The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/fpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/8.4/sys/amd64/amd64/fpu.c 237009 2012-06-13 15:25:52Z jhb $");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/kernel.h>
   40 #include <sys/lock.h>
   41 #include <sys/malloc.h>
   42 #include <sys/module.h>
   43 #include <sys/mutex.h>
   44 #include <sys/mutex.h>
   45 #include <sys/proc.h>
   46 #include <sys/sysctl.h>
   47 #include <machine/bus.h>
   48 #include <sys/rman.h>
   49 #include <sys/signalvar.h>
   50 
   51 #include <machine/cputypes.h>
   52 #include <machine/frame.h>
   53 #include <machine/intr_machdep.h>
   54 #include <machine/md_var.h>
   55 #include <machine/pcb.h>
   56 #include <machine/psl.h>
   57 #include <machine/resource.h>
   58 #include <machine/specialreg.h>
   59 #include <machine/segments.h>
   60 #include <machine/ucontext.h>
   61 
   62 /*
   63  * Floating point support.
   64  */
   65 
   66 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   67 
   68 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   69 #define fnclex()                __asm __volatile("fnclex")
   70 #define fninit()                __asm __volatile("fninit")
   71 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   72 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   73 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   74 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   75 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   76 #define start_emulating()       __asm __volatile( \
   77                                     "smsw %%ax; orb %0,%%al; lmsw %%ax" \
   78                                     : : "n" (CR0_TS) : "ax")
   79 #define stop_emulating()        __asm __volatile("clts")
   80 
   81 static __inline void
   82 xrstor(char *addr, uint64_t mask)
   83 {
   84         uint32_t low, hi;
   85 
   86         low = mask;
   87         hi = mask >> 32;
   88         /* xrstor (%rdi) */
   89         __asm __volatile(".byte 0x0f,0xae,0x2f" : :
   90             "a" (low), "d" (hi), "D" (addr));
   91 }
   92 
   93 static __inline void
   94 xsave(char *addr, uint64_t mask)
   95 {
   96         uint32_t low, hi;
   97 
   98         low = mask;
   99         hi = mask >> 32;
  100         /* xsave (%rdi) */
  101         __asm __volatile(".byte 0x0f,0xae,0x27" : :
  102             "a" (low), "d" (hi), "D" (addr) : "memory");
  103 }
  104 
  105 static __inline void
  106 xsetbv(uint32_t reg, uint64_t val)
  107 {
  108         uint32_t low, hi;
  109 
  110         low = val;
  111         hi = val >> 32;
  112         __asm __volatile(".byte 0x0f,0x01,0xd1" : :
  113             "c" (reg), "a" (low), "d" (hi));
  114 }
  115 
  116 #else   /* !(__GNUCLIKE_ASM && !lint) */
  117 
  118 void    fldcw(u_short cw);
  119 void    fnclex(void);
  120 void    fninit(void);
  121 void    fnstcw(caddr_t addr);
  122 void    fnstsw(caddr_t addr);
  123 void    fxsave(caddr_t addr);
  124 void    fxrstor(caddr_t addr);
  125 void    ldmxcsr(u_int csr);
  126 void    start_emulating(void);
  127 void    stop_emulating(void);
  128 void    xrstor(char *addr, uint64_t mask);
  129 void    xsave(char *addr, uint64_t mask);
  130 void    xsetbv(uint32_t reg, uint64_t val);
  131 
  132 #endif  /* __GNUCLIKE_ASM && !lint */
  133 
  134 #define GET_FPU_CW(thread) ((thread)->td_pcb->pcb_save->sv_env.en_cw)
  135 #define GET_FPU_SW(thread) ((thread)->td_pcb->pcb_save->sv_env.en_sw)
  136 
  137 CTASSERT(sizeof(struct savefpu) == 512);
  138 CTASSERT(sizeof(struct xstate_hdr) == 64);
  139 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  140 
  141 /*
  142  * This requirement is to make it easier for asm code to calculate
  143  * offset of the fpu save area from the pcb address. FPU save area
  144  * must by 64-bytes aligned.
