The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/fpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/10.2/sys/amd64/amd64/fpu.c 279211 2015-02-23 18:38:41Z jhb $");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/kernel.h>
   40 #include <sys/lock.h>
   41 #include <sys/malloc.h>
   42 #include <sys/module.h>
   43 #include <sys/mutex.h>
   44 #include <sys/mutex.h>
   45 #include <sys/proc.h>
   46 #include <sys/sysctl.h>
   47 #include <machine/bus.h>
   48 #include <sys/rman.h>
   49 #include <sys/signalvar.h>
   50 #include <vm/uma.h>
   51 
   52 #include <machine/cputypes.h>
   53 #include <machine/frame.h>
   54 #include <machine/intr_machdep.h>
   55 #include <machine/md_var.h>
   56 #include <machine/pcb.h>
   57 #include <machine/psl.h>
   58 #include <machine/resource.h>
   59 #include <machine/specialreg.h>
   60 #include <machine/segments.h>
   61 #include <machine/ucontext.h>
   62 
   63 /*
   64  * Floating point support.
   65  */
   66 
   67 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   68 
   69 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   70 #define fnclex()                __asm __volatile("fnclex")
   71 #define fninit()                __asm __volatile("fninit")
   72 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   73 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   74 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   75 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   76 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   77 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
   78 
   79 static __inline void
   80 xrstor(char *addr, uint64_t mask)
   81 {
   82         uint32_t low, hi;
   83 
   84         low = mask;
   85         hi = mask >> 32;
   86         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
   87 }
   88 
   89 static __inline void
   90 xsave(char *addr, uint64_t mask)
   91 {
   92         uint32_t low, hi;
   93 
   94         low = mask;
   95         hi = mask >> 32;
   96         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
   97             "memory");
   98 }
   99 
  100 #else   /* !(__GNUCLIKE_ASM && !lint) */
  101 
  102 void    fldcw(u_short cw);
  103 void    fnclex(void);
  104 void    fninit(void);
  105 void    fnstcw(caddr_t addr);
  106 void    fnstsw(caddr_t addr);
  107 void    fxsave(caddr_t addr);
  108 void    fxrstor(caddr_t addr);
  109 void    ldmxcsr(u_int csr);
  110 void    stmxcsr(u_int *csr);
  111 void    xrstor(char *addr, uint64_t mask);
  112 void    xsave(char *addr, uint64_t mask);
  113 
  114 #endif  /* __GNUCLIKE_ASM && !lint */
  115 
  116 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  117 #define stop_emulating()        clts()
  118 
  119 CTASSERT(sizeof(struct savefpu) == 512);
  120 CTASSERT(sizeof(struct xstate_hdr) == 64);
  121 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  122 
  123 /*
  124  * This requirement is to make it easier for asm code to calculate
  125  * offset of the fpu save area from the pcb address. FPU save area
  126  * must be 64-byte aligned.
  127  */
  128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  129 
  130 /*
  131  * Ensure the copy of XCR0 saved in a core is contained in the padding
  132  * area.
  133  */
  134 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
  135     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
  136 
  137 static  void    fpu_clean_state(void);
  138 
  139 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  140     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
  141 
  142 int use_xsave;                  /* non-static for cpu_switch.S */
  143 uint64_t xsave_mask;            /* the same */
  144 static  uma_zone_t fpu_save_area_zone;
  145 static  struct savefpu *fpu_initialstate;
  146 
  147 struct xsave_area_elm_descr {
  148         u_int   offset;
  149         u_int   size;
  150 } *xsave_area_desc;
  151 
  152 void
  153 fpusave(void *addr)
  154 {
  155 
  156         if (use_xsave)
  157                 xsave((char *)addr, xsave_mask);
  158         else
  159                 fxsave((char *)addr);
  160 }
  161 
  162 void
  163 fpurestore(void *addr)
  164 {
  165 
  166         if (use_xsave)
  167                 xrstor((char *)addr, xsave_mask);
  168         else
  169                 fxrstor((char *)addr);
  170 }
  171 
  172 void
  173 fpususpend(void *addr)
  174 {
  175         u_long cr0;
  176 
  177         cr0 = rcr0();
  178         stop_emulating();
  179         fpusave(addr);
  180         load_cr0(cr0);
  181 }
  182 
  183 void
  184 fpuresume(void *addr)
  185 {
  186         u_long cr0;
  187 
  188         cr0 = rcr0();
  189         stop_emulating();
  190         fninit();
  191         if (use_xsave)
  192                 load_xcr(XCR0, xsave_mask);
  193         fpurestore(addr);
  194         load_cr0(cr0);
  195 }
  196 
  197 /*
  198  * Enable XSAVE if supported and allowed by user.
