The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/efirt.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Marcel Moolenaar
    3  * Copyright (c) 2001 Doug Rabson
    4  * Copyright (c) 2016 The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed by Konstantin Belousov
    8  * under sponsorship from the FreeBSD Foundation.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/11.1/sys/amd64/amd64/efirt.c 318576 2017-05-20 16:12:44Z kib $");
   34 
   35 #include <sys/param.h>
   36 #include <sys/efi.h>
   37 #include <sys/kernel.h>
   38 #include <sys/linker.h>
   39 #include <sys/lock.h>
   40 #include <sys/module.h>
   41 #include <sys/mutex.h>
   42 #include <sys/clock.h>
   43 #include <sys/proc.h>
   44 #include <sys/rwlock.h>
   45 #include <sys/sched.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/systm.h>
   48 #include <machine/fpu.h>
   49 #include <machine/efi.h>
   50 #include <machine/metadata.h>
   51 #include <machine/md_var.h>
   52 #include <machine/smp.h>
   53 #include <machine/vmparam.h>
   54 #include <vm/vm.h>
   55 #include <vm/pmap.h>
   56 #include <vm/vm_map.h>
   57 #include <vm/vm_object.h>
   58 #include <vm/vm_page.h>
   59 #include <vm/vm_pager.h>
   60 
   61 static struct efi_systbl *efi_systbl;
   62 static struct efi_cfgtbl *efi_cfgtbl;
   63 static struct efi_rt *efi_runtime;
   64 
   65 static int efi_status2err[25] = {
   66         0,              /* EFI_SUCCESS */
   67         ENOEXEC,        /* EFI_LOAD_ERROR */
   68         EINVAL,         /* EFI_INVALID_PARAMETER */
   69         ENOSYS,         /* EFI_UNSUPPORTED */
   70         EMSGSIZE,       /* EFI_BAD_BUFFER_SIZE */
   71         EOVERFLOW,      /* EFI_BUFFER_TOO_SMALL */
   72         EBUSY,          /* EFI_NOT_READY */
   73         EIO,            /* EFI_DEVICE_ERROR */
   74         EROFS,          /* EFI_WRITE_PROTECTED */
   75         EAGAIN,         /* EFI_OUT_OF_RESOURCES */
   76         EIO,            /* EFI_VOLUME_CORRUPTED */
   77         ENOSPC,         /* EFI_VOLUME_FULL */
   78         ENXIO,          /* EFI_NO_MEDIA */
   79         ESTALE,         /* EFI_MEDIA_CHANGED */
   80         ENOENT,         /* EFI_NOT_FOUND */
   81         EACCES,         /* EFI_ACCESS_DENIED */
   82         ETIMEDOUT,      /* EFI_NO_RESPONSE */
   83         EADDRNOTAVAIL,  /* EFI_NO_MAPPING */
   84         ETIMEDOUT,      /* EFI_TIMEOUT */
   85         EDOOFUS,        /* EFI_NOT_STARTED */
   86         EALREADY,       /* EFI_ALREADY_STARTED */
   87         ECANCELED,      /* EFI_ABORTED */
   88         EPROTO,         /* EFI_ICMP_ERROR */
   89         EPROTO,         /* EFI_TFTP_ERROR */
   90         EPROTO          /* EFI_PROTOCOL_ERROR */
   91 };
   92 
   93 static int
   94 efi_status_to_errno(efi_status status)
   95 {
   96         u_long code;
   97 
   98         code = status & 0x3ffffffffffffffful;
   99         return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
  100 }
  101 
  102 static struct mtx efi_lock;
  103 static pml4_entry_t *efi_pml4;
  104 static vm_object_t obj_1t1_pt;
  105 static vm_page_t efi_pml4_page;
  106 
  107 static void
  108 efi_destroy_1t1_map(void)
  109 {
  110         vm_page_t m;
  111 
  112         if (obj_1t1_pt != NULL) {
  113                 VM_OBJECT_RLOCK(obj_1t1_pt);
  114                 TAILQ_FOREACH(m, &obj_1t1_pt->memq, listq)
  115                         m->wire_count = 0;
  116                 atomic_subtract_int(&vm_cnt.v_wire_count,
  117                     obj_1t1_pt->resident_page_count);
  118                 VM_OBJECT_RUNLOCK(obj_1t1_pt);
  119                 vm_object_deallocate(obj_1t1_pt);
  120         }
  121 
  122         obj_1t1_pt = NULL;
  123         efi_pml4 = NULL;
  124         efi_pml4_page = NULL;
  125 }
  126 
  127 static vm_page_t
  128 efi_1t1_page(vm_pindex_t idx)
  129 {
  130 
  131         return (vm_page_grab(obj_1t1_pt, idx, VM_ALLOC_NOBUSY |
  132             VM_ALLOC_WIRED | VM_ALLOC_ZERO));
  133 }
  134 
  135 static pt_entry_t *
  136 efi_1t1_pte(vm_offset_t va)
  137 {
  138         pml4_entry_t *pml4e;
