The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/11.0/sys/amd64/amd64/machdep.c 298308 2016-04-19 23:41:46Z pfg $");
   43 
   44 #include "opt_atpic.h"
   45 #include "opt_compat.h"
   46 #include "opt_cpu.h"
   47 #include "opt_ddb.h"
   48 #include "opt_inet.h"
   49 #include "opt_isa.h"
   50 #include "opt_kstack_pages.h"
   51 #include "opt_maxmem.h"
   52 #include "opt_mp_watchdog.h"
   53 #include "opt_perfmon.h"
   54 #include "opt_platform.h"
   55 #include "opt_sched.h"
   56 
   57 #include <sys/param.h>
   58 #include <sys/proc.h>
   59 #include <sys/systm.h>
   60 #include <sys/bio.h>
   61 #include <sys/buf.h>
   62 #include <sys/bus.h>
   63 #include <sys/callout.h>
   64 #include <sys/cons.h>
   65 #include <sys/cpu.h>
   66 #include <sys/efi.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/exec.h>
   69 #include <sys/imgact.h>
   70 #include <sys/kdb.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/linker.h>
   74 #include <sys/lock.h>
   75 #include <sys/malloc.h>
   76 #include <sys/memrange.h>
   77 #include <sys/msgbuf.h>
   78 #include <sys/mutex.h>
   79 #include <sys/pcpu.h>
   80 #include <sys/ptrace.h>
   81 #include <sys/reboot.h>
   82 #include <sys/rwlock.h>
   83 #include <sys/sched.h>
   84 #include <sys/signalvar.h>
   85 #ifdef SMP
   86 #include <sys/smp.h>
   87 #endif
   88 #include <sys/syscallsubr.h>
   89 #include <sys/sysctl.h>
   90 #include <sys/sysent.h>
   91 #include <sys/sysproto.h>
   92 #include <sys/ucontext.h>
   93 #include <sys/vmmeter.h>
   94 
   95 #include <vm/vm.h>
   96 #include <vm/vm_extern.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_page.h>
   99 #include <vm/vm_map.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_pager.h>
  102 #include <vm/vm_param.h>
  103 
  104 #ifdef DDB
  105 #ifndef KDB
  106 #error KDB must be enabled in order for DDB to work!
  107 #endif
  108 #include <ddb/ddb.h>
  109 #include <ddb/db_sym.h>
  110 #endif
  111 
  112 #include <net/netisr.h>
  113 
  114 #include <machine/clock.h>
  115 #include <machine/cpu.h>
  116 #include <machine/cputypes.h>
  117 #include <machine/intr_machdep.h>
  118 #include <x86/mca.h>
  119 #include <machine/md_var.h>
  120 #include <machine/metadata.h>
  121 #include <machine/mp_watchdog.h>
  122 #include <machine/pc/bios.h>
  123 #include <machine/pcb.h>
  124 #include <machine/proc.h>
  125 #include <machine/reg.h>
  126 #include <machine/sigframe.h>
  127 #include <machine/specialreg.h>
  128 #ifdef PERFMON
  129 #include <machine/perfmon.h>
  130 #endif
  131 #include <machine/tss.h>
  132 #ifdef SMP
  133 #include <machine/smp.h>
  134 #endif
  135 #ifdef FDT
  136 #include <x86/fdt.h>
  137 #endif
  138 
  139 #ifdef DEV_ATPIC
  140 #include <x86/isa/icu.h>
  141 #else
  142 #include <x86/apicvar.h>
  143 #endif
  144 
  145 #include <isa/isareg.h>
  146 #include <isa/rtc.h>
  147 #include <x86/init.h>
  148 
  149 /* Sanity check for __curthread() */
  150 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  151 
  152 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  153 
  154 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  155 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  156 
  157 static void cpu_startup(void *);
  158 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
  159     char *xfpusave, size_t xfpusave_len);
  160 static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
  161     char *xfpustate, size_t xfpustate_len);
  162 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  163 
  164 /* Preload data parse function */
  165 static caddr_t native_parse_preload_data(u_int64_t);
  166 
  167 /* Native function to fetch and parse the e820 map */
  168 static void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
  169 
  170 /* Default init_ops implementation. */
  171 struct init_ops init_ops = {
  172         .parse_preload_data =   native_parse_preload_data,
  173         .early_clock_source_init =      i8254_init,
  174         .early_delay =                  i8254_delay,
  175         .parse_memmap =                 native_parse_memmap,
  176 #ifdef SMP
  177         .mp_bootaddress =               mp_bootaddress,
  178         .start_all_aps =                native_start_all_aps,
  179 #endif
  180         .msi_init =                     msi_init,
  181 };
  182 
  183 /*
  184  * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
  185  * the physical address at which the kernel is loaded.
  186  */
  187 extern char kernphys[];
  188 
  189 struct msgbuf *msgbufp;
  190 
  191 /*
  192  * Physical address of the EFI System Table. Stashed from the metadata hints
  193  * passed into the kernel and used by the EFI code to call runtime services.
  194  */
  195 vm_paddr_t efi_systbl;
  196 
  197 /* Intel ICH registers */
  198 #define ICH_PMBASE      0x400
  199 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  200 
  201 int     _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
  202 
  203 int cold = 1;
  204 
  205 long Maxmem = 0;
  206 long realmem = 0;
  207 
  208 /*
  209  * The number of PHYSMAP entries must be one less than the number of
  210  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  211  * physical address that is accessible by ISA DMA is split into two
  212  * PHYSSEG entries.
  213  */
  214 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  215 
  216 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  217 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  218 
  219 /* must be 2 less so 0 0 can signal end of chunks */
  220 #define PHYS_AVAIL_ARRAY_END (nitems(phys_avail) - 2)
  221 #define DUMP_AVAIL_ARRAY_END (nitems(dump_avail) - 2)
  222 
  223 struct kva_md_info kmi;
  224 
  225 static struct trapframe proc0_tf;
  226 struct region_descriptor r_gdt, r_idt;
  227 
  228 struct pcpu __pcpu[MAXCPU];
  229 
  230 struct mtx icu_lock;
  231 
  232 struct mem_range_softc mem_range_softc;
  233 
  234 struct mtx dt_lock;     /* lock for GDT and LDT */
  235 
  236 void (*vmm_resume_p)(void);
  237 
  238 static void
  239 cpu_startup(dummy)
  240         void *dummy;
  241 {
  242         uintmax_t memsize;
  243         char *sysenv;
  244 
  245         /*
  246          * On MacBooks, we need to disallow the legacy USB circuit to
  247          * generate an SMI# because this can cause several problems,
  248          * namely: incorrect CPU frequency detection and failure to
  249          * start the APs.
