The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/fpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1990 William Jolitz.
    5  * Copyright (c) 1991 The Regents of the University of California.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/bus.h>
   41 #include <sys/domainset.h>
   42 #include <sys/kernel.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/module.h>
   46 #include <sys/mutex.h>
   47 #include <sys/mutex.h>
   48 #include <sys/proc.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/sysent.h>
   51 #include <machine/bus.h>
   52 #include <sys/rman.h>
   53 #include <sys/signalvar.h>
   54 #include <vm/uma.h>
   55 
   56 #include <machine/cputypes.h>
   57 #include <machine/frame.h>
   58 #include <machine/intr_machdep.h>
   59 #include <machine/md_var.h>
   60 #include <machine/pcb.h>
   61 #include <machine/psl.h>
   62 #include <machine/resource.h>
   63 #include <machine/specialreg.h>
   64 #include <machine/segments.h>
   65 #include <machine/ucontext.h>
   66 #include <x86/ifunc.h>
   67 
   68 /*
   69  * Floating point support.
   70  */
   71 
   72 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   73 #define fnclex()                __asm __volatile("fnclex")
   74 #define fninit()                __asm __volatile("fninit")
   75 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   76 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   77 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   78 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   79 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   80 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : "=m" (*(addr)))
   81 
   82 static __inline void
   83 xrstor32(char *addr, uint64_t mask)
   84 {
   85         uint32_t low, hi;
   86 
   87         low = mask;
   88         hi = mask >> 32;
   89         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
   90 }
   91 
   92 static __inline void
   93 xrstor64(char *addr, uint64_t mask)
   94 {
   95         uint32_t low, hi;
   96 
   97         low = mask;
   98         hi = mask >> 32;
   99         __asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
  100 }
  101 
  102 static __inline void
  103 xsave32(char *addr, uint64_t mask)
  104 {
  105         uint32_t low, hi;
  106 
  107         low = mask;
  108         hi = mask >> 32;
  109         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  110             "memory");
  111 }
  112 
  113 static __inline void
  114 xsave64(char *addr, uint64_t mask)
  115 {
  116         uint32_t low, hi;
  117 
  118         low = mask;
  119         hi = mask >> 32;
  120         __asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  121             "memory");
  122 }
  123 
  124 static __inline void
  125 xsaveopt32(char *addr, uint64_t mask)
  126 {
  127         uint32_t low, hi;
  128 
  129         low = mask;
  130         hi = mask >> 32;
  131         __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  132             "memory");
  133 }
  134 
  135 static __inline void
  136 xsaveopt64(char *addr, uint64_t mask)
  137 {
  138         uint32_t low, hi;
  139 
  140         low = mask;
  141         hi = mask >> 32;
  142         __asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
  143             "memory");
  144 }
  145 
  146 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  147 #define stop_emulating()        clts()
  148 
  149 CTASSERT(sizeof(struct savefpu) == 512);
  150 CTASSERT(sizeof(struct xstate_hdr) == 64);
  151 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  152 
  153 /*
  154  * This requirement is to make it easier for asm code to calculate
  155  * offset of the fpu save area from the pcb address. FPU save area
  156  * must be 64-byte aligned.
  157  */
  158 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  159 
  160 /*
  161  * Ensure the copy of XCR0 saved in a core is contained in the padding
  162  * area.