  145  */
  146 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  147 
  148 static  void    fpu_clean_state(void);
  149 
  150 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  151     NULL, 1, "Floating point instructions executed in hardware");
  152 
  153 int use_xsave;                  /* non-static for cpu_switch.S */
  154 uint64_t xsave_mask;            /* the same */
  155 static  struct savefpu *fpu_initialstate;
  156 
  157 void
  158 fpusave(void *addr)
  159 {
  160 
  161         if (use_xsave)
  162                 xsave((char *)addr, xsave_mask);
  163         else
  164                 fxsave((char *)addr);
  165 }
  166 
  167 static void
  168 fpurestore(void *addr)
  169 {
  170 
  171         if (use_xsave)
  172                 xrstor((char *)addr, xsave_mask);
  173         else
  174                 fxrstor((char *)addr);
  175 }
  176 
  177 /*
  178  * Enable XSAVE if supported and allowed by user.
  179  * Calculate the xsave_mask.
  180  */
  181 static void
  182 fpuinit_bsp1(void)
  183 {
  184         u_int cp[4];
  185         uint64_t xsave_mask_user;
  186 
  187         if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
  188                 use_xsave = 1;
  189                 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  190         }
  191         if (!use_xsave)
  192                 return;
  193 
  194         cpuid_count(0xd, 0x0, cp);
  195         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  196         if ((cp[0] & xsave_mask) != xsave_mask)
  197                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  198         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  199         xsave_mask_user = xsave_mask;
  200         TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
  201         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  202         xsave_mask &= xsave_mask_user;
  203 }
  204 
  205 /*
  206  * Calculate the fpu save area size.
  207  */
  208 static void
  209 fpuinit_bsp2(void)
  210 {
  211         u_int cp[4];
  212 
  213         if (use_xsave) {
  214                 cpuid_count(0xd, 0x0, cp);
  215                 cpu_max_ext_state_size = cp[1];
  216 
  217                 /*
  218                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  219                  */
  220                 do_cpuid(1, cp);
  221                 cpu_feature2 = cp[2];
  222         } else
  223                 cpu_max_ext_state_size = sizeof(struct savefpu);
  224 }
  225 
  226 /*
  227  * Initialize the floating point unit.
  228  */
  229 void
  230 fpuinit(void)
  231 {
  232         register_t saveintr;
  233         u_int mxcsr;
  234         u_short control;
  235 
  236         if (IS_BSP())
  237                 fpuinit_bsp1();
  238 
  239         if (use_xsave) {
  240                 load_cr4(rcr4() | CR4_XSAVE);
  241                 xsetbv(XCR0, xsave_mask);
  242         }
  243 
  244         /*
  245          * XCR0 shall be set up before CPU can report the save area size.
  246          */
  247         if (IS_BSP())
  248                 fpuinit_bsp2();
  249 
  250         /*
  251          * It is too early for critical_enter() to work on AP.
  252          */
  253         saveintr = intr_disable();
  254         stop_emulating();
  255         fninit();
  256         control = __INITIAL_FPUCW__;
  257         fldcw(control);
  258         mxcsr = __INITIAL_MXCSR__;
  259         ldmxcsr(mxcsr);
  260         start_emulating();
  261         intr_restore(saveintr);
  262 }
  263 
  264 /*
  265  * On the boot CPU we generate a clean state that is used to
  266  * initialize the floating point unit when it is first used by a
  267  * process.
  268  */
  269 static void
  270 fpuinitstate(void *arg __unused)
  271 {
  272         register_t saveintr;
  273 
  274         fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  275             M_WAITOK | M_ZERO);
  276         saveintr = intr_disable();
  277         stop_emulating();
  278 
  279         fpusave(fpu_initialstate);
  280         if (fpu_initialstate->sv_env.en_mxcsr_mask)
  281                 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
  282         else
  283                 cpu_mxcsr_mask = 0xFFBF;
  284 
  285         /*
  286          * The fninit instruction does not modify XMM registers.  The
  287          * fpusave call dumped the garbage contained in the registers
  288          * after reset to the initial state saved.  Clear XMM
  289          * registers file image to make the startup program state and
  290          * signal handler XMM register content predictable.
  291          */
  292         bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
  293 
  294         start_emulating();
  295         intr_restore(saveintr);
  296 }
  297 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
  298 
  299 /*
  300  * Free coprocessor (if we have it).
  301  */
  302 void
  303 fpuexit(struct thread *td)
  304 {
  305 
  306         critical_enter();
  307         if (curthread == PCPU_GET(fpcurthread)) {
  308                 stop_emulating();
  309                 fpusave(PCPU_GET(curpcb)->pcb_save);
  310                 start_emulating();
  311                 PCPU_SET(fpcurthread, 0);
  312         }
  313         critical_exit();
  314 }
  315 
  316 int
  317 fpuformat()
  318 {
  319 
  320         return (_MC_FPFMT_XMM);
  321 }
  322 
  323 /* 
  324  * The following mechanism is used to ensure that the FPE_... value
  325  * that is passed as a trapcode to the signal handler of the user
  326  * process does not have more than one bit set.