  139         pdp_entry_t *pdpe;
  140         pd_entry_t *pde;
  141         pt_entry_t *pte;
  142         vm_page_t m;
  143         vm_pindex_t pml4_idx, pdp_idx, pd_idx;
  144         vm_paddr_t mphys;
  145 
  146         pml4_idx = pmap_pml4e_index(va);
  147         pml4e = &efi_pml4[pml4_idx];
  148         if (*pml4e == 0) {
  149                 m = efi_1t1_page(1 + pml4_idx);
  150                 mphys =  VM_PAGE_TO_PHYS(m);
  151                 *pml4e = mphys | X86_PG_RW | X86_PG_V;
  152         } else {
  153                 mphys = *pml4e & ~PAGE_MASK;
  154         }
  155 
  156         pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys);
  157         pdp_idx = pmap_pdpe_index(va);
  158         pdpe += pdp_idx;
  159         if (*pdpe == 0) {
  160                 m = efi_1t1_page(1 + NPML4EPG + (pml4_idx + 1) * (pdp_idx + 1));
  161                 mphys =  VM_PAGE_TO_PHYS(m);
  162                 *pdpe = mphys | X86_PG_RW | X86_PG_V;
  163         } else {
  164                 mphys = *pdpe & ~PAGE_MASK;
  165         }
  166 
  167         pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
  168         pd_idx = pmap_pde_index(va);
  169         pde += pd_idx;
  170         if (*pde == 0) {
  171                 m = efi_1t1_page(1 + NPML4EPG + NPML4EPG * NPDPEPG +
  172                     (pml4_idx + 1) * (pdp_idx + 1) * (pd_idx + 1));
  173                 mphys = VM_PAGE_TO_PHYS(m);
  174                 *pde = mphys | X86_PG_RW | X86_PG_V;
  175         } else {
  176                 mphys = *pde & ~PAGE_MASK;
  177         }
  178 
  179         pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
  180         pte += pmap_pte_index(va);
  181         KASSERT(*pte == 0, ("va %#jx *pt %#jx", va, *pte));
  182 
  183         return (pte);
  184 }
  185 
  186 static bool
  187 efi_create_1t1_map(struct efi_md *map, int ndesc, int descsz)
  188 {
  189         struct efi_md *p;
  190         pt_entry_t *pte;
  191         vm_offset_t va;
  192         uint64_t idx;
  193         int bits, i, mode;
  194 
  195         obj_1t1_pt = vm_pager_allocate(OBJT_PHYS, NULL, 1 + NPML4EPG +
  196             NPML4EPG * NPDPEPG + NPML4EPG * NPDPEPG * NPDEPG,
  197             VM_PROT_ALL, 0, NULL);
  198         VM_OBJECT_WLOCK(obj_1t1_pt);
  199         efi_pml4_page = efi_1t1_page(0);
  200         VM_OBJECT_WUNLOCK(obj_1t1_pt);
  201         efi_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(efi_pml4_page));
  202         pmap_pinit_pml4(efi_pml4_page);
  203 
  204         for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
  205             descsz)) {
  206                 if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
  207                         continue;
  208                 if (p->md_virt != NULL) {
  209                         if (bootverbose)
  210                                 printf("EFI Runtime entry %d is mapped\n", i);
  211                         goto fail;
  212                 }
  213                 if ((p->md_phys & EFI_PAGE_MASK) != 0) {
  214                         if (bootverbose)
  215                                 printf("EFI Runtime entry %d is not aligned\n",
  216                                     i);
  217                         goto fail;
  218                 }
  219                 if (p->md_phys + p->md_pages * EFI_PAGE_SIZE < p->md_phys ||
  220                     p->md_phys + p->md_pages * EFI_PAGE_SIZE >=
  221                     VM_MAXUSER_ADDRESS) {
  222                         printf("EFI Runtime entry %d is not in mappable for RT:"
  223                             "base %#016jx %#jx pages\n",
  224                             i, (uintmax_t)p->md_phys,
  225                             (uintmax_t)p->md_pages);
  226                         goto fail;
  227                 }
  228                 if ((p->md_attr & EFI_MD_ATTR_WB) != 0)
  229                         mode = VM_MEMATTR_WRITE_BACK;
  230                 else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
  231                         mode = VM_MEMATTR_WRITE_THROUGH;