  163  */
  164 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
  165     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
  166 
  167 static  void    fpu_clean_state(void);
  168 
  169 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  170     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
  171 
  172 int use_xsave;                  /* non-static for cpu_switch.S */
  173 uint64_t xsave_mask;            /* the same */
  174 static  uma_zone_t fpu_save_area_zone;
  175 static  struct savefpu *fpu_initialstate;
  176 
  177 static struct xsave_area_elm_descr {
  178         u_int   offset;
  179         u_int   size;
  180 } *xsave_area_desc;
  181 
  182 static void
  183 fpusave_xsaveopt64(void *addr)
  184 {
  185         xsaveopt64((char *)addr, xsave_mask);
  186 }
  187 
  188 static void
  189 fpusave_xsaveopt3264(void *addr)
  190 {
  191         if (SV_CURPROC_FLAG(SV_ILP32))
  192                 xsaveopt32((char *)addr, xsave_mask);
  193         else
  194                 xsaveopt64((char *)addr, xsave_mask);
  195 }
  196 
  197 static void
  198 fpusave_xsave64(void *addr)
  199 {
  200         xsave64((char *)addr, xsave_mask);
  201 }
  202 
  203 static void
  204 fpusave_xsave3264(void *addr)
  205 {
  206         if (SV_CURPROC_FLAG(SV_ILP32))
  207                 xsave32((char *)addr, xsave_mask);
  208         else
  209                 xsave64((char *)addr, xsave_mask);
  210 }
  211 
  212 static void
  213 fpurestore_xrstor64(void *addr)
  214 {
  215         xrstor64((char *)addr, xsave_mask);
  216 }
  217 
  218 static void
  219 fpurestore_xrstor3264(void *addr)
  220 {
  221         if (SV_CURPROC_FLAG(SV_ILP32))
  222                 xrstor32((char *)addr, xsave_mask);
  223         else
  224                 xrstor64((char *)addr, xsave_mask);
  225 }
  226 
  227 static void
  228 fpusave_fxsave(void *addr)
  229 {
  230 
  231         fxsave((char *)addr);
  232 }
  233 
  234 static void
  235 fpurestore_fxrstor(void *addr)
  236 {
  237 
  238         fxrstor((char *)addr);
  239 }
  240 
  241 static void
  242 init_xsave(void)
  243 {
  244 
  245         if (use_xsave)
  246                 return;
  247         if ((cpu_feature2 & CPUID2_XSAVE) == 0)
  248                 return;
  249         use_xsave = 1;
  250         TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  251 }
  252 
  253 DEFINE_IFUNC(, void, fpusave, (void *))
  254 {
  255 
  256         init_xsave();
  257         if (!use_xsave)
  258                 return (fpusave_fxsave);
  259         if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
  260                 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
  261                     fpusave_xsaveopt64 : fpusave_xsaveopt3264);
  262         }
  263         return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
  264             fpusave_xsave64 : fpusave_xsave3264);
  265 }
  266 
  267 DEFINE_IFUNC(, void, fpurestore, (void *))
  268 {
  269 
  270         init_xsave();
  271         if (!use_xsave)
  272                 return (fpurestore_fxrstor);
  273         return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
  274             fpurestore_xrstor64 : fpurestore_xrstor3264);
  275 }
  276 
  277 void
  278 fpususpend(void *addr)
  279 {
  280         u_long cr0;
  281 
  282         cr0 = rcr0();
  283         stop_emulating();
  284         fpusave(addr);
  285         load_cr0(cr0);
  286 }
  287 
  288 void
  289 fpuresume(void *addr)
  290 {
  291         u_long cr0;
  292 
  293         cr0 = rcr0();
  294         stop_emulating();
  295         fninit();
  296         if (use_xsave)
  297                 load_xcr(XCR0, xsave_mask);
  298         fpurestore(addr);
  299         load_cr0(cr0);
  300 }
  301 
  302 /*
  303  * Enable XSAVE if supported and allowed by user.
  304  * Calculate the xsave_mask.
  305  */
  306 static void
  307 fpuinit_bsp1(void)
  308 {
  309         u_int cp[4];
  310         uint64_t xsave_mask_user;
  311         bool old_wp;
  312 
  313         if (!use_xsave)
  314                 return;
  315         cpuid_count(0xd, 0x0, cp);
  316         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  317         if ((cp[0] & xsave_mask) != xsave_mask)
  318                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  319         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  320         xsave_mask_user = xsave_mask;
  321         TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
  322         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  323         xsave_mask &= xsave_mask_user;
  324         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  325                 xsave_mask &= ~XFEATURE_AVX512;
  326         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  327                 xsave_mask &= ~XFEATURE_MPX;
  328 
  329         cpuid_count(0xd, 0x1, cp);
  330         if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
  331                 /*
  332                  * Patch the XSAVE instruction in the cpu_switch code
  333                  * to XSAVEOPT.  We assume that XSAVE encoding used
  334                  * REX byte, and set the bit 4 of the r/m byte.
  335                  *
  336                  * It seems that some BIOSes give control to the OS
  337                  * with CR0.WP already set, making the kernel text
  338                  * read-only before cpu_startup().
  339                  */
  340                 old_wp = disable_wp();
  341                 ctx_switch_xsave32[3] |= 0x10;
  342                 ctx_switch_xsave[3] |= 0x10;
  343                 restore_wp(old_wp);
  344         }
  345 }
  346 
  347 /*
  348  * Calculate the fpu save area size.
  349  */
  350 static void
  351 fpuinit_bsp2(void)
  352 {
  353         u_int cp[4];
  354 
  355         if (use_xsave) {
  356                 cpuid_count(0xd, 0x0, cp);
  357                 cpu_max_ext_state_size = cp[1];
  358 
  359                 /*
  360                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  361                  */
  362                 do_cpuid(1, cp);
  363                 cpu_feature2 = cp[2];
  364         } else
  365                 cpu_max_ext_state_size = sizeof(struct savefpu);
  366 }
  367 
  368 /*
  369  * Initialize the floating point unit.
