The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/fpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/10.1/sys/amd64/amd64/fpu.c 271999 2014-09-22 20:34:36Z jhb $");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/kernel.h>
   40 #include <sys/lock.h>
   41 #include <sys/malloc.h>
   42 #include <sys/module.h>
   43 #include <sys/mutex.h>
   44 #include <sys/mutex.h>
   45 #include <sys/proc.h>
   46 #include <sys/sysctl.h>
   47 #include <machine/bus.h>
   48 #include <sys/rman.h>
   49 #include <sys/signalvar.h>
   50 #include <vm/uma.h>
   51 
   52 #include <machine/cputypes.h>
   53 #include <machine/frame.h>
   54 #include <machine/intr_machdep.h>
   55 #include <machine/md_var.h>
   56 #include <machine/pcb.h>
   57 #include <machine/psl.h>
   58 #include <machine/resource.h>
   59 #include <machine/specialreg.h>
   60 #include <machine/segments.h>
   61 #include <machine/ucontext.h>
   62 
   63 /*
   64  * Floating point support.
   65  */
   66 
   67 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   68 
   69 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   70 #define fnclex()                __asm __volatile("fnclex")
   71 #define fninit()                __asm __volatile("fninit")
   72 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   73 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   74 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   75 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   76 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   77 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
   78 
   79 static __inline void
   80 xrstor(char *addr, uint64_t mask)
   81 {
   82         uint32_t low, hi;
   83 
   84         low = mask;
   85         hi = mask >> 32;
   86         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
   87 }
   88 
   89 static __inline void
   90 xsave(char *addr, uint64_t mask)
   91 {
   92         uint32_t low, hi;
   93 
   94         low = mask;
   95         hi = mask >> 32;
   96         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
   97             "memory");
   98 }
   99 
  100 #else   /* !(__GNUCLIKE_ASM && !lint) */
  101 
  102 void    fldcw(u_short cw);
  103 void    fnclex(void);
  104 void    fninit(void);
  105 void    fnstcw(caddr_t addr);
  106 void    fnstsw(caddr_t addr);
  107 void    fxsave(caddr_t addr);
  108 void    fxrstor(caddr_t addr);
  109 void    ldmxcsr(u_int csr);
  110 void    stmxcsr(u_int *csr);
  111 void    xrstor(char *addr, uint64_t mask);
  112 void    xsave(char *addr, uint64_t mask);
  113 
  114 #endif  /* __GNUCLIKE_ASM && !lint */
  115 
  116 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  117 #define stop_emulating()        clts()
  118 
  119 CTASSERT(sizeof(struct savefpu) == 512);
  120 CTASSERT(sizeof(struct xstate_hdr) == 64);
  121 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  122 
  123 /*
  124  * This requirement is to make it easier for asm code to calculate
  125  * offset of the fpu save area from the pcb address. FPU save area
  126  * must be 64-byte aligned.
  127  */
  128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  129 
  130 static  void    fpu_clean_state(void);
  131 
  132 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  133     NULL, 1, "Floating point instructions executed in hardware");
  134 
  135 int use_xsave;                  /* non-static for cpu_switch.S */
  136 uint64_t xsave_mask;            /* the same */
  137 static  uma_zone_t fpu_save_area_zone;
  138 static  struct savefpu *fpu_initialstate;
  139 
  140 struct xsave_area_elm_descr {
  141         u_int   offset;
  142         u_int   size;
  143 } *xsave_area_desc;
  144 
  145 void
  146 fpusave(void *addr)
  147 {
  148 
  149         if (use_xsave)
  150                 xsave((char *)addr, xsave_mask);
  151         else
  152                 fxsave((char *)addr);
  153 }
  154 
  155 void
  156 fpurestore(void *addr)
  157 {
  158 
  159         if (use_xsave)
  160                 xrstor((char *)addr, xsave_mask);
  161         else
  162                 fxrstor((char *)addr);
  163 }
  164 
  165 void
  166 fpususpend(void *addr)
  167 {
  168         u_long cr0;
  169 
  170         cr0 = rcr0();
  171         stop_emulating();
  172         fpusave(addr);
  173         load_cr0(cr0);
  174 }
  175 
  176 void
  177 fpuresume(void *addr)
  178 {
  179         u_long cr0;
  180 
  181         cr0 = rcr0();
  182         stop_emulating();
  183         fninit();
  184         if (use_xsave)
  185                 load_xcr(XCR0, xsave_mask);
  186         fpurestore(addr);
  187         load_cr0(cr0);
  188 }
  189 
  190 /*
  191  * Enable XSAVE if supported and allowed by user.