  327  * 
  328  * Multiple bits may be set if the user process modifies the control
  329  * word while a status word bit is already set.  While this is a sign
  330  * of bad coding, we have no choise than to narrow them down to one
  331  * bit, since we must not send a trapcode that is not exactly one of
  332  * the FPE_ macros.
  333  *
  334  * The mechanism has a static table with 127 entries.  Each combination
  335  * of the 7 FPU status word exception bits directly translates to a
  336  * position in this table, where a single FPE_... value is stored.
  337  * This FPE_... value stored there is considered the "most important"
  338  * of the exception bits and will be sent as the signal code.  The
  339  * precedence of the bits is based upon Intel Document "Numerical
  340  * Applications", Chapter "Special Computational Situations".
  341  *
  342  * The macro to choose one of these values does these steps: 1) Throw
  343  * away status word bits that cannot be masked.  2) Throw away the bits
  344  * currently masked in the control word, assuming the user isn't
  345  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  346  * fault) if it is set, which cannot be masked but must be presered.
  347  * 4) Use the remaining bits to point into the trapcode table.
  348  *
  349  * The 6 maskable bits in order of their preference, as stated in the
  350  * above referenced Intel manual:
  351  * 1  Invalid operation (FP_X_INV)
  352  * 1a   Stack underflow
  353  * 1b   Stack overflow
  354  * 1c   Operand of unsupported format
  355  * 1d   SNaN operand.
  356  * 2  QNaN operand (not an exception, irrelavant here)
  357  * 3  Any other invalid-operation not mentioned above or zero divide
  358  *      (FP_X_INV, FP_X_DZ)
  359  * 4  Denormal operand (FP_X_DNML)
  360  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  361  * 6  Inexact result (FP_X_IMP) 
  362  */
  363 static char fpetable[128] = {
  364         0,
  365         FPE_FLTINV,     /*  1 - INV */
  366         FPE_FLTUND,     /*  2 - DNML */
  367         FPE_FLTINV,     /*  3 - INV | DNML */
  368         FPE_FLTDIV,     /*  4 - DZ */
  369         FPE_FLTINV,     /*  5 - INV | DZ */
  370         FPE_FLTDIV,     /*  6 - DNML | DZ */
  371         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  372         FPE_FLTOVF,     /*  8 - OFL */
  373         FPE_FLTINV,     /*  9 - INV | OFL */
  374         FPE_FLTUND,     /*  A - DNML | OFL */
  375         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  376         FPE_FLTDIV,     /*  C - DZ | OFL */
  377         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  378         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  379         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  380         FPE_FLTUND,     /* 10 - UFL */
  381         FPE_FLTINV,     /* 11 - INV | UFL */
  382         FPE_FLTUND,     /* 12 - DNML | UFL */
  383         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  384         FPE_FLTDIV,     /* 14 - DZ | UFL */
  385         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  386         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  387         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  388         FPE_FLTOVF,     /* 18 - OFL | UFL */
  389         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  390         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  391         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  392         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  393         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  394         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  395         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  396         FPE_FLTRES,     /* 20 - IMP */
  397         FPE_FLTINV,     /* 21 - INV | IMP */
  398         FPE_FLTUND,     /* 22 - DNML | IMP */
  399         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  400         FPE_FLTDIV,     /* 24 - DZ | IMP */
  401         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  402         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  403         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  404         FPE_FLTOVF,     /* 28 - OFL | IMP */
  405         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  406         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  407         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  408         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  409         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  410         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  411         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  412         FPE_FLTUND,     /* 30 - UFL | IMP */
  413         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  414         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  415         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  416         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  417         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  418         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  419         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  420         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  421         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  422         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  423         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  424         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  425         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  426         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  427         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  428         FPE_FLTSUB,     /* 40 - STK */
  429         FPE_FLTSUB,     /* 41 - INV | STK */
  430         FPE_FLTUND,     /* 42 - DNML | STK */
  431         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  432         FPE_FLTDIV,     /* 44 - DZ | STK */
  433         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  434         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  435         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  436         FPE_FLTOVF,     /* 48 - OFL | STK */
  437         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  438         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  439         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  440         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  441         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  442         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  443         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  444         FPE_FLTUND,     /* 50 - UFL | STK */
  445         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  446         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  447         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  448         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  449         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  450         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  451         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  452         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  453         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  454         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  455         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  456         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  457         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  458         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  459         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  460         FPE_FLTRES,     /* 60 - IMP | STK */
  461         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  462         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  463         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  464         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  465         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  466         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  467         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  468         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  469         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  470         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  471         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  472         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  473         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  474         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  475         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  476         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  477         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  478         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  479         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  480         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  481         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  482         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  483         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  484         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  485         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  486         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  487         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  488         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  489         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  490         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  491         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  492 };
  493 
  494 /*
  495  * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
  496  *
  497  * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
  498  * depend on longjmp() restoring a usable state.  Restoring the state
  499  * or examining it might fail if we didn't clear exceptions.
