The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/10.2/sys/amd64/amd64/machdep.c 283262 2015-05-21 19:40:31Z emaste $");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_mp_watchdog.h"
   55 #include "opt_perfmon.h"
   56 #include "opt_platform.h"
   57 #include "opt_sched.h"
   58 #include "opt_kdtrace.h"
   59 
   60 #include <sys/param.h>
   61 #include <sys/proc.h>
   62 #include <sys/systm.h>
   63 #include <sys/bio.h>
   64 #include <sys/buf.h>
   65 #include <sys/bus.h>
   66 #include <sys/callout.h>
   67 #include <sys/cons.h>
   68 #include <sys/cpu.h>
   69 #include <sys/efi.h>
   70 #include <sys/eventhandler.h>
   71 #include <sys/exec.h>
   72 #include <sys/imgact.h>
   73 #include <sys/kdb.h>
   74 #include <sys/kernel.h>
   75 #include <sys/ktr.h>
   76 #include <sys/linker.h>
   77 #include <sys/lock.h>
   78 #include <sys/malloc.h>
   79 #include <sys/memrange.h>
   80 #include <sys/msgbuf.h>
   81 #include <sys/mutex.h>
   82 #include <sys/pcpu.h>
   83 #include <sys/ptrace.h>
   84 #include <sys/reboot.h>
   85 #include <sys/rwlock.h>
   86 #include <sys/sched.h>
   87 #include <sys/signalvar.h>
   88 #ifdef SMP
   89 #include <sys/smp.h>
   90 #endif
   91 #include <sys/syscallsubr.h>
   92 #include <sys/sysctl.h>
   93 #include <sys/sysent.h>
   94 #include <sys/sysproto.h>
   95 #include <sys/ucontext.h>
   96 #include <sys/vmmeter.h>
   97 
   98 #include <vm/vm.h>
   99 #include <vm/vm_extern.h>
  100 #include <vm/vm_kern.h>
  101 #include <vm/vm_page.h>
  102 #include <vm/vm_map.h>
  103 #include <vm/vm_object.h>
  104 #include <vm/vm_pager.h>
  105 #include <vm/vm_param.h>
  106 
  107 #ifdef DDB
  108 #ifndef KDB
  109 #error KDB must be enabled in order for DDB to work!
  110 #endif
  111 #include <ddb/ddb.h>
  112 #include <ddb/db_sym.h>
  113 #endif
  114 
  115 #include <net/netisr.h>
  116 
  117 #include <machine/clock.h>
  118 #include <machine/cpu.h>
  119 #include <machine/cputypes.h>
  120 #include <machine/intr_machdep.h>
  121 #include <x86/mca.h>
  122 #include <machine/md_var.h>
  123 #include <machine/metadata.h>
  124 #include <machine/mp_watchdog.h>
  125 #include <machine/pc/bios.h>
  126 #include <machine/pcb.h>
  127 #include <machine/proc.h>
  128 #include <machine/reg.h>
  129 #include <machine/sigframe.h>
  130 #include <machine/specialreg.h>
  131 #ifdef PERFMON
  132 #include <machine/perfmon.h>
  133 #endif
  134 #include <machine/tss.h>
  135 #ifdef SMP
  136 #include <machine/smp.h>
  137 #endif
  138 #ifdef FDT
  139 #include <x86/fdt.h>
  140 #endif
  141 
  142 #ifdef DEV_ATPIC
  143 #include <x86/isa/icu.h>
  144 #else
  145 #include <machine/apicvar.h>
  146 #endif
  147 
  148 #include <isa/isareg.h>
  149 #include <isa/rtc.h>
  150 
  151 /* Sanity check for __curthread() */
  152 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  153 
  154 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  155 
  156 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  157 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  158 
  159 static void cpu_startup(void *);
  160 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
  161     char *xfpusave, size_t xfpusave_len);
  162 static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
  163     char *xfpustate, size_t xfpustate_len);
  164 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  165 
  166 /*
  167  * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
  168  * the physical address at which the kernel is loaded.
  169  */
  170 extern char kernphys[];
  171 #ifdef DDB
  172 extern vm_offset_t ksym_start, ksym_end;
  173 #endif
  174 
  175 struct msgbuf *msgbufp;
  176 
  177 /* Intel ICH registers */
  178 #define ICH_PMBASE      0x400
  179 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  180 
  181 int     _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
  182 
  183 int cold = 1;
  184 
  185 long Maxmem = 0;
  186 long realmem = 0;
  187 
  188 /*
  189  * The number of PHYSMAP entries must be one less than the number of
  190  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  191  * physical address that is accessible by ISA DMA is split into two
  192  * PHYSSEG entries.
  193  */
  194 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  195 
  196 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  197 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  198 
  199 /* must be 2 less so 0 0 can signal end of chunks */
  200 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  201 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  202 
  203 struct kva_md_info kmi;
  204 
  205 static struct trapframe proc0_tf;
  206 struct region_descriptor r_gdt, r_idt;
  207 
  208 struct pcpu __pcpu[MAXCPU];
  209 
  210 struct mtx icu_lock;
  211 
  212 struct mem_range_softc mem_range_softc;
  213 
  214 struct mtx dt_lock;     /* lock for GDT and LDT */
  215 
  216 void (*vmm_resume_p)(void);
  217 
  218 static void
  219 cpu_startup(dummy)
  220         void *dummy;
  221 {
  222         uintmax_t memsize;
  223         char *sysenv;
  224 
  225         /*
  226          * On MacBooks, we need to disallow the legacy USB circuit to
  227          * generate an SMI# because this can cause several problems,
  228          * namely: incorrect CPU frequency detection and failure to
  229          * start the APs.
  230          * We do this by disabling a bit in the SMI_EN (SMI Control and
  231          * Enable register) of the Intel ICH LPC Interface Bridge. 
  232          */
  233         sysenv = getenv("smbios.system.product");
  234         if (sysenv != NULL) {
  235                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  236                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  237                     strncmp(sysenv, "MacBook4,1", 10) == 0 ||
  238                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  239                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  240                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  241                     strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
  242                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  243                         if (bootverbose)
  244                                 printf("Disabling LEGACY_USB_EN bit on "
  245                                     "Intel ICH.\n");
  246                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  247                 }
  248                 freeenv(sysenv);
  249         }
  250 
  251         /*
  252          * Good {morning,afternoon,evening,night}.
  253          */
  254         startrtclock();
  255         printcpuinfo();
  256         panicifcpuunsupported();
  257 #ifdef PERFMON
  258         perfmon_init();
  259 #endif
  260 
  261         /*
  262          * Display physical memory if SMBIOS reports reasonable amount.
  263          */
  264         memsize = 0;
  265         sysenv = getenv("smbios.memory.enabled");
  266         if (sysenv != NULL) {
  267                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  268                 freeenv(sysenv);
  269         }
  270         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  271                 memsize = ptoa((uintmax_t)Maxmem);
  272         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  273         realmem = atop(memsize);
  274 
  275         /*
  276          * Display any holes after the first chunk of extended memory.
  277          */
  278         if (bootverbose) {
  279                 int indx;
  280 
  281                 printf("Physical memory chunk(s):\n");
  282                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  283                         vm_paddr_t size;
  284 
  285                         size = phys_avail[indx + 1] - phys_avail[indx];
  286                         printf(
  287                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  288                             (uintmax_t)phys_avail[indx],
  289                             (uintmax_t)phys_avail[indx + 1] - 1,
  290                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  291                 }
  292         }
  293 
  294         vm_ksubmap_init(&kmi);
  295 
  296         printf("avail memory = %ju (%ju MB)\n",
  297             ptoa((uintmax_t)cnt.v_free_count),
  298             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  299 
  300         /*
  301          * Set up buffers, so they can be used to read disk labels.
  302          */
  303         bufinit();
  304         vm_pager_bufferinit();
  305 
  306         cpu_setregs();
  307 }
  308 
  309 /*
  310  * Send an interrupt to process.
  311  *
  312  * Stack is set up to allow sigcode stored
  313  * at top to call routine, followed by call
  314  * to sigreturn routine below.  After sigreturn
  315  * resets the signal mask, the stack, and the
  316  * frame pointer, it returns to the user
  317  * specified pc, psl.
  318  */
  319 void
  320 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  321 {
  322         struct sigframe sf, *sfp;
  323         struct pcb *pcb;
  324         struct proc *p;
  325         struct thread *td;
  326         struct sigacts *psp;
  327         char *sp;
  328         struct trapframe *regs;
  329         char *xfpusave;
  330         size_t xfpusave_len;
  331         int sig;
  332         int oonstack;
  333 
  334         td = curthread;
  335         pcb = td->td_pcb;
  336         p = td->td_proc;
  337         PROC_LOCK_ASSERT(p, MA_OWNED);
  338         sig = ksi->ksi_signo;
  339         psp = p->p_sigacts;
  340         mtx_assert(&psp->ps_mtx, MA_OWNED);
  341         regs = td->td_frame;
  342         oonstack = sigonstack(regs->tf_rsp);
  343 
  344         if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
  345                 xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  346                 xfpusave = __builtin_alloca(xfpusave_len);
  347         } else {
  348                 xfpusave_len = 0;
  349                 xfpusave = NULL;
  350         }
  351 
  352         /* Save user context. */
  353         bzero(&sf, sizeof(sf));
  354         sf.sf_uc.uc_sigmask = *mask;
  355         sf.sf_uc.uc_stack = td->td_sigstk;
  356         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  357             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  358         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  359         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  360         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  361         get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
  362         fpstate_drop(td);
  363         sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
  364         sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
  365         bzero(sf.sf_uc.uc_mcontext.mc_spare,
  366             sizeof(sf.sf_uc.uc_mcontext.mc_spare));
  367         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  368 
  369         /* Allocate space for the signal handler context. */
  370         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  371             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  372                 sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
  373 #if defined(COMPAT_43)
  374                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  375 #endif
  376         } else
  377                 sp = (char *)regs->tf_rsp - 128;
  378         if (xfpusave != NULL) {
  379                 sp -= xfpusave_len;
  380                 sp = (char *)((unsigned long)sp & ~0x3Ful);
  381                 sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
  382         }
  383         sp -= sizeof(struct sigframe);
  384         /* Align to 16 bytes. */
  385         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  386 
  387         /* Translate the signal if appropriate. */
  388         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  389                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  390 
  391         /* Build the argument list for the signal handler. */
  392         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  393         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  394         bzero(&sf.sf_si, sizeof(sf.sf_si));
  395         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  396                 /* Signal handler installed with SA_SIGINFO. */
  397                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  398                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  399 
  400                 /* Fill in POSIX parts */
  401                 sf.sf_si = ksi->ksi_info;
  402                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  403                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  404         } else {
  405                 /* Old FreeBSD-style arguments. */
  406                 regs->tf_rsi = ksi->ksi_code;   /* arg 2 in %rsi */
  407                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  408                 sf.sf_ahu.sf_handler = catcher;
  409         }
  410         mtx_unlock(&psp->ps_mtx);
  411         PROC_UNLOCK(p);
  412 
  413         /*
  414          * Copy the sigframe out to the user's stack.