  192  * Calculate the xsave_mask.
  193  */
  194 static void
  195 fpuinit_bsp1(void)
  196 {
  197         u_int cp[4];
  198         uint64_t xsave_mask_user;
  199 
  200         if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
  201                 use_xsave = 1;
  202                 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  203         }
  204         if (!use_xsave)
  205                 return;
  206 
  207         cpuid_count(0xd, 0x0, cp);
  208         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  209         if ((cp[0] & xsave_mask) != xsave_mask)
  210                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  211         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  212         xsave_mask_user = xsave_mask;
  213         TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
  214         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  215         xsave_mask &= xsave_mask_user;
  216         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  217                 xsave_mask &= ~XFEATURE_AVX512;
  218         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  219                 xsave_mask &= ~XFEATURE_MPX;
  220 
  221         cpuid_count(0xd, 0x1, cp);
  222         if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
  223                 /*
  224                  * Patch the XSAVE instruction in the cpu_switch code
  225                  * to XSAVEOPT.  We assume that XSAVE encoding used
  226                  * REX byte, and set the bit 4 of the r/m byte.
  227                  */
  228                 ctx_switch_xsave[3] |= 0x10;
  229         }
  230 }
  231 
  232 /*
  233  * Calculate the fpu save area size.
  234  */
  235 static void
  236 fpuinit_bsp2(void)
  237 {
  238         u_int cp[4];
  239 
  240         if (use_xsave) {
  241                 cpuid_count(0xd, 0x0, cp);
  242                 cpu_max_ext_state_size = cp[1];
  243 
  244                 /*
  245                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  246                  */
  247                 do_cpuid(1, cp);
  248                 cpu_feature2 = cp[2];
  249         } else
  250                 cpu_max_ext_state_size = sizeof(struct savefpu);
  251 }
  252 
  253 /*
  254  * Initialize the floating point unit.
  255  */
  256 void
  257 fpuinit(void)
  258 {
  259         register_t saveintr;
  260         u_int mxcsr;
  261         u_short control;
  262 
  263         if (IS_BSP())
  264                 fpuinit_bsp1();
  265 
  266         if (use_xsave) {
  267                 load_cr4(rcr4() | CR4_XSAVE);
  268                 load_xcr(XCR0, xsave_mask);
  269         }
  270 
  271         /*
  272          * XCR0 shall be set up before CPU can report the save area size.
  273          */
  274         if (IS_BSP())
  275                 fpuinit_bsp2();
  276 
  277         /*
  278          * It is too early for critical_enter() to work on AP.
  279          */
  280         saveintr = intr_disable();
  281         stop_emulating();
  282         fninit();
  283         control = __INITIAL_FPUCW__;
  284         fldcw(control);
  285         mxcsr = __INITIAL_MXCSR__;
  286         ldmxcsr(mxcsr);
  287         start_emulating();
  288         intr_restore(saveintr);
  289 }
  290 
  291 /*
  292  * On the boot CPU we generate a clean state that is used to
  293  * initialize the floating point unit when it is first used by a
  294  * process.
  295  */
  296 static void
  297 fpuinitstate(void *arg __unused)
  298 {
  299         register_t saveintr;
  300         int cp[4], i, max_ext_n;
  301 
  302         fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  303             M_WAITOK | M_ZERO);
  304         saveintr = intr_disable();
  305         stop_emulating();
  306 
  307         fpusave(fpu_initialstate);
  308         if (fpu_initialstate->sv_env.en_mxcsr_mask)
  309                 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
  310         else
  311                 cpu_mxcsr_mask = 0xFFBF;
  312 
  313         /*
  314          * The fninit instruction does not modify XMM registers.  The
  315          * fpusave call dumped the garbage contained in the registers
  316          * after reset to the initial state saved.  Clear XMM
  317          * registers file image to make the startup program state and
  318          * signal handler XMM register content predictable.