  500  *
  501  * The error code chosen will be one of the FPE_... macros. It will be
  502  * sent as the second argument to old BSD-style signal handlers and as
  503  * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
  504  *
  505  * XXX the FP state is not preserved across signal handlers.  So signal
  506  * handlers cannot afford to do FP unless they preserve the state or
  507  * longjmp() out.  Both preserving the state and longjmp()ing may be
  508  * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
  509  * solution for signals other than SIGFPE.
  510  */
  511 int
  512 fputrap()
  513 {
  514         u_short control, status;
  515 
  516         critical_enter();
  517 
  518         /*
  519          * Interrupt handling (for another interrupt) may have pushed the
  520          * state to memory.  Fetch the relevant parts of the state from
  521          * wherever they are.
  522          */
  523         if (PCPU_GET(fpcurthread) != curthread) {
  524                 control = GET_FPU_CW(curthread);
  525                 status = GET_FPU_SW(curthread);
  526         } else {
  527                 fnstcw(&control);
  528                 fnstsw(&status);
  529         }
  530 
  531         if (PCPU_GET(fpcurthread) == curthread)
  532                 fnclex();
  533         critical_exit();
  534         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  535 }
  536 
  537 /*
  538  * Implement device not available (DNA) exception
  539  *
  540  * It would be better to switch FP context here (if curthread != fpcurthread)
  541  * and not necessarily for every context switch, but it is too hard to
  542  * access foreign pcb's.
  543  */
  544 
  545 static int err_count = 0;
  546 
  547 void
  548 fpudna(void)
  549 {
  550         struct pcb *pcb;
  551 
  552         critical_enter();
  553         if (PCPU_GET(fpcurthread) == curthread) {
  554                 printf("fpudna: fpcurthread == curthread %d times\n",
  555                     ++err_count);
  556                 stop_emulating();
  557                 critical_exit();
  558                 return;
  559         }
  560         if (PCPU_GET(fpcurthread) != NULL) {
  561                 printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  562                        PCPU_GET(fpcurthread),
  563                        PCPU_GET(fpcurthread)->td_proc->p_pid,
  564                        curthread, curthread->td_proc->p_pid);
  565                 panic("fpudna");
  566         }
  567         stop_emulating();
  568         /*
  569          * Record new context early in case frstor causes a trap.
  570          */
  571         PCPU_SET(fpcurthread, curthread);
  572         pcb = PCPU_GET(curpcb);
  573 
  574         fpu_clean_state();
  575 
  576         if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
  577                 /*
  578                  * This is the first time this thread has used the FPU or
  579                  * the PCB doesn't contain a clean FPU state.  Explicitly
  580                  * load an initial state.
  581                  */
  582                 fpurestore(fpu_initialstate);
  583                 if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
  584                         fldcw(pcb->pcb_initial_fpucw);
  585                 if (PCB_USER_FPU(pcb))
  586                         set_pcb_flags(pcb,
  587                             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  588                 else
  589                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  590         } else
  591                 fpurestore(pcb->pcb_save);
  592         critical_exit();
  593 }
  594 
  595 void
  596 fpudrop()
  597 {
  598         struct thread *td;
  599 
  600         td = PCPU_GET(fpcurthread);
  601         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  602         CRITICAL_ASSERT(td);
  603         PCPU_SET(fpcurthread, NULL);
  604         clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
  605         start_emulating();
  606 }
  607 
  608 /*
  609  * Get the user state of the FPU into pcb->pcb_user_save without
  610  * dropping ownership (if possible).  It returns the FPU ownership
  611  * status.