  199  * Calculate the xsave_mask.
  200  */
  201 static void
  202 fpuinit_bsp1(void)
  203 {
  204         u_int cp[4];
  205         uint64_t xsave_mask_user;
  206 
  207         if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
  208                 use_xsave = 1;
  209                 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  210         }
  211         if (!use_xsave)
  212                 return;
  213 
  214         cpuid_count(0xd, 0x0, cp);
  215         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  216         if ((cp[0] & xsave_mask) != xsave_mask)
  217                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  218         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  219         xsave_mask_user = xsave_mask;
  220         TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
  221         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  222         xsave_mask &= xsave_mask_user;
  223         if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
  224                 xsave_mask &= ~XFEATURE_AVX512;
  225         if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
  226                 xsave_mask &= ~XFEATURE_MPX;
  227 
  228         cpuid_count(0xd, 0x1, cp);
  229         if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
  230                 /*
  231                  * Patch the XSAVE instruction in the cpu_switch code
  232                  * to XSAVEOPT.  We assume that XSAVE encoding used
  233                  * REX byte, and set the bit 4 of the r/m byte.
  234                  */
  235                 ctx_switch_xsave[3] |= 0x10;
  236         }
  237 }
  238 
  239 /*
  240  * Calculate the fpu save area size.
  241  */
  242 static void
  243 fpuinit_bsp2(void)
  244 {
  245         u_int cp[4];
  246 
  247         if (use_xsave) {
  248                 cpuid_count(0xd, 0x0, cp);
  249                 cpu_max_ext_state_size = cp[1];
  250 
  251                 /*
  252                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  253                  */
  254                 do_cpuid(1, cp);
  255                 cpu_feature2 = cp[2];
  256         } else
  257                 cpu_max_ext_state_size = sizeof(struct savefpu);
  258 }
  259 
  260 /*
  261  * Initialize the floating point unit.
  262  */
  263 void
  264 fpuinit(void)
  265 {
  266         register_t saveintr;
  267         u_int mxcsr;
  268         u_short control;
  269 
  270         if (IS_BSP())
  271                 fpuinit_bsp1();
  272 
  273         if (use_xsave) {
  274                 load_cr4(rcr4() | CR4_XSAVE);
  275                 load_xcr(XCR0, xsave_mask);
  276         }
  277 
  278         /*
  279          * XCR0 shall be set up before CPU can report the save area size.
  280          */
  281         if (IS_BSP())
  282                 fpuinit_bsp2();
  283 
  284         /*
  285          * It is too early for critical_enter() to work on AP.
  286          */
  287         saveintr = intr_disable();
  288         stop_emulating();
  289         fninit();
  290         control = __INITIAL_FPUCW__;
  291         fldcw(control);
  292         mxcsr = __INITIAL_MXCSR__;
  293         ldmxcsr(mxcsr);
  294         start_emulating();
  295         intr_restore(saveintr);
  296 }
  297 
  298 /*
  299  * On the boot CPU we generate a clean state that is used to
  300  * initialize the floating point unit when it is first used by a
  301  * process.
  302  */
  303 static void
  304 fpuinitstate(void *arg __unused)
  305 {
  306         register_t saveintr;
  307         int cp[4], i, max_ext_n;
  308 
  309         fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  310             M_WAITOK | M_ZERO);
  311         saveintr = intr_disable();
  312         stop_emulating();
  313 
  314         fpusave(fpu_initialstate);
  315         if (fpu_initialstate->sv_env.en_mxcsr_mask)
  316                 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
  317         else
  318                 cpu_mxcsr_mask = 0xFFBF;
  319 
  320         /*
  321          * The fninit instruction does not modify XMM registers.  The
  322          * fpusave call dumped the garbage contained in the registers
  323          * after reset to the initial state saved.  Clear XMM
  324          * registers file image to make the startup program state and
  325          * signal handler XMM register content predictable.
