The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/fpu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 William Jolitz.
    3  * Copyright (c) 1991 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: @(#)npx.c 7.2 (Berkeley) 5/12/91
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/kernel.h>
   40 #include <sys/lock.h>
   41 #include <sys/malloc.h>
   42 #include <sys/module.h>
   43 #include <sys/mutex.h>
   44 #include <sys/mutex.h>
   45 #include <sys/proc.h>
   46 #include <sys/sysctl.h>
   47 #include <machine/bus.h>
   48 #include <sys/rman.h>
   49 #include <sys/signalvar.h>
   50 #include <vm/uma.h>
   51 
   52 #include <machine/cputypes.h>
   53 #include <machine/frame.h>
   54 #include <machine/intr_machdep.h>
   55 #include <machine/md_var.h>
   56 #include <machine/pcb.h>
   57 #include <machine/psl.h>
   58 #include <machine/resource.h>
   59 #include <machine/specialreg.h>
   60 #include <machine/segments.h>
   61 #include <machine/ucontext.h>
   62 
   63 /*
   64  * Floating point support.
   65  */
   66 
   67 #if defined(__GNUCLIKE_ASM) && !defined(lint)
   68 
   69 #define fldcw(cw)               __asm __volatile("fldcw %0" : : "m" (cw))
   70 #define fnclex()                __asm __volatile("fnclex")
   71 #define fninit()                __asm __volatile("fninit")
   72 #define fnstcw(addr)            __asm __volatile("fnstcw %0" : "=m" (*(addr)))
   73 #define fnstsw(addr)            __asm __volatile("fnstsw %0" : "=am" (*(addr)))
   74 #define fxrstor(addr)           __asm __volatile("fxrstor %0" : : "m" (*(addr)))
   75 #define fxsave(addr)            __asm __volatile("fxsave %0" : "=m" (*(addr)))
   76 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
   77 #define stmxcsr(addr)           __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
   78 
   79 static __inline void
   80 xrstor(char *addr, uint64_t mask)
   81 {
   82         uint32_t low, hi;
   83 
   84         low = mask;
   85         hi = mask >> 32;
   86         __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
   87 }
   88 
   89 static __inline void
   90 xsave(char *addr, uint64_t mask)
   91 {
   92         uint32_t low, hi;
   93 
   94         low = mask;
   95         hi = mask >> 32;
   96         __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
   97             "memory");
   98 }
   99 
  100 #else   /* !(__GNUCLIKE_ASM && !lint) */
  101 
  102 void    fldcw(u_short cw);
  103 void    fnclex(void);
  104 void    fninit(void);
  105 void    fnstcw(caddr_t addr);
  106 void    fnstsw(caddr_t addr);
  107 void    fxsave(caddr_t addr);
  108 void    fxrstor(caddr_t addr);
  109 void    ldmxcsr(u_int csr);
  110 void    stmxcsr(u_int *csr);
  111 void    xrstor(char *addr, uint64_t mask);
  112 void    xsave(char *addr, uint64_t mask);
  113 
  114 #endif  /* __GNUCLIKE_ASM && !lint */
  115 
  116 #define start_emulating()       load_cr0(rcr0() | CR0_TS)
  117 #define stop_emulating()        clts()
  118 
  119 CTASSERT(sizeof(struct savefpu) == 512);
  120 CTASSERT(sizeof(struct xstate_hdr) == 64);
  121 CTASSERT(sizeof(struct savefpu_ymm) == 832);
  122 
  123 /*
  124  * This requirement is to make it easier for asm code to calculate
  125  * offset of the fpu save area from the pcb address. FPU save area
  126  * must be 64-byte aligned.
  127  */
  128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
  129 
  130 static  void    fpu_clean_state(void);
  131 
  132 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  133     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
  134 
  135 int use_xsave;                  /* non-static for cpu_switch.S */
  136 uint64_t xsave_mask;            /* the same */
  137 static  uma_zone_t fpu_save_area_zone;
  138 static  struct savefpu *fpu_initialstate;
  139 
  140 struct xsave_area_elm_descr {
  141         u_int   offset;
  142         u_int   size;
  143 } *xsave_area_desc;
  144 
  145 void
  146 fpusave(void *addr)
  147 {
  148 
  149         if (use_xsave)
  150                 xsave((char *)addr, xsave_mask);
  151         else
  152                 fxsave((char *)addr);
  153 }
  154 
  155 void
  156 fpurestore(void *addr)
  157 {
  158 
  159         if (use_xsave)
  160                 xrstor((char *)addr, xsave_mask);
  161         else
  162                 fxrstor((char *)addr);
  163 }
  164 
  165 void
  166 fpususpend(void *addr)
  167 {
  168         u_long cr0;
  169 
  170         cr0 = rcr0();
  171         stop_emulating();
  172         fpusave(addr);
  173         load_cr0(cr0);
  174 }
  175 
  176 /*
  177  * Enable XSAVE if supported and allowed by user.