  250          * We do this by disabling a bit in the SMI_EN (SMI Control and
  251          * Enable register) of the Intel ICH LPC Interface Bridge. 
  252          */
  253         sysenv = kern_getenv("smbios.system.product");
  254         if (sysenv != NULL) {
  255                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  256                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  257                     strncmp(sysenv, "MacBook4,1", 10) == 0 ||
  258                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  259                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  260                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  261                     strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
  262                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  263                         if (bootverbose)
  264                                 printf("Disabling LEGACY_USB_EN bit on "
  265                                     "Intel ICH.\n");
  266                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  267                 }
  268                 freeenv(sysenv);
  269         }
  270 
  271         /*
  272          * Good {morning,afternoon,evening,night}.
  273          */
  274         startrtclock();
  275         printcpuinfo();
  276         panicifcpuunsupported();
  277 #ifdef PERFMON
  278         perfmon_init();
  279 #endif
  280 
  281         /*
  282          * Display physical memory if SMBIOS reports reasonable amount.
  283          */
  284         memsize = 0;
  285         sysenv = kern_getenv("smbios.memory.enabled");
  286         if (sysenv != NULL) {
  287                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  288                 freeenv(sysenv);
  289         }
  290         if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
  291                 memsize = ptoa((uintmax_t)Maxmem);
  292         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  293         realmem = atop(memsize);
  294 
  295         /*
  296          * Display any holes after the first chunk of extended memory.
  297          */
  298         if (bootverbose) {
  299                 int indx;
  300 
  301                 printf("Physical memory chunk(s):\n");
  302                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  303                         vm_paddr_t size;
  304 
  305                         size = phys_avail[indx + 1] - phys_avail[indx];
  306                         printf(
  307                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  308                             (uintmax_t)phys_avail[indx],
  309                             (uintmax_t)phys_avail[indx + 1] - 1,
  310                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  311                 }
  312         }
  313 
  314         vm_ksubmap_init(&kmi);
  315 
  316         printf("avail memory = %ju (%ju MB)\n",
  317             ptoa((uintmax_t)vm_cnt.v_free_count),
  318             ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
  319 
  320         /*
  321          * Set up buffers, so they can be used to read disk labels.
  322          */
  323         bufinit();
  324         vm_pager_bufferinit();
  325 
  326         cpu_setregs();
  327 }
  328 
  329 /*
  330  * Send an interrupt to process.
  331  *
  332  * Stack is set up to allow sigcode stored
  333  * at top to call routine, followed by call
  334  * to sigreturn routine below.  After sigreturn
  335  * resets the signal mask, the stack, and the
  336  * frame pointer, it returns to the user
  337  * specified pc, psl.
  338  */
  339 void
  340 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  341 {
  342         struct sigframe sf, *sfp;
  343         struct pcb *pcb;
  344         struct proc *p;
  345         struct thread *td;
  346         struct sigacts *psp;
  347         char *sp;
  348         struct trapframe *regs;
  349         char *xfpusave;
  350         size_t xfpusave_len;
  351         int sig;
  352         int oonstack;
  353 
  354         td = curthread;
  355         pcb = td->td_pcb;
  356         p = td->td_proc;
  357         PROC_LOCK_ASSERT(p, MA_OWNED);
  358         sig = ksi->ksi_signo;
  359         psp = p->p_sigacts;
  360         mtx_assert(&psp->ps_mtx, MA_OWNED);
  361         regs = td->td_frame;
  362         oonstack = sigonstack(regs->tf_rsp);
  363 
  364         if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
  365                 xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  366                 xfpusave = __builtin_alloca(xfpusave_len);
  367         } else {
  368                 xfpusave_len = 0;
  369                 xfpusave = NULL;
  370         }
  371 
  372         /* Save user context. */
  373         bzero(&sf, sizeof(sf));
  374         sf.sf_uc.uc_sigmask = *mask;
  375         sf.sf_uc.uc_stack = td->td_sigstk;
  376         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  377             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  378         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  379         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  380         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  381         get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
  382         fpstate_drop(td);
  383         sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
  384         sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
  385         bzero(sf.sf_uc.uc_mcontext.mc_spare,
  386             sizeof(sf.sf_uc.uc_mcontext.mc_spare));
  387         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  388 
  389         /* Allocate space for the signal handler context. */
  390         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  391             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  392                 sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
  393 #if defined(COMPAT_43)
  394                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  395 #endif
  396         } else
  397                 sp = (char *)regs->tf_rsp - 128;
  398         if (xfpusave != NULL) {
  399                 sp -= xfpusave_len;
  400                 sp = (char *)((unsigned long)sp & ~0x3Ful);
  401                 sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
  402         }
  403         sp -= sizeof(struct sigframe);
  404         /* Align to 16 bytes. */
  405         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  406 
  407         /* Build the argument list for the signal handler. */
  408         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  409         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  410         bzero(&sf.sf_si, sizeof(sf.sf_si));
  411         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  412                 /* Signal handler installed with SA_SIGINFO. */
  413                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  414                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  415 
  416                 /* Fill in POSIX parts */
  417                 sf.sf_si = ksi->ksi_info;
  418                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  419                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  420         } else {
  421                 /* Old FreeBSD-style arguments. */
  422                 regs->tf_rsi = ksi->ksi_code;   /* arg 2 in %rsi */
  423                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  424                 sf.sf_ahu.sf_handler = catcher;
  425         }
  426         mtx_unlock(&psp->ps_mtx);
  427         PROC_UNLOCK(p);
  428 
  429         /*
  430          * Copy the sigframe out to the user's stack.
  431          */
  432         if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  433             (xfpusave != NULL && copyout(xfpusave,
  434             (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
  435             != 0)) {
  436 #ifdef DEBUG
  437                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  438 #endif
  439                 PROC_LOCK(p);
  440                 sigexit(td, SIGILL);
  441         }
  442 
  443         regs->tf_rsp = (long)sfp;
  444         regs->tf_rip = p->p_sysent->sv_sigcode_base;
  445         regs->tf_rflags &= ~(PSL_T | PSL_D);
  446         regs->tf_cs = _ucodesel;
  447         regs->tf_ds = _udatasel;
  448         regs->tf_ss = _udatasel;
  449         regs->tf_es = _udatasel;
  450         regs->tf_fs = _ufssel;
  451         regs->tf_gs = _ugssel;
  452         regs->tf_flags = TF_HASSEGS;
  453         set_pcb_flags(pcb, PCB_FULL_IRET);
  454         PROC_LOCK(p);
  455         mtx_lock(&psp->ps_mtx);
  456 }
  457 
  458 /*
  459  * System call to cleanup state after a signal
  460  * has been taken.  Reset signal mask and
  461  * stack state from context left by sendsig (above).