  326          */
  327         bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
  328 
  329         /*
  330          * Create a table describing the layout of the CPU Extended
  331          * Save Area.
  332          */
  333         if (use_xsave) {
  334                 max_ext_n = flsl(xsave_mask);
  335                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  336                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  337                 /* x87 state */
  338                 xsave_area_desc[0].offset = 0;
  339                 xsave_area_desc[0].size = 160;
  340                 /* XMM */
  341                 xsave_area_desc[1].offset = 160;
  342                 xsave_area_desc[1].size = 288 - 160;
  343 
  344                 for (i = 2; i < max_ext_n; i++) {
  345                         cpuid_count(0xd, i, cp);
  346                         xsave_area_desc[i].offset = cp[1];
  347                         xsave_area_desc[i].size = cp[0];
  348                 }
  349         }
  350 
  351         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  352             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  353             XSAVE_AREA_ALIGN - 1, 0);
  354 
  355         start_emulating();
  356         intr_restore(saveintr);
  357 }
  358 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
  359 
  360 /*
  361  * Free coprocessor (if we have it).
  362  */
  363 void
  364 fpuexit(struct thread *td)
  365 {
  366 
  367         critical_enter();
  368         if (curthread == PCPU_GET(fpcurthread)) {
  369                 stop_emulating();
  370                 fpusave(curpcb->pcb_save);
  371                 start_emulating();
  372                 PCPU_SET(fpcurthread, NULL);
  373         }
  374         critical_exit();
  375 }
  376 
  377 int
  378 fpuformat()
  379 {
  380 
  381         return (_MC_FPFMT_XMM);
  382 }
  383 
  384 /* 
  385  * The following mechanism is used to ensure that the FPE_... value
  386  * that is passed as a trapcode to the signal handler of the user
  387  * process does not have more than one bit set.
  388  * 
  389  * Multiple bits may be set if the user process modifies the control
  390  * word while a status word bit is already set.  While this is a sign
  391  * of bad coding, we have no choise than to narrow them down to one
  392  * bit, since we must not send a trapcode that is not exactly one of
  393  * the FPE_ macros.
  394  *
  395  * The mechanism has a static table with 127 entries.  Each combination
  396  * of the 7 FPU status word exception bits directly translates to a
  397  * position in this table, where a single FPE_... value is stored.
  398  * This FPE_... value stored there is considered the "most important"
  399  * of the exception bits and will be sent as the signal code.  The
  400  * precedence of the bits is based upon Intel Document "Numerical
  401  * Applications", Chapter "Special Computational Situations".
  402  *
  403  * The macro to choose one of these values does these steps: 1) Throw
  404  * away status word bits that cannot be masked.  2) Throw away the bits
  405  * currently masked in the control word, assuming the user isn't
  406  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  407  * fault) if it is set, which cannot be masked but must be presered.
  408  * 4) Use the remaining bits to point into the trapcode table.
  409  *
  410  * The 6 maskable bits in order of their preference, as stated in the
  411  * above referenced Intel manual:
  412  * 1  Invalid operation (FP_X_INV)
  413  * 1a   Stack underflow
  414  * 1b   Stack overflow
  415  * 1c   Operand of unsupported format
  416  * 1d   SNaN operand.
