The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/efirt_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Marcel Moolenaar
    3  * Copyright (c) 2001 Doug Rabson
    4  * Copyright (c) 2016 The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed by Konstantin Belousov
    8  * under sponsorship from the FreeBSD Foundation.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include <sys/param.h>
   36 #include <sys/efi.h>
   37 #include <sys/kernel.h>
   38 #include <sys/linker.h>
   39 #include <sys/lock.h>
   40 #include <sys/module.h>
   41 #include <sys/mutex.h>
   42 #include <sys/clock.h>
   43 #include <sys/proc.h>
   44 #include <sys/rwlock.h>
   45 #include <sys/sched.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/systm.h>
   48 #include <sys/vmmeter.h>
   49 #include <isa/rtc.h>
   50 #include <machine/fpu.h>
   51 #include <machine/efi.h>
   52 #include <machine/metadata.h>
   53 #include <machine/md_var.h>
   54 #include <machine/smp.h>
   55 #include <machine/vmparam.h>
   56 #include <vm/vm.h>
   57 #include <vm/pmap.h>
   58 #include <vm/vm_extern.h>
   59 #include <vm/vm_map.h>
   60 #include <vm/vm_object.h>
   61 #include <vm/vm_page.h>
   62 #include <vm/vm_pager.h>
   63 
   64 static pml5_entry_t *efi_pml5;
   65 static pml4_entry_t *efi_pml4;
   66 static vm_object_t obj_1t1_pt;
   67 static vm_page_t efi_pmltop_page;
   68 static vm_pindex_t efi_1t1_idx;
   69 
   70 void
   71 efi_destroy_1t1_map(void)
   72 {
   73         vm_page_t m;
   74 
   75         if (obj_1t1_pt != NULL) {
   76                 VM_OBJECT_RLOCK(obj_1t1_pt);
   77                 TAILQ_FOREACH(m, &obj_1t1_pt->memq, listq)
   78                         m->ref_count = VPRC_OBJREF;
   79                 vm_wire_sub(obj_1t1_pt->resident_page_count);
   80                 VM_OBJECT_RUNLOCK(obj_1t1_pt);
   81                 vm_object_deallocate(obj_1t1_pt);
   82         }
   83 
   84         obj_1t1_pt = NULL;
   85         efi_pml4 = NULL;
   86         efi_pml5 = NULL;
   87         efi_pmltop_page = NULL;
   88 }
   89 
   90 /*
   91  * Map a physical address from EFI runtime space into KVA space.  Returns 0 to
   92  * indicate a failed mapping so that the caller may handle error.
   93  */
   94 vm_offset_t
   95 efi_phys_to_kva(vm_paddr_t paddr)
   96 {
   97 
   98         if (paddr >= dmaplimit)
   99                 return (0);
  100         return (PHYS_TO_DMAP(paddr));
  101 }
  102 
  103 static vm_page_t
  104 efi_1t1_page(void)
  105 {
  106 
  107         return (vm_page_grab(obj_1t1_pt, efi_1t1_idx++, VM_ALLOC_NOBUSY |
  108             VM_ALLOC_WIRED | VM_ALLOC_ZERO));
  109 }
  110 
  111 static pt_entry_t *
  112 efi_1t1_pte(vm_offset_t va)
  113 {
  114         pml5_entry_t *pml5e;
  115         pml4_entry_t *pml4e;
  116         pdp_entry_t *pdpe;
  117         pd_entry_t *pde;
  118         pt_entry_t *pte;
  119         vm_page_t m;
  120         vm_pindex_t pml5_idx, pml4_idx, pdp_idx, pd_idx;
  121         vm_paddr_t mphys;
  122 
  123         pml4_idx = pmap_pml4e_index(va);
  124         if (la57) {
  125                 pml5_idx = pmap_pml5e_index(va);
  126                 pml5e = &efi_pml5[pml5_idx];
  127                 if (*pml5e == 0) {
  128                         m = efi_1t1_page();
  129                         mphys = VM_PAGE_TO_PHYS(m);
  130                         *pml5e = mphys | X86_PG_RW | X86_PG_V;
  131                 } else {
  132                         mphys = *pml5e & PG_FRAME;
  133                 }
  134                 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(mphys);
  135                 pml4e = &pml4e[pml4_idx];
  136         } else {
  137                 pml4e = &efi_pml4[pml4_idx];
  138         }
  139 
  140         if (*pml4e == 0) {
  141                 m = efi_1t1_page();
  142                 mphys =  VM_PAGE_TO_PHYS(m);
  143                 *pml4e = mphys | X86_PG_RW | X86_PG_V;
  144         } else {
  145                 mphys = *pml4e & PG_FRAME;
  146         }
  147 
  148         pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys);
  149         pdp_idx = pmap_pdpe_index(va);
  150         pdpe += pdp_idx;
  151         if (*pdpe == 0) {
  152                 m = efi_1t1_page();
  153                 mphys =  VM_PAGE_TO_PHYS(m);
  154                 *pdpe = mphys | X86_PG_RW | X86_PG_V;
  155         } else {
  156                 mphys = *pdpe & PG_FRAME;
  157         }
  158 
  159         pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
  160         pd_idx = pmap_pde_index(va);
  161         pde += pd_idx;
  162         if (*pde == 0) {
  163                 m = efi_1t1_page();
  164                 mphys = VM_PAGE_TO_PHYS(m);
  165                 *pde = mphys | X86_PG_RW | X86_PG_V;
  166         } else {
  167                 mphys = *pde & PG_FRAME;
  168         }
  169 
  170         pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
