The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/fpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/9.2/sys/amd64/amd64/fpu.c 250552 2013-05-12 04:24:25Z kib $");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/kernel.h>
   40 #include <sys/lock.h>
   41 #include <sys/malloc.h>
   42 #include <sys/module.h>
   43 #include <sys/mutex.h>
   44 #include <sys/mutex.h>
   45 #include <sys/proc.h>
   46 #include <sys/sysctl.h>
   47 #include <machine/bus.h>
   48 #include <sys/rman.h>
   49 #include <sys/signalvar.h>
   50 #include <vm/uma.h>
   51 
   52 #include <machine/cputypes.h>
   53 #include <machine/frame.h>
   54 #include <machine/intr_machdep.h>
   55 #include <machine/md_var.h>
   56 #include <machine/pcb.h>
   57 #include <machine/psl.h>
   58 #include <machine/resource.h>
   59 #include <machine/specialreg.h>
   60 #include <machine/segments.h>
   61 #include <machine/ucontext.h>
   62 
   63 /*
   64  * Floating point support.
   65  */
   66 
   67 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   68 
   69 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   70 #define fnclex()                __asm __volatile("fnclex")
   71 #define fninit()                __asm __volatile("fninit")
   72 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   73 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   74 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   75 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   76 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   77 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
   78 
   79 static __inline void
   80 xrstor(char *addr, uint64_t mask)
   81 {
   82         uint32_t low, hi;
   83 
   84         low = mask;
   85         hi = mask >> 32;
   86         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
   87 }
   88 
   89 static __inline void
   90 xsave(char *addr, uint64_t mask)
   91 {
   92         uint32_t low, hi;
   93 
   94         low = mask;
   95         hi = mask >> 32;
   96         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
   97             "memory");
   98 }
   99 
  100 #else   /* !(__GNUCLIKE_ASM && !lint) */
  101 
  102 void    fldcw(u_short cw);
  103 void    fnclex(void);
  104 void    fninit(void);
  105 void    fnstcw(caddr_t addr);
  106 void    fnstsw(caddr_t addr);
  107 void    fxsave(caddr_t addr);
  108 void    fxrstor(caddr_t addr);
  109 void    ldmxcsr(u_int csr);
  110 void    stmxcsr(u_int *csr);
  111 void    xrstor(char *addr, uint64_t mask);
  112 void    xsave(char *addr, uint64_t mask);
  113 
  114 #endif  /* __GNUCLIKE_ASM && !lint */
  115 
  116 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  117 #define stop_emulating()        clts()
  118 
  119 CTASSERT(sizeof(struct savefpu) == 512);
  120 CTASSERT(sizeof(struct xstate_hdr) == 64);
  121 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  122 
  123 /*
  124  * This requirement is to make it easier for asm code to calculate
  125  * offset of the fpu save area from the pcb address. FPU save area
  126  * must be 64-byte aligned.
  127  */
  128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  129 
  130 static  void    fpu_clean_state(void);
  131 
  132 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  133     NULL, 1, "Floating point instructions executed in hardware");
  134 
  135 int use_xsave;                  /* non-static for cpu_switch.S */
  136 uint64_t xsave_mask;            /* the same */
  137 static  uma_zone_t fpu_save_area_zone;
  138 static  struct savefpu *fpu_initialstate;
  139 
  140 struct xsave_area_elm_descr {
  141         u_int   offset;
  142         u_int   size;
  143 } *xsave_area_desc;
  144 
  145 void
  146 fpusave(void *addr)
  147 {
  148 
  149         if (use_xsave)
  150                 xsave((char *)addr, xsave_mask);
  151         else
  152                 fxsave((char *)addr);
  153 }
  154 
  155 void
  156 fpurestore(void *addr)
  157 {
  158 
  159         if (use_xsave)
  160                 xrstor((char *)addr, xsave_mask);
  161         else
  162                 fxrstor((char *)addr);
  163 }
  164 
  165 /*
  166  * Enable XSAVE if supported and allowed by user.
  167  * Calculate the xsave_mask.