  178  * Calculate the xsave_mask.
  179  */
  180 static void
  181 fpuinit_bsp1(void)
  182 {
  183         u_int cp[4];
  184         uint64_t xsave_mask_user;
  185 
  186         if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
  187                 use_xsave = 1;
  188                 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
  189         }
  190         if (!use_xsave)
  191                 return;
  192 
  193         cpuid_count(0xd, 0x0, cp);
  194         xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  195         if ((cp[0] & xsave_mask) != xsave_mask)
  196                 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
  197         xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
  198         xsave_mask_user = xsave_mask;
  199         TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
  200         xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
  201         xsave_mask &= xsave_mask_user;
  202 
  203         cpuid_count(0xd, 0x1, cp);
  204         if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
  205                 /*
  206                  * Patch the XSAVE instruction in the cpu_switch code
  207                  * to XSAVEOPT.  We assume that XSAVE encoding used
  208                  * REX byte, and set the bit 4 of the r/m byte.
  209                  */
  210                 ctx_switch_xsave[3] |= 0x10;
  211         }
  212 }
  213 
  214 /*
  215  * Calculate the fpu save area size.
  216  */
  217 static void
  218 fpuinit_bsp2(void)
  219 {
  220         u_int cp[4];
  221 
  222         if (use_xsave) {
  223                 cpuid_count(0xd, 0x0, cp);
  224                 cpu_max_ext_state_size = cp[1];
  225 
  226                 /*
  227                  * Reload the cpu_feature2, since we enabled OSXSAVE.
  228                  */
  229                 do_cpuid(1, cp);
  230                 cpu_feature2 = cp[2];
  231         } else
  232                 cpu_max_ext_state_size = sizeof(struct savefpu);
  233 }
  234 
  235 /*
  236  * Initialize the floating point unit.
  237  */
  238 void
  239 fpuinit(void)
  240 {
  241         register_t saveintr;
  242         u_int mxcsr;
  243         u_short control;
  244 
  245         if (IS_BSP())
  246                 fpuinit_bsp1();
  247 
  248         if (use_xsave) {
  249                 load_cr4(rcr4() | CR4_XSAVE);
  250                 load_xcr(XCR0, xsave_mask);
  251         }
  252 
  253         /*
  254          * XCR0 shall be set up before CPU can report the save area size.
  255          */
  256         if (IS_BSP())
  257                 fpuinit_bsp2();
  258 
  259         /*
  260          * It is too early for critical_enter() to work on AP.
  261          */
  262         saveintr = intr_disable();
  263         stop_emulating();
  264         fninit();
  265         control = __INITIAL_FPUCW__;
  266         fldcw(control);
  267         mxcsr = __INITIAL_MXCSR__;
  268         ldmxcsr(mxcsr);
  269         start_emulating();
  270         intr_restore(saveintr);
  271 }
  272 
  273 /*
  274  * On the boot CPU we generate a clean state that is used to
  275  * initialize the floating point unit when it is first used by a
  276  * process.
  277  */
  278 static void
  279 fpuinitstate(void *arg __unused)
  280 {
  281         register_t saveintr;
  282         int cp[4], i, max_ext_n;
  283 
  284         fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
  285             M_WAITOK | M_ZERO);
  286         saveintr = intr_disable();
  287         stop_emulating();
  288 
  289         fpusave(fpu_initialstate);
  290         if (fpu_initialstate->sv_env.en_mxcsr_mask)
  291                 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
  292         else
  293                 cpu_mxcsr_mask = 0xFFBF;
  294 
  295         /*
  296          * The fninit instruction does not modify XMM registers.  The
  297          * fpusave call dumped the garbage contained in the registers
  298          * after reset to the initial state saved.  Clear XMM
  299          * registers file image to make the startup program state and
  300          * signal handler XMM register content predictable.
  301          */
  302         bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
  303 
  304         /*
  305          * Create a table describing the layout of the CPU Extended
  306          * Save Area.
  307          */
  308         if (use_xsave) {
  309                 max_ext_n = flsl(xsave_mask);
  310                 xsave_area_desc = malloc(max_ext_n * sizeof(struct
  311                     xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
  312                 /* x87 state */
  313                 xsave_area_desc[0].offset = 0;
  314                 xsave_area_desc[0].size = 160;
  315                 /* XMM */
  316                 xsave_area_desc[1].offset = 160;
  317                 xsave_area_desc[1].size = 288 - 160;
  318 
  319                 for (i = 2; i < max_ext_n; i++) {
  320                         cpuid_count(0xd, i, cp);
  321                         xsave_area_desc[i].offset = cp[1];
  322                         xsave_area_desc[i].size = cp[0];
  323                 }
  324         }
  325 
  326         fpu_save_area_zone = uma_zcreate("FPU_save_area",
  327             cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
  328             XSAVE_AREA_ALIGN - 1, 0);
  329 
  330         start_emulating();
  331         intr_restore(saveintr);
  332 }
  333 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
  334 
  335 /*
  336  * Free coprocessor (if we have it).