  370  */
  371 void
  372 fpuinit(void)
  373 {
  374         register_t saveintr;
  375         uint64_t cr4;
  376         u_int mxcsr;
  377         u_short control;
  378 
  379         if (IS_BSP())
  380                 fpuinit_bsp1();
  381 
  382         if (use_xsave) {
  383                 cr4 = rcr4();
  384 
  385                 /*
  386                  * Revert enablement of PKRU if user disabled its
  387                  * saving on context switches by clearing the bit in
  388                  * the xsave mask.  Also redundantly clear the bit in
  389                  * cpu_stdext_feature2 to prevent pmap from ever
  390                  * trying to set the page table bits.
  391                  */
  392                 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 &&
  393                     (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) {
  394                         cr4 &= ~CR4_PKE;
  395                         cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU;
  396                 }
  397 
  398                 load_cr4(cr4 | CR4_XSAVE);
  399                 load_xcr(XCR0, xsave_mask);
  400         }
  401 
  402         /*
  403          * XCR0 shall be set up before CPU can report the save area size.
  404          */
  405         if (IS_BSP())
  406                 fpuinit_bsp2();
  407 
  408         /*
  409          * It is too early for critical_enter() to work on AP.
  410          */
  411         saveintr = intr_disable();
  412         stop_emulating();
  413         fninit();
  414         control = __INITIAL_FPUCW__;
  415         fldcw(control);
  416         mxcsr = __INITIAL_MXCSR__;
  417         ldmxcsr(mxcsr);
  418         start_emulating();
  419         intr_restore(saveintr);
  420 }
  421 
  422 /*
  423  * On the boot CPU we generate a clean state that is used to
  424  * initialize the floating point unit when it is first used by a
  425  * process.
  426  */
  427 static void
  428 fpuinitstate(void *arg __unused)
  429 {
  430         uint64_t *xstate_bv;
  431         register_t saveintr;
  432         int cp[4], i, max_ext_n;
  433 
  434         /* Do potentially blocking operations before disabling interrupts. */
  435         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  436             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  437             XSAVE_AREA_ALIGN - 1, 0);
  438         fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
  439         if (use_xsave) {
  440                 max_ext_n = flsl(xsave_mask);
  441                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  442                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  443         }
  444 
  445         cpu_thread_alloc(&thread0);
  446 
  447         saveintr = intr_disable();
  448         stop_emulating();
  449 
  450         fpusave_fxsave(fpu_initialstate);
  451         if (fpu_initialstate->sv_env.en_mxcsr_mask)
  452                 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
  453         else
  454                 cpu_mxcsr_mask = 0xFFBF;
  455 
  456         /*
  457          * The fninit instruction does not modify XMM registers or x87
  458          * registers (MM/ST).  The fpusave call dumped the garbage
  459          * contained in the registers after reset to the initial state
  460          * saved.  Clear XMM and x87 registers file image to make the
  461          * startup program state and signal handler XMM/x87 register
  462          * content predictable.
  463          */
  464         bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
  465         bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
  466 
  467         /*
  468          * Create a table describing the layout of the CPU Extended
  469          * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
  470          * Region of an XSAVE Area" for the source of offsets/sizes.
  471          */
  472         if (use_xsave) {
  473                 xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
  474                     offsetof(struct xstate_hdr, xstate_bv));
  475                 *xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  476 
  477                 /* x87 state */
  478                 xsave_area_desc[0].offset = 0;
  479                 xsave_area_desc[0].size = 160;
  480                 /* XMM */
  481                 xsave_area_desc[1].offset = 160;
  482                 xsave_area_desc[1].size = 416 - 160;
  483 
  484                 for (i = 2; i < max_ext_n; i++) {
  485                         cpuid_count(0xd, i, cp);
  486                         xsave_area_desc[i].offset = cp[1];
  487                         xsave_area_desc[i].size = cp[0];
  488                 }
  489         }
  490 
  491         start_emulating();
  492         intr_restore(saveintr);
  493 }
  494 /* EFIRT needs this to be initialized before we can enter our EFI environment */
  495 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
  496 
  497 /*
  498  * Free coprocessor (if we have it).
  499  */
  500 void
  501 fpuexit(struct thread *td)
  502 {
  503 
  504         critical_enter();
  505         if (curthread == PCPU_GET(fpcurthread)) {
  506                 stop_emulating();
  507                 fpusave(curpcb->pcb_save);
  508                 start_emulating();
  509                 PCPU_SET(fpcurthread, NULL);
  510         }
  511         critical_exit();
  512 }
  513 
  514 int
  515 fpuformat(void)
  516 {
  517 
  518         return (_MC_FPFMT_XMM);
  519 }
  520 
  521 /*
  522  * The following mechanism is used to ensure that the FPE_... value
  523  * that is passed as a trapcode to the signal handler of the user
  524  * process does not have more than one bit set.