  319          */
  320         bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
  321 
  322         /*
  323          * Create a table describing the layout of the CPU Extended
  324          * Save Area.
  325          */
  326         if (use_xsave) {
  327                 max_ext_n = flsl(xsave_mask);
  328                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  329                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  330                 /* x87 state */
  331                 xsave_area_desc[0].offset = 0;
  332                 xsave_area_desc[0].size = 160;
  333                 /* XMM */
  334                 xsave_area_desc[1].offset = 160;
  335                 xsave_area_desc[1].size = 288 - 160;
  336 
  337                 for (i = 2; i < max_ext_n; i++) {
  338                         cpuid_count(0xd, i, cp);
  339                         xsave_area_desc[i].offset = cp[1];
  340                         xsave_area_desc[i].size = cp[0];
  341                 }
  342         }
  343 
  344         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  345             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  346             XSAVE_AREA_ALIGN - 1, 0);
  347 
  348         start_emulating();
  349         intr_restore(saveintr);
  350 }
  351 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
  352 
  353 /*
  354  * Free coprocessor (if we have it).
  355  */
  356 void
  357 fpuexit(struct thread *td)
  358 {
  359 
  360         critical_enter();
  361         if (curthread == PCPU_GET(fpcurthread)) {
  362                 stop_emulating();
  363                 fpusave(curpcb->pcb_save);
  364                 start_emulating();
  365                 PCPU_SET(fpcurthread, 0);
  366         }
  367         critical_exit();
  368 }
  369 
  370 int
  371 fpuformat()
  372 {
  373 
  374         return (_MC_FPFMT_XMM);
  375 }
  376 
  377 /* 
  378  * The following mechanism is used to ensure that the FPE_... value
  379  * that is passed as a trapcode to the signal handler of the user
  380  * process does not have more than one bit set.
  381  * 
  382  * Multiple bits may be set if the user process modifies the control
  383  * word while a status word bit is already set.  While this is a sign
  384  * of bad coding, we have no choise than to narrow them down to one
  385  * bit, since we must not send a trapcode that is not exactly one of
  386  * the FPE_ macros.
  387  *
  388  * The mechanism has a static table with 127 entries.  Each combination
  389  * of the 7 FPU status word exception bits directly translates to a
  390  * position in this table, where a single FPE_... value is stored.
  391  * This FPE_... value stored there is considered the "most important"
  392  * of the exception bits and will be sent as the signal code.  The
  393  * precedence of the bits is based upon Intel Document "Numerical
  394  * Applications", Chapter "Special Computational Situations".
  395  *
  396  * The macro to choose one of these values does these steps: 1) Throw
  397  * away status word bits that cannot be masked.  2) Throw away the bits
  398  * currently masked in the control word, assuming the user isn't
  399  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  400  * fault) if it is set, which cannot be masked but must be presered.
  401  * 4) Use the remaining bits to point into the trapcode table.
  402  *
  403  * The 6 maskable bits in order of their preference, as stated in the
  404  * above referenced Intel manual:
  405  * 1  Invalid operation (FP_X_INV)
  406  * 1a   Stack underflow
  407  * 1b   Stack overflow
  408  * 1c   Operand of unsupported format
  409  * 1d   SNaN operand.