  337  */
  338 void
  339 fpuexit(struct thread *td)
  340 {
  341 
  342         critical_enter();
  343         if (curthread == PCPU_GET(fpcurthread)) {
  344                 stop_emulating();
  345                 fpusave(curpcb->pcb_save);
  346                 start_emulating();
  347                 PCPU_SET(fpcurthread, 0);
  348         }
  349         critical_exit();
  350 }
  351 
  352 int
  353 fpuformat()
  354 {
  355 
  356         return (_MC_FPFMT_XMM);
  357 }
  358 
  359 /* 
  360  * The following mechanism is used to ensure that the FPE_... value
  361  * that is passed as a trapcode to the signal handler of the user
  362  * process does not have more than one bit set.
  363  * 
  364  * Multiple bits may be set if the user process modifies the control
  365  * word while a status word bit is already set.  While this is a sign
  366  * of bad coding, we have no choise than to narrow them down to one
  367  * bit, since we must not send a trapcode that is not exactly one of
  368  * the FPE_ macros.
  369  *
  370  * The mechanism has a static table with 127 entries.  Each combination
  371  * of the 7 FPU status word exception bits directly translates to a
  372  * position in this table, where a single FPE_... value is stored.
  373  * This FPE_... value stored there is considered the "most important"
  374  * of the exception bits and will be sent as the signal code.  The
  375  * precedence of the bits is based upon Intel Document "Numerical
  376  * Applications", Chapter "Special Computational Situations".
  377  *
  378  * The macro to choose one of these values does these steps: 1) Throw
  379  * away status word bits that cannot be masked.  2) Throw away the bits
  380  * currently masked in the control word, assuming the user isn't
  381  * interested in them anymore.  3) Reinsert status word bit 7 (stack
  382  * fault) if it is set, which cannot be masked but must be presered.
  383  * 4) Use the remaining bits to point into the trapcode table.
  384  *
  385  * The 6 maskable bits in order of their preference, as stated in the
  386  * above referenced Intel manual:
  387  * 1  Invalid operation (FP_X_INV)
  388  * 1a   Stack underflow
  389  * 1b   Stack overflow
  390  * 1c   Operand of unsupported format
  391  * 1d   SNaN operand.
  392  * 2  QNaN operand (not an exception, irrelavant here)
  393  * 3  Any other invalid-operation not mentioned above or zero divide
  394  *      (FP_X_INV, FP_X_DZ)
  395  * 4  Denormal operand (FP_X_DNML)
  396  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
  397  * 6  Inexact result (FP_X_IMP) 
  398  */
  399 static char fpetable[128] = {
  400         0,
  401         FPE_FLTINV,     /*  1 - INV */
  402         FPE_FLTUND,     /*  2 - DNML */
  403         FPE_FLTINV,     /*  3 - INV | DNML */
  404         FPE_FLTDIV,     /*  4 - DZ */
  405         FPE_FLTINV,     /*  5 - INV | DZ */
  406         FPE_FLTDIV,     /*  6 - DNML | DZ */
  407         FPE_FLTINV,     /*  7 - INV | DNML | DZ */
  408         FPE_FLTOVF,     /*  8 - OFL */
  409         FPE_FLTINV,     /*  9 - INV | OFL */
  410         FPE_FLTUND,     /*  A - DNML | OFL */
  411         FPE_FLTINV,     /*  B - INV | DNML | OFL */
  412         FPE_FLTDIV,     /*  C - DZ | OFL */
  413         FPE_FLTINV,     /*  D - INV | DZ | OFL */
  414         FPE_FLTDIV,     /*  E - DNML | DZ | OFL */
  415         FPE_FLTINV,     /*  F - INV | DNML | DZ | OFL */
  416         FPE_FLTUND,     /* 10 - UFL */
  417         FPE_FLTINV,     /* 11 - INV | UFL */