  415          */
  416         if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  417             (xfpusave != NULL && copyout(xfpusave,
  418             (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
  419             != 0)) {
  420 #ifdef DEBUG
  421                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  422 #endif
  423                 PROC_LOCK(p);
  424                 sigexit(td, SIGILL);
  425         }
  426 
  427         regs->tf_rsp = (long)sfp;
  428         regs->tf_rip = p->p_sysent->sv_sigcode_base;
  429         regs->tf_rflags &= ~(PSL_T | PSL_D);
  430         regs->tf_cs = _ucodesel;
  431         regs->tf_ds = _udatasel;
  432         regs->tf_ss = _udatasel;
  433         regs->tf_es = _udatasel;
  434         regs->tf_fs = _ufssel;
  435         regs->tf_gs = _ugssel;
  436         regs->tf_flags = TF_HASSEGS;
  437         set_pcb_flags(pcb, PCB_FULL_IRET);
  438         PROC_LOCK(p);
  439         mtx_lock(&psp->ps_mtx);
  440 }
  441 
  442 /*
  443  * System call to cleanup state after a signal
  444  * has been taken.  Reset signal mask and
  445  * stack state from context left by sendsig (above).
  446  * Return to previous pc and psl as specified by
  447  * context left by sendsig. Check carefully to
  448  * make sure that the user has not modified the
  449  * state to gain improper privileges.
  450  *
  451  * MPSAFE
  452  */
  453 int
  454 sys_sigreturn(td, uap)
  455         struct thread *td;
  456         struct sigreturn_args /* {
  457                 const struct __ucontext *sigcntxp;
  458         } */ *uap;
  459 {
  460         ucontext_t uc;
  461         struct pcb *pcb;
  462         struct proc *p;
  463         struct trapframe *regs;
  464         ucontext_t *ucp;
  465         char *xfpustate;
  466         size_t xfpustate_len;
  467         long rflags;
  468         int cs, error, ret;
  469         ksiginfo_t ksi;
  470 
  471         pcb = td->td_pcb;
  472         p = td->td_proc;
  473 
  474         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  475         if (error != 0) {
  476                 uprintf("pid %d (%s): sigreturn copyin failed\n",
  477                     p->p_pid, td->td_name);
  478                 return (error);
  479         }
  480         ucp = &uc;
  481         if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
  482                 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
  483                     td->td_name, ucp->uc_mcontext.mc_flags);
  484                 return (EINVAL);
  485         }
  486         regs = td->td_frame;
  487         rflags = ucp->uc_mcontext.mc_rflags;
  488         /*
  489          * Don't allow users to change privileged or reserved flags.
  490          */
  491         if (!EFL_SECURE(rflags, regs->tf_rflags)) {
  492                 uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
  493                     td->td_name, rflags);
  494                 return (EINVAL);
  495         }
  496 
  497         /*
  498          * Don't allow users to load a valid privileged %cs.  Let the
  499          * hardware check for invalid selectors, excess privilege in
  500          * other selectors, invalid %eip's and invalid %esp's.
  501          */
  502         cs = ucp->uc_mcontext.mc_cs;
  503         if (!CS_SECURE(cs)) {
  504                 uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
  505                     td->td_name, cs);
  506                 ksiginfo_init_trap(&ksi);
  507                 ksi.ksi_signo = SIGBUS;
  508                 ksi.ksi_code = BUS_OBJERR;
  509                 ksi.ksi_trapno = T_PROTFLT;
  510                 ksi.ksi_addr = (void *)regs->tf_rip;
  511                 trapsignal(td, &ksi);
  512                 return (EINVAL);
  513         }
  514 
  515         if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
  516                 xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
  517                 if (xfpustate_len > cpu_max_ext_state_size -
  518                     sizeof(struct savefpu)) {
  519                         uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
  520                             p->p_pid, td->td_name, xfpustate_len);
  521                         return (EINVAL);
  522                 }
  523                 xfpustate = __builtin_alloca(xfpustate_len);
  524                 error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
  525                     xfpustate, xfpustate_len);
  526                 if (error != 0) {
  527                         uprintf(
  528         "pid %d (%s): sigreturn copying xfpustate failed\n",
  529                             p->p_pid, td->td_name);
  530                         return (error);
  531                 }
  532         } else {
  533                 xfpustate = NULL;
  534                 xfpustate_len = 0;
  535         }
  536         ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
  537         if (ret != 0) {
  538                 uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
  539                     p->p_pid, td->td_name, ret);
  540                 return (ret);
  541         }
  542         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  543         pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
  544         pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
  545 
  546 #if defined(COMPAT_43)
  547         if (ucp->uc_mcontext.mc_onstack & 1)
  548                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  549         else
  550                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  551 #endif
  552 
  553         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  554         set_pcb_flags(pcb, PCB_FULL_IRET);
  555         return (EJUSTRETURN);
  556 }
  557 
  558 #ifdef COMPAT_FREEBSD4
  559 int
  560 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  561 {
  562  
  563         return sys_sigreturn(td, (struct sigreturn_args *)uap);
  564 }
  565 #endif
  566 
  567 
  568 /*
  569  * Machine dependent boot() routine
  570  *
  571  * I haven't seen anything to put here yet
  572  * Possibly some stuff might be grafted back here from boot()
  573  */
  574 void
  575 cpu_boot(int howto)
  576 {
  577 }
  578 
  579 /*
  580  * Flush the D-cache for non-DMA I/O so that the I-cache can
  581  * be made coherent later.
  582  */
  583 void
  584 cpu_flush_dcache(void *ptr, size_t len)
  585 {
  586         /* Not applicable */
  587 }
  588 
  589 /* Get current clock frequency for the given cpu id. */
  590 int
  591 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  592 {
  593         uint64_t tsc1, tsc2;
  594         uint64_t acnt, mcnt, perf;
  595         register_t reg;
  596 
  597         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  598                 return (EINVAL);
  599 
  600         /*
  601          * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
  602          * DELAY(9) based logic fails.
  603          */
  604         if (tsc_is_invariant && !tsc_perf_stat)
  605                 return (EOPNOTSUPP);
  606 
  607 #ifdef SMP
  608         if (smp_cpus > 1) {
  609                 /* Schedule ourselves on the indicated cpu. */
  610                 thread_lock(curthread);
  611                 sched_bind(curthread, cpu_id);
  612                 thread_unlock(curthread);
  613         }
  614 #endif
  615 
  616         /* Calibrate by measuring a short delay. */
  617         reg = intr_disable();
  618         if (tsc_is_invariant) {
  619                 wrmsr(MSR_MPERF, 0);
  620                 wrmsr(MSR_APERF, 0);
  621                 tsc1 = rdtsc();
  622                 DELAY(1000);
  623                 mcnt = rdmsr(MSR_MPERF);
  624                 acnt = rdmsr(MSR_APERF);
  625                 tsc2 = rdtsc();
  626                 intr_restore(reg);
  627                 perf = 1000 * acnt / mcnt;
  628                 *rate = (tsc2 - tsc1) * perf;
  629         } else {
  630                 tsc1 = rdtsc();
  631                 DELAY(1000);
  632                 tsc2 = rdtsc();
  633                 intr_restore(reg);
  634                 *rate = (tsc2 - tsc1) * 1000;
  635         }
  636 
  637 #ifdef SMP
  638         if (smp_cpus > 1) {
  639                 thread_lock(curthread);
  640                 sched_unbind(curthread);
  641                 thread_unlock(curthread);
  642         }
  643 #endif
  644 
  645         return (0);
  646 }
  647 
  648 /*
  649  * Shutdown the CPU as much as possible
  650  */
  651 void
  652 cpu_halt(void)
  653 {
  654         for (;;)
  655                 halt();
  656 }
  657 
  658 void (*cpu_idle_hook)(sbintime_t) = NULL;       /* ACPI idle hook. */
  659 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
  660 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
  661 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
  662 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
  663     0, "Use MONITOR/MWAIT for short idle");
  664 
  665 #define STATE_RUNNING   0x0
  666 #define STATE_MWAIT     0x1
  667 #define STATE_SLEEPING  0x2
  668 
  669 static void
  670 cpu_idle_acpi(sbintime_t sbt)
  671 {
  672         int *state;
  673 
  674         state = (int *)PCPU_PTR(monitorbuf);
  675         *state = STATE_SLEEPING;
  676 
  677         /* See comments in cpu_idle_hlt(). */
  678         disable_intr();
  679         if (sched_runnable())
  680                 enable_intr();
  681         else if (cpu_idle_hook)
  682                 cpu_idle_hook(sbt);
  683         else
  684                 __asm __volatile("sti; hlt");
  685         *state = STATE_RUNNING;
  686 }
  687 
  688 static void
  689 cpu_idle_hlt(sbintime_t sbt)
  690 {
  691         int *state;
  692 
  693         state = (int *)PCPU_PTR(monitorbuf);
  694         *state = STATE_SLEEPING;
  695 
  696         /*
  697          * Since we may be in a critical section from cpu_idle(), if
  698          * an interrupt fires during that critical section we may have
  699          * a pending preemption.  If the CPU halts, then that thread
  700          * may not execute until a later interrupt awakens the CPU.
  701          * To handle this race, check for a runnable thread after
  702          * disabling interrupts and immediately return if one is
  703          * found.  Also, we must absolutely guarentee that hlt is
  704          * the next instruction after sti.  This ensures that any
  705          * interrupt that fires after the call to disable_intr() will
  706          * immediately awaken the CPU from hlt.  Finally, please note
  707          * that on x86 this works fine because of interrupts enabled only
  708          * after the instruction following sti takes place, while IF is set
  709          * to 1 immediately, allowing hlt instruction to acknowledge the
  710          * interrupt.
  711          */
  712         disable_intr();
  713         if (sched_runnable())
  714                 enable_intr();
  715         else
  716                 __asm __volatile("sti; hlt");
  717         *state = STATE_RUNNING;
  718 }
  719 
  720 static void
  721 cpu_idle_mwait(sbintime_t sbt)
  722 {
  723         int *state;
  724 
  725         state = (int *)PCPU_PTR(monitorbuf);
  726         *state = STATE_MWAIT;
  727 
  728         /* See comments in cpu_idle_hlt(). */
  729         disable_intr();
  730         if (sched_runnable()) {
  731                 enable_intr();
  732                 *state = STATE_RUNNING;
  733                 return;
  734         }
  735         cpu_monitor(state, 0, 0);
  736         if (*state == STATE_MWAIT)
  737                 __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
  738         else
  739                 enable_intr();
  740         *state = STATE_RUNNING;
  741 }
  742 
  743 static void
  744 cpu_idle_spin(sbintime_t sbt)
  745 {
  746         int *state;
  747         int i;
  748 
  749         state = (int *)PCPU_PTR(monitorbuf);
  750         *state = STATE_RUNNING;
  751 
  752         /*
  753          * The sched_runnable() call is racy but as long as there is
  754          * a loop missing it one time will have just a little impact if any
  755          * (and it is much better than missing the check at all).
  756          */
  757         for (i = 0; i < 1000; i++) {
  758                 if (sched_runnable())
  759                         return;
  760                 cpu_spinwait();
  761         }
  762 }
  763 
  764 /*
  765  * C1E renders the local APIC timer dead, so we disable it by
  766  * reading the Interrupt Pending Message register and clearing
  767  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
  768  * 
  769  * Reference:
  770  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
  771  *   #32559 revision 3.00+
  772  */
  773 #define MSR_AMDK8_IPM           0xc0010055
  774 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
  775 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
  776 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
  777 
  778 static void
  779 cpu_probe_amdc1e(void)
  780 {
  781 
  782         /*
  783          * Detect the presence of C1E capability mostly on latest
  784          * dual-cores (or future) k8 family.