  168  */
  169 static void
  170 fpuinit_bsp1(void)
  171 {
  172         u_int cp[4];
  173         uint64_t xsave_mask_user;
  174 
  175         if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
  176                 use_xsave = 1;
  177                 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  178         }
  179         if (!use_xsave)
  180                 return;
  181 
  182         cpuid_count(0xd, 0x0, cp);
  183         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  184         if ((cp[0] & xsave_mask) != xsave_mask)
  185                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  186         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  187         xsave_mask_user = xsave_mask;
  188         TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
  189         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  190         xsave_mask &= xsave_mask_user;
  191 
  192         cpuid_count(0xd, 0x1, cp);
  193         if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
  194                 /*
  195                  * Patch the XSAVE instruction in the cpu_switch code
  196                  * to XSAVEOPT.  We assume that XSAVE encoding used
  197                  * REX byte, and set the bit 4 of the r/m byte.
  198                  */
  199                 ctx_switch_xsave[3] |= 0x10;
  200         }
  201 }
  202 
  203 /*
  204  * Calculate the fpu save area size.
  205  */
  206 static void
  207 fpuinit_bsp2(void)
  208 {
  209         u_int cp[4];
  210 
  211         if (use_xsave) {
  212                 cpuid_count(0xd, 0x0, cp);
  213                 cpu_max_ext_state_size = cp[1];
  214 
  215                 /*
  216                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  217                  */
  218                 do_cpuid(1, cp);
  219                 cpu_feature2 = cp[2];
  220         } else
  221                 cpu_max_ext_state_size = sizeof(struct savefpu);
  222 }
  223 
  224 /*
  225  * Initialize the floating point unit.
  226  */
  227 void
  228 fpuinit(void)
  229 {
  230         register_t saveintr;
  231         u_int mxcsr;
  232         u_short control;
  233 
  234         if (IS_BSP())
  235                 fpuinit_bsp1();
  236 
  237         if (use_xsave) {
  238                 load_cr4(rcr4() | CR4_XSAVE);
  239                 load_xcr(XCR0, xsave_mask);
  240         }
  241 
  242         /*
  243          * XCR0 shall be set up before CPU can report the save area size.
  244          */
  245         if (IS_BSP())
  246                 fpuinit_bsp2();
  247 
  248         /*
  249          * It is too early for critical_enter() to work on AP.
  250          */
  251         saveintr = intr_disable();
  252         stop_emulating();
  253         fninit();
  254         control = __INITIAL_FPUCW__;
  255         fldcw(control);
  256         mxcsr = __INITIAL_MXCSR__;
  257         ldmxcsr(mxcsr);
  258         start_emulating();
  259         intr_restore(saveintr);
  260 }
  261 
  262 /*
  263  * On the boot CPU we generate a clean state that is used to
  264  * initialize the floating point unit when it is first used by a
  265  * process.
  266  */
  267 static void
  268 fpuinitstate(void *arg __unused)
  269 {
  270         register_t saveintr;
  271         int cp[4], i, max_ext_n;
  272 
  273         fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  274             M_WAITOK | M_ZERO);
  275         saveintr = intr_disable();
  276         stop_emulating();
  277 
  278         fpusave(fpu_initialstate);
  279         if (fpu_initialstate->sv_env.en_mxcsr_mask)
  280                 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
  281         else
  282                 cpu_mxcsr_mask = 0xFFBF;
  283 
  284         /*
  285          * The fninit instruction does not modify XMM registers.  The
  286          * fpusave call dumped the garbage contained in the registers
  287          * after reset to the initial state saved.  Clear XMM
  288          * registers file image to make the startup program state and
  289          * signal handler XMM register content predictable.
  290          */
  291         bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
  292 
  293         /*
  294          * Create a table describing the layout of the CPU Extended
  295          * Save Area.