  418         FPE_FLTUND,     /* 12 - DNML | UFL */
  419         FPE_FLTINV,     /* 13 - INV | DNML | UFL */
  420         FPE_FLTDIV,     /* 14 - DZ | UFL */
  421         FPE_FLTINV,     /* 15 - INV | DZ | UFL */
  422         FPE_FLTDIV,     /* 16 - DNML | DZ | UFL */
  423         FPE_FLTINV,     /* 17 - INV | DNML | DZ | UFL */
  424         FPE_FLTOVF,     /* 18 - OFL | UFL */
  425         FPE_FLTINV,     /* 19 - INV | OFL | UFL */
  426         FPE_FLTUND,     /* 1A - DNML | OFL | UFL */
  427         FPE_FLTINV,     /* 1B - INV | DNML | OFL | UFL */
  428         FPE_FLTDIV,     /* 1C - DZ | OFL | UFL */
  429         FPE_FLTINV,     /* 1D - INV | DZ | OFL | UFL */
  430         FPE_FLTDIV,     /* 1E - DNML | DZ | OFL | UFL */
  431         FPE_FLTINV,     /* 1F - INV | DNML | DZ | OFL | UFL */
  432         FPE_FLTRES,     /* 20 - IMP */
  433         FPE_FLTINV,     /* 21 - INV | IMP */
  434         FPE_FLTUND,     /* 22 - DNML | IMP */
  435         FPE_FLTINV,     /* 23 - INV | DNML | IMP */
  436         FPE_FLTDIV,     /* 24 - DZ | IMP */
  437         FPE_FLTINV,     /* 25 - INV | DZ | IMP */
  438         FPE_FLTDIV,     /* 26 - DNML | DZ | IMP */
  439         FPE_FLTINV,     /* 27 - INV | DNML | DZ | IMP */
  440         FPE_FLTOVF,     /* 28 - OFL | IMP */
  441         FPE_FLTINV,     /* 29 - INV | OFL | IMP */
  442         FPE_FLTUND,     /* 2A - DNML | OFL | IMP */
  443         FPE_FLTINV,     /* 2B - INV | DNML | OFL | IMP */
  444         FPE_FLTDIV,     /* 2C - DZ | OFL | IMP */
  445         FPE_FLTINV,     /* 2D - INV | DZ | OFL | IMP */
  446         FPE_FLTDIV,     /* 2E - DNML | DZ | OFL | IMP */
  447         FPE_FLTINV,     /* 2F - INV | DNML | DZ | OFL | IMP */
  448         FPE_FLTUND,     /* 30 - UFL | IMP */
  449         FPE_FLTINV,     /* 31 - INV | UFL | IMP */
  450         FPE_FLTUND,     /* 32 - DNML | UFL | IMP */
  451         FPE_FLTINV,     /* 33 - INV | DNML | UFL | IMP */
  452         FPE_FLTDIV,     /* 34 - DZ | UFL | IMP */
  453         FPE_FLTINV,     /* 35 - INV | DZ | UFL | IMP */
  454         FPE_FLTDIV,     /* 36 - DNML | DZ | UFL | IMP */
  455         FPE_FLTINV,     /* 37 - INV | DNML | DZ | UFL | IMP */
  456         FPE_FLTOVF,     /* 38 - OFL | UFL | IMP */
  457         FPE_FLTINV,     /* 39 - INV | OFL | UFL | IMP */
  458         FPE_FLTUND,     /* 3A - DNML | OFL | UFL | IMP */
  459         FPE_FLTINV,     /* 3B - INV | DNML | OFL | UFL | IMP */
  460         FPE_FLTDIV,     /* 3C - DZ | OFL | UFL | IMP */
  461         FPE_FLTINV,     /* 3D - INV | DZ | OFL | UFL | IMP */
  462         FPE_FLTDIV,     /* 3E - DNML | DZ | OFL | UFL | IMP */
  463         FPE_FLTINV,     /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
  464         FPE_FLTSUB,     /* 40 - STK */
  465         FPE_FLTSUB,     /* 41 - INV | STK */
  466         FPE_FLTUND,     /* 42 - DNML | STK */
  467         FPE_FLTSUB,     /* 43 - INV | DNML | STK */
  468         FPE_FLTDIV,     /* 44 - DZ | STK */
  469         FPE_FLTSUB,     /* 45 - INV | DZ | STK */
  470         FPE_FLTDIV,     /* 46 - DNML | DZ | STK */
  471         FPE_FLTSUB,     /* 47 - INV | DNML | DZ | STK */
  472         FPE_FLTOVF,     /* 48 - OFL | STK */
  473         FPE_FLTSUB,     /* 49 - INV | OFL | STK */
  474         FPE_FLTUND,     /* 4A - DNML | OFL | STK */
  475         FPE_FLTSUB,     /* 4B - INV | DNML | OFL | STK */
  476         FPE_FLTDIV,     /* 4C - DZ | OFL | STK */
  477         FPE_FLTSUB,     /* 4D - INV | DZ | OFL | STK */
  478         FPE_FLTDIV,     /* 4E - DNML | DZ | OFL | STK */