  417  * 2  QNaN operand (not an exception, irrelavant here)
  418  * 3  Any other invalid-operation not mentioned above or zero divide
  419  *      (FP_X_INV, FP_X_DZ)
  420  * 4  Denormal operand (FP_X_DNML)
  421  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  422  * 6  Inexact result (FP_X_IMP) 
  423  */
  424 static char fpetable[128] = {
  425         0,
  426         FPE_FLTINV,     /*  1 - INV */
  427         FPE_FLTUND,     /*  2 - DNML */
  428         FPE_FLTINV,     /*  3 - INV | DNML */
  429         FPE_FLTDIV,     /*  4 - DZ */
  430         FPE_FLTINV,     /*  5 - INV | DZ */
  431         FPE_FLTDIV,     /*  6 - DNML | DZ */
  432         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  433         FPE_FLTOVF,     /*  8 - OFL */
  434         FPE_FLTINV,     /*  9 - INV | OFL */
  435         FPE_FLTUND,     /*  A - DNML | OFL */
  436         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  437         FPE_FLTDIV,     /*  C - DZ | OFL */
  438         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  439         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  440         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  441         FPE_FLTUND,     /* 10 - UFL */
  442         FPE_FLTINV,     /* 11 - INV | UFL */
  443         FPE_FLTUND,     /* 12 - DNML | UFL */
  444         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  445         FPE_FLTDIV,     /* 14 - DZ | UFL */
  446         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  447         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  448         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  449         FPE_FLTOVF,     /* 18 - OFL | UFL */
  450         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  451         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  452         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  453         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  454         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  455         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  456         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  457         FPE_FLTRES,     /* 20 - IMP */
  458         FPE_FLTINV,     /* 21 - INV | IMP */
  459         FPE_FLTUND,     /* 22 - DNML | IMP */
  460         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  461         FPE_FLTDIV,     /* 24 - DZ | IMP */
  462         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  463         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  464         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  465         FPE_FLTOVF,     /* 28 - OFL | IMP */
  466         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  467         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  468         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  469         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  470         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  471         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  472         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  473         FPE_FLTUND,     /* 30 - UFL | IMP */
  474         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  475         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  476         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  477         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  478         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  479         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  480         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  481         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  482         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  483         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  484         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  485         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  486         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  487         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  488         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  489         FPE_FLTSUB,     /* 40 - STK */
  490         FPE_FLTSUB,     /* 41 - INV | STK */
  491         FPE_FLTUND,     /* 42 - DNML | STK */
  492         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  493         FPE_FLTDIV,     /* 44 - DZ | STK */
  494         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  495         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  496         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  497         FPE_FLTOVF,     /* 48 - OFL | STK */
  498         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  499         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  500         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  501         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  502         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  503         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  504         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  505         FPE_FLTUND,     /* 50 - UFL | STK */
  506         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  507         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  508         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  509         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  510         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  511         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  512         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  513         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  514         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  515         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  516         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  517         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  518         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  519         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  520         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  521         FPE_FLTRES,     /* 60 - IMP | STK */
  522         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  523         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  524         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  525         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  526         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  527         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  528         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  529         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  530         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  531         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  532         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  533         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  534         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  535         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  536         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  537         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  538         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  539         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  540         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  541         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  542         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  543         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  544         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  545         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  546         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  547         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  548         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  549         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  550         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  551         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  552         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  553 };
  554 
  555 /*
  556  * Read the FP status and control words, then generate si_code value
  557  * for SIGFPE.  The error code chosen will be one of the
  558  * FPE_... macros.  It will be sent as the second argument to old
  559  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  560  * argument) to SA_SIGINFO signal handlers.
  561  *
  562  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  563  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  564  * usermode code which understands the FPU hardware enough to enable
  565  * the exceptions, can also handle clearing the exception state in the
  566  * handler.  The only consequence of not clearing the exception is the
  567  * rethrow of the SIGFPE on return from the signal handler and
  568  * reexecution of the corresponding instruction.
  569  *
  570  * For XMM traps, the exceptions were never cleared.
  571  */
  572 int
  573 fputrap_x87(void)
  574 {
  575         struct savefpu *pcb_save;
  576         u_short control, status;
  577 
  578         critical_enter();
  579 
  580         /*
  581          * Interrupt handling (for another interrupt) may have pushed the
  582          * state to memory.  Fetch the relevant parts of the state from
  583          * wherever they are.
  584          */
  585         if (PCPU_GET(fpcurthread) != curthread) {
  586                 pcb_save = curpcb->pcb_save;
  587                 control = pcb_save->sv_env.en_cw;
  588                 status = pcb_save->sv_env.en_sw;
  589         } else {
  590                 fnstcw(&control);
  591                 fnstsw(&status);
  592         }
  593 
  594         critical_exit();
  595         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  596 }
  597 
  598 int
  599 fputrap_sse(void)
  600 {
  601         u_int mxcsr;
  602 
  603         critical_enter();
  604         if (PCPU_GET(fpcurthread) != curthread)
  605                 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
  606         else
  607                 stmxcsr(&mxcsr);
  608         critical_exit();
  609         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  610 }
  611 
  612 /*
  613  * Device Not Available (DNA, #NM) exception handler.
  614  *
  615  * It would be better to switch FP context here (if curthread !=
  616  * fpcurthread) and not necessarily for every context switch, but it
  617  * is too hard to access foreign pcb's.