  410  * 2  QNaN operand (not an exception, irrelavant here)
  411  * 3  Any other invalid-operation not mentioned above or zero divide
  412  *      (FP_X_INV, FP_X_DZ)
  413  * 4  Denormal operand (FP_X_DNML)
  414  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  415  * 6  Inexact result (FP_X_IMP) 
  416  */
  417 static char fpetable[128] = {
  418         0,
  419         FPE_FLTINV,     /*  1 - INV */
  420         FPE_FLTUND,     /*  2 - DNML */
  421         FPE_FLTINV,     /*  3 - INV | DNML */
  422         FPE_FLTDIV,     /*  4 - DZ */
  423         FPE_FLTINV,     /*  5 - INV | DZ */
  424         FPE_FLTDIV,     /*  6 - DNML | DZ */
  425         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  426         FPE_FLTOVF,     /*  8 - OFL */
  427         FPE_FLTINV,     /*  9 - INV | OFL */
  428         FPE_FLTUND,     /*  A - DNML | OFL */
  429         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  430         FPE_FLTDIV,     /*  C - DZ | OFL */
  431         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  432         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  433         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  434         FPE_FLTUND,     /* 10 - UFL */
  435         FPE_FLTINV,     /* 11 - INV | UFL */
  436         FPE_FLTUND,     /* 12 - DNML | UFL */
  437         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  438         FPE_FLTDIV,     /* 14 - DZ | UFL */
  439         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  440         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  441         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  442         FPE_FLTOVF,     /* 18 - OFL | UFL */
  443         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  444         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  445         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  446         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  447         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  448         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  449         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  450         FPE_FLTRES,     /* 20 - IMP */
  451         FPE_FLTINV,     /* 21 - INV | IMP */
  452         FPE_FLTUND,     /* 22 - DNML | IMP */
  453         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  454         FPE_FLTDIV,     /* 24 - DZ | IMP */
  455         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  456         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  457         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  458         FPE_FLTOVF,     /* 28 - OFL | IMP */
  459         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  460         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  461         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  462         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  463         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  464         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  465         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  466         FPE_FLTUND,     /* 30 - UFL | IMP */
  467         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  468         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  469         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  470         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  471         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  472         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  473         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  474         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  475         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  476         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  477         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  478         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  479         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  480         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  481         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  482         FPE_FLTSUB,     /* 40 - STK */
  483         FPE_FLTSUB,     /* 41 - INV | STK */
  484         FPE_FLTUND,     /* 42 - DNML | STK */
  485         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  486         FPE_FLTDIV,     /* 44 - DZ | STK */
  487         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  488         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  489         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  490         FPE_FLTOVF,     /* 48 - OFL | STK */
  491         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  492         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  493         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  494         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  495         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  496         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  497         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  498         FPE_FLTUND,     /* 50 - UFL | STK */
  499         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  500         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  501         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  502         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  503         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  504         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  505         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  506         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  507         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  508         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  509         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  510         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  511         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  512         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  513         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  514         FPE_FLTRES,     /* 60 - IMP | STK */
  515         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  516         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  517         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  518         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  519         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  520         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  521         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  522         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  523         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  524         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  525         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  526         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  527         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  528         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  529         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  530         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  531         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  532         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  533         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  534         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  535         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  536         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  537         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  538         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  539         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  540         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  541         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  542         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  543         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  544         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  545         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  546 };
  547 
  548 /*
  549  * Read the FP status and control words, then generate si_code value
  550  * for SIGFPE.  The error code chosen will be one of the
  551  * FPE_... macros.  It will be sent as the second argument to old
  552  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  553  * argument) to SA_SIGINFO signal handlers.
  554  *
  555  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  556  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  557  * usermode code which understands the FPU hardware enough to enable
  558  * the exceptions, can also handle clearing the exception state in the
  559  * handler.  The only consequence of not clearing the exception is the
  560  * rethrow of the SIGFPE on return from the signal handler and
  561  * reexecution of the corresponding instruction.
  562  *
  563  * For XMM traps, the exceptions were never cleared.
  564  */
  565 int
  566 fputrap_x87(void)
  567 {
  568         struct savefpu *pcb_save;
  569         u_short control, status;
  570 
  571         critical_enter();
  572 
  573         /*
  574          * Interrupt handling (for another interrupt) may have pushed the
  575          * state to memory.  Fetch the relevant parts of the state from
  576          * wherever they are.
  577          */
  578         if (PCPU_GET(fpcurthread) != curthread) {
  579                 pcb_save = curpcb->pcb_save;
  580                 control = pcb_save->sv_env.en_cw;
  581                 status = pcb_save->sv_env.en_sw;
  582         } else {
  583                 fnstcw(&control);
  584                 fnstsw(&status);
  585         }
  586 
  587         critical_exit();
  588         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  589 }
  590 
  591 int
  592 fputrap_sse(void)
  593 {
  594         u_int mxcsr;
  595 
  596         critical_enter();
  597         if (PCPU_GET(fpcurthread) != curthread)
  598                 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
  599         else
  600                 stmxcsr(&mxcsr);
  601         critical_exit();
  602         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  603 }
  604 
  605 /*
  606  * Implement device not available (DNA) exception
  607  *
  608  * It would be better to switch FP context here (if curthread != fpcurthread)
  609  * and not necessarily for every context switch, but it is too hard to
  610  * access foreign pcb's.