  612  */
  613 int
  614 fpugetregs(struct thread *td)
  615 {
  616         struct pcb *pcb;
  617 
  618         pcb = td->td_pcb;
  619         if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
  620                 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
  621                     cpu_max_ext_state_size);
  622                 get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
  623                     pcb->pcb_initial_fpucw;
  624                 fpuuserinited(td);
  625                 return (_MC_FPOWNED_PCB);
  626         }
  627         critical_enter();
  628         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  629                 fpusave(get_pcb_user_save_pcb(pcb));
  630                 critical_exit();
  631                 return (_MC_FPOWNED_FPU);
  632         } else {
  633                 critical_exit();
  634                 return (_MC_FPOWNED_PCB);
  635         }
  636 }
  637 
  638 void
  639 fpuuserinited(struct thread *td)
  640 {
  641         struct pcb *pcb;
  642 
  643         pcb = td->td_pcb;
  644         if (PCB_USER_FPU(pcb))
  645                 set_pcb_flags(pcb,
  646                     PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  647         else
  648                 set_pcb_flags(pcb, PCB_FPUINITDONE);
  649 }
  650 
  651 int
  652 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
  653 {
  654         struct xstate_hdr *hdr, *ehdr;
  655         size_t len, max_len;
  656         uint64_t bv;
  657 
  658         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
  659         if (xfpustate == NULL)
  660                 return (0);
  661         if (!use_xsave)
  662                 return (EOPNOTSUPP);
  663 
  664         len = xfpustate_size;
  665         if (len < sizeof(struct xstate_hdr))
  666                 return (EINVAL);
  667         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  668         if (len > max_len)
  669                 return (EINVAL);
  670 
  671         ehdr = (struct xstate_hdr *)xfpustate;
  672         bv = ehdr->xstate_bv;
  673 
  674         /*
  675          * Avoid #gp.
  676          */
  677         if (bv & ~xsave_mask)
  678                 return (EINVAL);
  679         if ((bv & (XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE)) !=
  680             (XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE))
  681                 return (EINVAL);
  682 
  683         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
  684 
  685         hdr->xstate_bv = bv;
  686         bcopy(xfpustate + sizeof(struct xstate_hdr),
  687             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
  688 
  689         return (0);
  690 }
  691 
  692 /*
  693  * Set the state of the FPU.
  694  */
  695 int
  696 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
  697     size_t xfpustate_size)
  698 {
  699         struct pcb *pcb;
  700         int error;
  701 
  702         pcb = td->td_pcb;
  703         critical_enter();
  704         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  705                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  706                 if (error != 0) {
  707                         critical_exit();
  708                         return (error);
  709                 }
  710                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  711                 fpurestore(get_pcb_user_save_td(td));
  712                 critical_exit();
  713                 set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  714         } else {
  715                 critical_exit();
  716                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  717                 if (error != 0)
  718                         return (error);
  719                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  720                 fpuuserinited(td);
  721         }
  722         return (0);
  723 }
  724 
  725 /*
  726  * On AuthenticAMD processors, the fxrstor instruction does not restore
  727  * the x87's stored last instruction pointer, last data pointer, and last
  728  * opcode values, except in the rare case in which the exception summary
  729  * (ES) bit in the x87 status word is set to 1.
  730  *
  731  * In order to avoid leaking this information across processes, we clean
  732  * these values by performing a dummy load before executing fxrstor().
  733  */
  734 static void
  735 fpu_clean_state(void)
  736 {
  737         static float dummy_variable = 0.0;
  738         u_short status;
  739 
  740         /*
  741          * Clear the ES bit in the x87 status word if it is currently
  742          * set, in order to avoid causing a fault in the upcoming load.
  743          */
  744         fnstsw(&status);
  745         if (status & 0x80)
  746                 fnclex();
  747 
  748         /*
  749          * Load the dummy variable into the x87 stack.  This mangles
  750          * the x87 stack, but we don't care since we're about to call
  751          * fxrstor() anyway.
  752          */
  753         __asm __volatile("ffree %%st(7); fld %0" : : "m" (dummy_variable));
  754 }
  755 
  756 /*
  757  * This really sucks.  We want the acpi version only, but it requires
  758  * the isa_if.h file in order to get the definitions.