  785          */
  786         if (cpu_vendor_id == CPU_VENDOR_AMD &&
  787             (cpu_id & 0x00000f00) == 0x00000f00 &&
  788             (cpu_id & 0x0fff0000) >=  0x00040000) {
  789                 cpu_ident_amdc1e = 1;
  790         }
  791 }
  792 
  793 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
  794 
  795 void
  796 cpu_idle(int busy)
  797 {
  798         uint64_t msr;
  799         sbintime_t sbt = -1;
  800 
  801         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
  802             busy, curcpu);
  803 #ifdef MP_WATCHDOG
  804         ap_watchdog(PCPU_GET(cpuid));
  805 #endif
  806         /* If we are busy - try to use fast methods. */
  807         if (busy) {
  808                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
  809                         cpu_idle_mwait(busy);
  810                         goto out;
  811                 }
  812         }
  813 
  814         /* If we have time - switch timers into idle mode. */
  815         if (!busy) {
  816                 critical_enter();
  817                 sbt = cpu_idleclock();
  818         }
  819 
  820         /* Apply AMD APIC timer C1E workaround. */
  821         if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
  822                 msr = rdmsr(MSR_AMDK8_IPM);
  823                 if (msr & AMDK8_CMPHALT)
  824                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
  825         }
  826 
  827         /* Call main idle method. */
  828         cpu_idle_fn(sbt);
  829 
  830         /* Switch timers mack into active mode. */
  831         if (!busy) {
  832                 cpu_activeclock();
  833                 critical_exit();
  834         }
  835 out:
  836         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
  837             busy, curcpu);
  838 }
  839 
  840 int
  841 cpu_idle_wakeup(int cpu)
  842 {
  843         struct pcpu *pcpu;
  844         int *state;
  845 
  846         pcpu = pcpu_find(cpu);
  847         state = (int *)pcpu->pc_monitorbuf;
  848         /*
  849          * This doesn't need to be atomic since missing the race will
  850          * simply result in unnecessary IPIs.
  851          */
  852         if (*state == STATE_SLEEPING)
  853                 return (0);
  854         if (*state == STATE_MWAIT)
  855                 *state = STATE_RUNNING;
  856         return (1);
  857 }
  858 
  859 /*
  860  * Ordered by speed/power consumption.
  861  */
  862 struct {
  863         void    *id_fn;
  864         char    *id_name;
  865 } idle_tbl[] = {
  866         { cpu_idle_spin, "spin" },
  867         { cpu_idle_mwait, "mwait" },
  868         { cpu_idle_hlt, "hlt" },
  869         { cpu_idle_acpi, "acpi" },
  870         { NULL, NULL }
  871 };
  872 
  873 static int
  874 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
  875 {
  876         char *avail, *p;
  877         int error;
  878         int i;
  879 
  880         avail = malloc(256, M_TEMP, M_WAITOK);
  881         p = avail;
  882         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  883                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  884                     (cpu_feature2 & CPUID2_MON) == 0)
  885                         continue;
  886                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
  887                     cpu_idle_hook == NULL)
  888                         continue;
  889                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
  890                     idle_tbl[i].id_name);
  891         }
  892         error = sysctl_handle_string(oidp, avail, 0, req);
  893         free(avail, M_TEMP);
  894         return (error);
  895 }
  896 
  897 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
  898     0, 0, idle_sysctl_available, "A", "list of available idle functions");
  899 
  900 static int
  901 idle_sysctl(SYSCTL_HANDLER_ARGS)
  902 {
  903         char buf[16];
  904         int error;
  905         char *p;
  906         int i;
  907 
  908         p = "unknown";
  909         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  910                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
  911                         p = idle_tbl[i].id_name;
  912                         break;
  913                 }
  914         }
  915         strncpy(buf, p, sizeof(buf));
  916         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  917         if (error != 0 || req->newptr == NULL)
  918                 return (error);
  919         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  920                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  921                     (cpu_feature2 & CPUID2_MON) == 0)
  922                         continue;
  923                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
  924                     cpu_idle_hook == NULL)
  925                         continue;
  926                 if (strcmp(idle_tbl[i].id_name, buf))
  927                         continue;
  928                 cpu_idle_fn = idle_tbl[i].id_fn;
  929                 return (0);
  930         }
  931         return (EINVAL);
  932 }
  933 
  934 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
  935     idle_sysctl, "A", "currently selected idle function");
  936 
  937 /*
  938  * Reset registers to default values on exec.
  939  */
  940 void
  941 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  942 {
  943         struct trapframe *regs = td->td_frame;
  944         struct pcb *pcb = td->td_pcb;
  945 
  946         mtx_lock(&dt_lock);
  947         if (td->td_proc->p_md.md_ldt != NULL)
  948                 user_ldt_free(td);
  949         else
  950                 mtx_unlock(&dt_lock);
  951         
  952         pcb->pcb_fsbase = 0;
  953         pcb->pcb_gsbase = 0;
  954         clear_pcb_flags(pcb, PCB_32BIT);
  955         pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
  956         set_pcb_flags(pcb, PCB_FULL_IRET);
  957 
  958         bzero((char *)regs, sizeof(struct trapframe));
  959         regs->tf_rip = imgp->entry_addr;
  960         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  961         regs->tf_rdi = stack;           /* argv */
  962         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  963         regs->tf_ss = _udatasel;
  964         regs->tf_cs = _ucodesel;
  965         regs->tf_ds = _udatasel;
  966         regs->tf_es = _udatasel;
  967         regs->tf_fs = _ufssel;
  968         regs->tf_gs = _ugssel;
  969         regs->tf_flags = TF_HASSEGS;
  970         td->td_retval[1] = 0;
  971 
  972         /*
  973          * Reset the hardware debug registers if they were in use.
  974          * They won't have any meaning for the newly exec'd process.
  975          */
  976         if (pcb->pcb_flags & PCB_DBREGS) {
  977                 pcb->pcb_dr0 = 0;
  978                 pcb->pcb_dr1 = 0;
  979                 pcb->pcb_dr2 = 0;
  980                 pcb->pcb_dr3 = 0;
  981                 pcb->pcb_dr6 = 0;
  982                 pcb->pcb_dr7 = 0;
  983                 if (pcb == curpcb) {
  984                         /*
  985                          * Clear the debug registers on the running
  986                          * CPU, otherwise they will end up affecting
  987                          * the next process we switch to.
  988                          */
  989                         reset_dbregs();
  990                 }
  991                 clear_pcb_flags(pcb, PCB_DBREGS);
  992         }
  993 
  994         /*
  995          * Drop the FP state if we hold it, so that the process gets a
  996          * clean FP state if it uses the FPU again.
  997          */
  998         fpstate_drop(td);
  999 }
 1000 
 1001 void
 1002 cpu_setregs(void)
 1003 {
 1004         register_t cr0;
 1005 
 1006         cr0 = rcr0();
 1007         /*
 1008          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
 1009          * BSP.  See the comments there about why we set them.
 1010          */
 1011         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1012         load_cr0(cr0);
 1013 }
 1014 
 1015 /*
 1016  * Initialize amd64 and configure to run kernel
 1017  */
 1018 
 1019 /*
 1020  * Initialize segments & interrupt table
 1021  */
 1022 
 1023 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
 1024 static struct gate_descriptor idt0[NIDT];
 1025 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1026 
 1027 static char dblfault_stack[PAGE_SIZE] __aligned(16);
 1028 
 1029 static char nmi0_stack[PAGE_SIZE] __aligned(16);
 1030 CTASSERT(sizeof(struct nmi_pcpu) == 16);
 1031 
 1032 struct amd64tss common_tss[MAXCPU];
 1033 
 1034 /*
 1035  * Software prototypes -- in more palatable form.
 1036  *
 1037  * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
 1038  * slots as corresponding segments for i386 kernel.
 1039  */
 1040 struct soft_segment_descriptor gdt_segs[] = {
 1041 /* GNULL_SEL    0 Null Descriptor */
 1042 {       .ssd_base = 0x0,
 1043         .ssd_limit = 0x0,
 1044         .ssd_type = 0,
 1045         .ssd_dpl = 0,
 1046         .ssd_p = 0,
 1047         .ssd_long = 0,
 1048         .ssd_def32 = 0,
 1049         .ssd_gran = 0           },
 1050 /* GNULL2_SEL   1 Null Descriptor */
 1051 {       .ssd_base = 0x0,
 1052         .ssd_limit = 0x0,
 1053         .ssd_type = 0,
 1054         .ssd_dpl = 0,
 1055         .ssd_p = 0,
 1056         .ssd_long = 0,
 1057         .ssd_def32 = 0,
 1058         .ssd_gran = 0           },
 1059 /* GUFS32_SEL   2 32 bit %gs Descriptor for user */
 1060 {       .ssd_base = 0x0,
 1061         .ssd_limit = 0xfffff,
 1062         .ssd_type = SDT_MEMRWA,
 1063         .ssd_dpl = SEL_UPL,
 1064         .ssd_p = 1,
 1065         .ssd_long = 0,
 1066         .ssd_def32 = 1,
 1067         .ssd_gran = 1           },
 1068 /* GUGS32_SEL   3 32 bit %fs Descriptor for user */
 1069 {       .ssd_base = 0x0,
 1070         .ssd_limit = 0xfffff,
 1071         .ssd_type = SDT_MEMRWA,
 1072         .ssd_dpl = SEL_UPL,
 1073         .ssd_p = 1,
 1074         .ssd_long = 0,
 1075         .ssd_def32 = 1,
 1076         .ssd_gran = 1           },
 1077 /* GCODE_SEL    4 Code Descriptor for kernel */
 1078 {       .ssd_base = 0x0,
 1079         .ssd_limit = 0xfffff,
 1080         .ssd_type = SDT_MEMERA,
 1081         .ssd_dpl = SEL_KPL,
 1082         .ssd_p = 1,
 1083         .ssd_long = 1,
 1084         .ssd_def32 = 0,
 1085         .ssd_gran = 1           },
 1086 /* GDATA_SEL    5 Data Descriptor for kernel */
 1087 {       .ssd_base = 0x0,
 1088         .ssd_limit = 0xfffff,
 1089         .ssd_type = SDT_MEMRWA,
 1090         .ssd_dpl = SEL_KPL,
 1091         .ssd_p = 1,
 1092         .ssd_long = 1,
 1093         .ssd_def32 = 0,
 1094         .ssd_gran = 1           },
 1095 /* GUCODE32_SEL 6 32 bit Code Descriptor for user */
 1096 {       .ssd_base = 0x0,
 1097         .ssd_limit = 0xfffff,
 1098         .ssd_type = SDT_MEMERA,
 1099         .ssd_dpl = SEL_UPL,
 1100         .ssd_p = 1,
 1101         .ssd_long = 0,
 1102         .ssd_def32 = 1,
 1103         .ssd_gran = 1           },
 1104 /* GUDATA_SEL   7 32/64 bit Data Descriptor for user */
 1105 {       .ssd_base = 0x0,
 1106         .ssd_limit = 0xfffff,
 1107         .ssd_type = SDT_MEMRWA,
 1108         .ssd_dpl = SEL_UPL,
 1109         .ssd_p = 1,
 1110         .ssd_long = 0,
 1111         .ssd_def32 = 1,
 1112         .ssd_gran = 1           },
 1113 /* GUCODE_SEL   8 64 bit Code Descriptor for user */
 1114 {       .ssd_base = 0x0,
 1115         .ssd_limit = 0xfffff,
 1116         .ssd_type = SDT_MEMERA,
 1117         .ssd_dpl = SEL_UPL,
 1118         .ssd_p = 1,
 1119         .ssd_long = 1,
 1120         .ssd_def32 = 0,
 1121         .ssd_gran = 1           },
 1122 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1123 {       .ssd_base = 0x0,
 1124         .ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
 1125         .ssd_type = SDT_SYSTSS,
 1126         .ssd_dpl = SEL_KPL,
 1127         .ssd_p = 1,
 1128         .ssd_long = 0,
 1129         .ssd_def32 = 0,
 1130         .ssd_gran = 0           },
 1131 /* Actually, the TSS is a system descriptor which is double size */
 1132 {       .ssd_base = 0x0,
 1133         .ssd_limit = 0x0,
 1134         .ssd_type = 0,
 1135         .ssd_dpl = 0,
 1136         .ssd_p = 0,
 1137         .ssd_long = 0,
 1138         .ssd_def32 = 0,
 1139         .ssd_gran = 0           },
 1140 /* GUSERLDT_SEL 11 LDT Descriptor */
 1141 {       .ssd_base = 0x0,
 1142         .ssd_limit = 0x0,
 1143         .ssd_type = 0,
 1144         .ssd_dpl = 0,
 1145         .ssd_p = 0,
 1146         .ssd_long = 0,
 1147         .ssd_def32 = 0,
 1148         .ssd_gran = 0           },
 1149 /* GUSERLDT_SEL 12 LDT Descriptor, double size */
 1150 {       .ssd_base = 0x0,
 1151         .ssd_limit = 0x0,
 1152         .ssd_type = 0,
 1153         .ssd_dpl = 0,
 1154         .ssd_p = 0,
 1155         .ssd_long = 0,
 1156         .ssd_def32 = 0,
 1157         .ssd_gran = 0           },
 1158 };
 1159 
 1160 void
 1161 setidt(idx, func, typ, dpl, ist)
 1162         int idx;
 1163         inthand_t *func;
 1164         int typ;
 1165         int dpl;
 1166         int ist;
 1167 {
 1168         struct gate_descriptor *ip;
 1169 
 1170         ip = idt + idx;
 1171         ip->gd_looffset = (uintptr_t)func;
 1172         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
 1173         ip->gd_ist = ist;
 1174         ip->gd_xx = 0;
 1175         ip->gd_type = typ;
 1176         ip->gd_dpl = dpl;
 1177         ip->gd_p = 1;
 1178         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
 1179 }
 1180 
 1181 extern inthand_t
 1182         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1183         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1184         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1185         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1186         IDTVEC(xmm), IDTVEC(dblfault),
 1187 #ifdef KDTRACE_HOOKS
 1188         IDTVEC(dtrace_ret),
 1189 #endif
 1190 #ifdef XENHVM
 1191         IDTVEC(xen_intr_upcall),
 1192 #endif
 1193         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
 1194 
 1195 #ifdef DDB
 1196 /*
 1197  * Display the index and function name of any IDT entries that don't use
 1198  * the default 'rsvd' entry point.