  296          */
  297         if (use_xsave) {
  298                 max_ext_n = flsl(xsave_mask);
  299                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  300                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  301                 /* x87 state */
  302                 xsave_area_desc[0].offset = 0;
  303                 xsave_area_desc[0].size = 160;
  304                 /* XMM */
  305                 xsave_area_desc[1].offset = 160;
  306                 xsave_area_desc[1].size = 288 - 160;
  307 
  308                 for (i = 2; i < max_ext_n; i++) {
  309                         cpuid_count(0xd, i, cp);
  310                         xsave_area_desc[i].offset = cp[1];
  311                         xsave_area_desc[i].size = cp[0];
  312                 }
  313         }
  314 
  315         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  316             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  317             XSAVE_AREA_ALIGN - 1, 0);
  318 
  319         start_emulating();
  320         intr_restore(saveintr);
  321 }
  322 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
  323 
  324 /*
  325  * Free coprocessor (if we have it).
  326  */
  327 void
  328 fpuexit(struct thread *td)
  329 {
  330 
  331         critical_enter();
  332         if (curthread == PCPU_GET(fpcurthread)) {
  333                 stop_emulating();
  334                 fpusave(curpcb->pcb_save);
  335                 start_emulating();
  336                 PCPU_SET(fpcurthread, 0);
  337         }
  338         critical_exit();
  339 }
  340 
  341 int
  342 fpuformat()
  343 {
  344 
  345         return (_MC_FPFMT_XMM);
  346 }
  347 
  348 /* 
  349  * The following mechanism is used to ensure that the FPE_... value
  350  * that is passed as a trapcode to the signal handler of the user
  351  * process does not have more than one bit set.
  352  * 
  353  * Multiple bits may be set if the user process modifies the control
  354  * word while a status word bit is already set.  While this is a sign
  355  * of bad coding, we have no choise than to narrow them down to one
  356  * bit, since we must not send a trapcode that is not exactly one of
  357  * the FPE_ macros.
  358  *
  359  * The mechanism has a static table with 127 entries.  Each combination
  360  * of the 7 FPU status word exception bits directly translates to a
  361  * position in this table, where a single FPE_... value is stored.
  362  * This FPE_... value stored there is considered the "most important"
  363  * of the exception bits and will be sent as the signal code.  The
  364  * precedence of the bits is based upon Intel Document "Numerical
  365  * Applications", Chapter "Special Computational Situations".
  366  *
  367  * The macro to choose one of these values does these steps: 1) Throw
  368  * away status word bits that cannot be masked.  2) Throw away the bits
  369  * currently masked in the control word, assuming the user isn't
  370  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  371  * fault) if it is set, which cannot be masked but must be presered.
  372  * 4) Use the remaining bits to point into the trapcode table.
  373  *
  374  * The 6 maskable bits in order of their preference, as stated in the
  375  * above referenced Intel manual:
  376  * 1  Invalid operation (FP_X_INV)
  377  * 1a   Stack underflow
  378  * 1b   Stack overflow
  379  * 1c   Operand of unsupported format
  380  * 1d   SNaN operand.
  381  * 2  QNaN operand (not an exception, irrelavant here)
  382  * 3  Any other invalid-operation not mentioned above or zero divide
  383  *      (FP_X_INV, FP_X_DZ)
  384  * 4  Denormal operand (FP_X_DNML)
  385  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  386  * 6  Inexact result (FP_X_IMP) 
  387  */
  388 static char fpetable[128] = {
  389         0,
  390         FPE_FLTINV,     /*  1 - INV */
  391         FPE_FLTUND,     /*  2 - DNML */
  392         FPE_FLTINV,     /*  3 - INV | DNML */
  393         FPE_FLTDIV,     /*  4 - DZ */
  394         FPE_FLTINV,     /*  5 - INV | DZ */
  395         FPE_FLTDIV,     /*  6 - DNML | DZ */
  396         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  397         FPE_FLTOVF,     /*  8 - OFL */
  398         FPE_FLTINV,     /*  9 - INV | OFL */
  399         FPE_FLTUND,     /*  A - DNML | OFL */
  400         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  401         FPE_FLTDIV,     /*  C - DZ | OFL */
  402         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  403         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  404         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  405         FPE_FLTUND,     /* 10 - UFL */
  406         FPE_FLTINV,     /* 11 - INV | UFL */
  407         FPE_FLTUND,     /* 12 - DNML | UFL */
  408         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  409         FPE_FLTDIV,     /* 14 - DZ | UFL */
  410         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  411         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  412         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  413         FPE_FLTOVF,     /* 18 - OFL | UFL */
  414         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  415         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  416         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  417         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  418         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  419         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  420         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  421         FPE_FLTRES,     /* 20 - IMP */
  422         FPE_FLTINV,     /* 21 - INV | IMP */
  423         FPE_FLTUND,     /* 22 - DNML | IMP */
  424         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  425         FPE_FLTDIV,     /* 24 - DZ | IMP */
  426         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  427         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  428         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  429         FPE_FLTOVF,     /* 28 - OFL | IMP */
  430         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  431         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  432         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  433         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  434         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  435         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  436         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  437         FPE_FLTUND,     /* 30 - UFL | IMP */