  611  */
  612 
  613 static int err_count = 0;
  614 
  615 void
  616 fpudna(void)
  617 {
  618 
  619         critical_enter();
  620         if (PCPU_GET(fpcurthread) == curthread) {
  621                 printf("fpudna: fpcurthread == curthread %d times\n",
  622                     ++err_count);
  623                 stop_emulating();
  624                 critical_exit();
  625                 return;
  626         }
  627         if (PCPU_GET(fpcurthread) != NULL) {
  628                 printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  629                        PCPU_GET(fpcurthread),
  630                        PCPU_GET(fpcurthread)->td_proc->p_pid,
  631                        curthread, curthread->td_proc->p_pid);
  632                 panic("fpudna");
  633         }
  634         stop_emulating();
  635         /*
  636          * Record new context early in case frstor causes a trap.
  637          */
  638         PCPU_SET(fpcurthread, curthread);
  639 
  640         fpu_clean_state();
  641 
  642         if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
  643                 /*
  644                  * This is the first time this thread has used the FPU or
  645                  * the PCB doesn't contain a clean FPU state.  Explicitly
  646                  * load an initial state.
  647                  *
  648                  * We prefer to restore the state from the actual save
  649                  * area in PCB instead of directly loading from
  650                  * fpu_initialstate, to ignite the XSAVEOPT
  651                  * tracking engine.
  652                  */
  653                 bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
  654                 fpurestore(curpcb->pcb_save);
  655                 if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
  656                         fldcw(curpcb->pcb_initial_fpucw);
  657                 if (PCB_USER_FPU(curpcb))
  658                         set_pcb_flags(curpcb,
  659                             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  660                 else
  661                         set_pcb_flags(curpcb, PCB_FPUINITDONE);
  662         } else
  663                 fpurestore(curpcb->pcb_save);
  664         critical_exit();
  665 }
  666 
  667 void
  668 fpudrop()
  669 {
  670         struct thread *td;
  671 
  672         td = PCPU_GET(fpcurthread);
  673         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  674         CRITICAL_ASSERT(td);
  675         PCPU_SET(fpcurthread, NULL);
  676         clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
  677         start_emulating();
  678 }
  679 
  680 /*
  681  * Get the user state of the FPU into pcb->pcb_user_save without
  682  * dropping ownership (if possible).  It returns the FPU ownership
  683  * status.
  684  */
  685 int
  686 fpugetregs(struct thread *td)
  687 {
  688         struct pcb *pcb;
  689         uint64_t *xstate_bv, bit;
  690         char *sa;
  691         int max_ext_n, i, owned;
  692 
  693         pcb = td->td_pcb;
  694         if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
  695                 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
  696                     cpu_max_ext_state_size);
  697                 get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
  698                     pcb->pcb_initial_fpucw;
  699                 fpuuserinited(td);
  700                 return (_MC_FPOWNED_PCB);
  701         }
  702         critical_enter();
  703         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  704                 fpusave(get_pcb_user_save_pcb(pcb));
  705                 owned = _MC_FPOWNED_FPU;
  706         } else {
  707                 owned = _MC_FPOWNED_PCB;
  708         }
  709         critical_exit();
  710         if (use_xsave) {
  711                 /*
  712                  * Handle partially saved state.