  759  */
  760 #include "opt_isa.h"
  761 #ifdef DEV_ISA
  762 #include <isa/isavar.h>
  763 /*
  764  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
  765  */
  766 static struct isa_pnp_id fpupnp_ids[] = {
  767         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
  768         { 0 }
  769 };
  770 
  771 static int
  772 fpupnp_probe(device_t dev)
  773 {
  774         int result;
  775 
  776         result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
  777         if (result <= 0)
  778                 device_quiet(dev);
  779         return (result);
  780 }
  781 
  782 static int
  783 fpupnp_attach(device_t dev)
  784 {
  785 
  786         return (0);
  787 }
  788 
  789 static device_method_t fpupnp_methods[] = {
  790         /* Device interface */
  791         DEVMETHOD(device_probe,         fpupnp_probe),
  792         DEVMETHOD(device_attach,        fpupnp_attach),
  793         DEVMETHOD(device_detach,        bus_generic_detach),
  794         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  795         DEVMETHOD(device_suspend,       bus_generic_suspend),
  796         DEVMETHOD(device_resume,        bus_generic_resume),
  797         
  798         { 0, 0 }
  799 };
  800 
  801 static driver_t fpupnp_driver = {
  802         "fpupnp",
  803         fpupnp_methods,
  804         1,                      /* no softc */
  805 };
  806 
  807 static devclass_t fpupnp_devclass;
  808 
  809 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
  810 #endif  /* DEV_ISA */
  811 
  812 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
  813     "Kernel contexts for FPU state");
  814 
  815 #define FPU_KERN_CTX_FPUINITDONE 0x01
  816 
  817 struct fpu_kern_ctx {
  818         struct savefpu *prev;
  819         uint32_t flags;
  820         char hwstate1[];
  821 };
  822 
  823 struct fpu_kern_ctx *
  824 fpu_kern_alloc_ctx(u_int flags)
  825 {
  826         struct fpu_kern_ctx *res;
  827         size_t sz;
  828 
  829         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
  830             cpu_max_ext_state_size;
  831         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
  832             M_NOWAIT : M_WAITOK) | M_ZERO);
  833         return (res);
  834 }
  835 
  836 void
  837 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
  838 {
  839 
  840         /* XXXKIB clear the memory ? */
  841         free(ctx, M_FPUKERN_CTX);
  842 }
  843 
  844 static struct savefpu *
  845 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
  846 {
  847         vm_offset_t p;
  848 
  849         p = (vm_offset_t)&ctx->hwstate1;
  850         p = roundup2(p, XSAVE_AREA_ALIGN);
  851         return ((struct savefpu *)p);
  852 }
  853 
  854 int
  855 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
  856 {
  857         struct pcb *pcb;
  858 
  859         pcb = td->td_pcb;
  860         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
  861             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
  862         ctx->flags = 0;
  863         if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
  864                 ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
  865         fpuexit(td);
  866         ctx->prev = pcb->pcb_save;
  867         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
  868         set_pcb_flags(pcb, PCB_KERNFPU);
  869         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  870         return (0);
  871 }
  872 
  873 int
  874 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
  875 {
  876         struct pcb *pcb;
  877 
  878         pcb = td->td_pcb;
  879         critical_enter();
  880         if (curthread == PCPU_GET(fpcurthread))
  881                 fpudrop();
  882         critical_exit();
  883         pcb->pcb_save = ctx->prev;
  884         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
  885                 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
  886                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  887                         clear_pcb_flags(pcb, PCB_KERNFPU);
  888                 } else
  889                         clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
  890         } else {
  891                 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
  892                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  893                 else
  894                         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  895                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
  896         }
  897         return (0);
  898 }
  899 
  900 int
  901 fpu_kern_thread(u_int flags)
  902 {
  903         struct pcb *pcb;
  904 
  905         pcb = PCPU_GET(curpcb);
  906         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
  907             ("Only kthread may use fpu_kern_thread"));
  908         KASSERT(pcb->pcb_save == get_pcb_user_save_pcb(pcb),
  909             ("mangled pcb_save"));
  910         KASSERT(PCB_USER_FPU(pcb), ("recursive call"));
  911 
  912         set_pcb_flags(pcb, PCB_KERNFPU);
  913         return (0);
  914 }
  915 
  916 int
  917 is_fpu_kern_thread(u_int flags)
  918 {
  919 
  920         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
  921                 return (0);
  922         return ((PCPU_GET(curpcb)->pcb_flags & PCB_KERNFPU) != 0);
  923 }

Cache object: 2f653fb276ec674830b62396d08e6674


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.