 1199  */
 1200 DB_SHOW_COMMAND(idt, db_show_idt)
 1201 {
 1202         struct gate_descriptor *ip;
 1203         int idx;
 1204         uintptr_t func;
 1205 
 1206         ip = idt;
 1207         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1208                 func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
 1209                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1210                         db_printf("%3d\t", idx);
 1211                         db_printsym(func, DB_STGY_PROC);
 1212                         db_printf("\n");
 1213                 }
 1214                 ip++;
 1215         }
 1216 }
 1217 
 1218 /* Show privileged registers. */
 1219 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1220 {
 1221         struct {
 1222                 uint16_t limit;
 1223                 uint64_t base;
 1224         } __packed idtr, gdtr;
 1225         uint16_t ldt, tr;
 1226 
 1227         __asm __volatile("sidt %0" : "=m" (idtr));
 1228         db_printf("idtr\t0x%016lx/%04x\n",
 1229             (u_long)idtr.base, (u_int)idtr.limit);
 1230         __asm __volatile("sgdt %0" : "=m" (gdtr));
 1231         db_printf("gdtr\t0x%016lx/%04x\n",
 1232             (u_long)gdtr.base, (u_int)gdtr.limit);
 1233         __asm __volatile("sldt %0" : "=r" (ldt));
 1234         db_printf("ldtr\t0x%04x\n", ldt);
 1235         __asm __volatile("str %0" : "=r" (tr));
 1236         db_printf("tr\t0x%04x\n", tr);
 1237         db_printf("cr0\t0x%016lx\n", rcr0());
 1238         db_printf("cr2\t0x%016lx\n", rcr2());
 1239         db_printf("cr3\t0x%016lx\n", rcr3());
 1240         db_printf("cr4\t0x%016lx\n", rcr4());
 1241         db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
 1242         db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
 1243         db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
 1244         db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
 1245         db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
 1246 }
 1247 #endif
 1248 
 1249 void
 1250 sdtossd(sd, ssd)
 1251         struct user_segment_descriptor *sd;
 1252         struct soft_segment_descriptor *ssd;
 1253 {
 1254 
 1255         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1256         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1257         ssd->ssd_type  = sd->sd_type;
 1258         ssd->ssd_dpl   = sd->sd_dpl;
 1259         ssd->ssd_p     = sd->sd_p;
 1260         ssd->ssd_long  = sd->sd_long;
 1261         ssd->ssd_def32 = sd->sd_def32;
 1262         ssd->ssd_gran  = sd->sd_gran;
 1263 }
 1264 
 1265 void
 1266 ssdtosd(ssd, sd)
 1267         struct soft_segment_descriptor *ssd;
 1268         struct user_segment_descriptor *sd;
 1269 {
 1270 
 1271         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1272         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
 1273         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1274         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1275         sd->sd_type  = ssd->ssd_type;
 1276         sd->sd_dpl   = ssd->ssd_dpl;
 1277         sd->sd_p     = ssd->ssd_p;
 1278         sd->sd_long  = ssd->ssd_long;
 1279         sd->sd_def32 = ssd->ssd_def32;
 1280         sd->sd_gran  = ssd->ssd_gran;
 1281 }
 1282 
 1283 void
 1284 ssdtosyssd(ssd, sd)
 1285         struct soft_segment_descriptor *ssd;
 1286         struct system_segment_descriptor *sd;
 1287 {
 1288 
 1289         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1290         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
 1291         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1292         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1293         sd->sd_type  = ssd->ssd_type;
 1294         sd->sd_dpl   = ssd->ssd_dpl;
 1295         sd->sd_p     = ssd->ssd_p;
 1296         sd->sd_gran  = ssd->ssd_gran;
 1297 }
 1298 
 1299 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
 1300 #include <isa/isavar.h>
 1301 #include <isa/isareg.h>
 1302 /*
 1303  * Return a bitmap of the current interrupt requests.  This is 8259-specific
 1304  * and is only suitable for use at probe time.
 1305  * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
 1306  * It shouldn't be here.  There should probably be an APIC centric
 1307  * implementation in the apic driver code, if at all.
 1308  */
 1309 intrmask_t
 1310 isa_irq_pending(void)
 1311 {
 1312         u_char irr1;
 1313         u_char irr2;
 1314 
 1315         irr1 = inb(IO_ICU1);
 1316         irr2 = inb(IO_ICU2);
 1317         return ((irr2 << 8) | irr1);
 1318 }
 1319 #endif
 1320 
 1321 u_int basemem;
 1322 
 1323 static int
 1324 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
 1325     int *physmap_idxp)
 1326 {
 1327         int i, insert_idx, physmap_idx;
 1328 
 1329         physmap_idx = *physmap_idxp;
 1330 
 1331         if (length == 0)
 1332                 return (1);
 1333 
 1334         /*
 1335          * Find insertion point while checking for overlap.  Start off by
 1336          * assuming the new entry will be added to the end.
 1337          */
 1338         insert_idx = physmap_idx + 2;
 1339         for (i = 0; i <= physmap_idx; i += 2) {
 1340                 if (base < physmap[i + 1]) {
 1341                         if (base + length <= physmap[i]) {
 1342                                 insert_idx = i;
 1343                                 break;
 1344                         }
 1345                         if (boothowto & RB_VERBOSE)
 1346                                 printf(
 1347                     "Overlapping memory regions, ignoring second region\n");
 1348                         return (1);
 1349                 }
 1350         }
 1351 
 1352         /* See if we can prepend to the next entry. */
 1353         if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
 1354                 physmap[insert_idx] = base;
 1355                 return (1);
 1356         }
 1357 
 1358         /* See if we can append to the previous entry. */
 1359         if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
 1360                 physmap[insert_idx - 1] += length;
 1361                 return (1);
 1362         }
 1363 
 1364         physmap_idx += 2;
 1365         *physmap_idxp = physmap_idx;
 1366         if (physmap_idx == PHYSMAP_SIZE) {
 1367                 printf(
 1368                 "Too many segments in the physical address map, giving up\n");
 1369                 return (0);
 1370         }
 1371 
 1372         /*
 1373          * Move the last 'N' entries down to make room for the new
 1374          * entry if needed.
 1375          */
 1376         for (i = physmap_idx; i > insert_idx; i -= 2) {
 1377                 physmap[i] = physmap[i - 2];
 1378                 physmap[i + 1] = physmap[i - 1];
 1379         }
 1380 
 1381         /* Insert the new entry. */
 1382         physmap[insert_idx] = base;
 1383         physmap[insert_idx + 1] = base + length;
 1384         return (1);
 1385 }
 1386 
 1387 static void
 1388 add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
 1389     int *physmap_idx)
 1390 {
 1391         struct bios_smap *smap, *smapend;
 1392         u_int32_t smapsize;
 1393 
 1394         /*
 1395          * Memory map from INT 15:E820.
 1396          *
 1397          * subr_module.c says:
 1398          * "Consumer may safely assume that size value precedes data."
 1399          * ie: an int32_t immediately precedes smap.
 1400          */
 1401         smapsize = *((u_int32_t *)smapbase - 1);
 1402         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 1403 
 1404         for (smap = smapbase; smap < smapend; smap++) {
 1405                 if (boothowto & RB_VERBOSE)
 1406                         printf("SMAP type=%02x base=%016lx len=%016lx\n",
 1407                             smap->type, smap->base, smap->length);
 1408 
 1409                 if (smap->type != SMAP_TYPE_MEMORY)
 1410                         continue;
 1411 
 1412                 if (!add_physmap_entry(smap->base, smap->length, physmap,
 1413                     physmap_idx))
 1414                         break;
 1415         }
 1416 }
 1417 
 1418 #define efi_next_descriptor(ptr, size) \
 1419         ((struct efi_md *)(((uint8_t *) ptr) + size))
 1420 
 1421 static void
 1422 add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
 1423     int *physmap_idx)
 1424 {
 1425         struct efi_md *map, *p;
 1426         const char *type;
 1427         size_t efisz;
 1428         int ndesc, i;
 1429 
 1430         static const char *types[] = {
 1431                 "Reserved",
 1432                 "LoaderCode",
 1433                 "LoaderData",
 1434                 "BootServicesCode",
 1435                 "BootServicesData",
 1436                 "RuntimeServicesCode",
 1437                 "RuntimeServicesData",
 1438                 "ConventionalMemory",
 1439                 "UnusableMemory",
 1440                 "ACPIReclaimMemory",
 1441                 "ACPIMemoryNVS",
 1442                 "MemoryMappedIO",
 1443                 "MemoryMappedIOPortSpace",
 1444                 "PalCode"
 1445         };
 1446 
 1447         /*
 1448          * Memory map data provided by UEFI via the GetMemoryMap
 1449          * Boot Services API.