  232                 else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
  233                         mode = VM_MEMATTR_WRITE_COMBINING;
  234                 else if ((p->md_attr & EFI_MD_ATTR_WP) != 0)
  235                         mode = VM_MEMATTR_WRITE_PROTECTED;
  236                 else if ((p->md_attr & EFI_MD_ATTR_UC) != 0)
  237                         mode = VM_MEMATTR_UNCACHEABLE;
  238                 else {
  239                         if (bootverbose)
  240                                 printf("EFI Runtime entry %d mapping "
  241                                     "attributes unsupported\n", i);
  242                         mode = VM_MEMATTR_UNCACHEABLE;
  243                 }
  244                 bits = pmap_cache_bits(kernel_pmap, mode, FALSE) | X86_PG_RW |
  245                     X86_PG_V;
  246                 VM_OBJECT_WLOCK(obj_1t1_pt);
  247                 for (va = p->md_phys, idx = 0; idx < p->md_pages; idx++,
  248                     va += PAGE_SIZE) {
  249                         pte = efi_1t1_pte(va);
  250                         pte_store(pte, va | bits);
  251                 }
  252                 VM_OBJECT_WUNLOCK(obj_1t1_pt);
  253         }
  254 
  255         return (true);
  256 
  257 fail:
  258         efi_destroy_1t1_map();
  259         return (false);
  260 }
  261 
  262 /*
  263  * Create an environment for the EFI runtime code call.  The most
  264  * important part is creating the required 1:1 physical->virtual
  265  * mappings for the runtime segments.  To do that, we manually create
  266  * page table which unmap userspace but gives correct kernel mapping.
  267  * The 1:1 mappings for runtime segments usually occupy low 4G of the
  268  * physical address map.
  269  *
  270  * The 1:1 mappings were chosen over the SetVirtualAddressMap() EFI RT
  271  * service, because there are some BIOSes which fail to correctly
  272  * relocate itself on the call, requiring both 1:1 and virtual
  273  * mapping.  As result, we must provide 1:1 mapping anyway, so no
  274  * reason to bother with the virtual map, and no need to add a
  275  * complexity into loader.
  276  *
  277  * The fpu_kern_enter() call allows firmware to use FPU, as mandated
  278  * by the specification.  In particular, CR0.TS bit is cleared.  Also
  279  * it enters critical section, giving us neccessary protection against
  280  * context switch.
  281  *
  282  * There is no need to disable interrupts around the change of %cr3,
  283  * the kernel mappings are correct, while we only grabbed the
  284  * userspace portion of VA.  Interrupts handlers must not access
  285  * userspace.  Having interrupts enabled fixes the issue with
  286  * firmware/SMM long operation, which would negatively affect IPIs,
  287  * esp. TLB shootdown requests.
  288  */
  289 static int
  290 efi_enter(void)
  291 {
  292         pmap_t curpmap;
  293         int error;
  294 
  295         if (efi_runtime == NULL)
  296                 return (ENXIO);
  297         curpmap = PCPU_GET(curpmap);
  298         PMAP_LOCK(curpmap);
  299         mtx_lock(&efi_lock);
  300         error = fpu_kern_enter(curthread, NULL, FPU_KERN_NOCTX);
  301         if (error != 0) {
  302                 PMAP_UNLOCK(curpmap);
  303                 return (error);
  304         }
  305 
  306         /*
  307          * IPI TLB shootdown handler invltlb_pcid_handler() reloads
  308          * %cr3 from the curpmap->pm_cr3, which would disable runtime
  309          * segments mappings.  Block the handler's action by setting
  310          * curpmap to impossible value.  See also comment in
  311          * pmap.c:pmap_activate_sw().
  312          */
  313         if (pmap_pcid_enabled && !invpcid_works)
  314                 PCPU_SET(curpmap, NULL);
  315 
  316         load_cr3(VM_PAGE_TO_PHYS(efi_pml4_page) | (pmap_pcid_enabled ?
  317             curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0));
  318         /*
  319          * If PCID is enabled, the clear CR3_PCID_SAVE bit in the loaded %cr3
  320          * causes TLB invalidation.