  525  *
  526  * Multiple bits may be set if the user process modifies the control
  527  * word while a status word bit is already set.  While this is a sign
  528  * of bad coding, we have no choice than to narrow them down to one
  529  * bit, since we must not send a trapcode that is not exactly one of
  530  * the FPE_ macros.
  531  *
  532  * The mechanism has a static table with 127 entries.  Each combination
  533  * of the 7 FPU status word exception bits directly translates to a
  534  * position in this table, where a single FPE_... value is stored.
  535  * This FPE_... value stored there is considered the "most important"
  536  * of the exception bits and will be sent as the signal code.  The
  537  * precedence of the bits is based upon Intel Document "Numerical
  538  * Applications", Chapter "Special Computational Situations".
  539  *
  540  * The macro to choose one of these values does these steps: 1) Throw
  541  * away status word bits that cannot be masked.  2) Throw away the bits
  542  * currently masked in the control word, assuming the user isn't
  543  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  544  * fault) if it is set, which cannot be masked but must be presered.
  545  * 4) Use the remaining bits to point into the trapcode table.
  546  *
  547  * The 6 maskable bits in order of their preference, as stated in the
  548  * above referenced Intel manual:
  549  * 1  Invalid operation (FP_X_INV)
  550  * 1a   Stack underflow
  551  * 1b   Stack overflow
  552  * 1c   Operand of unsupported format
  553  * 1d   SNaN operand.
  554  * 2  QNaN operand (not an exception, irrelavant here)
  555  * 3  Any other invalid-operation not mentioned above or zero divide
  556  *      (FP_X_INV, FP_X_DZ)
  557  * 4  Denormal operand (FP_X_DNML)
  558  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  559  * 6  Inexact result (FP_X_IMP) 
  560  */
  561 static char fpetable[128] = {
  562         0,
  563         FPE_FLTINV,     /*  1 - INV */
  564         FPE_FLTUND,     /*  2 - DNML */
  565         FPE_FLTINV,     /*  3 - INV | DNML */
  566         FPE_FLTDIV,     /*  4 - DZ */
  567         FPE_FLTINV,     /*  5 - INV | DZ */
  568         FPE_FLTDIV,     /*  6 - DNML | DZ */
  569         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  570         FPE_FLTOVF,     /*  8 - OFL */
  571         FPE_FLTINV,     /*  9 - INV | OFL */
  572         FPE_FLTUND,     /*  A - DNML | OFL */
  573         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  574         FPE_FLTDIV,     /*  C - DZ | OFL */
  575         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  576         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  577         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  578         FPE_FLTUND,     /* 10 - UFL */
  579         FPE_FLTINV,     /* 11 - INV | UFL */
  580         FPE_FLTUND,     /* 12 - DNML | UFL */
  581         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  582         FPE_FLTDIV,     /* 14 - DZ | UFL */
  583         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  584         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  585         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  586         FPE_FLTOVF,     /* 18 - OFL | UFL */
  587         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  588         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  589         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  590         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  591         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  592         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  593         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  594         FPE_FLTRES,     /* 20 - IMP */
  595         FPE_FLTINV,     /* 21 - INV | IMP */
  596         FPE_FLTUND,     /* 22 - DNML | IMP */
  597         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  598         FPE_FLTDIV,     /* 24 - DZ | IMP */
  599         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  600         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  601         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  602         FPE_FLTOVF,     /* 28 - OFL | IMP */
  603         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  604         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  605         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  606         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  607         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  608         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  609         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  610         FPE_FLTUND,     /* 30 - UFL | IMP */
  611         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  612         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  613         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  614         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  615         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  616         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  617         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  618         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  619         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  620         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  621         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  622         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  623         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  624         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  625         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  626         FPE_FLTSUB,     /* 40 - STK */
  627         FPE_FLTSUB,     /* 41 - INV | STK */
  628         FPE_FLTUND,     /* 42 - DNML | STK */
  629         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  630         FPE_FLTDIV,     /* 44 - DZ | STK */
  631         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  632         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  633         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  634         FPE_FLTOVF,     /* 48 - OFL | STK */
  635         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  636         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  637         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  638         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  639         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  640         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  641         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  642         FPE_FLTUND,     /* 50 - UFL | STK */
  643         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  644         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  645         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  646         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  647         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  648         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  649         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  650         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  651         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  652         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  653         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  654         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  655         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  656         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  657         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  658         FPE_FLTRES,     /* 60 - IMP | STK */
  659         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  660         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  661         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  662         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  663         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  664         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  665         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  666         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  667         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  668         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  669         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  670         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  671         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  672         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  673         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  674         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  675         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  676         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  677         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  678         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  679         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  680         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  681         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  682         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  683         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  684         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  685         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  686         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  687         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  688         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  689         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  690 };
  691 
  692 /*
  693  * Read the FP status and control words, then generate si_code value
  694  * for SIGFPE.  The error code chosen will be one of the
  695  * FPE_... macros.  It will be sent as the second argument to old
  696  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  697  * argument) to SA_SIGINFO signal handlers.