  479         FPE_FLTSUB,     /* 4F - INV | DNML | DZ | OFL | STK */
  480         FPE_FLTUND,     /* 50 - UFL | STK */
  481         FPE_FLTSUB,     /* 51 - INV | UFL | STK */
  482         FPE_FLTUND,     /* 52 - DNML | UFL | STK */
  483         FPE_FLTSUB,     /* 53 - INV | DNML | UFL | STK */
  484         FPE_FLTDIV,     /* 54 - DZ | UFL | STK */
  485         FPE_FLTSUB,     /* 55 - INV | DZ | UFL | STK */
  486         FPE_FLTDIV,     /* 56 - DNML | DZ | UFL | STK */
  487         FPE_FLTSUB,     /* 57 - INV | DNML | DZ | UFL | STK */
  488         FPE_FLTOVF,     /* 58 - OFL | UFL | STK */
  489         FPE_FLTSUB,     /* 59 - INV | OFL | UFL | STK */
  490         FPE_FLTUND,     /* 5A - DNML | OFL | UFL | STK */
  491         FPE_FLTSUB,     /* 5B - INV | DNML | OFL | UFL | STK */
  492         FPE_FLTDIV,     /* 5C - DZ | OFL | UFL | STK */
  493         FPE_FLTSUB,     /* 5D - INV | DZ | OFL | UFL | STK */
  494         FPE_FLTDIV,     /* 5E - DNML | DZ | OFL | UFL | STK */
  495         FPE_FLTSUB,     /* 5F - INV | DNML | DZ | OFL | UFL | STK */
  496         FPE_FLTRES,     /* 60 - IMP | STK */
  497         FPE_FLTSUB,     /* 61 - INV | IMP | STK */
  498         FPE_FLTUND,     /* 62 - DNML | IMP | STK */
  499         FPE_FLTSUB,     /* 63 - INV | DNML | IMP | STK */
  500         FPE_FLTDIV,     /* 64 - DZ | IMP | STK */
  501         FPE_FLTSUB,     /* 65 - INV | DZ | IMP | STK */
  502         FPE_FLTDIV,     /* 66 - DNML | DZ | IMP | STK */
  503         FPE_FLTSUB,     /* 67 - INV | DNML | DZ | IMP | STK */
  504         FPE_FLTOVF,     /* 68 - OFL | IMP | STK */
  505         FPE_FLTSUB,     /* 69 - INV | OFL | IMP | STK */
  506         FPE_FLTUND,     /* 6A - DNML | OFL | IMP | STK */
  507         FPE_FLTSUB,     /* 6B - INV | DNML | OFL | IMP | STK */
  508         FPE_FLTDIV,     /* 6C - DZ | OFL | IMP | STK */
  509         FPE_FLTSUB,     /* 6D - INV | DZ | OFL | IMP | STK */
  510         FPE_FLTDIV,     /* 6E - DNML | DZ | OFL | IMP | STK */
  511         FPE_FLTSUB,     /* 6F - INV | DNML | DZ | OFL | IMP | STK */
  512         FPE_FLTUND,     /* 70 - UFL | IMP | STK */
  513         FPE_FLTSUB,     /* 71 - INV | UFL | IMP | STK */
  514         FPE_FLTUND,     /* 72 - DNML | UFL | IMP | STK */
  515         FPE_FLTSUB,     /* 73 - INV | DNML | UFL | IMP | STK */
  516         FPE_FLTDIV,     /* 74 - DZ | UFL | IMP | STK */
  517         FPE_FLTSUB,     /* 75 - INV | DZ | UFL | IMP | STK */
  518         FPE_FLTDIV,     /* 76 - DNML | DZ | UFL | IMP | STK */
  519         FPE_FLTSUB,     /* 77 - INV | DNML | DZ | UFL | IMP | STK */
  520         FPE_FLTOVF,     /* 78 - OFL | UFL | IMP | STK */
  521         FPE_FLTSUB,     /* 79 - INV | OFL | UFL | IMP | STK */
  522         FPE_FLTUND,     /* 7A - DNML | OFL | UFL | IMP | STK */
  523         FPE_FLTSUB,     /* 7B - INV | DNML | OFL | UFL | IMP | STK */
  524         FPE_FLTDIV,     /* 7C - DZ | OFL | UFL | IMP | STK */
  525         FPE_FLTSUB,     /* 7D - INV | DZ | OFL | UFL | IMP | STK */
  526         FPE_FLTDIV,     /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
  527         FPE_FLTSUB,     /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
  528 };
  529 
  530 /*
  531  * Read the FP status and control words, then generate si_code value
  532  * for SIGFPE.  The error code chosen will be one of the
  533  * FPE_... macros.  It will be sent as the second argument to old
  534  * BSD-style signal handlers and as "siginfo_t->si_code" (second
  535  * argument) to SA_SIGINFO signal handlers.