  321          */
  322         if (!pmap_pcid_enabled)
  323                 invltlb();
  324         return (0);
  325 }
  326 
  327 static void
  328 efi_leave(void)
  329 {
  330         pmap_t curpmap;
  331 
  332         curpmap = &curproc->p_vmspace->vm_pmap;
  333         if (pmap_pcid_enabled && !invpcid_works)
  334                 PCPU_SET(curpmap, curpmap);
  335         load_cr3(curpmap->pm_cr3 | (pmap_pcid_enabled ?
  336             curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0));
  337         if (!pmap_pcid_enabled)
  338                 invltlb();
  339 
  340         fpu_kern_leave(curthread, NULL);
  341         mtx_unlock(&efi_lock);
  342         PMAP_UNLOCK(curpmap);
  343 }
  344 
  345 static int
  346 efi_init(void)
  347 {
  348         struct efi_map_header *efihdr;
  349         struct efi_md *map;
  350         caddr_t kmdp;
  351         size_t efisz;
  352 
  353         mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
  354 
  355         if (efi_systbl_phys == 0) {
  356                 if (bootverbose)
  357                         printf("EFI systbl not available\n");
  358                 return (0);
  359         }
  360         efi_systbl = (struct efi_systbl *)PHYS_TO_DMAP(efi_systbl_phys);
  361         if (efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
  362                 efi_systbl = NULL;
  363                 if (bootverbose)
  364                         printf("EFI systbl signature invalid\n");
  365                 return (0);
  366         }
  367         efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
  368             (struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
  369         if (efi_cfgtbl == NULL) {
  370                 if (bootverbose)
  371                         printf("EFI config table is not present\n");
  372         }
  373 
  374         kmdp = preload_search_by_type("elf kernel");
  375         if (kmdp == NULL)
  376                 kmdp = preload_search_by_type("elf64 kernel");
  377         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
  378             MODINFO_METADATA | MODINFOMD_EFI_MAP);
  379         if (efihdr == NULL) {
  380                 if (bootverbose)
  381                         printf("EFI map is not present\n");
  382                 return (0);
  383         }
  384         efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
  385         map = (struct efi_md *)((uint8_t *)efihdr + efisz);
  386         if (efihdr->descriptor_size == 0)
  387                 return (ENOMEM);
  388 
  389         if (!efi_create_1t1_map(map, efihdr->memory_size /
  390             efihdr->descriptor_size, efihdr->descriptor_size)) {
  391                 if (bootverbose)
  392                         printf("EFI cannot create runtime map\n");
  393                 return (ENOMEM);
  394         }
  395 
  396         efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
  397             (struct efi_rt *)efi_systbl->st_rt;
  398         if (efi_runtime == NULL) {
  399                 if (bootverbose)
  400                         printf("EFI runtime services table is not present\n");
  401                 efi_destroy_1t1_map();
  402                 return (ENXIO);
  403         }
  404 
  405         return (0);
  406 }
  407 
  408 static void
  409 efi_uninit(void)
  410 {
  411 
  412         efi_destroy_1t1_map();
  413 
  414         efi_systbl = NULL;
  415         efi_cfgtbl = NULL;
  416         efi_runtime = NULL;
  417 
  418         mtx_destroy(&efi_lock);
  419 }
  420 
  421 int
  422 efi_get_table(struct uuid *uuid, void **ptr)
  423 {
  424         struct efi_cfgtbl *ct;
  425         u_long count;
  426 
  427         if (efi_cfgtbl == NULL)
  428                 return (ENXIO);
  429         count = efi_systbl->st_entries;
  430         ct = efi_cfgtbl;
  431         while (count--) {
  432                 if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
  433                         *ptr = (void *)PHYS_TO_DMAP(ct->ct_data);
  434                         return (0);
  435                 }
  436                 ct++;
  437         }
  438         return (ENOENT);
  439 }
  440 
  441 int
  442 efi_get_time_locked(struct efi_tm *tm)
  443 {
  444         efi_status status;
  445         int error;
  446 
  447         mtx_assert(&resettodr_lock, MA_OWNED);
  448         error = efi_enter();
  449         if (error != 0)
  450                 return (error);
  451         status = efi_runtime->rt_gettime(tm, NULL);
  452         efi_leave();
  453         error = efi_status_to_errno(status);
  454         return (error);