  462  * Return to previous pc and psl as specified by
  463  * context left by sendsig. Check carefully to
  464  * make sure that the user has not modified the
  465  * state to gain improper privileges.
  466  *
  467  * MPSAFE
  468  */
  469 int
  470 sys_sigreturn(td, uap)
  471         struct thread *td;
  472         struct sigreturn_args /* {
  473                 const struct __ucontext *sigcntxp;
  474         } */ *uap;
  475 {
  476         ucontext_t uc;
  477         struct pcb *pcb;
  478         struct proc *p;
  479         struct trapframe *regs;
  480         ucontext_t *ucp;
  481         char *xfpustate;
  482         size_t xfpustate_len;
  483         long rflags;
  484         int cs, error, ret;
  485         ksiginfo_t ksi;
  486 
  487         pcb = td->td_pcb;
  488         p = td->td_proc;
  489 
  490         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  491         if (error != 0) {
  492                 uprintf("pid %d (%s): sigreturn copyin failed\n",
  493                     p->p_pid, td->td_name);
  494                 return (error);
  495         }
  496         ucp = &uc;
  497         if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
  498                 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
  499                     td->td_name, ucp->uc_mcontext.mc_flags);
  500                 return (EINVAL);
  501         }
  502         regs = td->td_frame;
  503         rflags = ucp->uc_mcontext.mc_rflags;
  504         /*
  505          * Don't allow users to change privileged or reserved flags.
  506          */
  507         if (!EFL_SECURE(rflags, regs->tf_rflags)) {
  508                 uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
  509                     td->td_name, rflags);
  510                 return (EINVAL);
  511         }
  512 
  513         /*
  514          * Don't allow users to load a valid privileged %cs.  Let the
  515          * hardware check for invalid selectors, excess privilege in
  516          * other selectors, invalid %eip's and invalid %esp's.
  517          */
  518         cs = ucp->uc_mcontext.mc_cs;
  519         if (!CS_SECURE(cs)) {
  520                 uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
  521                     td->td_name, cs);
  522                 ksiginfo_init_trap(&ksi);
  523                 ksi.ksi_signo = SIGBUS;
  524                 ksi.ksi_code = BUS_OBJERR;
  525                 ksi.ksi_trapno = T_PROTFLT;
  526                 ksi.ksi_addr = (void *)regs->tf_rip;
  527                 trapsignal(td, &ksi);
  528                 return (EINVAL);
  529         }
  530 
  531         if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
  532                 xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
  533                 if (xfpustate_len > cpu_max_ext_state_size -
  534                     sizeof(struct savefpu)) {
  535                         uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
  536                             p->p_pid, td->td_name, xfpustate_len);
  537                         return (EINVAL);
  538                 }
  539                 xfpustate = __builtin_alloca(xfpustate_len);
  540                 error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
  541                     xfpustate, xfpustate_len);
  542                 if (error != 0) {
  543                         uprintf(
  544         "pid %d (%s): sigreturn copying xfpustate failed\n",
  545                             p->p_pid, td->td_name);
  546                         return (error);
  547                 }
  548         } else {
  549                 xfpustate = NULL;
  550                 xfpustate_len = 0;
  551         }
  552         ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
  553         if (ret != 0) {
  554                 uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
  555                     p->p_pid, td->td_name, ret);
  556                 return (ret);
  557         }
  558         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  559         pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
  560         pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
  561 
  562 #if defined(COMPAT_43)
  563         if (ucp->uc_mcontext.mc_onstack & 1)
  564                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  565         else
  566                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  567 #endif
  568 
  569         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  570         set_pcb_flags(pcb, PCB_FULL_IRET);
  571         return (EJUSTRETURN);
  572 }
  573 
  574 #ifdef COMPAT_FREEBSD4
  575 int
  576 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  577 {
  578  
  579         return sys_sigreturn(td, (struct sigreturn_args *)uap);
  580 }
  581 #endif
  582 
  583 /*
  584  * Reset registers to default values on exec.
  585  */
  586 void
  587 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  588 {
  589         struct trapframe *regs = td->td_frame;
  590         struct pcb *pcb = td->td_pcb;
  591 
  592         mtx_lock(&dt_lock);
  593         if (td->td_proc->p_md.md_ldt != NULL)
  594                 user_ldt_free(td);
  595         else
  596                 mtx_unlock(&dt_lock);
  597         
  598         pcb->pcb_fsbase = 0;
  599         pcb->pcb_gsbase = 0;
  600         clear_pcb_flags(pcb, PCB_32BIT);
  601         pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
  602         set_pcb_flags(pcb, PCB_FULL_IRET);
  603 
  604         bzero((char *)regs, sizeof(struct trapframe));
  605         regs->tf_rip = imgp->entry_addr;
  606         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  607         regs->tf_rdi = stack;           /* argv */
  608         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  609         regs->tf_ss = _udatasel;
  610         regs->tf_cs = _ucodesel;
  611         regs->tf_ds = _udatasel;
  612         regs->tf_es = _udatasel;
  613         regs->tf_fs = _ufssel;
  614         regs->tf_gs = _ugssel;
  615         regs->tf_flags = TF_HASSEGS;
  616         td->td_retval[1] = 0;
  617 
  618         /*
  619          * Reset the hardware debug registers if they were in use.
  620          * They won't have any meaning for the newly exec'd process.
  621          */
  622         if (pcb->pcb_flags & PCB_DBREGS) {
  623                 pcb->pcb_dr0 = 0;
  624                 pcb->pcb_dr1 = 0;
  625                 pcb->pcb_dr2 = 0;
  626                 pcb->pcb_dr3 = 0;
  627                 pcb->pcb_dr6 = 0;
  628                 pcb->pcb_dr7 = 0;
  629                 if (pcb == curpcb) {
  630                         /*
  631                          * Clear the debug registers on the running
  632                          * CPU, otherwise they will end up affecting
  633                          * the next process we switch to.
  634                          */
  635                         reset_dbregs();
  636                 }
  637                 clear_pcb_flags(pcb, PCB_DBREGS);
  638         }
  639 
  640         /*
  641          * Drop the FP state if we hold it, so that the process gets a
  642          * clean FP state if it uses the FPU again.