  536  *
  537  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
  538  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
  539  * usermode code which understands the FPU hardware enough to enable
  540  * the exceptions, can also handle clearing the exception state in the
  541  * handler.  The only consequence of not clearing the exception is the
  542  * rethrow of the SIGFPE on return from the signal handler and
  543  * reexecution of the corresponding instruction.
  544  *
  545  * For XMM traps, the exceptions were never cleared.
  546  */
  547 int
  548 fputrap_x87(void)
  549 {
  550         struct savefpu *pcb_save;
  551         u_short control, status;
  552 
  553         critical_enter();
  554 
  555         /*
  556          * Interrupt handling (for another interrupt) may have pushed the
  557          * state to memory.  Fetch the relevant parts of the state from
  558          * wherever they are.
  559          */
  560         if (PCPU_GET(fpcurthread) != curthread) {
  561                 pcb_save = curpcb->pcb_save;
  562                 control = pcb_save->sv_env.en_cw;
  563                 status = pcb_save->sv_env.en_sw;
  564         } else {
  565                 fnstcw(&control);
  566                 fnstsw(&status);
  567         }
  568 
  569         critical_exit();
  570         return (fpetable[status & ((~control & 0x3f) | 0x40)]);
  571 }
  572 
  573 int
  574 fputrap_sse(void)
  575 {
  576         u_int mxcsr;
  577 
  578         critical_enter();
  579         if (PCPU_GET(fpcurthread) != curthread)
  580                 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
  581         else
  582                 stmxcsr(&mxcsr);
  583         critical_exit();
  584         return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
  585 }
  586 
  587 /*
  588  * Implement device not available (DNA) exception
  589  *
  590  * It would be better to switch FP context here (if curthread != fpcurthread)
  591  * and not necessarily for every context switch, but it is too hard to
  592  * access foreign pcb's.
  593  */
  594 
  595 static int err_count = 0;
  596 
  597 void
  598 fpudna(void)
  599 {
  600 
  601         critical_enter();
  602         if (PCPU_GET(fpcurthread) == curthread) {
  603                 printf("fpudna: fpcurthread == curthread %d times\n",
  604                     ++err_count);
  605                 stop_emulating();
  606                 critical_exit();
  607                 return;
  608         }
  609         if (PCPU_GET(fpcurthread) != NULL) {
  610                 printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
  611                        PCPU_GET(fpcurthread),
  612                        PCPU_GET(fpcurthread)->td_proc->p_pid,
  613                        curthread, curthread->td_proc->p_pid);
  614                 panic("fpudna");
  615         }
  616         stop_emulating();
  617         /*
  618          * Record new context early in case frstor causes a trap.
  619          */
  620         PCPU_SET(fpcurthread, curthread);
  621 
  622         fpu_clean_state();
  623 
  624         if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
  625                 /*
  626                  * This is the first time this thread has used the FPU or
  627                  * the PCB doesn't contain a clean FPU state.  Explicitly
  628                  * load an initial state.
  629                  *
  630                  * We prefer to restore the state from the actual save
  631                  * area in PCB instead of directly loading from
  632                  * fpu_initialstate, to ignite the XSAVEOPT
  633                  * tracking engine.
  634                  */
  635                 bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
  636                 fpurestore(curpcb->pcb_save);
  637                 if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
  638                         fldcw(curpcb->pcb_initial_fpucw);
  639                 if (PCB_USER_FPU(curpcb))
  640                         set_pcb_flags(curpcb,
  641                             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  642                 else
  643                         set_pcb_flags(curpcb, PCB_FPUINITDONE);
  644         } else
  645                 fpurestore(curpcb->pcb_save);
  646         critical_exit();
  647 }
  648 
  649 void
  650 fpudrop()
  651 {
  652         struct thread *td;
  653 
  654         td = PCPU_GET(fpcurthread);
  655         KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
  656         CRITICAL_ASSERT(td);
  657         PCPU_SET(fpcurthread, NULL);
  658         clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
  659         start_emulating();
  660 }
  661 
  662 /*
  663  * Get the user state of the FPU into pcb->pcb_user_save without
  664  * dropping ownership (if possible).  It returns the FPU ownership
  665  * status.
  666  */
  667 int
  668 fpugetregs(struct thread *td)
  669 {
  670         struct pcb *pcb;
  671         uint64_t *xstate_bv, bit;
  672         char *sa;
  673         int max_ext_n, i, owned;
  674 
  675         pcb = td->td_pcb;
  676         if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
  677                 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
  678                     cpu_max_ext_state_size);
  679                 get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
  680                     pcb->pcb_initial_fpucw;
  681                 fpuuserinited(td);
  682                 return (_MC_FPOWNED_PCB);
  683         }
  684         critical_enter();
  685         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  686                 fpusave(get_pcb_user_save_pcb(pcb));
  687                 owned = _MC_FPOWNED_FPU;
  688         } else {
  689                 owned = _MC_FPOWNED_PCB;
  690         }
  691         critical_exit();
  692         if (use_xsave) {
  693                 /*
  694                  * Handle partially saved state.
