  */
 1516 static int
 1517 apply_ppfilter4(u_int32_t fbmask, struct flow_filter *filt,
 1518     struct flowinfo_in *pkt)
 1519 {
 1520         if (filt->ff_flow.fi_family != AF_INET)
 1521                 return (0);
 1522         if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
 1523                 return (0);
 1524         if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
 1525                 return (0);
 1526         if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
 1527                 return (0);
 1528         /* match */
 1529         return (1);
 1530 }
 1531 
 1532 /*
 1533  * filter matching function only for tos field.
 1534  */
 1535 static int
 1536 apply_tosfilter4(u_int32_t fbmask, struct flow_filter *filt,
 1537     struct flowinfo_in *pkt)
 1538 {
 1539         if (filt->ff_flow.fi_family != AF_INET)
 1540                 return (0);
 1541         if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
 1542             (pkt->fi_tos & filt->ff_mask.mask_tos))
 1543                 return (0);
 1544         /* match */
 1545         return (1);
 1546 }
 1547 
 1548 #ifdef INET6
 1549 static int
 1550 apply_filter6(u_int32_t fbmask, struct flow_filter6 *filt,
 1551     struct flowinfo_in6 *pkt)
 1552 {
 1553         int i;
 1554 
 1555         if (filt->ff_flow6.fi6_family != AF_INET6)
 1556                 return (0);
 1557         if ((fbmask & FIMB6_FLABEL) &&
 1558             filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
 1559                 return (0);
 1560         if ((fbmask & FIMB6_PROTO) &&
 1561             filt->ff_flow6.fi6_proto != pkt->fi6_proto)
 1562                 return (0);
 1563         if ((fbmask & FIMB6_SPORT) &&
 1564             filt->ff_flow6.fi6_sport != pkt->fi6_sport)
 1565                 return (0);
 1566         if ((fbmask & FIMB6_DPORT) &&
 1567             filt->ff_flow6.fi6_dport != pkt->fi6_dport)
 1568                 return (0);
 1569         if (fbmask & FIMB6_SADDR) {
 1570                 for (i = 0; i < 4; i++)
 1571                         if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
 1572                             (pkt->fi6_src.s6_addr32[i] &
 1573                              filt->ff_mask6.mask6_src.s6_addr32[i]))
 1574                                 return (0);
 1575         }
 1576         if (fbmask & FIMB6_DADDR) {
 1577                 for (i = 0; i < 4; i++)
 1578                         if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
 1579                             (pkt->fi6_dst.s6_addr32[i] &
 1580                              filt->ff_mask6.mask6_dst.s6_addr32[i]))
 1581                                 return (0);
 1582         }
 1583         if ((fbmask & FIMB6_TCLASS) &&
 1584             filt->ff_flow6.fi6_tclass !=
 1585             (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
 1586                 return (0);
 1587         if ((fbmask & FIMB6_GPI) &&
 1588             filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
 1589                 return (0);
 1590         /* match */
 1591         return (1);
 1592 }
 1593 #endif /* INET6 */
 1594 
 1595 /*
 1596  *  filter handle:
 1597  *      bit 20-28: index to the filter hash table
 1598  *      bit  0-19: unique id in the hash bucket.
 1599  */
 1600 static u_long
 1601 get_filt_handle(struct acc_classifier *classifier, int i)
 1602 {
 1603         static u_long handle_number = 1;
 1604         u_long  handle;
 1605         struct acc_filter *afp;
 1606 
 1607         while (1) {
 1608                 handle = handle_number++ & 0x000fffff;
 1609 
 1610                 if (LIST_EMPTY(&classifier->acc_filters[i]))
 1611                         break;
 1612 
 1613                 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 1614                         if ((afp->f_handle & 0x000fffff) == handle)
 1615                                 break;
 1616                 if (afp == NULL)
 1617                         break;
 1618                 /* this handle is already used, try again */
 1619         }
 1620 
 1621         return ((i << 20) | handle);
 1622 }
 1623 
 1624 /* convert filter handle to filter pointer */
 1625 static struct acc_filter *
 1626 filth_to_filtp(struct acc_classifier *classifier, u_long handle)
 1627 {
 1628         struct acc_filter *afp;
 1629         int     i;
 1630 
 1631         i = ACC_GET_HINDEX(handle);
 1632 
 1633         LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 1634                 if (afp->f_handle == handle)
 1635                         return (afp);
 1636 
 1637         return (NULL);
 1638 }
 1639 
 1640 /* create flowinfo bitmask */
 1641 static u_int32_t
 1642 filt2fibmask(struct flow_filter *filt)
 1643 {
 1644         u_int32_t mask = 0;
 1645 #ifdef INET6
 1646         struct flow_filter6 *filt6;
 1647 #endif
 1648 
 1649         switch (filt->ff_flow.fi_family) {
 1650         case AF_INET:
 1651                 if (filt->ff_flow.fi_proto != 0)
 1652                         mask |= FIMB4_PROTO;
 1653                 if (filt->ff_flow.fi_tos != 0)
 1654                         mask |= FIMB4_TOS;
 1655                 if (filt->ff_flow.fi_dst.s_addr != 0)
 1656                         mask |= FIMB4_DADDR;
 1657                 if (filt->ff_flow.fi_src.s_addr != 0)
 1658                         mask |= FIMB4_SADDR;
 1659                 if (filt->ff_flow.fi_sport != 0)
 1660                         mask |= FIMB4_SPORT;
 1661                 if (filt->ff_flow.fi_dport != 0)
 1662                         mask |= FIMB4_DPORT;
 1663                 if (filt->ff_flow.fi_gpi != 0)
 1664                         mask |= FIMB4_GPI;
 1665                 break;
 1666 #ifdef INET6
 1667         case AF_INET6:
 1668                 filt6 = (struct flow_filter6 *)filt;
 1669 
 1670                 if (filt6->ff_flow6.fi6_proto != 0)
 1671                         mask |= FIMB6_PROTO;
 1672                 if (filt6->ff_flow6.fi6_tclass != 0)
 1673                         mask |= FIMB6_TCLASS;
 1674                 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
 1675                         mask |= FIMB6_DADDR;
 1676                 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
 1677                         mask |= FIMB6_SADDR;
 1678                 if (filt6->ff_flow6.fi6_sport != 0)
 1679                         mask |= FIMB6_SPORT;
 1680                 if (filt6->ff_flow6.fi6_dport != 0)
 1681                         mask |= FIMB6_DPORT;
 1682                 if (filt6->ff_flow6.fi6_gpi != 0)
 1683                         mask |= FIMB6_GPI;
 1684                 if (filt6->ff_flow6.fi6_flowlabel != 0)
 1685                         mask |= FIMB6_FLABEL;
 1686                 break;
 1687 #endif /* INET6 */
 1688         }
 1689         return (mask);
 1690 }
 1691 
 1692 
 1693 /*
 1694  * helper functions to handle IPv4 fragments.