  643          */
  644         fpstate_drop(td);
  645 }
  646 
  647 void
  648 cpu_setregs(void)
  649 {
  650         register_t cr0;
  651 
  652         cr0 = rcr0();
  653         /*
  654          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  655          * BSP.  See the comments there about why we set them.
  656          */
  657         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  658         load_cr0(cr0);
  659 }
  660 
  661 /*
  662  * Initialize amd64 and configure to run kernel
  663  */
  664 
  665 /*
  666  * Initialize segments & interrupt table
  667  */
  668 
  669 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
  670 static struct gate_descriptor idt0[NIDT];
  671 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
  672 
  673 static char dblfault_stack[PAGE_SIZE] __aligned(16);
  674 
  675 static char nmi0_stack[PAGE_SIZE] __aligned(16);
  676 CTASSERT(sizeof(struct nmi_pcpu) == 16);
  677 
  678 struct amd64tss common_tss[MAXCPU];
  679 
  680 /*
  681  * Software prototypes -- in more palatable form.
  682  *
  683  * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
  684  * slots as corresponding segments for i386 kernel.
  685  */
  686 struct soft_segment_descriptor gdt_segs[] = {
  687 /* GNULL_SEL    0 Null Descriptor */
  688 {       .ssd_base = 0x0,
  689         .ssd_limit = 0x0,
  690         .ssd_type = 0,
  691         .ssd_dpl = 0,
  692         .ssd_p = 0,
  693         .ssd_long = 0,
  694         .ssd_def32 = 0,
  695         .ssd_gran = 0           },
  696 /* GNULL2_SEL   1 Null Descriptor */
  697 {       .ssd_base = 0x0,
  698         .ssd_limit = 0x0,
  699         .ssd_type = 0,
  700         .ssd_dpl = 0,
  701         .ssd_p = 0,
  702         .ssd_long = 0,
  703         .ssd_def32 = 0,
  704         .ssd_gran = 0           },
  705 /* GUFS32_SEL   2 32 bit %gs Descriptor for user */
  706 {       .ssd_base = 0x0,
  707         .ssd_limit = 0xfffff,
  708         .ssd_type = SDT_MEMRWA,
  709         .ssd_dpl = SEL_UPL,
  710         .ssd_p = 1,
  711         .ssd_long = 0,
  712         .ssd_def32 = 1,
  713         .ssd_gran = 1           },
  714 /* GUGS32_SEL   3 32 bit %fs Descriptor for user */
  715 {       .ssd_base = 0x0,
  716         .ssd_limit = 0xfffff,
  717         .ssd_type = SDT_MEMRWA,
  718         .ssd_dpl = SEL_UPL,
  719         .ssd_p = 1,
  720         .ssd_long = 0,
  721         .ssd_def32 = 1,
  722         .ssd_gran = 1           },
  723 /* GCODE_SEL    4 Code Descriptor for kernel */
  724 {       .ssd_base = 0x0,
  725         .ssd_limit = 0xfffff,
  726         .ssd_type = SDT_MEMERA,
  727         .ssd_dpl = SEL_KPL,
  728         .ssd_p = 1,
  729         .ssd_long = 1,
  730         .ssd_def32 = 0,
  731         .ssd_gran = 1           },
  732 /* GDATA_SEL    5 Data Descriptor for kernel */
  733 {       .ssd_base = 0x0,
  734         .ssd_limit = 0xfffff,
  735         .ssd_type = SDT_MEMRWA,
  736         .ssd_dpl = SEL_KPL,
  737         .ssd_p = 1,
  738         .ssd_long = 1,
  739         .ssd_def32 = 0,
  740         .ssd_gran = 1           },
  741 /* GUCODE32_SEL 6 32 bit Code Descriptor for user */
  742 {       .ssd_base = 0x0,
  743         .ssd_limit = 0xfffff,
  744         .ssd_type = SDT_MEMERA,
  745         .ssd_dpl = SEL_UPL,
  746         .ssd_p = 1,
  747         .ssd_long = 0,
  748         .ssd_def32 = 1,
  749         .ssd_gran = 1           },
  750 /* GUDATA_SEL   7 32/64 bit Data Descriptor for user */
  751 {       .ssd_base = 0x0,
  752         .ssd_limit = 0xfffff,
  753         .ssd_type = SDT_MEMRWA,
  754         .ssd_dpl = SEL_UPL,
  755         .ssd_p = 1,
  756         .ssd_long = 0,
  757         .ssd_def32 = 1,
  758         .ssd_gran = 1           },
  759 /* GUCODE_SEL   8 64 bit Code Descriptor for user */
  760 {       .ssd_base = 0x0,
  761         .ssd_limit = 0xfffff,
  762         .ssd_type = SDT_MEMERA,
  763         .ssd_dpl = SEL_UPL,
  764         .ssd_p = 1,
  765         .ssd_long = 1,
  766         .ssd_def32 = 0,
  767         .ssd_gran = 1           },
  768 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
  769 {       .ssd_base = 0x0,
  770         .ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1,
  771         .ssd_type = SDT_SYSTSS,
  772         .ssd_dpl = SEL_KPL,
  773         .ssd_p = 1,
  774         .ssd_long = 0,
  775         .ssd_def32 = 0,
  776         .ssd_gran = 0           },
  777 /* Actually, the TSS is a system descriptor which is double size */
  778 {       .ssd_base = 0x0,
  779         .ssd_limit = 0x0,
  780         .ssd_type = 0,
  781         .ssd_dpl = 0,
  782         .ssd_p = 0,
  783         .ssd_long = 0,
  784         .ssd_def32 = 0,
  785         .ssd_gran = 0           },
  786 /* GUSERLDT_SEL 11 LDT Descriptor */
  787 {       .ssd_base = 0x0,
  788         .ssd_limit = 0x0,
  789         .ssd_type = 0,
  790         .ssd_dpl = 0,
  791         .ssd_p = 0,
  792         .ssd_long = 0,
  793         .ssd_def32 = 0,
  794         .ssd_gran = 0           },
  795 /* GUSERLDT_SEL 12 LDT Descriptor, double size */
  796 {       .ssd_base = 0x0,
  797         .ssd_limit = 0x0,
  798         .ssd_type = 0,
  799         .ssd_dpl = 0,
  800         .ssd_p = 0,
  801         .ssd_long = 0,
  802         .ssd_def32 = 0,
  803         .ssd_gran = 0           },
  804 };
  805 
  806 void
  807 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
  808 {
  809         struct gate_descriptor *ip;
  810 
  811         ip = idt + idx;
  812         ip->gd_looffset = (uintptr_t)func;
  813         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
  814         ip->gd_ist = ist;
  815         ip->gd_xx = 0;
  816         ip->gd_type = typ;
  817         ip->gd_dpl = dpl;
  818         ip->gd_p = 1;
  819         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
  820 }
  821 
  822 extern inthand_t
  823         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
  824         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
  825         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
  826         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
  827         IDTVEC(xmm), IDTVEC(dblfault),
  828 #ifdef KDTRACE_HOOKS
  829         IDTVEC(dtrace_ret),
  830 #endif
  831 #ifdef XENHVM
  832         IDTVEC(xen_intr_upcall),
  833 #endif
  834         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  835 
  836 #ifdef DDB
  837 /*
  838  * Display the index and function name of any IDT entries that don't use
  839  * the default 'rsvd' entry point.