  695                  */
  696                 sa = (char *)get_pcb_user_save_pcb(pcb);
  697                 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
  698                     offsetof(struct xstate_hdr, xstate_bv));
  699                 max_ext_n = flsl(xsave_mask);
  700                 for (i = 0; i < max_ext_n; i++) {
  701                         bit = 1ULL << i;
  702                         if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
  703                                 continue;
  704                         bcopy((char *)fpu_initialstate +
  705                             xsave_area_desc[i].offset,
  706                             sa + xsave_area_desc[i].offset,
  707                             xsave_area_desc[i].size);
  708                         *xstate_bv |= bit;
  709                 }
  710         }
  711         return (owned);
  712 }
  713 
  714 void
  715 fpuuserinited(struct thread *td)
  716 {
  717         struct pcb *pcb;
  718 
  719         pcb = td->td_pcb;
  720         if (PCB_USER_FPU(pcb))
  721                 set_pcb_flags(pcb,
  722                     PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  723         else
  724                 set_pcb_flags(pcb, PCB_FPUINITDONE);
  725 }
  726 
  727 int
  728 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
  729 {
  730         struct xstate_hdr *hdr, *ehdr;
  731         size_t len, max_len;
  732         uint64_t bv;
  733 
  734         /* XXXKIB should we clear all extended state in xstate_bv instead ? */
  735         if (xfpustate == NULL)
  736                 return (0);
  737         if (!use_xsave)
  738                 return (EOPNOTSUPP);
  739 
  740         len = xfpustate_size;
  741         if (len < sizeof(struct xstate_hdr))
  742                 return (EINVAL);
  743         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  744         if (len > max_len)
  745                 return (EINVAL);
  746 
  747         ehdr = (struct xstate_hdr *)xfpustate;
  748         bv = ehdr->xstate_bv;
  749 
  750         /*
  751          * Avoid #gp.
  752          */
  753         if (bv & ~xsave_mask)
  754                 return (EINVAL);
  755 
  756         hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
  757 
  758         hdr->xstate_bv = bv;
  759         bcopy(xfpustate + sizeof(struct xstate_hdr),
  760             (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
  761 
  762         return (0);
  763 }
  764 
  765 /*
  766  * Set the state of the FPU.
  767  */
  768 int
  769 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
  770     size_t xfpustate_size)
  771 {
  772         struct pcb *pcb;
  773         int error;
  774 
  775         pcb = td->td_pcb;
  776         critical_enter();
  777         if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
  778                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  779                 if (error != 0) {
  780                         critical_exit();
  781                         return (error);
  782                 }
  783                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  784                 fpurestore(get_pcb_user_save_td(td));
  785                 critical_exit();
  786                 set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
  787         } else {
  788                 critical_exit();
  789                 error = fpusetxstate(td, xfpustate, xfpustate_size);
  790                 if (error != 0)
  791                         return (error);
  792                 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
  793                 fpuuserinited(td);
  794         }
  795         return (0);
  796 }
  797 
  798 /*
  799  * On AuthenticAMD processors, the fxrstor instruction does not restore
  800  * the x87's stored last instruction pointer, last data pointer, and last
  801  * opcode values, except in the rare case in which the exception summary
  802  * (ES) bit in the x87 status word is set to 1.
  803  *
  804  * In order to avoid leaking this information across processes, we clean
  805  * these values by performing a dummy load before executing fxrstor().
  806  */
  807 static void
  808 fpu_clean_state(void)
  809 {
  810         static float dummy_variable = 0.0;
  811         u_short status;
  812 
  813         /*
  814          * Clear the ES bit in the x87 status word if it is currently
  815          * set, in order to avoid causing a fault in the upcoming load.
  816          */
  817         fnstsw(&status);
  818         if (status & 0x80)
  819                 fnclex();
  820 
  821         /*
  822          * Load the dummy variable into the x87 stack.  This mangles
  823          * the x87 stack, but we don't care since we're about to call
  824          * fxrstor() anyway.
  825          */
  826         __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
  827 }
  828 
  829 /*
  830  * This really sucks.  We want the acpi version only, but it requires
  831  * the isa_if.h file in order to get the definitions.