  713                  */
  714                 sa = (char *)get_pcb_user_save_pcb(pcb);
  715                 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
  716                     offsetof(struct xstate_hdr, xstate_bv));
  717                 max_ext_n = flsl(xsave_mask);
  718                 for (i = 0; i < max_ext_n; i++) {
  719                         bit = 1ULL << i;
  720                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
  721                                 continue;
  722                         bcopy((char *)fpu_initialstate +
  723                             xsave_area_desc[i].offset,
  724                             sa + xsave_area_desc[i].offset,
  725                             xsave_area_desc[i].size);
  726                         *xstate_bv |= bit;
  727                 }
  728         }
  729         return (owned);
  730 }
  731 
  732 void
  733 fpuuserinited(struct thread *td)
  734 {
  735         struct pcb *pcb;
  736 
  737         pcb = td->td_pcb;
  738         if (PCB_USER_FPU(pcb))
  739                 set_pcb_flags(pcb,
  740                     PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  741         else
  742                 set_pcb_flags(pcb, PCB_FPUINITDONE);
  743 }
  744 
  745 int
  746 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
  747 {
  748         struct xstate_hdr *hdr, *ehdr;
  749         size_t len, max_len;
  750         uint64_t bv;
  751 
  752         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
  753         if (xfpustate == NULL)
  754                 return (0);
  755         if (!use_xsave)
  756                 return (EOPNOTSUPP);
  757 
  758         len = xfpustate_size;
  759         if (len < sizeof(struct xstate_hdr))
  760                 return (EINVAL);
  761         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  762         if (len > max_len)
  763                 return (EINVAL);
  764 
  765         ehdr = (struct xstate_hdr *)xfpustate;
  766         bv = ehdr->xstate_bv;
  767 
  768         /*
  769          * Avoid #gp.
  770          */
  771         if (bv & ~xsave_mask)
  772                 return (EINVAL);
  773 
  774         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
  775 
  776         hdr->xstate_bv = bv;
  777         bcopy(xfpustate + sizeof(struct xstate_hdr),
  778             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
  779 
  780         return (0);
  781 }
  782 
  783 /*
  784  * Set the state of the FPU.
  785  */
  786 int
  787 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
  788     size_t xfpustate_size)
  789 {
  790         struct pcb *pcb;
  791         int error;
  792 
  793         pcb = td->td_pcb;
  794         critical_enter();
  795         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  796                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  797                 if (error != 0) {
  798                         critical_exit();
  799                         return (error);
  800                 }
  801                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  802                 fpurestore(get_pcb_user_save_td(td));
  803                 critical_exit();
  804                 set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  805         } else {
  806                 critical_exit();
  807                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  808                 if (error != 0)
  809                         return (error);
  810                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  811                 fpuuserinited(td);
  812         }
  813         return (0);
  814 }
  815 
  816 /*
  817  * On AuthenticAMD processors, the fxrstor instruction does not restore
  818  * the x87's stored last instruction pointer, last data pointer, and last
  819  * opcode values, except in the rare case in which the exception summary
  820  * (ES) bit in the x87 status word is set to 1.
  821  *
  822  * In order to avoid leaking this information across processes, we clean
  823  * these values by performing a dummy load before executing fxrstor().
  824  */
  825 static void
  826 fpu_clean_state(void)
  827 {
  828         static float dummy_variable = 0.0;
  829         u_short status;
  830 
  831         /*
  832          * Clear the ES bit in the x87 status word if it is currently
  833          * set, in order to avoid causing a fault in the upcoming load.
  834          */
  835         fnstsw(&status);
  836         if (status & 0x80)
  837                 fnclex();
  838 
  839         /*
  840          * Load the dummy variable into the x87 stack.  This mangles
  841          * the x87 stack, but we don't care since we're about to call
  842          * fxrstor() anyway.
  843          */
  844         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
  845 }
  846 
  847 /*
  848  * This really sucks.  We want the acpi version only, but it requires
  849  * the isa_if.h file in order to get the definitions.