  618  */
  619 void
  620 fpudna(void)
  621 {
  622 
  623         /*
  624          * This handler is entered with interrupts enabled, so context
  625          * switches may occur before critical_enter() is executed.  If
  626          * a context switch occurs, then when we regain control, our
  627          * state will have been completely restored.  The CPU may
  628          * change underneath us, but the only part of our context that
  629          * lives in the CPU is CR0.TS and that will be "restored" by
  630          * setting it on the new CPU.
  631          */
  632         critical_enter();
  633 
  634         if (PCPU_GET(fpcurthread) == curthread) {
  635                 printf("fpudna: fpcurthread == curthread\n");
  636                 stop_emulating();
  637                 critical_exit();
  638                 return;
  639         }
  640         if (PCPU_GET(fpcurthread) != NULL) {
  641                 panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  642                     PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
  643                     curthread, curthread->td_tid);
  644         }
  645         stop_emulating();
  646         /*
  647          * Record new context early in case frstor causes a trap.
  648          */
  649         PCPU_SET(fpcurthread, curthread);
  650 
  651         fpu_clean_state();
  652 
  653         if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
  654                 /*
  655                  * This is the first time this thread has used the FPU or
  656                  * the PCB doesn't contain a clean FPU state.  Explicitly
  657                  * load an initial state.
  658                  *
  659                  * We prefer to restore the state from the actual save
  660                  * area in PCB instead of directly loading from
  661                  * fpu_initialstate, to ignite the XSAVEOPT
  662                  * tracking engine.
  663                  */
  664                 bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
  665                 fpurestore(curpcb->pcb_save);
  666                 if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
  667                         fldcw(curpcb->pcb_initial_fpucw);
  668                 if (PCB_USER_FPU(curpcb))
  669                         set_pcb_flags(curpcb,
  670                             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  671                 else
  672                         set_pcb_flags(curpcb, PCB_FPUINITDONE);
  673         } else
  674                 fpurestore(curpcb->pcb_save);
  675         critical_exit();
  676 }
  677 
  678 void
  679 fpudrop()
  680 {
  681         struct thread *td;
  682 
  683         td = PCPU_GET(fpcurthread);
  684         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  685         CRITICAL_ASSERT(td);
  686         PCPU_SET(fpcurthread, NULL);
  687         clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
  688         start_emulating();
  689 }
  690 
  691 /*
  692  * Get the user state of the FPU into pcb->pcb_user_save without
  693  * dropping ownership (if possible).  It returns the FPU ownership
  694  * status.
  695  */
  696 int
  697 fpugetregs(struct thread *td)
  698 {
  699         struct pcb *pcb;
  700         uint64_t *xstate_bv, bit;
  701         char *sa;
  702         int max_ext_n, i, owned;
  703 
  704         pcb = td->td_pcb;
  705         if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
  706                 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
  707                     cpu_max_ext_state_size);
  708                 get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
  709                     pcb->pcb_initial_fpucw;
  710                 fpuuserinited(td);
  711                 return (_MC_FPOWNED_PCB);
  712         }
  713         critical_enter();
  714         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  715                 fpusave(get_pcb_user_save_pcb(pcb));
  716                 owned = _MC_FPOWNED_FPU;
  717         } else {
  718                 owned = _MC_FPOWNED_PCB;
  719         }
  720         critical_exit();
  721         if (use_xsave) {
  722                 /*
  723                  * Handle partially saved state.