  832  */
  833 #include "opt_isa.h"
  834 #ifdef DEV_ISA
  835 #include <isa/isavar.h>
  836 /*
  837  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
  838  */
  839 static struct isa_pnp_id fpupnp_ids[] = {
  840         { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
  841         { 0 }
  842 };
  843 
  844 static int
  845 fpupnp_probe(device_t dev)
  846 {
  847         int result;
  848 
  849         result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
  850         if (result <= 0)
  851                 device_quiet(dev);
  852         return (result);
  853 }
  854 
  855 static int
  856 fpupnp_attach(device_t dev)
  857 {
  858 
  859         return (0);
  860 }
  861 
  862 static device_method_t fpupnp_methods[] = {
  863         /* Device interface */
  864         DEVMETHOD(device_probe,         fpupnp_probe),
  865         DEVMETHOD(device_attach,        fpupnp_attach),
  866         DEVMETHOD(device_detach,        bus_generic_detach),
  867         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  868         DEVMETHOD(device_suspend,       bus_generic_suspend),
  869         DEVMETHOD(device_resume,        bus_generic_resume),
  870         
  871         { 0, 0 }
  872 };
  873 
  874 static driver_t fpupnp_driver = {
  875         "fpupnp",
  876         fpupnp_methods,
  877         1,                      /* no softc */
  878 };
  879 
  880 static devclass_t fpupnp_devclass;
  881 
  882 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
  883 #endif  /* DEV_ISA */
  884 
  885 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
  886     "Kernel contexts for FPU state");
  887 
  888 #define FPU_KERN_CTX_FPUINITDONE 0x01
  889 
  890 struct fpu_kern_ctx {
  891         struct savefpu *prev;
  892         uint32_t flags;
  893         char hwstate1[];
  894 };
  895 
  896 struct fpu_kern_ctx *
  897 fpu_kern_alloc_ctx(u_int flags)
  898 {
  899         struct fpu_kern_ctx *res;
  900         size_t sz;
  901 
  902         sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
  903             cpu_max_ext_state_size;
  904         res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
  905             M_NOWAIT : M_WAITOK) | M_ZERO);
  906         return (res);
  907 }
  908 
  909 void
  910 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
  911 {
  912 
  913         /* XXXKIB clear the memory ? */
  914         free(ctx, M_FPUKERN_CTX);
  915 }
  916 
  917 static struct savefpu *
  918 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
  919 {
  920         vm_offset_t p;
  921 
  922         p = (vm_offset_t)&ctx->hwstate1;
  923         p = roundup2(p, XSAVE_AREA_ALIGN);
  924         return ((struct savefpu *)p);
  925 }
  926 
  927 int
  928 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
  929 {
  930         struct pcb *pcb;
  931 
  932         pcb = td->td_pcb;
  933         KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
  934             get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
  935         ctx->flags = 0;
  936         if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
  937                 ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
  938         fpuexit(td);
  939         ctx->prev = pcb->pcb_save;
  940         pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
  941         set_pcb_flags(pcb, PCB_KERNFPU);
  942         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  943         return (0);
  944 }
  945 
  946 int
  947 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
  948 {
  949         struct pcb *pcb;
  950 
  951         pcb = td->td_pcb;
  952         critical_enter();
  953         if (curthread == PCPU_GET(fpcurthread))
  954                 fpudrop();
  955         critical_exit();
  956         pcb->pcb_save = ctx->prev;
  957         if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
  958                 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
  959                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  960                         clear_pcb_flags(pcb, PCB_KERNFPU);
  961                 } else
  962                         clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
  963         } else {
  964                 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
  965                         set_pcb_flags(pcb, PCB_FPUINITDONE);
  966                 else
  967                         clear_pcb_flags(pcb, PCB_FPUINITDONE);
  968                 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
  969         }
  970         return (0);
  971 }
  972 
  973 int
  974 fpu_kern_thread(u_int flags)
  975 {
  976 
  977         KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
  978             ("Only kthread may use fpu_kern_thread"));
  979         KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
  980             ("mangled pcb_save"));
  981         KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
  982 
  983         set_pcb_flags(curpcb, PCB_KERNFPU);
  984         return (0);
  985 }
  986 
  987 int
  988 is_fpu_kern_thread(u_int flags)
  989 {
  990 
  991         if ((curthread->td_pflags & TDP_KTHREAD) == 0)
  992                 return (0);
  993         return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
  994 }
  995 
  996 /*
  997  * FPU save area alloc/free/init utility routines
  998  */
  999 struct savefpu *
 1000 fpu_save_area_alloc(void)
 1001 {
 1002 
 1003         return (uma_zalloc(fpu_save_area_zone, 0));
 1004 }
 1005 
 1006 void
 1007 fpu_save_area_free(struct savefpu *fsa)
 1008 {
 1009 
 1010         uma_zfree(fpu_save_area_zone, fsa);
 1011 }
 1012 
 1013 void
 1014 fpu_save_area_reset(struct savefpu *fsa)
 1015 {
 1016 
 1017         bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
 1018 }

Cache object: c0814f023f446bf2035632a21dbf4f24


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.