  840  */
  841 DB_SHOW_COMMAND(idt, db_show_idt)
  842 {
  843         struct gate_descriptor *ip;
  844         int idx;
  845         uintptr_t func;
  846 
  847         ip = idt;
  848         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
  849                 func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
  850                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
  851                         db_printf("%3d\t", idx);
  852                         db_printsym(func, DB_STGY_PROC);
  853                         db_printf("\n");
  854                 }
  855                 ip++;
  856         }
  857 }
  858 
  859 /* Show privileged registers. */
  860 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
  861 {
  862         struct {
  863                 uint16_t limit;
  864                 uint64_t base;
  865         } __packed idtr, gdtr;
  866         uint16_t ldt, tr;
  867 
  868         __asm __volatile("sidt %0" : "=m" (idtr));
  869         db_printf("idtr\t0x%016lx/%04x\n",
  870             (u_long)idtr.base, (u_int)idtr.limit);
  871         __asm __volatile("sgdt %0" : "=m" (gdtr));
  872         db_printf("gdtr\t0x%016lx/%04x\n",
  873             (u_long)gdtr.base, (u_int)gdtr.limit);
  874         __asm __volatile("sldt %0" : "=r" (ldt));
  875         db_printf("ldtr\t0x%04x\n", ldt);
  876         __asm __volatile("str %0" : "=r" (tr));
  877         db_printf("tr\t0x%04x\n", tr);
  878         db_printf("cr0\t0x%016lx\n", rcr0());
  879         db_printf("cr2\t0x%016lx\n", rcr2());
  880         db_printf("cr3\t0x%016lx\n", rcr3());
  881         db_printf("cr4\t0x%016lx\n", rcr4());
  882         if (rcr4() & CR4_XSAVE)
  883                 db_printf("xcr0\t0x%016lx\n", rxcr(0));
  884         db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER));
  885         if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
  886                 db_printf("FEATURES_CTL\t%016lx\n",
  887                     rdmsr(MSR_IA32_FEATURE_CONTROL));
  888         db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
  889         db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT));
  890         db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE));
  891 }
  892 
  893 DB_SHOW_COMMAND(dbregs, db_show_dbregs)
  894 {
  895 
  896         db_printf("dr0\t0x%016lx\n", rdr0());
  897         db_printf("dr1\t0x%016lx\n", rdr1());
  898         db_printf("dr2\t0x%016lx\n", rdr2());
  899         db_printf("dr3\t0x%016lx\n", rdr3());
  900         db_printf("dr6\t0x%016lx\n", rdr6());
  901         db_printf("dr7\t0x%016lx\n", rdr7());   
  902 }
  903 #endif
  904 
  905 void
  906 sdtossd(sd, ssd)
  907         struct user_segment_descriptor *sd;
  908         struct soft_segment_descriptor *ssd;
  909 {
  910 
  911         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
  912         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
  913         ssd->ssd_type  = sd->sd_type;
  914         ssd->ssd_dpl   = sd->sd_dpl;
  915         ssd->ssd_p     = sd->sd_p;
  916         ssd->ssd_long  = sd->sd_long;
  917         ssd->ssd_def32 = sd->sd_def32;
  918         ssd->ssd_gran  = sd->sd_gran;
  919 }
  920 
  921 void
  922 ssdtosd(ssd, sd)
  923         struct soft_segment_descriptor *ssd;
  924         struct user_segment_descriptor *sd;
  925 {
  926 
  927         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  928         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
  929         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  930         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  931         sd->sd_type  = ssd->ssd_type;
  932         sd->sd_dpl   = ssd->ssd_dpl;
  933         sd->sd_p     = ssd->ssd_p;
  934         sd->sd_long  = ssd->ssd_long;
  935         sd->sd_def32 = ssd->ssd_def32;
  936         sd->sd_gran  = ssd->ssd_gran;
  937 }
  938 
  939 void
  940 ssdtosyssd(ssd, sd)
  941         struct soft_segment_descriptor *ssd;
  942         struct system_segment_descriptor *sd;
  943 {
  944 
  945         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  946         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
  947         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  948         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  949         sd->sd_type  = ssd->ssd_type;
  950         sd->sd_dpl   = ssd->ssd_dpl;
  951         sd->sd_p     = ssd->ssd_p;
  952         sd->sd_gran  = ssd->ssd_gran;
  953 }
  954 
  955 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
  956 #include <isa/isavar.h>
  957 #include <isa/isareg.h>
  958 /*
  959  * Return a bitmap of the current interrupt requests.  This is 8259-specific
  960  * and is only suitable for use at probe time.
  961  * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
  962  * It shouldn't be here.  There should probably be an APIC centric
  963  * implementation in the apic driver code, if at all.
  964  */
  965 intrmask_t
  966 isa_irq_pending(void)
  967 {
  968         u_char irr1;
  969         u_char irr2;
  970 
  971         irr1 = inb(IO_ICU1);
  972         irr2 = inb(IO_ICU2);
  973         return ((irr2 << 8) | irr1);
  974 }
  975 #endif
  976 
  977 u_int basemem;
  978 
  979 static int
  980 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
  981     int *physmap_idxp)
  982 {
  983         int i, insert_idx, physmap_idx;
  984 
  985         physmap_idx = *physmap_idxp;
  986 
  987         if (length == 0)
  988                 return (1);
  989 
  990         /*
  991          * Find insertion point while checking for overlap.  Start off by
  992          * assuming the new entry will be added to the end.
  993          *
  994          * NB: physmap_idx points to the next free slot.