  698  *
  699  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  700  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  701  * usermode code which understands the FPU hardware enough to enable
  702  * the exceptions, can also handle clearing the exception state in the
  703  * handler.  The only consequence of not clearing the exception is the
  704  * rethrow of the SIGFPE on return from the signal handler and
  705  * reexecution of the corresponding instruction.
  706  *
  707  * For XMM traps, the exceptions were never cleared.
  708  */
  709 int
  710 fputrap_x87(void)
  711 {
  712         struct savefpu *pcb_save;
  713         u_short control, status;
  714 
  715         critical_enter();
  716 
  717         /*
  718          * Interrupt handling (for another interrupt) may have pushed the
  719          * state to memory.  Fetch the relevant parts of the state from
  720          * wherever they are.
  721          */
  722         if (PCPU_GET(fpcurthread) != curthread) {
  723                 pcb_save = curpcb->pcb_save;
  724                 control = pcb_save->sv_env.en_cw;
  725                 status = pcb_save->sv_env.en_sw;
  726         } else {
  727                 fnstcw(&control);
  728                 fnstsw(&status);
  729         }
  730 
  731         critical_exit();
  732         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  733 }
  734 
  735 int
  736 fputrap_sse(void)
  737 {
  738         u_int mxcsr;
  739 
  740         critical_enter();
  741         if (PCPU_GET(fpcurthread) != curthread)
  742                 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
  743         else
  744                 stmxcsr(&mxcsr);
  745         critical_exit();
  746         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  747 }
  748 
  749 static void
  750 restore_fpu_curthread(struct thread *td)
  751 {
  752         struct pcb *pcb;
  753 
  754         /*
  755          * Record new context early in case frstor causes a trap.
  756          */
  757         PCPU_SET(fpcurthread, td);
  758 
  759         stop_emulating();
  760         fpu_clean_state();
  761         pcb = td->td_pcb;
  762 
  763         if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
  764                 /*
  765                  * This is the first time this thread has used the FPU or
  766                  * the PCB doesn't contain a clean FPU state.  Explicitly
  767                  * load an initial state.
  768                  *
  769                  * We prefer to restore the state from the actual save
  770                  * area in PCB instead of directly loading from
  771                  * fpu_initialstate, to ignite the XSAVEOPT
  772                  * tracking engine.
  773                  */
  774                 bcopy(fpu_initialstate, pcb->pcb_save,
  775                     cpu_max_ext_state_size);
  776                 fpurestore(pcb->pcb_save);
  777                 if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
  778                         fldcw(pcb->pcb_initial_fpucw);
  779                 if (PCB_USER_FPU(pcb))
  780                         set_pcb_flags(pcb, PCB_FPUINITDONE |
  781                             PCB_USERFPUINITDONE);
  782                 else
  783                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  784         } else
  785                 fpurestore(pcb->pcb_save);
  786 }
  787 
  788 /*
  789  * Device Not Available (DNA, #NM) exception handler.
  790  *
  791  * It would be better to switch FP context here (if curthread !=
  792  * fpcurthread) and not necessarily for every context switch, but it
  793  * is too hard to access foreign pcb's.
  794  */
  795 void
  796 fpudna(void)
  797 {
  798         struct thread *td;
  799 
  800         td = curthread;
  801         /*
  802          * This handler is entered with interrupts enabled, so context
  803          * switches may occur before critical_enter() is executed.  If
  804          * a context switch occurs, then when we regain control, our
  805          * state will have been completely restored.  The CPU may
  806          * change underneath us, but the only part of our context that
  807          * lives in the CPU is CR0.TS and that will be "restored" by
  808          * setting it on the new CPU.
  809          */
  810         critical_enter();
  811 
  812         KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
  813             ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
  814         if (__predict_false(PCPU_GET(fpcurthread) == td)) {
  815                 /*
  816                  * Some virtual machines seems to set %cr0.TS at
  817                  * arbitrary moments.  Silently clear the TS bit
  818                  * regardless of the eager/lazy FPU context switch
  819                  * mode.