  850  */
  851 #include "opt_isa.h"
  852 #ifdef DEV_ISA
  853 #include <isa/isavar.h>
  854 /*
  855  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
  856  */
  857 static struct isa_pnp_id fpupnp_ids[] = {
  858         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
  859         { 0 }
  860 };
  861 
  862 static int
  863 fpupnp_probe(device_t dev)
  864 {
  865         int result;
  866 
  867         result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
  868         if (result <= 0)
  869                 device_quiet(dev);
  870         return (result);
  871 }
  872 
  873 static int
  874 fpupnp_attach(device_t dev)
  875 {
  876 
  877         return (0);
  878 }
  879 
  880 static device_method_t fpupnp_methods[] = {
  881         /* Device interface */
  882         DEVMETHOD(device_probe,         fpupnp_probe),
  883         DEVMETHOD(device_attach,        fpupnp_attach),
  884         DEVMETHOD(device_detach,        bus_generic_detach),
  885         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  886         DEVMETHOD(device_suspend,       bus_generic_suspend),
  887         DEVMETHOD(device_resume,        bus_generic_resume),
  888         
  889         { 0, 0 }
  890 };
  891 
  892 static driver_t fpupnp_driver = {
  893         "fpupnp",
  894         fpupnp_methods,
  895         1,                      /* no softc */
  896 };
  897 
  898 static devclass_t fpupnp_devclass;
  899 
  900 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
  901 #endif  /* DEV_ISA */
  902 
  903 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
  904     "Kernel contexts for FPU state");
  905 
  906 #define FPU_KERN_CTX_FPUINITDONE 0x01
  907 #define FPU_KERN_CTX_DUMMY       0x02   /* avoided save for the kern thread */
  908 
  909 struct fpu_kern_ctx {
  910         struct savefpu *prev;
  911         uint32_t flags;
  912         char hwstate1[];
  913 };
  914 
  915 struct fpu_kern_ctx *
  916 fpu_kern_alloc_ctx(u_int flags)
  917 {
  918         struct fpu_kern_ctx *res;
  919         size_t sz;
  920 
  921         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
  922             cpu_max_ext_state_size;
  923         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
  924             M_NOWAIT : M_WAITOK) | M_ZERO);
  925         return (res);
  926 }
  927 
  928 void
  929 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
  930 {
  931 
  932         /* XXXKIB clear the memory ? */
  933         free(ctx, M_FPUKERN_CTX);
  934 }
  935 
  936 static struct savefpu *
  937 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
  938 {
  939         vm_offset_t p;
  940 
  941         p = (vm_offset_t)&ctx->hwstate1;
  942         p = roundup2(p, XSAVE_AREA_ALIGN);
  943         return ((struct savefpu *)p);
  944 }
  945 
  946 int
  947 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
  948 {
  949         struct pcb *pcb;
  950 
  951         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
  952                 ctx->flags = FPU_KERN_CTX_DUMMY;
  953                 return (0);
  954         }
  955         pcb = td->td_pcb;
  956         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
  957             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
  958         ctx->flags = 0;
  959         if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
  960                 ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
  961         fpuexit(td);
  962         ctx->prev = pcb->pcb_save;
  963         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
  964         set_pcb_flags(pcb, PCB_KERNFPU);
  965         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  966         return (0);
  967 }
  968 
  969 int
  970 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
  971 {
  972         struct pcb *pcb;
  973 
  974         if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
  975                 return (0);
  976         KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, ("dummy ctx"));
  977         pcb = td->td_pcb;
  978         critical_enter();
  979         if (curthread == PCPU_GET(fpcurthread))
  980                 fpudrop();
  981         critical_exit();
  982         pcb->pcb_save = ctx->prev;
  983         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
  984                 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
  985                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  986                         clear_pcb_flags(pcb, PCB_KERNFPU);
  987                 } else
  988                         clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
  989         } else {
  990                 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
  991                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  992                 else
  993                         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  994                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
  995         }
  996         return (0);
  997 }
  998 
  999 int
 1000 fpu_kern_thread(u_int flags)
 1001 {
 1002 
 1003         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1004             ("Only kthread may use fpu_kern_thread"));
 1005         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1006             ("mangled pcb_save"));
 1007         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1008 
 1009         set_pcb_flags(curpcb, PCB_KERNFPU);
 1010         return (0);
 1011 }
 1012 
 1013 int
 1014 is_fpu_kern_thread(u_int flags)
 1015 {
 1016 
 1017         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1018                 return (0);
 1019         return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
 1020 }
 1021 
 1022 /*
 1023  * FPU save area alloc/free/init utility routines
 1024  */
 1025 struct savefpu *
 1026 fpu_save_area_alloc(void)
 1027 {
 1028 
 1029         return (uma_zalloc(fpu_save_area_zone, 0));
 1030 }
 1031 
 1032 void
 1033 fpu_save_area_free(struct savefpu *fsa)
 1034 {
 1035 
 1036         uma_zfree(fpu_save_area_zone, fsa);
 1037 }
 1038 
 1039 void
 1040 fpu_save_area_reset(struct savefpu *fsa)
 1041 {
 1042 
 1043         bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
 1044 }

Cache object: 81b868b97922b835b7d98f30de4371ed


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.