  995          */
  996         insert_idx = physmap_idx;
  997         for (i = 0; i <= physmap_idx; i += 2) {
  998                 if (base < physmap[i + 1]) {
  999                         if (base + length <= physmap[i]) {
 1000                                 insert_idx = i;
 1001                                 break;
 1002                         }
 1003                         if (boothowto & RB_VERBOSE)
 1004                                 printf(
 1005                     "Overlapping memory regions, ignoring second region\n");
 1006                         return (1);
 1007                 }
 1008         }
 1009 
 1010         /* See if we can prepend to the next entry. */
 1011         if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
 1012                 physmap[insert_idx] = base;
 1013                 return (1);
 1014         }
 1015 
 1016         /* See if we can append to the previous entry. */
 1017         if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
 1018                 physmap[insert_idx - 1] += length;
 1019                 return (1);
 1020         }
 1021 
 1022         physmap_idx += 2;
 1023         *physmap_idxp = physmap_idx;
 1024         if (physmap_idx == PHYSMAP_SIZE) {
 1025                 printf(
 1026                 "Too many segments in the physical address map, giving up\n");
 1027                 return (0);
 1028         }
 1029 
 1030         /*
 1031          * Move the last 'N' entries down to make room for the new
 1032          * entry if needed.
 1033          */
 1034         for (i = (physmap_idx - 2); i > insert_idx; i -= 2) {
 1035                 physmap[i] = physmap[i - 2];
 1036                 physmap[i + 1] = physmap[i - 1];
 1037         }
 1038 
 1039         /* Insert the new entry. */
 1040         physmap[insert_idx] = base;
 1041         physmap[insert_idx + 1] = base + length;
 1042         return (1);
 1043 }
 1044 
 1045 void
 1046 bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
 1047                       vm_paddr_t *physmap, int *physmap_idx)
 1048 {
 1049         struct bios_smap *smap, *smapend;
 1050 
 1051         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 1052 
 1053         for (smap = smapbase; smap < smapend; smap++) {
 1054                 if (boothowto & RB_VERBOSE)
 1055                         printf("SMAP type=%02x base=%016lx len=%016lx\n",
 1056                             smap->type, smap->base, smap->length);
 1057 
 1058                 if (smap->type != SMAP_TYPE_MEMORY)
 1059                         continue;
 1060 
 1061                 if (!add_physmap_entry(smap->base, smap->length, physmap,
 1062                     physmap_idx))
 1063                         break;
 1064         }
 1065 }
 1066 
 1067 #define efi_next_descriptor(ptr, size) \
 1068         ((struct efi_md *)(((uint8_t *) ptr) + size))
 1069 
 1070 static void
 1071 add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
 1072     int *physmap_idx)
 1073 {
 1074         struct efi_md *map, *p;
 1075         const char *type;
 1076         size_t efisz;
 1077         int ndesc, i;
 1078 
 1079         static const char *types[] = {
 1080                 "Reserved",
 1081                 "LoaderCode",
 1082                 "LoaderData",
 1083                 "BootServicesCode",
 1084                 "BootServicesData",
 1085                 "RuntimeServicesCode",
 1086                 "RuntimeServicesData",
 1087                 "ConventionalMemory",
 1088                 "UnusableMemory",
 1089                 "ACPIReclaimMemory",
 1090                 "ACPIMemoryNVS",
 1091                 "MemoryMappedIO",
 1092                 "MemoryMappedIOPortSpace",
 1093                 "PalCode"
 1094         };
 1095 
 1096         /*
 1097          * Memory map data provided by UEFI via the GetMemoryMap
 1098          * Boot Services API.
 1099          */
 1100         efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
 1101         map = (struct efi_md *)((uint8_t *)efihdr + efisz); 
 1102 
 1103         if (efihdr->descriptor_size == 0)
 1104                 return;
 1105         ndesc = efihdr->memory_size / efihdr->descriptor_size;
 1106 
 1107         if (boothowto & RB_VERBOSE)
 1108                 printf("%23s %12s %12s %8s %4s\n",
 1109                     "Type", "Physical", "Virtual", "#Pages", "Attr");
 1110 
 1111         for (i = 0, p = map; i < ndesc; i++,
 1112             p = efi_next_descriptor(p, efihdr->descriptor_size)) {
 1113                 if (boothowto & RB_VERBOSE) {
 1114                         if (p->md_type <= EFI_MD_TYPE_PALCODE)
 1115                                 type = types[p->md_type];
 1116                         else
 1117                                 type = "<INVALID>";
 1118                         printf("%23s %012lx %12p %08lx ", type, p->md_phys,
 1119                             p->md_virt, p->md_pages);
 1120                         if (p->md_attr & EFI_MD_ATTR_UC)
 1121                                 printf("UC ");
 1122                         if (p->md_attr & EFI_MD_ATTR_WC)
 1123                                 printf("WC ");
 1124                         if (p->md_attr & EFI_MD_ATTR_WT)
 1125                                 printf("WT ");
 1126                         if (p->md_attr & EFI_MD_ATTR_WB)
 1127                                 printf("WB ");
 1128                         if (p->md_attr & EFI_MD_ATTR_UCE)
 1129                                 printf("UCE ");
 1130                         if (p->md_attr & EFI_MD_ATTR_WP)
 1131                                 printf("WP ");
 1132                         if (p->md_attr & EFI_MD_ATTR_RP)
 1133                                 printf("RP ");
 1134                         if (p->md_attr & EFI_MD_ATTR_XP)
 1135                                 printf("XP ");
 1136                         if (p->md_attr & EFI_MD_ATTR_RT)
 1137                                 printf("RUNTIME");
 1138                         printf("\n");
 1139                 }
 1140 
 1141                 switch (p->md_type) {
 1142                 case EFI_MD_TYPE_CODE:
 1143                 case EFI_MD_TYPE_DATA:
 1144                 case EFI_MD_TYPE_BS_CODE:
 1145                 case EFI_MD_TYPE_BS_DATA:
 1146                 case EFI_MD_TYPE_FREE:
 1147                         /*
 1148                          * We're allowed to use any entry with these types.
 1149                          */
 1150                         break;
 1151                 default:
 1152                         continue;
 1153                 }
 1154 
 1155                 if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
 1156                     physmap, physmap_idx))
 1157                         break;
 1158         }
 1159 }
 1160 
 1161 static char bootmethod[16] = "";
 1162 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
 1163     "System firmware boot method");
 1164 
 1165 static void
 1166 native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
 1167 {
 1168         struct bios_smap *smap;
 1169         struct efi_map_header *efihdr;
 1170         u_int32_t size;
 1171 
 1172         /*
 1173          * Memory map from INT 15:E820.
 1174          *
 1175          * subr_module.c says:
 1176          * "Consumer may safely assume that size value precedes data."