  438         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  439         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  440         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  441         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  442         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  443         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  444         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  445         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  446         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  447         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  448         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  449         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  450         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  451         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  452         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  453         FPE_FLTSUB,     /* 40 - STK */
  454         FPE_FLTSUB,     /* 41 - INV | STK */
  455         FPE_FLTUND,     /* 42 - DNML | STK */
  456         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  457         FPE_FLTDIV,     /* 44 - DZ | STK */
  458         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  459         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  460         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  461         FPE_FLTOVF,     /* 48 - OFL | STK */
  462         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  463         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  464         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  465         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  466         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  467         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  468         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  469         FPE_FLTUND,     /* 50 - UFL | STK */
  470         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  471         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  472         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  473         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  474         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  475         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  476         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  477         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  478         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  479         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  480         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  481         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  482         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  483         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  484         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  485         FPE_FLTRES,     /* 60 - IMP | STK */
  486         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  487         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  488         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  489         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  490         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  491         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  492         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  493         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  494         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  495         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  496         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  497         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  498         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  499         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  500         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  501         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  502         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  503         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  504         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  505         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  506         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  507         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  508         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  509         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  510         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  511         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  512         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  513         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  514         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  515         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  516         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  517 };
  518 
  519 /*
  520  * Read the FP status and control words, then generate si_code value
  521  * for SIGFPE.  The error code chosen will be one of the
  522  * FPE_... macros.  It will be sent as the second argument to old
  523  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  524  * argument) to SA_SIGINFO signal handlers.
  525  *
  526  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  527  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  528  * usermode code which understands the FPU hardware enough to enable
  529  * the exceptions, can also handle clearing the exception state in the
  530  * handler.  The only consequence of not clearing the exception is the
  531  * rethrow of the SIGFPE on return from the signal handler and
  532  * reexecution of the corresponding instruction.
  533  *
  534  * For XMM traps, the exceptions were never cleared.
  535  */
  536 int
  537 fputrap_x87(void)
  538 {
  539         struct savefpu *pcb_save;
  540         u_short control, status;
  541 
  542         critical_enter();
  543 
  544         /*
  545          * Interrupt handling (for another interrupt) may have pushed the
  546          * state to memory.  Fetch the relevant parts of the state from
  547          * wherever they are.
  548          */
  549         if (PCPU_GET(fpcurthread) != curthread) {
  550                 pcb_save = curpcb->pcb_save;
  551                 control = pcb_save->sv_env.en_cw;
  552                 status = pcb_save->sv_env.en_sw;
  553         } else {
  554                 fnstcw(&control);
  555                 fnstsw(&status);
  556         }
  557 
  558         critical_exit();
  559         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  560 }
  561 
  562 int
  563 fputrap_sse(void)
  564 {
  565         u_int mxcsr;
  566 
  567         critical_enter();
  568         if (PCPU_GET(fpcurthread) != curthread)
  569                 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
  570         else
  571                 stmxcsr(&mxcsr);
  572         critical_exit();
  573         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  574 }
  575 
  576 /*
  577  * Implement device not available (DNA) exception
  578  *
  579  * It would be better to switch FP context here (if curthread != fpcurthread)
  580  * and not necessarily for every context switch, but it is too hard to
  581  * access foreign pcb's.