 1695  * currently only in-sequence fragments are handled.
 1696  *      - fragment info is cached in a LRU list.
 1697  *      - when a first fragment is found, cache its flow info.
 1698  *      - when a non-first fragment is found, lookup the cache.
 1699  */
 1700 
 1701 struct ip4_frag {
 1702     TAILQ_ENTRY(ip4_frag) ip4f_chain;
 1703     char    ip4f_valid;
 1704     u_short ip4f_id;
 1705     struct flowinfo_in ip4f_info;
 1706 };
 1707 
 1708 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
 1709 
 1710 #define IP4F_TABSIZE            16      /* IPv4 fragment cache size */
 1711 
 1712 
 1713 static void
 1714 ip4f_cache(struct ip *ip, struct flowinfo_in *fin)
 1715 {
 1716         struct ip4_frag *fp;
 1717 
 1718         if (TAILQ_EMPTY(&ip4f_list)) {
 1719                 /* first time call, allocate fragment cache entries. */
 1720                 if (ip4f_init() < 0)
 1721                         /* allocation failed! */
 1722                         return;
 1723         }
 1724 
 1725         fp = ip4f_alloc();
 1726         fp->ip4f_id = ip->ip_id;
 1727         fp->ip4f_info.fi_proto = ip->ip_p;
 1728         fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
 1729         fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
 1730 
 1731         /* save port numbers */
 1732         fp->ip4f_info.fi_sport = fin->fi_sport;
 1733         fp->ip4f_info.fi_dport = fin->fi_dport;
 1734         fp->ip4f_info.fi_gpi   = fin->fi_gpi;
 1735 }
 1736 
 1737 static int
 1738 ip4f_lookup(struct ip *ip, struct flowinfo_in *fin)
 1739 {
 1740         struct ip4_frag *fp;
 1741 
 1742         for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
 1743              fp = TAILQ_NEXT(fp, ip4f_chain))
 1744                 if (ip->ip_id == fp->ip4f_id &&
 1745                     ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
 1746                     ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
 1747                     ip->ip_p == fp->ip4f_info.fi_proto) {
 1748 
 1749                         /* found the matching entry */
 1750                         fin->fi_sport = fp->ip4f_info.fi_sport;
 1751                         fin->fi_dport = fp->ip4f_info.fi_dport;
 1752                         fin->fi_gpi   = fp->ip4f_info.fi_gpi;
 1753 
 1754                         if ((ntohs(ip->ip_off) & IP_MF) == 0)
 1755                                 /* this is the last fragment,
 1756                                    release the entry. */
 1757                                 ip4f_free(fp);
 1758 
 1759                         return (1);
 1760                 }
 1761 
 1762         /* no matching entry found */
 1763         return (0);
 1764 }
 1765 
 1766 static int
 1767 ip4f_init(void)
 1768 {
 1769         struct ip4_frag *fp;
 1770         int i;
 1771 
 1772         TAILQ_INIT(&ip4f_list);
 1773         for (i=0; i<IP4F_TABSIZE; i++) {
 1774                 fp = malloc(sizeof(struct ip4_frag), M_DEVBUF, M_NOWAIT);
 1775                 if (fp == NULL) {
 1776                         printf("ip4f_init: can't alloc %dth entry!\n", i);
 1777                         if (i == 0)
 1778                                 return (-1);
 1779                         return (0);
 1780                 }
 1781                 fp->ip4f_valid = 0;
 1782                 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
 1783         }
 1784         return (0);
 1785 }
 1786 
 1787 static struct ip4_frag *
 1788 ip4f_alloc(void)
 1789 {
 1790         struct ip4_frag *fp;
 1791 
 1792         /* reclaim an entry at the tail, put it at the head */
 1793         fp = TAILQ_LAST(&ip4f_list, ip4f_list);
 1794         TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
 1795         fp->ip4f_valid = 1;
 1796         TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
 1797         return (fp);
 1798 }
 1799 
 1800 static void
 1801 ip4f_free(struct ip4_frag *fp)
 1802 {
 1803         TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
 1804         fp->ip4f_valid = 0;
 1805         TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
 1806 }
 1807 
 1808 #endif /* ALTQ3_CLFIER_COMPAT */

Cache object: c921a983f5ebadfc7c275c59711ef508


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.