 1177          * ie: an int32_t immediately precedes smap.
 1178          */
 1179 
 1180         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
 1181             MODINFO_METADATA | MODINFOMD_EFI_MAP);
 1182         smap = (struct bios_smap *)preload_search_info(kmdp,
 1183             MODINFO_METADATA | MODINFOMD_SMAP);
 1184         if (efihdr == NULL && smap == NULL)
 1185                 panic("No BIOS smap or EFI map info from loader!");
 1186 
 1187         if (efihdr != NULL) {
 1188                 add_efi_map_entries(efihdr, physmap, physmap_idx);
 1189                 strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
 1190         } else {
 1191                 size = *((u_int32_t *)smap - 1);
 1192                 bios_add_smap_entries(smap, size, physmap, physmap_idx);
 1193                 strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
 1194         }
 1195 }
 1196 
 1197 #define PAGES_PER_GB    (1024 * 1024 * 1024 / PAGE_SIZE)
 1198 
 1199 /*
 1200  * Populate the (physmap) array with base/bound pairs describing the
 1201  * available physical memory in the system, then test this memory and
 1202  * build the phys_avail array describing the actually-available memory.
 1203  *
 1204  * Total memory size may be set by the kernel environment variable
 1205  * hw.physmem or the compile-time define MAXMEM.
 1206  *
 1207  * XXX first should be vm_paddr_t.
 1208  */
 1209 static void
 1210 getmemsize(caddr_t kmdp, u_int64_t first)
 1211 {
 1212         int i, physmap_idx, pa_indx, da_indx;
 1213         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1214         u_long physmem_start, physmem_tunable, memtest;
 1215         pt_entry_t *pte;
 1216         quad_t dcons_addr, dcons_size;
 1217         int page_counter;
 1218 
 1219         bzero(physmap, sizeof(physmap));
 1220         physmap_idx = 0;
 1221 
 1222         init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
 1223         physmap_idx -= 2;
 1224 
 1225         /*
 1226          * Find the 'base memory' segment for SMP
 1227          */
 1228         basemem = 0;
 1229         for (i = 0; i <= physmap_idx; i += 2) {
 1230                 if (physmap[i] <= 0xA0000) {
 1231                         basemem = physmap[i + 1] / 1024;
 1232                         break;
 1233                 }
 1234         }
 1235         if (basemem == 0 || basemem > 640) {
 1236                 if (bootverbose)
 1237                         printf(
 1238                 "Memory map doesn't contain a basemem segment, faking it");
 1239                 basemem = 640;
 1240         }
 1241 
 1242         /*
 1243          * Make hole for "AP -> long mode" bootstrap code.  The
 1244          * mp_bootaddress vector is only available when the kernel
 1245          * is configured to support APs and APs for the system start
 1246          * in 32bit mode (e.g. SMP bare metal).
 1247          */
 1248         if (init_ops.mp_bootaddress) {
 1249                 if (physmap[1] >= 0x100000000)
 1250                         panic(
 1251         "Basemem segment is not suitable for AP bootstrap code!");
 1252                 physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
 1253         }
 1254 
 1255         /*
 1256          * Maxmem isn't the "maximum memory", it's one larger than the
 1257          * highest page of the physical address space.  It should be
 1258          * called something like "Maxphyspage".  We may adjust this
 1259          * based on ``hw.physmem'' and the results of the memory test.
 1260          */
 1261         Maxmem = atop(physmap[physmap_idx + 1]);
 1262 
 1263 #ifdef MAXMEM
 1264         Maxmem = MAXMEM / 4;
 1265 #endif
 1266 
 1267         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1268                 Maxmem = atop(physmem_tunable);
 1269 
 1270         /*
 1271          * The boot memory test is disabled by default, as it takes a
 1272          * significant amount of time on large-memory systems, and is
 1273          * unfriendly to virtual machines as it unnecessarily touches all
 1274          * pages.
 1275          *
 1276          * A general name is used as the code may be extended to support
 1277          * additional tests beyond the current "page present" test.
 1278          */
 1279         memtest = 0;
 1280         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1281 
 1282         /*
 1283          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
 1284          * in the system.
 1285          */
 1286         if (Maxmem > atop(physmap[physmap_idx + 1]))
 1287                 Maxmem = atop(physmap[physmap_idx + 1]);
 1288 
 1289         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1290             (boothowto & RB_VERBOSE))
 1291                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1292 
 1293         /* call pmap initialization to make new kernel address space */
 1294         pmap_bootstrap(&first);
 1295 
 1296         /*
 1297          * Size up each available chunk of physical memory.
 1298          *
 1299          * XXX Some BIOSes corrupt low 64KB between suspend and resume.
 1300          * By default, mask off the first 16 pages unless we appear to be
 1301          * running in a VM.
 1302          */
 1303         physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
 1304         TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
 1305         if (physmap[0] < physmem_start) {
 1306                 if (physmem_start < PAGE_SIZE)
 1307                         physmap[0] = PAGE_SIZE;
 1308                 else if (physmem_start >= physmap[1])
 1309                         physmap[0] = round_page(physmap[1] - PAGE_SIZE);
 1310                 else
 1311                         physmap[0] = round_page(physmem_start);
 1312         }
 1313         pa_indx = 0;
 1314         da_indx = 1;
 1315         phys_avail[pa_indx++] = physmap[0];
 1316         phys_avail[pa_indx] = physmap[0];
 1317         dump_avail[da_indx] = physmap[0];
 1318         pte = CMAP1;
 1319 
 1320         /*
 1321          * Get dcons buffer address
 1322          */
 1323         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1324             getenv_quad("dcons.size", &dcons_size) == 0)
 1325                 dcons_addr = 0;
 1326 
 1327         /*
 1328          * physmap is in bytes, so when converting to page boundaries,
 1329          * round up the start address and round down the end address.
 1330          */
 1331         page_counter = 0;
 1332         if (memtest != 0)
 1333                 printf("Testing system memory");
 1334         for (i = 0; i <= physmap_idx; i += 2) {
 1335                 vm_paddr_t end;
 1336 
 1337                 end = ptoa((vm_paddr_t)Maxmem);
 1338                 if (physmap[i + 1] < end)
 1339                         end = trunc_page(physmap[i + 1]);
 1340                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1341                         int tmp, page_bad, full;
 1342                         int *ptr = (int *)CADDR1;
 1343 
 1344                         full = FALSE;
 1345                         /*
 1346                          * block out kernel memory as not available.