  582  */
  583 
  584 static int err_count = 0;
  585 
  586 void
  587 fpudna(void)
  588 {
  589 
  590         critical_enter();
  591         if (PCPU_GET(fpcurthread) == curthread) {
  592                 printf("fpudna: fpcurthread == curthread %d times\n",
  593                     ++err_count);
  594                 stop_emulating();
  595                 critical_exit();
  596                 return;
  597         }
  598         if (PCPU_GET(fpcurthread) != NULL) {
  599                 printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  600                        PCPU_GET(fpcurthread),
  601                        PCPU_GET(fpcurthread)->td_proc->p_pid,
  602                        curthread, curthread->td_proc->p_pid);
  603                 panic("fpudna");
  604         }
  605         stop_emulating();
  606         /*
  607          * Record new context early in case frstor causes a trap.
  608          */
  609         PCPU_SET(fpcurthread, curthread);
  610 
  611         fpu_clean_state();
  612 
  613         if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
  614                 /*
  615                  * This is the first time this thread has used the FPU or
  616                  * the PCB doesn't contain a clean FPU state.  Explicitly
  617                  * load an initial state.
  618                  *
  619                  * We prefer to restore the state from the actual save
  620                  * area in PCB instead of directly loading from
  621                  * fpu_initialstate, to ignite the XSAVEOPT
  622                  * tracking engine.
  623                  */
  624                 bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
  625                 fpurestore(curpcb->pcb_save);
  626                 if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
  627                         fldcw(curpcb->pcb_initial_fpucw);
  628                 if (PCB_USER_FPU(curpcb))
  629                         set_pcb_flags(curpcb,
  630                             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  631                 else
  632                         set_pcb_flags(curpcb, PCB_FPUINITDONE);
  633         } else
  634                 fpurestore(curpcb->pcb_save);
  635         critical_exit();
  636 }
  637 
  638 void
  639 fpudrop()
  640 {
  641         struct thread *td;
  642 
  643         td = PCPU_GET(fpcurthread);
  644         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  645         CRITICAL_ASSERT(td);
  646         PCPU_SET(fpcurthread, NULL);
  647         clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
  648         start_emulating();
  649 }
  650 
  651 /*
  652  * Get the user state of the FPU into pcb->pcb_user_save without
  653  * dropping ownership (if possible).  It returns the FPU ownership
  654  * status.
  655  */
  656 int
  657 fpugetregs(struct thread *td)
  658 {
  659         struct pcb *pcb;
  660         uint64_t *xstate_bv, bit;
  661         char *sa;
  662         int max_ext_n, i, owned;
  663 
  664         pcb = td->td_pcb;
  665         if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
  666                 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
  667                     cpu_max_ext_state_size);
  668                 get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
  669                     pcb->pcb_initial_fpucw;
  670                 fpuuserinited(td);
  671                 return (_MC_FPOWNED_PCB);
  672         }
  673         critical_enter();
  674         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  675                 fpusave(get_pcb_user_save_pcb(pcb));
  676                 owned = _MC_FPOWNED_FPU;
  677         } else {
  678                 owned = _MC_FPOWNED_PCB;
  679         }
  680         critical_exit();
  681         if (use_xsave) {
  682                 /*
  683                  * Handle partially saved state.