  171         pte += pmap_pte_index(va);
  172         KASSERT(*pte == 0, ("va %#jx *pt %#jx", va, *pte));
  173 
  174         return (pte);
  175 }
  176 
  177 bool
  178 efi_create_1t1_map(struct efi_md *map, int ndesc, int descsz)
  179 {
  180         struct efi_md *p;
  181         pt_entry_t *pte;
  182         void *pml;
  183         vm_page_t m;
  184         vm_offset_t va;
  185         uint64_t idx;
  186         int bits, i, mode;
  187 
  188         obj_1t1_pt = vm_pager_allocate(OBJT_PHYS, NULL, ptoa(1 +
  189             NPML4EPG + NPML4EPG * NPDPEPG + NPML4EPG * NPDPEPG * NPDEPG),
  190             VM_PROT_ALL, 0, NULL);
  191         efi_1t1_idx = 0;
  192         VM_OBJECT_WLOCK(obj_1t1_pt);
  193         efi_pmltop_page = efi_1t1_page();
  194         VM_OBJECT_WUNLOCK(obj_1t1_pt);
  195         pml = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(efi_pmltop_page));
  196         if (la57) {
  197                 efi_pml5 = pml;
  198                 pmap_pinit_pml5(efi_pmltop_page);
  199         } else {
  200                 efi_pml4 = pml;
  201                 pmap_pinit_pml4(efi_pmltop_page);
  202         }
  203 
  204         for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
  205             descsz)) {
  206                 if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
  207                         continue;
  208                 if (p->md_virt != 0 && p->md_virt != p->md_phys) {
  209                         if (bootverbose)
  210                                 printf("EFI Runtime entry %d is mapped\n", i);
  211                         goto fail;
  212                 }
  213                 if ((p->md_phys & EFI_PAGE_MASK) != 0) {
  214                         if (bootverbose)
  215                                 printf("EFI Runtime entry %d is not aligned\n",
  216                                     i);
  217                         goto fail;
  218                 }
  219                 if (p->md_phys + p->md_pages * EFI_PAGE_SIZE < p->md_phys ||
  220                     p->md_phys + p->md_pages * EFI_PAGE_SIZE >=
  221                     VM_MAXUSER_ADDRESS) {
  222                         printf("EFI Runtime entry %d is not in mappable for RT:"
  223                             "base %#016jx %#jx pages\n",
  224                             i, (uintmax_t)p->md_phys,
  225                             (uintmax_t)p->md_pages);
  226                         goto fail;
  227                 }
  228                 if ((p->md_attr & EFI_MD_ATTR_WB) != 0)
  229                         mode = VM_MEMATTR_WRITE_BACK;
  230                 else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
  231                         mode = VM_MEMATTR_WRITE_THROUGH;
  232                 else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
  233                         mode = VM_MEMATTR_WRITE_COMBINING;
  234                 else if ((p->md_attr & EFI_MD_ATTR_WP) != 0)
  235                         mode = VM_MEMATTR_WRITE_PROTECTED;
  236                 else if ((p->md_attr & EFI_MD_ATTR_UC) != 0)
  237                         mode = VM_MEMATTR_UNCACHEABLE;
  238                 else {
  239                         if (bootverbose)
  240                                 printf("EFI Runtime entry %d mapping "
  241                                     "attributes unsupported\n", i);
  242                         mode = VM_MEMATTR_UNCACHEABLE;
  243                 }
  244                 bits = pmap_cache_bits(kernel_pmap, mode, FALSE) | X86_PG_RW |
  245                     X86_PG_V;
  246                 VM_OBJECT_WLOCK(obj_1t1_pt);
  247                 for (va = p->md_phys, idx = 0; idx < p->md_pages; idx++,
  248                     va += PAGE_SIZE) {
  249                         pte = efi_1t1_pte(va);
  250                         pte_store(pte, va | bits);
  251 
  252                         m = PHYS_TO_VM_PAGE(va);
  253                         if (m != NULL && VM_PAGE_TO_PHYS(m) == 0) {
  254                                 vm_page_init_page(m, va, -1);
  255                                 m->order = VM_NFREEORDER + 1; /* invalid */
  256                                 m->pool = VM_NFREEPOOL + 1; /* invalid */
  257                                 pmap_page_set_memattr_noflush(m, mode);
  258                         }
  259                 }
  260                 VM_OBJECT_WUNLOCK(obj_1t1_pt);
  261         }
  262 
  263         return (true);
  264 
  265 fail:
  266         efi_destroy_1t1_map();
  267         return (false);
  268 }
  269 
  270 /*
  271  * Create an environment for the EFI runtime code call.  The most
  272  * important part is creating the required 1:1 physical->virtual
  273  * mappings for the runtime segments.  To do that, we manually create
  274  * page table which unmap userspace but gives correct kernel mapping.