  455 }
  456 
  457 int
  458 efi_get_time(struct efi_tm *tm)
  459 {
  460         int error;
  461 
  462         if (efi_runtime == NULL)
  463                 return (ENXIO);
  464         mtx_lock(&resettodr_lock);
  465         error = efi_get_time_locked(tm);
  466         mtx_unlock(&resettodr_lock);
  467         return (error);
  468 }
  469 
  470 int
  471 efi_reset_system(void)
  472 {
  473         int error;
  474 
  475         error = efi_enter();
  476         if (error != 0)
  477                 return (error);
  478         efi_runtime->rt_reset(EFI_RESET_WARM, 0, 0, NULL);
  479         efi_leave();
  480         return (EIO);
  481 }
  482 
  483 int
  484 efi_set_time_locked(struct efi_tm *tm)
  485 {
  486         efi_status status;
  487         int error;
  488 
  489         mtx_assert(&resettodr_lock, MA_OWNED);
  490         error = efi_enter();
  491         if (error != 0)
  492                 return (error);
  493         status = efi_runtime->rt_settime(tm);
  494         efi_leave();
  495         error = efi_status_to_errno(status);
  496         return (error);
  497 }
  498 
  499 int
  500 efi_set_time(struct efi_tm *tm)
  501 {
  502         int error;
  503 
  504         if (efi_runtime == NULL)
  505                 return (ENXIO);
  506         mtx_lock(&resettodr_lock);
  507         error = efi_set_time_locked(tm);
  508         mtx_unlock(&resettodr_lock);
  509         return (error);
  510 }
  511 
  512 int
  513 efi_var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
  514     size_t *datasize, void *data)
  515 {
  516         efi_status status;
  517         int error;
  518 
  519         error = efi_enter();
  520         if (error != 0)
  521                 return (error);
  522         status = efi_runtime->rt_getvar(name, vendor, attrib, datasize, data);
  523         efi_leave();
  524         error = efi_status_to_errno(status);
  525         return (error);
  526 }
  527 
  528 int
  529 efi_var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
  530 {
  531         efi_status status;
  532         int error;
  533 
  534         error = efi_enter();
  535         if (error != 0)
  536                 return (error);
  537         status = efi_runtime->rt_scanvar(namesize, name, vendor);
  538         efi_leave();
  539         error = efi_status_to_errno(status);
  540         return (error);
  541 }
  542 
  543 int
  544 efi_var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
  545     size_t datasize, void *data)
  546 {
  547         efi_status status;
  548         int error;
  549 
  550         error = efi_enter();
  551         if (error != 0)
  552                 return (error);
  553         status = efi_runtime->rt_setvar(name, vendor, attrib, datasize, data);
  554         efi_leave();
  555         error = efi_status_to_errno(status);
  556         return (error);
  557 }
  558 
  559 static int
  560 efirt_modevents(module_t m, int event, void *arg __unused)
  561 {
  562 
  563         switch (event) {
  564         case MOD_LOAD:
  565                 return (efi_init());
  566 
  567         case MOD_UNLOAD:
  568                 efi_uninit();
  569                 return (0);
  570 
  571         case MOD_SHUTDOWN:
  572                 return (0);
  573 
  574         default:
  575                 return (EOPNOTSUPP);
  576         }
  577 }
  578 
  579 static moduledata_t efirt_moddata = {
  580         .name = "efirt",
  581         .evhand = efirt_modevents,
  582         .priv = NULL,
  583 };
  584 DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_VM_CONF, SI_ORDER_ANY);
  585 MODULE_VERSION(efirt, 1);
  586 
  587 /* XXX debug stuff */
  588 static int
  589 efi_time_sysctl_handler(SYSCTL_HANDLER_ARGS)
  590 {
  591         struct efi_tm tm;
  592         int error, val;
  593 
  594         val = 0;
  595         error = sysctl_handle_int(oidp, &val, 0, req);
  596         if (error != 0 || req->newptr == NULL)
  597                 return (error);
  598         error = efi_get_time(&tm);
  599         if (error == 0) {
  600                 uprintf("EFI reports: Year %d Month %d Day %d Hour %d Min %d "
  601                     "Sec %d\n", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour,
  602                     tm.tm_min, tm.tm_sec);
  603         }
  604         return (error);
  605 }
  606 
  607 SYSCTL_PROC(_debug, OID_AUTO, efi_time, CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
  608     efi_time_sysctl_handler, "I", "");

Cache object: ca60b30fdc8b55c8ff677bdc079446df


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.