 1450          */
 1451         efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
 1452         map = (struct efi_md *)((uint8_t *)efihdr + efisz); 
 1453 
 1454         if (efihdr->descriptor_size == 0)
 1455                 return;
 1456         ndesc = efihdr->memory_size / efihdr->descriptor_size;
 1457 
 1458         if (boothowto & RB_VERBOSE)
 1459                 printf("%23s %12s %12s %8s %4s\n",
 1460                     "Type", "Physical", "Virtual", "#Pages", "Attr");
 1461 
 1462         for (i = 0, p = map; i < ndesc; i++,
 1463             p = efi_next_descriptor(p, efihdr->descriptor_size)) {
 1464                 if (boothowto & RB_VERBOSE) {
 1465                         if (p->md_type <= EFI_MD_TYPE_PALCODE)
 1466                                 type = types[p->md_type];
 1467                         else
 1468                                 type = "<INVALID>";
 1469                         printf("%23s %012lx %12p %08lx ", type, p->md_phys,
 1470                             p->md_virt, p->md_pages);
 1471                         if (p->md_attr & EFI_MD_ATTR_UC)
 1472                                 printf("UC ");
 1473                         if (p->md_attr & EFI_MD_ATTR_WC)
 1474                                 printf("WC ");
 1475                         if (p->md_attr & EFI_MD_ATTR_WT)
 1476                                 printf("WT ");
 1477                         if (p->md_attr & EFI_MD_ATTR_WB)
 1478                                 printf("WB ");
 1479                         if (p->md_attr & EFI_MD_ATTR_UCE)
 1480                                 printf("UCE ");
 1481                         if (p->md_attr & EFI_MD_ATTR_WP)
 1482                                 printf("WP ");
 1483                         if (p->md_attr & EFI_MD_ATTR_RP)
 1484                                 printf("RP ");
 1485                         if (p->md_attr & EFI_MD_ATTR_XP)
 1486                                 printf("XP ");
 1487                         if (p->md_attr & EFI_MD_ATTR_RT)
 1488                                 printf("RUNTIME");
 1489                         printf("\n");
 1490                 }
 1491 
 1492                 switch (p->md_type) {
 1493                 case EFI_MD_TYPE_CODE:
 1494                 case EFI_MD_TYPE_DATA:
 1495                 case EFI_MD_TYPE_BS_CODE:
 1496                 case EFI_MD_TYPE_BS_DATA:
 1497                 case EFI_MD_TYPE_FREE:
 1498                         /*
 1499                          * We're allowed to use any entry with these types.
 1500                          */
 1501                         break;
 1502                 default:
 1503                         continue;
 1504                 }
 1505 
 1506                 if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
 1507                     physmap, physmap_idx))
 1508                         break;
 1509         }
 1510 }
 1511 
 1512 static char bootmethod[16] = "";
 1513 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
 1514     "System firmware boot method");
 1515 
 1516 #define PAGES_PER_GB    (1024 * 1024 * 1024 / PAGE_SIZE)
 1517 
 1518 /*
 1519  * Populate the (physmap) array with base/bound pairs describing the
 1520  * available physical memory in the system, then test this memory and
 1521  * build the phys_avail array describing the actually-available memory.
 1522  *
 1523  * Total memory size may be set by the kernel environment variable
 1524  * hw.physmem or the compile-time define MAXMEM.
 1525  *
 1526  * XXX first should be vm_paddr_t.
 1527  */
 1528 static void
 1529 getmemsize(caddr_t kmdp, u_int64_t first)
 1530 {
 1531         int i, physmap_idx, pa_indx, da_indx;
 1532         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1533         u_long physmem_start, physmem_tunable, memtest;
 1534         pt_entry_t *pte;
 1535         struct bios_smap *smapbase;
 1536         struct efi_map_header *efihdr;
 1537         quad_t dcons_addr, dcons_size;
 1538         int page_counter;
 1539 
 1540         bzero(physmap, sizeof(physmap));
 1541         basemem = 0;
 1542         physmap_idx = 0;
 1543 
 1544         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
 1545             MODINFO_METADATA | MODINFOMD_EFI_MAP);
 1546         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 1547             MODINFO_METADATA | MODINFOMD_SMAP);
 1548 
 1549         if (efihdr != NULL) {
 1550                 add_efi_map_entries(efihdr, physmap, &physmap_idx);
 1551                 strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
 1552         } else if (smapbase != NULL) {
 1553                 add_smap_entries(smapbase, physmap, &physmap_idx);
 1554                 strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
 1555         } else {
 1556                 panic("No BIOS smap or EFI map info from loader!");
 1557         }
 1558 
 1559         /*
 1560          * Find the 'base memory' segment for SMP
 1561          */
 1562         basemem = 0;
 1563         for (i = 0; i <= physmap_idx; i += 2) {
 1564                 if (physmap[i] == 0x00000000) {
 1565                         basemem = physmap[i + 1] / 1024;
 1566                         break;
 1567                 }
 1568         }
 1569         if (basemem == 0)
 1570                 panic("BIOS smap did not include a basemem segment!");
 1571 
 1572 #ifdef SMP
 1573         /* make hole for AP bootstrap code */
 1574         physmap[1] = mp_bootaddress(physmap[1] / 1024);
 1575 #endif
 1576 
 1577         /*
 1578          * Maxmem isn't the "maximum memory", it's one larger than the
 1579          * highest page of the physical address space.  It should be
 1580          * called something like "Maxphyspage".  We may adjust this
 1581          * based on ``hw.physmem'' and the results of the memory test.
 1582          */
 1583         Maxmem = atop(physmap[physmap_idx + 1]);
 1584 
 1585 #ifdef MAXMEM
 1586         Maxmem = MAXMEM / 4;
 1587 #endif
 1588 
 1589         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1590                 Maxmem = atop(physmem_tunable);
 1591 
 1592         /*
 1593          * The boot memory test is disabled by default, as it takes a
 1594          * significant amount of time on large-memory systems, and is
 1595          * unfriendly to virtual machines as it unnecessarily touches all
 1596          * pages.
 1597          *
 1598          * A general name is used as the code may be extended to support
 1599          * additional tests beyond the current "page present" test.
 1600          */
 1601         memtest = 0;
 1602         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1603 
 1604         /*
 1605          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
 1606          * in the system.
 1607          */
 1608         if (Maxmem > atop(physmap[physmap_idx + 1]))
 1609                 Maxmem = atop(physmap[physmap_idx + 1]);
 1610 
 1611         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1612             (boothowto & RB_VERBOSE))
 1613                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1614 
 1615         /* call pmap initialization to make new kernel address space */
 1616         pmap_bootstrap(&first);
 1617 
 1618         /*
 1619          * Size up each available chunk of physical memory.
 1620          *
 1621          * XXX Some BIOSes corrupt low 64KB between suspend and resume.
 1622          * By default, mask off the first 16 pages unless we appear to be
 1623          * running in a VM.
 1624          */
 1625         physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
 1626         TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
 1627         if (physmem_start < PAGE_SIZE)
 1628                 physmap[0] = PAGE_SIZE;
 1629         else if (physmem_start >= physmap[1])
 1630                 physmap[0] = round_page(physmap[1] - PAGE_SIZE);
 1631         else
 1632                 physmap[0] = round_page(physmem_start);
 1633         pa_indx = 0;
 1634         da_indx = 1;
 1635         phys_avail[pa_indx++] = physmap[0];
 1636         phys_avail[pa_indx] = physmap[0];
 1637         dump_avail[da_indx] = physmap[0];
 1638         pte = CMAP1;
 1639 
 1640         /*
 1641          * Get dcons buffer address
 1642          */
 1643         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1644             getenv_quad("dcons.size", &dcons_size) == 0)
 1645                 dcons_addr = 0;
 1646 
 1647         /*
 1648          * physmap is in bytes, so when converting to page boundaries,
 1649          * round up the start address and round down the end address.
 1650          */
 1651         page_counter = 0;
 1652         if (memtest != 0)
 1653                 printf("Testing system memory");
 1654         for (i = 0; i <= physmap_idx; i += 2) {
 1655                 vm_paddr_t end;
 1656 
 1657                 end = ptoa((vm_paddr_t)Maxmem);
 1658                 if (physmap[i + 1] < end)
 1659                         end = trunc_page(physmap[i + 1]);
 1660                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1661                         int tmp, page_bad, full;
 1662                         int *ptr = (int *)CADDR1;
 1663 
 1664                         full = FALSE;
 1665                         /*
 1666                          * block out kernel memory as not available.
 1667                          */
 1668                         if (pa >= (vm_paddr_t)kernphys && pa < first)
 1669                                 goto do_dump_avail;
 1670 
 1671                         /*
 1672                          * block out dcons buffer
 1673                          */
 1674                         if (dcons_addr > 0
 1675                             && pa >= trunc_page(dcons_addr)
 1676                             && pa < dcons_addr + dcons_size)
 1677                                 goto do_dump_avail;
 1678 
 1679                         page_bad = FALSE;
 1680                         if (memtest == 0)
 1681                                 goto skip_memtest;
 1682 
 1683                         /*
 1684                          * Print a "." every GB to show we're making
 1685                          * progress.
 1686                          */
 1687                         page_counter++;
 1688                         if ((page_counter % PAGES_PER_GB) == 0)
 1689                                 printf(".");
 1690 
 1691                         /*
 1692                          * map page into kernel: valid, read/write,non-cacheable
 1693                          */
 1694                         *pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
 1695                         invltlb();
 1696 
 1697                         tmp = *(int *)ptr;
 1698                         /*
 1699                          * Test for alternating 1's and 0's
 1700                          */
 1701                         *(volatile int *)ptr = 0xaaaaaaaa;
 1702                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1703                                 page_bad = TRUE;
 1704                         /*
 1705                          * Test for alternating 0's and 1's
 1706                          */
 1707                         *(volatile int *)ptr = 0x55555555;
 1708                         if (*(volatile int *)ptr != 0x55555555)
 1709                                 page_bad = TRUE;
 1710                         /*
 1711                          * Test for all 1's
 1712                          */
 1713                         *(volatile int *)ptr = 0xffffffff;
 1714                         if (*(volatile int *)ptr != 0xffffffff)
 1715                                 page_bad = TRUE;
 1716                         /*
 1717                          * Test for all 0's
 1718                          */
 1719                         *(volatile int *)ptr = 0x0;
 1720                         if (*(volatile int *)ptr != 0x0)
 1721                                 page_bad = TRUE;
 1722                         /*
 1723                          * Restore original value.
 1724                          */
 1725                         *(int *)ptr = tmp;
 1726 
 1727 skip_memtest:
 1728                         /*
 1729                          * Adjust array of valid/good pages.
 1730                          */
 1731                         if (page_bad == TRUE)
 1732                                 continue;
 1733                         /*
 1734                          * If this good page is a continuation of the
 1735                          * previous set of good pages, then just increase
 1736                          * the end pointer. Otherwise start a new chunk.
 1737                          * Note that "end" points one higher than end,
 1738                          * making the range >= start and < end.
 1739                          * If we're also doing a speculative memory
 1740                          * test and we at or past the end, bump up Maxmem
 1741                          * so that we keep going. The first bad page
 1742                          * will terminate the loop.
 1743                          */
 1744                         if (phys_avail[pa_indx] == pa) {
 1745                                 phys_avail[pa_indx] += PAGE_SIZE;
 1746                         } else {
 1747                                 pa_indx++;
 1748                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1749                                         printf(
 1750                 "Too many holes in the physical address space, giving up\n");
 1751                                         pa_indx--;
 1752                                         full = TRUE;
 1753                                         goto do_dump_avail;
 1754                                 }
 1755                                 phys_avail[pa_indx++] = pa;     /* start */
 1756                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1757                         }
 1758                         physmem++;
 1759 do_dump_avail:
 1760                         if (dump_avail[da_indx] == pa) {
 1761                                 dump_avail[da_indx] += PAGE_SIZE;
 1762                         } else {
 1763                                 da_indx++;
 1764                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1765                                         da_indx--;
 1766                                         goto do_next;
 1767                                 }
 1768                                 dump_avail[da_indx++] = pa; /* start */
 1769                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1770                         }
 1771 do_next:
 1772                         if (full)
 1773                                 break;
 1774                 }
 1775         }
 1776         *pte = 0;
 1777         invltlb();
 1778         if (memtest != 0)
 1779                 printf("\n");
 1780 
 1781         /*
 1782          * XXX
 1783          * The last chunk must contain at least one page plus the message
 1784          * buffer to avoid complicating other code (message buffer address
 1785          * calculation, etc.).