  684                  */
  685                 sa = (char *)get_pcb_user_save_pcb(pcb);
  686                 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
  687                     offsetof(struct xstate_hdr, xstate_bv));
  688                 max_ext_n = flsl(xsave_mask);
  689                 for (i = 0; i < max_ext_n; i++) {
  690                         bit = 1ULL << i;
  691                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
  692                                 continue;
  693                         bcopy((char *)fpu_initialstate +
  694                             xsave_area_desc[i].offset,
  695                             sa + xsave_area_desc[i].offset,
  696                             xsave_area_desc[i].size);
  697                         *xstate_bv |= bit;
  698                 }
  699         }
  700         return (owned);
  701 }
  702 
  703 void
  704 fpuuserinited(struct thread *td)
  705 {
  706         struct pcb *pcb;
  707 
  708         pcb = td->td_pcb;
  709         if (PCB_USER_FPU(pcb))
  710                 set_pcb_flags(pcb,
  711                     PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  712         else
  713                 set_pcb_flags(pcb, PCB_FPUINITDONE);
  714 }
  715 
  716 int
  717 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
  718 {
  719         struct xstate_hdr *hdr, *ehdr;
  720         size_t len, max_len;
  721         uint64_t bv;
  722 
  723         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
  724         if (xfpustate == NULL)
  725                 return (0);
  726         if (!use_xsave)
  727                 return (EOPNOTSUPP);
  728 
  729         len = xfpustate_size;
  730         if (len < sizeof(struct xstate_hdr))
  731                 return (EINVAL);
  732         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  733         if (len > max_len)
  734                 return (EINVAL);
  735 
  736         ehdr = (struct xstate_hdr *)xfpustate;
  737         bv = ehdr->xstate_bv;
  738 
  739         /*
  740          * Avoid #gp.
  741          */
  742         if (bv & ~xsave_mask)
  743                 return (EINVAL);
  744 
  745         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
  746 
  747         hdr->xstate_bv = bv;
  748         bcopy(xfpustate + sizeof(struct xstate_hdr),
  749             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
  750 
  751         return (0);
  752 }
  753 
  754 /*
  755  * Set the state of the FPU.
  756  */
  757 int
  758 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
  759     size_t xfpustate_size)
  760 {
  761         struct pcb *pcb;
  762         int error;
  763 
  764         pcb = td->td_pcb;
  765         critical_enter();
  766         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  767                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  768                 if (error != 0) {
  769                         critical_exit();
  770                         return (error);
  771                 }
  772                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  773                 fpurestore(get_pcb_user_save_td(td));
  774                 critical_exit();
  775                 set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  776         } else {
  777                 critical_exit();
  778                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  779                 if (error != 0)
  780                         return (error);
  781                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  782                 fpuuserinited(td);
  783         }
  784         return (0);
  785 }
  786 
  787 /*
  788  * On AuthenticAMD processors, the fxrstor instruction does not restore
  789  * the x87's stored last instruction pointer, last data pointer, and last
  790  * opcode values, except in the rare case in which the exception summary
  791  * (ES) bit in the x87 status word is set to 1.
  792  *
  793  * In order to avoid leaking this information across processes, we clean
  794  * these values by performing a dummy load before executing fxrstor().
  795  */
  796 static void
  797 fpu_clean_state(void)
  798 {
  799         static float dummy_variable = 0.0;
  800         u_short status;
  801 
  802         /*
  803          * Clear the ES bit in the x87 status word if it is currently
  804          * set, in order to avoid causing a fault in the upcoming load.
  805          */
  806         fnstsw(&status);
  807         if (status & 0x80)
  808                 fnclex();
  809 
  810         /*
  811          * Load the dummy variable into the x87 stack.  This mangles
  812          * the x87 stack, but we don't care since we're about to call
  813          * fxrstor() anyway.
  814          */
  815         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
  816 }
  817 
  818 /*
  819  * This really sucks.  We want the acpi version only, but it requires
  820  * the isa_if.h file in order to get the definitions.