  724                  */
  725                 sa = (char *)get_pcb_user_save_pcb(pcb);
  726                 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
  727                     offsetof(struct xstate_hdr, xstate_bv));
  728                 max_ext_n = flsl(xsave_mask);
  729                 for (i = 0; i < max_ext_n; i++) {
  730                         bit = 1ULL << i;
  731                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
  732                                 continue;
  733                         bcopy((char *)fpu_initialstate +
  734                             xsave_area_desc[i].offset,
  735                             sa + xsave_area_desc[i].offset,
  736                             xsave_area_desc[i].size);
  737                         *xstate_bv |= bit;
  738                 }
  739         }
  740         return (owned);
  741 }
  742 
  743 void
  744 fpuuserinited(struct thread *td)
  745 {
  746         struct pcb *pcb;
  747 
  748         pcb = td->td_pcb;
  749         if (PCB_USER_FPU(pcb))
  750                 set_pcb_flags(pcb,
  751                     PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  752         else
  753                 set_pcb_flags(pcb, PCB_FPUINITDONE);
  754 }
  755 
  756 int
  757 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
  758 {
  759         struct xstate_hdr *hdr, *ehdr;
  760         size_t len, max_len;
  761         uint64_t bv;
  762 
  763         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
  764         if (xfpustate == NULL)
  765                 return (0);
  766         if (!use_xsave)
  767                 return (EOPNOTSUPP);
  768 
  769         len = xfpustate_size;
  770         if (len < sizeof(struct xstate_hdr))
  771                 return (EINVAL);
  772         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  773         if (len > max_len)
  774                 return (EINVAL);
  775 
  776         ehdr = (struct xstate_hdr *)xfpustate;
  777         bv = ehdr->xstate_bv;
  778 
  779         /*
  780          * Avoid #gp.
  781          */
  782         if (bv & ~xsave_mask)
  783                 return (EINVAL);
  784 
  785         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
  786 
  787         hdr->xstate_bv = bv;
  788         bcopy(xfpustate + sizeof(struct xstate_hdr),
  789             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
  790 
  791         return (0);
  792 }
  793 
  794 /*
  795  * Set the state of the FPU.
  796  */
  797 int
  798 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
  799     size_t xfpustate_size)
  800 {
  801         struct pcb *pcb;
  802         int error;
  803 
  804         pcb = td->td_pcb;
  805         critical_enter();
  806         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  807                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  808                 if (error != 0) {
  809                         critical_exit();
  810                         return (error);
  811                 }
  812                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  813                 fpurestore(get_pcb_user_save_td(td));
  814                 critical_exit();
  815                 set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  816         } else {
  817                 critical_exit();
  818                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  819                 if (error != 0)
  820                         return (error);
  821                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  822                 fpuuserinited(td);
  823         }
  824         return (0);
  825 }
  826 
  827 /*
  828  * On AuthenticAMD processors, the fxrstor instruction does not restore
  829  * the x87's stored last instruction pointer, last data pointer, and last
  830  * opcode values, except in the rare case in which the exception summary
  831  * (ES) bit in the x87 status word is set to 1.
  832  *
  833  * In order to avoid leaking this information across processes, we clean
  834  * these values by performing a dummy load before executing fxrstor().
  835  */
  836 static void
  837 fpu_clean_state(void)
  838 {
  839         static float dummy_variable = 0.0;
  840         u_short status;
  841 
  842         /*
  843          * Clear the ES bit in the x87 status word if it is currently
  844          * set, in order to avoid causing a fault in the upcoming load.
  845          */
  846         fnstsw(&status);
  847         if (status & 0x80)
  848                 fnclex();
  849 
  850         /*
  851          * Load the dummy variable into the x87 stack.  This mangles
  852          * the x87 stack, but we don't care since we're about to call
  853          * fxrstor() anyway.
  854          */
  855         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
  856 }
  857 
  858 /*
  859  * This really sucks.  We want the acpi version only, but it requires
  860  * the isa_if.h file in order to get the definitions.