 1786          */
 1787         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1788             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 1789                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1790                 phys_avail[pa_indx--] = 0;
 1791                 phys_avail[pa_indx--] = 0;
 1792         }
 1793 
 1794         Maxmem = atop(phys_avail[pa_indx]);
 1795 
 1796         /* Trim off space for the message buffer. */
 1797         phys_avail[pa_indx] -= round_page(msgbufsize);
 1798 
 1799         /* Map the message buffer. */
 1800         msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
 1801 }
 1802 
 1803 u_int64_t
 1804 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1805 {
 1806         caddr_t kmdp;
 1807         int gsel_tss, x;
 1808         struct pcpu *pc;
 1809         struct nmi_pcpu *np;
 1810         struct xstate_hdr *xhdr;
 1811         u_int64_t msr;
 1812         char *env;
 1813         size_t kstack0_sz;
 1814 
 1815         thread0.td_kstack = physfree + KERNBASE;
 1816         thread0.td_kstack_pages = KSTACK_PAGES;
 1817         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 1818         bzero((void *)thread0.td_kstack, kstack0_sz);
 1819         physfree += kstack0_sz;
 1820 
 1821         /*
 1822          * This may be done better later if it gets more high level
 1823          * components in it. If so just link td->td_proc here.
 1824          */
 1825         proc_linkup0(&proc0, &thread0);
 1826 
 1827         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1828         preload_bootstrap_relocate(KERNBASE);
 1829         kmdp = preload_search_by_type("elf kernel");
 1830         if (kmdp == NULL)
 1831                 kmdp = preload_search_by_type("elf64 kernel");
 1832         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1833         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1834 #ifdef DDB
 1835         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1836         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1837 #endif
 1838 
 1839         /* Init basic tunables, hz etc */
 1840         init_param1();
 1841 
 1842         /*
 1843          * make gdt memory segments
 1844          */
 1845         for (x = 0; x < NGDT; x++) {
 1846                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
 1847                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
 1848                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1849         }
 1850         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1851         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1852             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1853 
 1854         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1855         r_gdt.rd_base =  (long) gdt;
 1856         lgdt(&r_gdt);
 1857         pc = &__pcpu[0];
 1858 
 1859         wrmsr(MSR_FSBASE, 0);           /* User value */
 1860         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1861         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1862 
 1863         pcpu_init(pc, 0, sizeof(struct pcpu));
 1864         dpcpu_init((void *)(physfree + KERNBASE), 0);
 1865         physfree += DPCPU_SIZE;
 1866         PCPU_SET(prvspace, pc);
 1867         PCPU_SET(curthread, &thread0);
 1868         PCPU_SET(tssp, &common_tss[0]);
 1869         PCPU_SET(commontssp, &common_tss[0]);
 1870         PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1871         PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
 1872         PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
 1873         PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
 1874 
 1875         /*
 1876          * Initialize mutexes.
 1877          *
 1878          * icu_lock: in order to allow an interrupt to occur in a critical
 1879          *           section, to set pcpu->ipending (etc...) properly, we
 1880          *           must be able to get the icu lock, so it can't be
 1881          *           under witness.
 1882          */
 1883         mutex_init();
 1884         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1885         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
 1886 
 1887         /* exceptions */
 1888         for (x = 0; x < NIDT; x++)
 1889                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1890         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1891         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1892         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
 1893         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1894         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1895         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1896         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1897         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1898         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1899         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1900         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1901         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1902         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1903         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1904         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1905         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1906         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1907         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1908         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1909 #ifdef KDTRACE_HOOKS
 1910         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
 1911 #endif
 1912 #ifdef XENHVM
 1913         setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
 1914 #endif
 1915 
 1916         r_idt.rd_limit = sizeof(idt0) - 1;
 1917         r_idt.rd_base = (long) idt;
 1918         lidt(&r_idt);
 1919 
 1920         /*
 1921          * Initialize the i8254 before the console so that console
 1922          * initialization can use DELAY().
 1923          */
 1924         i8254_init();
 1925 
 1926         /*
 1927          * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
 1928          * transition).
 1929          */
 1930         if (kmdp != NULL && preload_search_info(kmdp,
 1931             MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL)
 1932                 vty_set_preferred(VTY_VT);
 1933 
 1934         /*
 1935          * Initialize the console before we print anything out.
 1936          */
 1937         cninit();
 1938 
 1939 #ifdef DEV_ISA
 1940 #ifdef DEV_ATPIC
 1941         elcr_probe();
 1942         atpic_startup();
 1943 #else
 1944         /* Reset and mask the atpics and leave them shut down. */
 1945         atpic_reset();
 1946 
 1947         /*
 1948          * Point the ICU spurious interrupt vectors at the APIC spurious
 1949          * interrupt handler.
 1950          */
 1951         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1952         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1953 #endif
 1954 #else
 1955 #error "have you forgotten the isa device?";
 1956 #endif
 1957 
 1958         kdb_init();
 1959 
 1960 #ifdef KDB
 1961         if (boothowto & RB_KDB)
 1962                 kdb_enter(KDB_WHY_BOOTFLAGS,
 1963                     "Boot flags requested debugger");
 1964 #endif
 1965 
 1966         identify_cpu();         /* Final stage of CPU initialization */
 1967         initializecpu();        /* Initialize CPU registers */
 1968         initializecpucache();
 1969 
 1970         /* doublefault stack space, runs on ist1 */
 1971         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1972 
 1973         /*
 1974          * NMI stack, runs on ist2.  The pcpu pointer is stored just
 1975          * above the start of the ist2 stack.
 1976          */
 1977         np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
 1978         np->np_pcpu = (register_t) pc;
 1979         common_tss[0].tss_ist2 = (long) np;
 1980 
 1981         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1982         common_tss[0].tss_iobase = sizeof(struct amd64tss) +
 1983             IOPAGES * PAGE_SIZE;
 1984 
 1985         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1986         ltr(gsel_tss);
 1987 
 1988         /* Set up the fast syscall stuff */
 1989         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1990         wrmsr(MSR_EFER, msr);
 1991         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1992         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1993         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1994               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1995         wrmsr(MSR_STAR, msr);
 1996         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1997 
 1998         getmemsize(kmdp, physfree);
 1999         init_param2(physmem);
 2000 
 2001         /* now running on new page tables, configured,and u/iom is accessible */
 2002 
 2003         msgbufinit(msgbufp, msgbufsize);
 2004         fpuinit();
 2005 
 2006         /*
 2007          * Set up thread0 pcb after fpuinit calculated pcb + fpu save
 2008          * area size.  Zero out the extended state header in fpu save
 2009          * area.
 2010          */
 2011         thread0.td_pcb = get_pcb_td(&thread0);
 2012         bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
 2013         if (use_xsave) {
 2014                 xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
 2015                     1);
 2016                 xhdr->xstate_bv = xsave_mask;
 2017         }
 2018         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2019         common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
 2020         /* Ensure the stack is aligned to 16 bytes */
 2021         common_tss[0].tss_rsp0 &= ~0xFul;
 2022         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 2023         PCPU_SET(curpcb, thread0.td_pcb);
 2024 
 2025         /* transfer to user mode */
 2026 
 2027         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2028         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2029         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 2030         _ufssel = GSEL(GUFS32_SEL, SEL_UPL);
 2031         _ugssel = GSEL(GUGS32_SEL, SEL_UPL);
 2032 
 2033         load_ds(_udatasel);
 2034         load_es(_udatasel);
 2035         load_fs(_ufssel);
 2036 
 2037         /* setup proc 0's pcb */
 2038         thread0.td_pcb->pcb_flags = 0;
 2039         thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
 2040         thread0.td_frame = &proc0_tf;
 2041 
 2042         env = getenv("kernelname");
 2043         if (env != NULL)
 2044                 strlcpy(kernelname, env, sizeof(kernelname));
 2045 
 2046         cpu_probe_amdc1e();
 2047 
 2048 #ifdef FDT
 2049         x86_init_fdt();
 2050 #endif
 2051 
 2052         /* Location of kernel stack for locore */
 2053         return ((u_int64_t)thread0.td_pcb);
 2054 }
 2055 
 2056 void
 2057 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2058 {
 2059 
 2060         pcpu->pc_acpi_id = 0xffffffff;
 2061 }
 2062 
 2063 static int
 2064 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
 2065 {
 2066         struct bios_smap *smapbase;
 2067         struct bios_smap_xattr smap;
 2068         caddr_t kmdp;
 2069         uint32_t *smapattr;
 2070         int count, error, i;
 2071 
 2072         /* Retrieve the system memory map from the loader. */
 2073         kmdp = preload_search_by_type("elf kernel");
 2074         if (kmdp == NULL)
 2075                 kmdp = preload_search_by_type("elf64 kernel");
 2076         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 2077             MODINFO_METADATA | MODINFOMD_SMAP);
 2078         if (smapbase == NULL)
 2079                 return (0);
 2080         smapattr = (uint32_t *)preload_search_info(kmdp,
 2081             MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
 2082         count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
 2083         error = 0;
 2084         for (i = 0; i < count; i++) {
 2085                 smap.base = smapbase[i].base;
 2086                 smap.length = smapbase[i].length;
 2087                 smap.type = smapbase[i].type;
 2088                 if (smapattr != NULL)
 2089                         smap.xattr = smapattr[i];
 2090                 else
 2091                         smap.xattr = 0;
 2092                 error = SYSCTL_OUT(req, &smap, sizeof(smap));
 2093         }
 2094         return (error);
 2095 }
 2096 SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
 2097     smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
 2098 
 2099 static int
 2100 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
 2101 {
 2102         struct efi_map_header *efihdr;
 2103         caddr_t kmdp;
 2104         uint32_t efisize;
 2105 
 2106         kmdp = preload_search_by_type("elf kernel");
 2107         if (kmdp == NULL)
 2108                 kmdp = preload_search_by_type("elf64 kernel");
 2109         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
 2110             MODINFO_METADATA | MODINFOMD_EFI_MAP);
 2111         if (efihdr == NULL)
 2112                 return (0);
 2113         efisize = *((uint32_t *)efihdr - 1);
 2114         return (SYSCTL_OUT(req, efihdr, efisize));
 2115 }
 2116 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
 2117     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
 2118 
 2119 void
 2120 spinlock_enter(void)
 2121 {
 2122         struct thread *td;
 2123         register_t flags;
 2124 
 2125         td = curthread;
 2126         if (td->td_md.md_spinlock_count == 0) {
 2127                 flags = intr_disable();
 2128                 td->td_md.md_spinlock_count = 1;
 2129                 td->td_md.md_saved_flags = flags;
 2130         } else
 2131                 td->td_md.md_spinlock_count++;
 2132         critical_enter();
 2133 }
 2134 
 2135 void
 2136 spinlock_exit(void)
 2137 {
 2138         struct thread *td;
 2139         register_t flags;
 2140 
 2141         td = curthread;
 2142         critical_exit();
 2143         flags = td->td_md.md_saved_flags;
 2144         td->td_md.md_spinlock_count--;
 2145         if (td->td_md.md_spinlock_count == 0)
 2146                 intr_restore(flags);
 2147 }
 2148 
 2149 /*
 2150  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 2151  * we want to start a backtrace from the function that caused us to enter
 2152  * the debugger. We have the context in the trapframe, but base the trace
 2153  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 2154  * enough for a backtrace.