  821  */
  822 #include "opt_isa.h"
  823 #ifdef DEV_ISA
  824 #include <isa/isavar.h>
  825 /*
  826  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
  827  */
  828 static struct isa_pnp_id fpupnp_ids[] = {
  829         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
  830         { 0 }
  831 };
  832 
  833 static int
  834 fpupnp_probe(device_t dev)
  835 {
  836         int result;
  837 
  838         result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
  839         if (result <= 0)
  840                 device_quiet(dev);
  841         return (result);
  842 }
  843 
  844 static int
  845 fpupnp_attach(device_t dev)
  846 {
  847 
  848         return (0);
  849 }
  850 
  851 static device_method_t fpupnp_methods[] = {
  852         /* Device interface */
  853         DEVMETHOD(device_probe,         fpupnp_probe),
  854         DEVMETHOD(device_attach,        fpupnp_attach),
  855         DEVMETHOD(device_detach,        bus_generic_detach),
  856         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  857         DEVMETHOD(device_suspend,       bus_generic_suspend),
  858         DEVMETHOD(device_resume,        bus_generic_resume),
  859         
  860         { 0, 0 }
  861 };
  862 
  863 static driver_t fpupnp_driver = {
  864         "fpupnp",
  865         fpupnp_methods,
  866         1,                      /* no softc */
  867 };
  868 
  869 static devclass_t fpupnp_devclass;
  870 
  871 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
  872 #endif  /* DEV_ISA */
  873 
  874 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
  875     "Kernel contexts for FPU state");
  876 
  877 #define FPU_KERN_CTX_FPUINITDONE 0x01
  878 
  879 struct fpu_kern_ctx {
  880         struct savefpu *prev;
  881         uint32_t flags;
  882         char hwstate1[];
  883 };
  884 
  885 struct fpu_kern_ctx *
  886 fpu_kern_alloc_ctx(u_int flags)
  887 {
  888         struct fpu_kern_ctx *res;
  889         size_t sz;
  890 
  891         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
  892             cpu_max_ext_state_size;
  893         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
  894             M_NOWAIT : M_WAITOK) | M_ZERO);
  895         return (res);
  896 }
  897 
  898 void
  899 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
  900 {
  901 
  902         /* XXXKIB clear the memory ? */
  903         free(ctx, M_FPUKERN_CTX);
  904 }
  905 
  906 static struct savefpu *
  907 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
  908 {
  909         vm_offset_t p;
  910 
  911         p = (vm_offset_t)&ctx->hwstate1;
  912         p = roundup2(p, XSAVE_AREA_ALIGN);
  913         return ((struct savefpu *)p);
  914 }
  915 
  916 int
  917 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
  918 {
  919         struct pcb *pcb;
  920 
  921         pcb = td->td_pcb;
  922         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
  923             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
  924         ctx->flags = 0;
  925         if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
  926                 ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
  927         fpuexit(td);
  928         ctx->prev = pcb->pcb_save;
  929         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
  930         set_pcb_flags(pcb, PCB_KERNFPU);
  931         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  932         return (0);
  933 }
  934 
  935 int
  936 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
  937 {
  938         struct pcb *pcb;
  939 
  940         pcb = td->td_pcb;
  941         critical_enter();
  942         if (curthread == PCPU_GET(fpcurthread))
  943                 fpudrop();
  944         critical_exit();
  945         pcb->pcb_save = ctx->prev;
  946         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
  947                 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
  948                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  949                         clear_pcb_flags(pcb, PCB_KERNFPU);
  950                 } else
  951                         clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
  952         } else {
  953                 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
  954                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  955                 else
  956                         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  957                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
  958         }
  959         return (0);
  960 }
  961 
  962 int
  963 fpu_kern_thread(u_int flags)
  964 {
  965 
  966         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
  967             ("Only kthread may use fpu_kern_thread"));
  968         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
  969             ("mangled pcb_save"));
  970         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
  971 
  972         set_pcb_flags(curpcb, PCB_KERNFPU);
  973         return (0);
  974 }
  975 
  976 int
  977 is_fpu_kern_thread(u_int flags)
  978 {
  979 
  980         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
  981                 return (0);
  982         return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
  983 }
  984 
  985 /*
  986  * FPU save area alloc/free/init utility routines
  987  */
  988 struct savefpu *
  989 fpu_save_area_alloc(void)
  990 {
  991 
  992         return (uma_zalloc(fpu_save_area_zone, 0));
  993 }
  994 
  995 void
  996 fpu_save_area_free(struct savefpu *fsa)
  997 {
  998 
  999         uma_zfree(fpu_save_area_zone, fsa);
 1000 }
 1001 
 1002 void
 1003 fpu_save_area_reset(struct savefpu *fsa)
 1004 {
 1005 
 1006         bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
 1007 }

Cache object: bce6bb67f37a2fd4cf6cf77c89b3344f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.