  275  * The 1:1 mappings for runtime segments usually occupy low 4G of the
  276  * physical address map.
  277  *
  278  * The 1:1 mappings were chosen over the SetVirtualAddressMap() EFI RT
  279  * service, because there are some BIOSes which fail to correctly
  280  * relocate itself on the call, requiring both 1:1 and virtual
  281  * mapping.  As result, we must provide 1:1 mapping anyway, so no
  282  * reason to bother with the virtual map, and no need to add a
  283  * complexity into loader.
  284  *
  285  * The fpu_kern_enter() call allows firmware to use FPU, as mandated
  286  * by the specification.  In particular, CR0.TS bit is cleared.  Also
  287  * it enters critical section, giving us neccessary protection against
  288  * context switch.
  289  *
  290  * There is no need to disable interrupts around the change of %cr3,
  291  * the kernel mappings are correct, while we only grabbed the
  292  * userspace portion of VA.  Interrupts handlers must not access
  293  * userspace.  Having interrupts enabled fixes the issue with
  294  * firmware/SMM long operation, which would negatively affect IPIs,
  295  * esp. TLB shootdown requests.
  296  */
  297 int
  298 efi_arch_enter(void)
  299 {
  300         pmap_t curpmap;
  301 
  302         curpmap = PCPU_GET(curpmap);
  303         PMAP_LOCK_ASSERT(curpmap, MA_OWNED);
  304         curthread->td_md.md_efirt_dis_pf = vm_fault_disable_pagefaults();
  305 
  306         /*
  307          * IPI TLB shootdown handler invltlb_pcid_handler() reloads
  308          * %cr3 from the curpmap->pm_cr3, which would disable runtime
  309          * segments mappings.  Block the handler's action by setting
  310          * curpmap to impossible value.  See also comment in
  311          * pmap.c:pmap_activate_sw().
  312          */
  313         if (pmap_pcid_enabled && !invpcid_works)
  314                 PCPU_SET(curpmap, NULL);
  315 
  316         load_cr3(VM_PAGE_TO_PHYS(efi_pmltop_page) | (pmap_pcid_enabled ?
  317             curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0));
  318         /*
  319          * If PCID is enabled, the clear CR3_PCID_SAVE bit in the loaded %cr3
  320          * causes TLB invalidation.
  321          */
  322         if (!pmap_pcid_enabled)
  323                 invltlb();
  324         return (0);
  325 }
  326 
  327 void
  328 efi_arch_leave(void)
  329 {
  330         pmap_t curpmap;
  331 
  332         curpmap = &curproc->p_vmspace->vm_pmap;
  333         if (pmap_pcid_enabled && !invpcid_works)
  334                 PCPU_SET(curpmap, curpmap);
  335         load_cr3(curpmap->pm_cr3 | (pmap_pcid_enabled ?
  336             curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0));
  337         if (!pmap_pcid_enabled)
  338                 invltlb();
  339         vm_fault_enable_pagefaults(curthread->td_md.md_efirt_dis_pf);
  340 }
  341 
  342 /* XXX debug stuff */
  343 static int
  344 efi_time_sysctl_handler(SYSCTL_HANDLER_ARGS)
  345 {
  346         struct efi_tm tm;
  347         int error, val;
  348 
  349         val = 0;
  350         error = sysctl_handle_int(oidp, &val, 0, req);
  351         if (error != 0 || req->newptr == NULL)
  352                 return (error);
  353         error = efi_get_time(&tm);
  354         if (error == 0) {
  355                 uprintf("EFI reports: Year %d Month %d Day %d Hour %d Min %d "
  356                     "Sec %d\n", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour,
  357                     tm.tm_min, tm.tm_sec);
  358         }
  359         return (error);
  360 }
  361 
  362 SYSCTL_PROC(_debug, OID_AUTO, efi_time,
  363     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
  364     efi_time_sysctl_handler, "I",
  365     "");

Cache object: 74317f118a1b79d508ed6ef9c1334f34


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.