 2155  */
 2156 void
 2157 makectx(struct trapframe *tf, struct pcb *pcb)
 2158 {
 2159 
 2160         pcb->pcb_r12 = tf->tf_r12;
 2161         pcb->pcb_r13 = tf->tf_r13;
 2162         pcb->pcb_r14 = tf->tf_r14;
 2163         pcb->pcb_r15 = tf->tf_r15;
 2164         pcb->pcb_rbp = tf->tf_rbp;
 2165         pcb->pcb_rbx = tf->tf_rbx;
 2166         pcb->pcb_rip = tf->tf_rip;
 2167         pcb->pcb_rsp = tf->tf_rsp;
 2168 }
 2169 
 2170 int
 2171 ptrace_set_pc(struct thread *td, unsigned long addr)
 2172 {
 2173 
 2174         td->td_frame->tf_rip = addr;
 2175         set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 2176         return (0);
 2177 }
 2178 
 2179 int
 2180 ptrace_single_step(struct thread *td)
 2181 {
 2182         td->td_frame->tf_rflags |= PSL_T;
 2183         return (0);
 2184 }
 2185 
 2186 int
 2187 ptrace_clear_single_step(struct thread *td)
 2188 {
 2189         td->td_frame->tf_rflags &= ~PSL_T;
 2190         return (0);
 2191 }
 2192 
 2193 int
 2194 fill_regs(struct thread *td, struct reg *regs)
 2195 {
 2196         struct trapframe *tp;
 2197 
 2198         tp = td->td_frame;
 2199         return (fill_frame_regs(tp, regs));
 2200 }
 2201 
 2202 int
 2203 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 2204 {
 2205         regs->r_r15 = tp->tf_r15;
 2206         regs->r_r14 = tp->tf_r14;
 2207         regs->r_r13 = tp->tf_r13;
 2208         regs->r_r12 = tp->tf_r12;
 2209         regs->r_r11 = tp->tf_r11;
 2210         regs->r_r10 = tp->tf_r10;
 2211         regs->r_r9  = tp->tf_r9;
 2212         regs->r_r8  = tp->tf_r8;
 2213         regs->r_rdi = tp->tf_rdi;
 2214         regs->r_rsi = tp->tf_rsi;
 2215         regs->r_rbp = tp->tf_rbp;
 2216         regs->r_rbx = tp->tf_rbx;
 2217         regs->r_rdx = tp->tf_rdx;
 2218         regs->r_rcx = tp->tf_rcx;
 2219         regs->r_rax = tp->tf_rax;
 2220         regs->r_rip = tp->tf_rip;
 2221         regs->r_cs = tp->tf_cs;
 2222         regs->r_rflags = tp->tf_rflags;
 2223         regs->r_rsp = tp->tf_rsp;
 2224         regs->r_ss = tp->tf_ss;
 2225         if (tp->tf_flags & TF_HASSEGS) {
 2226                 regs->r_ds = tp->tf_ds;
 2227                 regs->r_es = tp->tf_es;
 2228                 regs->r_fs = tp->tf_fs;
 2229                 regs->r_gs = tp->tf_gs;
 2230         } else {
 2231                 regs->r_ds = 0;
 2232                 regs->r_es = 0;
 2233                 regs->r_fs = 0;
 2234                 regs->r_gs = 0;
 2235         }
 2236         return (0);
 2237 }
 2238 
 2239 int
 2240 set_regs(struct thread *td, struct reg *regs)
 2241 {
 2242         struct trapframe *tp;
 2243         register_t rflags;
 2244 
 2245         tp = td->td_frame;
 2246         rflags = regs->r_rflags & 0xffffffff;
 2247         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 2248                 return (EINVAL);
 2249         tp->tf_r15 = regs->r_r15;
 2250         tp->tf_r14 = regs->r_r14;
 2251         tp->tf_r13 = regs->r_r13;
 2252         tp->tf_r12 = regs->r_r12;
 2253         tp->tf_r11 = regs->r_r11;
 2254         tp->tf_r10 = regs->r_r10;
 2255         tp->tf_r9  = regs->r_r9;
 2256         tp->tf_r8  = regs->r_r8;
 2257         tp->tf_rdi = regs->r_rdi;
 2258         tp->tf_rsi = regs->r_rsi;
 2259         tp->tf_rbp = regs->r_rbp;
 2260         tp->tf_rbx = regs->r_rbx;
 2261         tp->tf_rdx = regs->r_rdx;
 2262         tp->tf_rcx = regs->r_rcx;
 2263         tp->tf_rax = regs->r_rax;
 2264         tp->tf_rip = regs->r_rip;
 2265         tp->tf_cs = regs->r_cs;
 2266         tp->tf_rflags = rflags;
 2267         tp->tf_rsp = regs->r_rsp;
 2268         tp->tf_ss = regs->r_ss;
 2269         if (0) {        /* XXXKIB */
 2270                 tp->tf_ds = regs->r_ds;
 2271                 tp->tf_es = regs->r_es;
 2272                 tp->tf_fs = regs->r_fs;
 2273                 tp->tf_gs = regs->r_gs;
 2274                 tp->tf_flags = TF_HASSEGS;
 2275         }
 2276         set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 2277         return (0);
 2278 }
 2279 
 2280 /* XXX check all this stuff! */
 2281 /* externalize from sv_xmm */
 2282 static void
 2283 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 2284 {
 2285         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2286         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2287         int i;
 2288 
 2289         /* pcb -> fpregs */
 2290         bzero(fpregs, sizeof(*fpregs));
 2291 
 2292         /* FPU control/status */
 2293         penv_fpreg->en_cw = penv_xmm->en_cw;
 2294         penv_fpreg->en_sw = penv_xmm->en_sw;
 2295         penv_fpreg->en_tw = penv_xmm->en_tw;
 2296         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 2297         penv_fpreg->en_rip = penv_xmm->en_rip;
 2298         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 2299         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 2300         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 2301 
 2302         /* FPU registers */
 2303         for (i = 0; i < 8; ++i)
 2304                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 2305 
 2306         /* SSE registers */
 2307         for (i = 0; i < 16; ++i)
 2308                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 2309 }
 2310 
 2311 /* internalize from fpregs into sv_xmm */
 2312 static void
 2313 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 2314 {
 2315         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2316         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2317         int i;
 2318 
 2319         /* fpregs -> pcb */
 2320         /* FPU control/status */
 2321         penv_xmm->en_cw = penv_fpreg->en_cw;
 2322         penv_xmm->en_sw = penv_fpreg->en_sw;
 2323         penv_xmm->en_tw = penv_fpreg->en_tw;
 2324         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 2325         penv_xmm->en_rip = penv_fpreg->en_rip;
 2326         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 2327         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 2328         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 2329 
 2330         /* FPU registers */
 2331         for (i = 0; i < 8; ++i)
 2332                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 2333 
 2334         /* SSE registers */
 2335         for (i = 0; i < 16; ++i)
 2336                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 2337 }
 2338 
 2339 /* externalize from td->pcb */
 2340 int
 2341 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2342 {
 2343 
 2344         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 2345             P_SHOULDSTOP(td->td_proc),
 2346             ("not suspended thread %p", td));
 2347         fpugetregs(td);
 2348         fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
 2349         return (0);
 2350 }
 2351 
 2352 /* internalize to td->pcb */
 2353 int
 2354 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2355 {
 2356 
 2357         set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
 2358         fpuuserinited(td);
 2359         return (0);
 2360 }
 2361 
 2362 /*
 2363  * Get machine context.
 2364  */
 2365 int
 2366 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2367 {
 2368         struct pcb *pcb;
 2369         struct trapframe *tp;
 2370 
 2371         pcb = td->td_pcb;
 2372         tp = td->td_frame;
 2373         PROC_LOCK(curthread->td_proc);
 2374         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 2375         PROC_UNLOCK(curthread->td_proc);
 2376         mcp->mc_r15 = tp->tf_r15;
 2377         mcp->mc_r14 = tp->tf_r14;
 2378         mcp->mc_r13 = tp->tf_r13;
 2379         mcp->mc_r12 = tp->tf_r12;
 2380         mcp->mc_r11 = tp->tf_r11;
 2381         mcp->mc_r10 = tp->tf_r10;
 2382         mcp->mc_r9  = tp->tf_r9;
 2383         mcp->mc_r8  = tp->tf_r8;
 2384         mcp->mc_rdi = tp->tf_rdi;
 2385         mcp->mc_rsi = tp->tf_rsi;
 2386         mcp->mc_rbp = tp->tf_rbp;
 2387         mcp->mc_rbx = tp->tf_rbx;
 2388         mcp->mc_rcx = tp->tf_rcx;
 2389         mcp->mc_rflags = tp->tf_rflags;
 2390         if (flags & GET_MC_CLEAR_RET) {
 2391                 mcp->mc_rax = 0;
 2392                 mcp->mc_rdx = 0;
 2393                 mcp->mc_rflags &= ~PSL_C;
 2394         } else {
 2395                 mcp->mc_rax = tp->tf_rax;
 2396                 mcp->mc_rdx = tp->tf_rdx;
 2397         }
 2398         mcp->mc_rip = tp->tf_rip;
 2399         mcp->mc_cs = tp->tf_cs;
 2400         mcp->mc_rsp = tp->tf_rsp;
 2401         mcp->mc_ss = tp->tf_ss;
 2402         mcp->mc_ds = tp->tf_ds;
 2403         mcp->mc_es = tp->tf_es;
 2404         mcp->mc_fs = tp->tf_fs;
 2405         mcp->mc_gs = tp->tf_gs;
 2406         mcp->mc_flags = tp->tf_flags;
 2407         mcp->mc_len = sizeof(*mcp);
 2408         get_fpcontext(td, mcp, NULL, 0);
 2409         mcp->mc_fsbase = pcb->pcb_fsbase;
 2410         mcp->mc_gsbase = pcb->pcb_gsbase;
 2411         mcp->mc_xfpustate = 0;
 2412         mcp->mc_xfpustate_len = 0;
 2413         bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
 2414         return (0);
 2415 }
 2416 
 2417 /*
 2418  * Set machine context.
 2419  *
 2420  * However, we don't set any but the user modifiable flags, and we won't
 2421  * touch the cs selector.