  820                  */
  821                 stop_emulating();
  822         } else {
  823                 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
  824                         panic(
  825                     "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  826                             PCPU_GET(fpcurthread),
  827                             PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
  828                 }
  829                 restore_fpu_curthread(td);
  830         }
  831         critical_exit();
  832 }
  833 
  834 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
  835 void
  836 fpu_activate_sw(struct thread *td)
  837 {
  838 
  839         if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
  840                 PCPU_SET(fpcurthread, NULL);
  841                 start_emulating();
  842         } else if (PCPU_GET(fpcurthread) != td) {
  843                 restore_fpu_curthread(td);
  844         }
  845 }
  846 
  847 void
  848 fpudrop(void)
  849 {
  850         struct thread *td;
  851 
  852         td = PCPU_GET(fpcurthread);
  853         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  854         CRITICAL_ASSERT(td);
  855         PCPU_SET(fpcurthread, NULL);
  856         clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
  857         start_emulating();
  858 }
  859 
  860 /*
  861  * Get the user state of the FPU into pcb->pcb_user_save without
  862  * dropping ownership (if possible).  It returns the FPU ownership
  863  * status.
  864  */
  865 int
  866 fpugetregs(struct thread *td)
  867 {
  868         struct pcb *pcb;
  869         uint64_t *xstate_bv, bit;
  870         char *sa;
  871         int max_ext_n, i, owned;
  872 
  873         pcb = td->td_pcb;
  874         critical_enter();
  875         if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
  876                 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
  877                     cpu_max_ext_state_size);
  878                 get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
  879                     pcb->pcb_initial_fpucw;
  880                 fpuuserinited(td);
  881                 critical_exit();
  882                 return (_MC_FPOWNED_PCB);
  883         }
  884         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  885                 fpusave(get_pcb_user_save_pcb(pcb));
  886                 owned = _MC_FPOWNED_FPU;
  887         } else {
  888                 owned = _MC_FPOWNED_PCB;
  889         }
  890         if (use_xsave) {
  891                 /*
  892                  * Handle partially saved state.
  893                  */
  894                 sa = (char *)get_pcb_user_save_pcb(pcb);
  895                 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
  896                     offsetof(struct xstate_hdr, xstate_bv));
  897                 max_ext_n = flsl(xsave_mask);
  898                 for (i = 0; i < max_ext_n; i++) {
  899                         bit = 1ULL << i;
  900                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
  901                                 continue;
  902                         bcopy((char *)fpu_initialstate +
  903                             xsave_area_desc[i].offset,
  904                             sa + xsave_area_desc[i].offset,
  905                             xsave_area_desc[i].size);
  906                         *xstate_bv |= bit;
  907                 }
  908         }
  909         critical_exit();
  910         return (owned);
  911 }
  912 
  913 void
  914 fpuuserinited(struct thread *td)
  915 {
  916         struct pcb *pcb;
  917 
  918         CRITICAL_ASSERT(td);
  919         pcb = td->td_pcb;
  920         if (PCB_USER_FPU(pcb))
  921                 set_pcb_flags(pcb,
  922                     PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  923         else
  924                 set_pcb_flags(pcb, PCB_FPUINITDONE);
  925 }
  926 
  927 int
  928 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
  929 {
  930         struct xstate_hdr *hdr, *ehdr;
  931         size_t len, max_len;
  932         uint64_t bv;
  933 
  934         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
  935         if (xfpustate == NULL)
  936                 return (0);
  937         if (!use_xsave)
  938                 return (EOPNOTSUPP);
  939 
  940         len = xfpustate_size;
  941         if (len < sizeof(struct xstate_hdr))
  942                 return (EINVAL);
  943         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  944         if (len > max_len)
  945                 return (EINVAL);
  946 
  947         ehdr = (struct xstate_hdr *)xfpustate;
  948         bv = ehdr->xstate_bv;
  949 
  950         /*
  951          * Avoid #gp.
  952          */
  953         if (bv & ~xsave_mask)
  954                 return (EINVAL);
  955 
  956         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
  957 
  958         hdr->xstate_bv = bv;
  959         bcopy(xfpustate + sizeof(struct xstate_hdr),
  960             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
  961 
  962         return (0);
  963 }
  964 
  965 /*
  966  * Set the state of the FPU.