  861  */
  862 #include "opt_isa.h"
  863 #ifdef DEV_ISA
  864 #include <isa/isavar.h>
  865 /*
  866  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
  867  */
  868 static struct isa_pnp_id fpupnp_ids[] = {
  869         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
  870         { 0 }
  871 };
  872 
  873 static int
  874 fpupnp_probe(device_t dev)
  875 {
  876         int result;
  877 
  878         result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
  879         if (result <= 0)
  880                 device_quiet(dev);
  881         return (result);
  882 }
  883 
  884 static int
  885 fpupnp_attach(device_t dev)
  886 {
  887 
  888         return (0);
  889 }
  890 
  891 static device_method_t fpupnp_methods[] = {
  892         /* Device interface */
  893         DEVMETHOD(device_probe,         fpupnp_probe),
  894         DEVMETHOD(device_attach,        fpupnp_attach),
  895         DEVMETHOD(device_detach,        bus_generic_detach),
  896         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  897         DEVMETHOD(device_suspend,       bus_generic_suspend),
  898         DEVMETHOD(device_resume,        bus_generic_resume),
  899         
  900         { 0, 0 }
  901 };
  902 
  903 static driver_t fpupnp_driver = {
  904         "fpupnp",
  905         fpupnp_methods,
  906         1,                      /* no softc */
  907 };
  908 
  909 static devclass_t fpupnp_devclass;
  910 
  911 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
  912 #endif  /* DEV_ISA */
  913 
  914 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
  915     "Kernel contexts for FPU state");
  916 
  917 #define FPU_KERN_CTX_FPUINITDONE 0x01
  918 #define FPU_KERN_CTX_DUMMY       0x02   /* avoided save for the kern thread */
  919 
  920 struct fpu_kern_ctx {
  921         struct savefpu *prev;
  922         uint32_t flags;
  923         char hwstate1[];
  924 };
  925 
  926 struct fpu_kern_ctx *
  927 fpu_kern_alloc_ctx(u_int flags)
  928 {
  929         struct fpu_kern_ctx *res;
  930         size_t sz;
  931 
  932         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
  933             cpu_max_ext_state_size;
  934         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
  935             M_NOWAIT : M_WAITOK) | M_ZERO);
  936         return (res);
  937 }
  938 
  939 void
  940 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
  941 {
  942 
  943         /* XXXKIB clear the memory ? */
  944         free(ctx, M_FPUKERN_CTX);
  945 }
  946 
  947 static struct savefpu *
  948 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
  949 {
  950         vm_offset_t p;
  951 
  952         p = (vm_offset_t)&ctx->hwstate1;
  953         p = roundup2(p, XSAVE_AREA_ALIGN);
  954         return ((struct savefpu *)p);
  955 }
  956 
  957 int
  958 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
  959 {
  960         struct pcb *pcb;
  961 
  962         if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
  963                 ctx->flags = FPU_KERN_CTX_DUMMY;
  964                 return (0);
  965         }
  966         pcb = td->td_pcb;
  967         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
  968             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
  969         ctx->flags = 0;
  970         if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
  971                 ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
  972         fpuexit(td);
  973         ctx->prev = pcb->pcb_save;
  974         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
  975         set_pcb_flags(pcb, PCB_KERNFPU);
  976         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  977         return (0);
  978 }
  979 
  980 int
  981 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
  982 {
  983         struct pcb *pcb;
  984 
  985         if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
  986                 return (0);
  987         KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, ("dummy ctx"));
  988         pcb = td->td_pcb;
  989         critical_enter();
  990         if (curthread == PCPU_GET(fpcurthread))
  991                 fpudrop();
  992         critical_exit();
  993         pcb->pcb_save = ctx->prev;
  994         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
  995                 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
  996                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  997                         clear_pcb_flags(pcb, PCB_KERNFPU);
  998                 } else
  999                         clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
 1000         } else {
 1001                 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
 1002                         set_pcb_flags(pcb, PCB_FPUINITDONE);
 1003                 else
 1004                         clear_pcb_flags(pcb, PCB_FPUINITDONE);
 1005                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
 1006         }
 1007         return (0);
 1008 }
 1009 
 1010 int
 1011 fpu_kern_thread(u_int flags)
 1012 {
 1013 
 1014         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
 1015             ("Only kthread may use fpu_kern_thread"));
 1016         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
 1017             ("mangled pcb_save"));
 1018         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
 1019 
 1020         set_pcb_flags(curpcb, PCB_KERNFPU);
 1021         return (0);
 1022 }
 1023 
 1024 int
 1025 is_fpu_kern_thread(u_int flags)
 1026 {
 1027 
 1028         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
 1029                 return (0);
 1030         return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
 1031 }
 1032 
 1033 /*
 1034  * FPU save area alloc/free/init utility routines
 1035  */
 1036 struct savefpu *
 1037 fpu_save_area_alloc(void)
 1038 {
 1039 
 1040         return (uma_zalloc(fpu_save_area_zone, 0));
 1041 }
 1042 
 1043 void
 1044 fpu_save_area_free(struct savefpu *fsa)
 1045 {
 1046 
 1047         uma_zfree(fpu_save_area_zone, fsa);
 1048 }
 1049 
 1050 void
 1051 fpu_save_area_reset(struct savefpu *fsa)
 1052 {
 1053 
 1054         bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
 1055 }

Cache object: bbf8211c0cab7252269df01539696a8d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.