 2422  */
 2423 int
 2424 set_mcontext(struct thread *td, mcontext_t *mcp)
 2425 {
 2426         struct pcb *pcb;
 2427         struct trapframe *tp;
 2428         char *xfpustate;
 2429         long rflags;
 2430         int ret;
 2431 
 2432         pcb = td->td_pcb;
 2433         tp = td->td_frame;
 2434         if (mcp->mc_len != sizeof(*mcp) ||
 2435             (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
 2436                 return (EINVAL);
 2437         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 2438             (tp->tf_rflags & ~PSL_USERCHANGE);
 2439         if (mcp->mc_flags & _MC_HASFPXSTATE) {
 2440                 if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
 2441                     sizeof(struct savefpu))
 2442                         return (EINVAL);
 2443                 xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
 2444                 ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
 2445                     mcp->mc_xfpustate_len);
 2446                 if (ret != 0)
 2447                         return (ret);
 2448         } else
 2449                 xfpustate = NULL;
 2450         ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
 2451         if (ret != 0)
 2452                 return (ret);
 2453         tp->tf_r15 = mcp->mc_r15;
 2454         tp->tf_r14 = mcp->mc_r14;
 2455         tp->tf_r13 = mcp->mc_r13;
 2456         tp->tf_r12 = mcp->mc_r12;
 2457         tp->tf_r11 = mcp->mc_r11;
 2458         tp->tf_r10 = mcp->mc_r10;
 2459         tp->tf_r9  = mcp->mc_r9;
 2460         tp->tf_r8  = mcp->mc_r8;
 2461         tp->tf_rdi = mcp->mc_rdi;
 2462         tp->tf_rsi = mcp->mc_rsi;
 2463         tp->tf_rbp = mcp->mc_rbp;
 2464         tp->tf_rbx = mcp->mc_rbx;
 2465         tp->tf_rdx = mcp->mc_rdx;
 2466         tp->tf_rcx = mcp->mc_rcx;
 2467         tp->tf_rax = mcp->mc_rax;
 2468         tp->tf_rip = mcp->mc_rip;
 2469         tp->tf_rflags = rflags;
 2470         tp->tf_rsp = mcp->mc_rsp;
 2471         tp->tf_ss = mcp->mc_ss;
 2472         tp->tf_flags = mcp->mc_flags;
 2473         if (tp->tf_flags & TF_HASSEGS) {
 2474                 tp->tf_ds = mcp->mc_ds;
 2475                 tp->tf_es = mcp->mc_es;
 2476                 tp->tf_fs = mcp->mc_fs;
 2477                 tp->tf_gs = mcp->mc_gs;
 2478         }
 2479         if (mcp->mc_flags & _MC_HASBASES) {
 2480                 pcb->pcb_fsbase = mcp->mc_fsbase;
 2481                 pcb->pcb_gsbase = mcp->mc_gsbase;
 2482         }
 2483         set_pcb_flags(pcb, PCB_FULL_IRET);
 2484         return (0);
 2485 }
 2486 
 2487 static void
 2488 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
 2489     size_t xfpusave_len)
 2490 {
 2491         size_t max_len, len;
 2492 
 2493         mcp->mc_ownedfp = fpugetregs(td);
 2494         bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
 2495             sizeof(mcp->mc_fpstate));
 2496         mcp->mc_fpformat = fpuformat();
 2497         if (!use_xsave || xfpusave_len == 0)
 2498                 return;
 2499         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
 2500         len = xfpusave_len;
 2501         if (len > max_len) {
 2502                 len = max_len;
 2503                 bzero(xfpusave + max_len, len - max_len);
 2504         }
 2505         mcp->mc_flags |= _MC_HASFPXSTATE;
 2506         mcp->mc_xfpustate_len = len;
 2507         bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
 2508 }
 2509 
 2510 static int
 2511 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
 2512     size_t xfpustate_len)
 2513 {
 2514         struct savefpu *fpstate;
 2515         int error;
 2516 
 2517         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2518                 return (0);
 2519         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 2520                 return (EINVAL);
 2521         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
 2522                 /* We don't care what state is left in the FPU or PCB. */
 2523                 fpstate_drop(td);
 2524                 error = 0;
 2525         } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2526             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2527                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 2528                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 2529                 error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
 2530         } else
 2531                 return (EINVAL);
 2532         return (error);
 2533 }
 2534 
 2535 void
 2536 fpstate_drop(struct thread *td)
 2537 {
 2538 
 2539         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 2540         critical_enter();
 2541         if (PCPU_GET(fpcurthread) == td)
 2542                 fpudrop();
 2543         /*
 2544          * XXX force a full drop of the fpu.  The above only drops it if we
 2545          * owned it.
 2546          *
 2547          * XXX I don't much like fpugetuserregs()'s semantics of doing a full
 2548          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2549          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2550          * sendsig() is the only caller of fpugetuserregs()... perhaps we just
 2551          * have too many layers.
 2552          */
 2553         clear_pcb_flags(curthread->td_pcb,
 2554             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
 2555         critical_exit();
 2556 }
 2557 
 2558 int
 2559 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2560 {
 2561         struct pcb *pcb;
 2562 
 2563         if (td == NULL) {
 2564                 dbregs->dr[0] = rdr0();
 2565                 dbregs->dr[1] = rdr1();
 2566                 dbregs->dr[2] = rdr2();
 2567                 dbregs->dr[3] = rdr3();
 2568                 dbregs->dr[6] = rdr6();
 2569                 dbregs->dr[7] = rdr7();
 2570         } else {
 2571                 pcb = td->td_pcb;
 2572                 dbregs->dr[0] = pcb->pcb_dr0;
 2573                 dbregs->dr[1] = pcb->pcb_dr1;
 2574                 dbregs->dr[2] = pcb->pcb_dr2;
 2575                 dbregs->dr[3] = pcb->pcb_dr3;
 2576                 dbregs->dr[6] = pcb->pcb_dr6;
 2577                 dbregs->dr[7] = pcb->pcb_dr7;
 2578         }
 2579         dbregs->dr[4] = 0;
 2580         dbregs->dr[5] = 0;
 2581         dbregs->dr[8] = 0;
 2582         dbregs->dr[9] = 0;
 2583         dbregs->dr[10] = 0;
 2584         dbregs->dr[11] = 0;
 2585         dbregs->dr[12] = 0;
 2586         dbregs->dr[13] = 0;
 2587         dbregs->dr[14] = 0;
 2588         dbregs->dr[15] = 0;
 2589         return (0);
 2590 }
 2591 
 2592 int
 2593 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2594 {
 2595         struct pcb *pcb;
 2596         int i;
 2597 
 2598         if (td == NULL) {
 2599                 load_dr0(dbregs->dr[0]);
 2600                 load_dr1(dbregs->dr[1]);
 2601                 load_dr2(dbregs->dr[2]);
 2602                 load_dr3(dbregs->dr[3]);
 2603                 load_dr6(dbregs->dr[6]);
 2604                 load_dr7(dbregs->dr[7]);
 2605         } else {
 2606                 /*
 2607                  * Don't let an illegal value for dr7 get set.  Specifically,
 2608                  * check for undefined settings.  Setting these bit patterns
 2609                  * result in undefined behaviour and can lead to an unexpected
 2610                  * TRCTRAP or a general protection fault right here.
 2611                  * Upper bits of dr6 and dr7 must not be set
 2612                  */
 2613                 for (i = 0; i < 4; i++) {
 2614                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2615                                 return (EINVAL);
 2616                         if (td->td_frame->tf_cs == _ucode32sel &&
 2617                             DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
 2618                                 return (EINVAL);
 2619                 }
 2620                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 2621                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 2622                         return (EINVAL);
 2623 
 2624                 pcb = td->td_pcb;
 2625 
 2626                 /*
 2627                  * Don't let a process set a breakpoint that is not within the
 2628                  * process's address space.  If a process could do this, it
 2629                  * could halt the system by setting a breakpoint in the kernel
 2630                  * (if ddb was enabled).  Thus, we need to check to make sure
 2631                  * that no breakpoints are being enabled for addresses outside
 2632                  * process's address space.
 2633                  *
 2634                  * XXX - what about when the watched area of the user's
 2635                  * address space is written into from within the kernel
 2636                  * ... wouldn't that still cause a breakpoint to be generated
 2637                  * from within kernel mode?
 2638                  */
 2639 
 2640                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2641                         /* dr0 is enabled */
 2642                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2643                                 return (EINVAL);
 2644                 }
 2645                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2646                         /* dr1 is enabled */
 2647                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2648                                 return (EINVAL);
 2649                 }
 2650                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2651                         /* dr2 is enabled */
 2652                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2653                                 return (EINVAL);
 2654                 }
 2655                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2656                         /* dr3 is enabled */
 2657                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2658                                 return (EINVAL);
 2659                 }
 2660 
 2661                 pcb->pcb_dr0 = dbregs->dr[0];
 2662                 pcb->pcb_dr1 = dbregs->dr[1];
 2663                 pcb->pcb_dr2 = dbregs->dr[2];
 2664                 pcb->pcb_dr3 = dbregs->dr[3];
 2665                 pcb->pcb_dr6 = dbregs->dr[6];
 2666                 pcb->pcb_dr7 = dbregs->dr[7];
 2667 
 2668                 set_pcb_flags(pcb, PCB_DBREGS);
 2669         }
 2670 
 2671         return (0);
 2672 }
 2673 
 2674 void
 2675 reset_dbregs(void)
 2676 {
 2677 
 2678         load_dr7(0);    /* Turn off the control bits first */
 2679         load_dr0(0);
 2680         load_dr1(0);
 2681         load_dr2(0);
 2682         load_dr3(0);
 2683         load_dr6(0);
 2684 }
 2685 
 2686 /*
 2687  * Return > 0 if a hardware breakpoint has been hit, and the
 2688  * breakpoint was in user space.  Return 0, otherwise.
 2689  */
 2690 int
 2691 user_dbreg_trap(void)
 2692 {
 2693         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 2694         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 2695         int nbp;            /* number of breakpoints that triggered */
 2696         caddr_t addr[4];    /* breakpoint addresses */
 2697         int i;
 2698         
 2699         dr7 = rdr7();
 2700         if ((dr7 & 0x000000ff) == 0) {
 2701                 /*
 2702                  * all GE and LE bits in the dr7 register are zero,
 2703                  * thus the trap couldn't have been caused by the
 2704                  * hardware debug registers
 2705                  */
 2706                 return 0;
 2707         }
 2708 
 2709         nbp = 0;
 2710         dr6 = rdr6();
 2711         bp = dr6 & 0x0000000f;
 2712 
 2713         if (!bp) {
 2714                 /*
 2715                  * None of the breakpoint bits are set meaning this
 2716                  * trap was not caused by any of the debug registers
 2717                  */
 2718                 return 0;
 2719         }
 2720 
 2721         /*
 2722          * at least one of the breakpoints were hit, check to see
 2723          * which ones and if any of them are user space addresses
 2724          */
 2725 
 2726         if (bp & 0x01) {
 2727                 addr[nbp++] = (caddr_t)rdr0();
 2728         }
 2729         if (bp & 0x02) {
 2730                 addr[nbp++] = (caddr_t)rdr1();
 2731         }
 2732         if (bp & 0x04) {
 2733                 addr[nbp++] = (caddr_t)rdr2();
 2734         }
 2735         if (bp & 0x08) {
 2736                 addr[nbp++] = (caddr_t)rdr3();
 2737         }
 2738 
 2739         for (i = 0; i < nbp; i++) {
 2740                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2741                         /*
 2742                          * addr[i] is in user space
 2743                          */
 2744                         return nbp;
 2745                 }
 2746         }
 2747 
 2748         /*
 2749          * None of the breakpoints are in user space.
 2750          */
 2751         return 0;
 2752 }
 2753 
 2754 #ifdef KDB
 2755 
 2756 /*
 2757  * Provide inb() and outb() as functions.  They are normally only available as
 2758  * inline functions, thus cannot be called from the debugger.
 2759  */
 2760 
 2761 /* silence compiler warnings */
 2762 u_char inb_(u_short);
 2763 void outb_(u_short, u_char);
 2764 
 2765 u_char
 2766 inb_(u_short port)
 2767 {
 2768         return inb(port);
 2769 }
 2770 
 2771 void
 2772 outb_(u_short port, u_char data)
 2773 {
 2774         outb(port, data);
 2775 }
 2776 
 2777 #endif /* KDB */

Cache object: 3ce663e80eb3fa4af9c8850a98bf60c6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.