  967  */
  968 int
  969 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
  970     size_t xfpustate_size)
  971 {
  972         struct pcb *pcb;
  973         int error;
  974 
  975         addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
  976         pcb = td->td_pcb;
  977         error = 0;
  978         critical_enter();
  979         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  980                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  981                 if (error == 0) {
  982                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  983                         fpurestore(get_pcb_user_save_td(td));
  984                         set_pcb_flags(pcb, PCB_FPUINITDONE |
  985                             PCB_USERFPUINITDONE);
  986                 }
  987         } else {
  988                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  989                 if (error == 0) {
  990                         bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  991                         fpuuserinited(td);
  992                 }
  993         }
  994         critical_exit();
  995         return (error);
  996 }
  997 
  998 /*
  999  * On AuthenticAMD processors, the fxrstor instruction does not restore
 1000  * the x87's stored last instruction pointer, last data pointer, and last
 1001  * opcode values, except in the rare case in which the exception summary
 1002  * (ES) bit in the x87 status word is set to 1.
 1003  *
 1004  * In order to avoid leaking this information across processes, we clean
 1005  * these values by performing a dummy load before executing fxrstor().
 1006  */
 1007 static void
 1008 fpu_clean_state(void)
 1009 {
 1010         static float dummy_variable = 0.0;
 1011         u_short status;
 1012 
 1013         /*
 1014          * Clear the ES bit in the x87 status word if it is currently
 1015          * set, in order to avoid causing a fault in the upcoming load.
 1016          */
 1017         fnstsw(&status);
 1018         if (status & 0x80)
 1019                 fnclex();
 1020 
 1021         /*
 1022          * Load the dummy variable into the x87 stack.  This mangles
 1023          * the x87 stack, but we don't care since we're about to call
 1024          * fxrstor() anyway.
 1025          */
 1026         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
 1027 }
 1028 
 1029 /*
 1030  * This really sucks.  We want the acpi version only, but it requires
 1031  * the isa_if.h file in order to get the definitions.
 1032  */
 1033 #include "opt_isa.h"
 1034 #ifdef DEV_ISA
 1035 #include <isa/isavar.h>
 1036 /*
 1037  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
 1038  */
 1039 static struct isa_pnp_id fpupnp_ids[] = {
 1040         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
 1041         { 0 }
 1042 };
 1043 
 1044 static int
 1045 fpupnp_probe(device_t dev)
 1046 {
 1047         int result;
 1048 
 1049         result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
 1050         if (result <= 0)
 1051                 device_quiet(dev);
 1052         return (result);
 1053 }
 1054 
 1055 static int
 1056 fpupnp_attach(device_t dev)
 1057 {
 1058 
 1059         return (0);
 1060 }
 1061 
 1062 static device_method_t fpupnp_methods[] = {
 1063         /* Device interface */
 1064         DEVMETHOD(device_probe,         fpupnp_probe),
 1065         DEVMETHOD(device_attach,        fpupnp_attach),
 1066         DEVMETHOD(device_detach,        bus_generic_detach),
 1067         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1068         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1069         DEVMETHOD(device_resume,        bus_generic_resume),
 1070         { 0, 0 }
 1071 };
 1072 
 1073 static driver_t fpupnp_driver = {
 1074         "fpupnp",
 1075         fpupnp_methods,
 1076         1,                      /* no softc */
 1077 };
 1078 
 1079 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0);
 1080 ISA_PNP_INFO(fpupnp_ids);
 1081 #endif  /* DEV_ISA */
 1082 
 1083 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
 1084     "Kernel contexts for FPU state");
 1085 
 1086 #define FPU_KERN_CTX_FPUINITDONE 0x01
 1087 #define FPU_KERN_CTX_DUMMY       0x02   /* avoided save for the kern thread */
 1088 #define FPU_KERN_CTX_INUSE       0x04
 1089 
 1090 struct fpu_kern_ctx {
 1091         struct savefpu *prev;
 1092         uint32_t flags;
 1093         char hwstate1[];
 1094 };
 1095 
 1096 static inline size_t __pure2
 1097 fpu_kern_alloc_sz(u_int max_est)
 1098 {
 1099         return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
 1100 }
 1101 
 1102 static inline int __pure2
 1103 fpu_kern_malloc_flags(u_int fpflags)
 1104 {
 1105         return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
 1106 }
 1107 
 1108 struct fpu_kern_ctx *
 1109 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
 1110 {
 1111         return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
 1112             M_FPUKERN_CTX, DOMAINSET_PREF(domain),
 1113             fpu_kern_malloc_flags(flags)));
 1114 }
 1115 
 1116 struct fpu_kern_ctx *
 1117 fpu_kern_alloc_ctx(u_int flags)
 1118 {
 1119         return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
 1120             M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
 1121 }
 1122 
 1123 void
 1124 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
 1125 {
 1126 
 1127         KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
 1128         /* XXXKIB clear the memory ? */
 1129         free(ctx, M_FPUKERN_CTX);
 1130 }
 1131 
 1132 static struct savefpu *
 1133 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
 1134 {
 1135         vm_offset_t p;
 1136 
 1137         p = (vm_offset_t)&ctx->hwstate1;
 1138         p = roundup2(p, XSAVE_AREA_ALIGN);
 1139         return ((struct savefpu *)p);
 1140 }
 1141 
 1142 void
 1143 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
 1144 {
 1145         struct pcb *pcb;
 1146 
 1147         pcb = td->td_pcb;
 1148         KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
 1149             ("ctx is required when !FPU_KERN_NOCTX"));
 1150         KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
 1151             ("using inuse ctx"));
 1152         KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
 1153             ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
 1154 
 1155         if ((flags & FPU_KERN_NOCTX) != 0) {
 1156                 critical_enter();
 1157                 stop_emulating();
 1158                 if (curthread == PCPU_GET(fpcurthread)) {
 1159                         fpusave(curpcb->pcb_save);
 1160                         PCPU_SET(fpcurthread, NULL);
 1161                 } else {
 1162                         KASSERT(PCPU_GET(fpcurthread) == NULL,
 1163                             ("invalid fpcurthread"));
 1164                 }
 1165 
 1166                 /*
 1167                  * This breaks XSAVEOPT tracker, but
 1168                  * PCB_FPUNOSAVE state is supposed to never need to
 1169                  * save FPU context at all.
 1170                  */
 1171                 fpurestore(fpu_initialstate);
 1172                 set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
 1173                     PCB_FPUINITDONE);
 1174                 return;
 1175         }
 1176         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
 1177                 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
 1178                 return;
 1179         }
 1180         critical_enter();
 1181         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
 1182             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
 1183         ctx->flags = FPU_KERN_CTX_INUSE;
 1184         if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
 1185                 ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
 1186         fpuexit(td);
 1187         ctx->prev = pcb->pcb_save;
 1188         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
 1189         set_pcb_flags(pcb, PCB_KERNFPU);
 1190         clear_pcb_flags(pcb, PCB_FPUINITDONE);
 1191         critical_exit();
 1192 }
 1193 
 1194 int
 1195 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
 1196 {
 1197         struct pcb *pcb;
 1198 
 1199         pcb = td->td_pcb;
 1200 
 1201         if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
 1202                 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
 1203                 KASSERT(PCPU_GET(fpcurthread) == NULL,
 1204                     ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
 1205                 CRITICAL_ASSERT(td);
 1206 
 1207                 clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
 1208                 start_emulating();
 1209         } else {
 1210                 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
 1211                     ("leaving not inuse ctx"));
 1212                 ctx->flags &= ~FPU_KERN_CTX_INUSE;
 1213 
 1214                 if (is_fpu_kern_thread(0) &&
 1215                     (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
 1216                         return (0);
 1217                 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
 1218                     ("dummy ctx"));
 1219                 critical_enter();
 1220                 if (curthread == PCPU_GET(fpcurthread))
 1221                         fpudrop();
 1222                 pcb->pcb_save = ctx->prev;
 1223         }
 1224 
 1225         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
 1226                 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
 1227                         set_pcb_flags(pcb, PCB_FPUINITDONE);
 1228                         if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
 1229                                 clear_pcb_flags(pcb, PCB_KERNFPU);
 1230                 } else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
 1231                         clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
 1232         } else {
 1233                 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
 1234                         set_pcb_flags(pcb, PCB_FPUINITDONE);
 1235                 else
 1236                         clear_pcb_flags(pcb, PCB_FPUINITDONE);
 1237                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1238         }
 1239         critical_exit();
 1240         return (0);
 1241 }
 1242 
 1243 int
 1244 fpu_kern_thread(u_int flags)
 1245 {
 1246 
 1247         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1248             ("Only kthread may use fpu_kern_thread"));
 1249         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1250             ("mangled pcb_save"));
 1251         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1252 
 1253         set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
 1254         return (0);
 1255 }
 1256 
 1257 int
 1258 is_fpu_kern_thread(u_int flags)
 1259 {
 1260 
 1261         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1262                 return (0);
 1263         return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
 1264 }
 1265 
 1266 /*
 1267  * FPU save area alloc/free/init utility routines
 1268  */
 1269 struct savefpu *
 1270 fpu_save_area_alloc(void)
 1271 {
 1272 
 1273         return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
 1274 }
 1275 
 1276 void
 1277 fpu_save_area_free(struct savefpu *fsa)
 1278 {
 1279 
 1280         uma_zfree(fpu_save_area_zone, fsa);
 1281 }
 1282 
 1283 void
 1284 fpu_save_area_reset(struct savefpu *fsa)
 1285 {
 1286 
 1287         bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
 1288 }

Cache object: 8ae5cefd6f2503855f99a28015a46708


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.