 1347                          */
 1348                         if (pa >= (vm_paddr_t)kernphys && pa < first)
 1349                                 goto do_dump_avail;
 1350 
 1351                         /*
 1352                          * block out dcons buffer
 1353                          */
 1354                         if (dcons_addr > 0
 1355                             && pa >= trunc_page(dcons_addr)
 1356                             && pa < dcons_addr + dcons_size)
 1357                                 goto do_dump_avail;
 1358 
 1359                         page_bad = FALSE;
 1360                         if (memtest == 0)
 1361                                 goto skip_memtest;
 1362 
 1363                         /*
 1364                          * Print a "." every GB to show we're making
 1365                          * progress.
 1366                          */
 1367                         page_counter++;
 1368                         if ((page_counter % PAGES_PER_GB) == 0)
 1369                                 printf(".");
 1370 
 1371                         /*
 1372                          * map page into kernel: valid, read/write,non-cacheable
 1373                          */
 1374                         *pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
 1375                         invltlb();
 1376 
 1377                         tmp = *(int *)ptr;
 1378                         /*
 1379                          * Test for alternating 1's and 0's
 1380                          */
 1381                         *(volatile int *)ptr = 0xaaaaaaaa;
 1382                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1383                                 page_bad = TRUE;
 1384                         /*
 1385                          * Test for alternating 0's and 1's
 1386                          */
 1387                         *(volatile int *)ptr = 0x55555555;
 1388                         if (*(volatile int *)ptr != 0x55555555)
 1389                                 page_bad = TRUE;
 1390                         /*
 1391                          * Test for all 1's
 1392                          */
 1393                         *(volatile int *)ptr = 0xffffffff;
 1394                         if (*(volatile int *)ptr != 0xffffffff)
 1395                                 page_bad = TRUE;
 1396                         /*
 1397                          * Test for all 0's
 1398                          */
 1399                         *(volatile int *)ptr = 0x0;
 1400                         if (*(volatile int *)ptr != 0x0)
 1401                                 page_bad = TRUE;
 1402                         /*
 1403                          * Restore original value.
 1404                          */
 1405                         *(int *)ptr = tmp;
 1406 
 1407 skip_memtest:
 1408                         /*
 1409                          * Adjust array of valid/good pages.
 1410                          */
 1411                         if (page_bad == TRUE)
 1412                                 continue;
 1413                         /*
 1414                          * If this good page is a continuation of the
 1415                          * previous set of good pages, then just increase
 1416                          * the end pointer. Otherwise start a new chunk.
 1417                          * Note that "end" points one higher than end,
 1418                          * making the range >= start and < end.
 1419                          * If we're also doing a speculative memory
 1420                          * test and we at or past the end, bump up Maxmem
 1421                          * so that we keep going. The first bad page
 1422                          * will terminate the loop.
 1423                          */
 1424                         if (phys_avail[pa_indx] == pa) {
 1425                                 phys_avail[pa_indx] += PAGE_SIZE;
 1426                         } else {
 1427                                 pa_indx++;
 1428                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1429                                         printf(
 1430                 "Too many holes in the physical address space, giving up\n");
 1431                                         pa_indx--;
 1432                                         full = TRUE;
 1433                                         goto do_dump_avail;
 1434                                 }
 1435                                 phys_avail[pa_indx++] = pa;     /* start */
 1436                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1437                         }
 1438                         physmem++;
 1439 do_dump_avail:
 1440                         if (dump_avail[da_indx] == pa) {
 1441                                 dump_avail[da_indx] += PAGE_SIZE;
 1442                         } else {
 1443                                 da_indx++;
 1444                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1445                                         da_indx--;
 1446                                         goto do_next;
 1447                                 }
 1448                                 dump_avail[da_indx++] = pa; /* start */
 1449                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1450                         }
 1451 do_next:
 1452                         if (full)
 1453                                 break;
 1454                 }
 1455         }
 1456         *pte = 0;
 1457         invltlb();
 1458         if (memtest != 0)
 1459                 printf("\n");
 1460 
 1461         /*
 1462          * XXX
 1463          * The last chunk must contain at least one page plus the message
 1464          * buffer to avoid complicating other code (message buffer address
 1465          * calculation, etc.).
 1466          */
 1467         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1468             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 1469                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1470                 phys_avail[pa_indx--] = 0;
 1471                 phys_avail[pa_indx--] = 0;
 1472         }
 1473 
 1474         Maxmem = atop(phys_avail[pa_indx]);
 1475 
 1476         /* Trim off space for the message buffer. */
 1477         phys_avail[pa_indx] -= round_page(msgbufsize);
 1478 
 1479         /* Map the message buffer. */
 1480         msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
 1481 }
 1482 
 1483 static caddr_t
 1484 native_parse_preload_data(u_int64_t modulep)
 1485 {
 1486         caddr_t kmdp;
 1487         char *envp;
 1488 #ifdef DDB
 1489         vm_offset_t ksym_start;
 1490         vm_offset_t ksym_end;
 1491 #endif
 1492 
 1493         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1494         preload_bootstrap_relocate(KERNBASE);
 1495         kmdp = preload_search_by_type("elf kernel");
 1496         if (kmdp == NULL)
 1497                 kmdp = preload_search_by_type("elf64 kernel");
 1498         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1499         envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
 1500         if (envp != NULL)
 1501                 envp += KERNBASE;
 1502         init_static_kenv(envp, 0);
 1503 #ifdef DDB
 1504         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1505         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1506         db_fetch_ksymtab(ksym_start, ksym_end);
 1507 #endif
 1508         efi_systbl = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
 1509 
 1510         return (kmdp);
 1511 }
 1512 
 1513 u_int64_t
 1514 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1515 {
 1516         caddr_t kmdp;
 1517         int gsel_tss, x;
 1518         struct pcpu *pc;
 1519         struct nmi_pcpu *np;
 1520         struct xstate_hdr *xhdr;
 1521         u_int64_t msr;
 1522         char *env;
 1523         size_t kstack0_sz;
 1524 
 1525         /*
 1526          * This may be done better later if it gets more high level
 1527          * components in it. If so just link td->td_proc here.
 1528          */
 1529         proc_linkup0(&proc0, &thread0);
 1530 
 1531         kmdp = init_ops.parse_preload_data(modulep);
 1532 
 1533         /* Init basic tunables, hz etc */
 1534         init_param1();
 1535 
 1536         thread0.td_kstack = physfree + KERNBASE;
 1537         thread0.td_kstack_pages = kstack_pages;
 1538         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 1539         bzero((void *)thread0.td_kstack, kstack0_sz);
 1540         physfree += kstack0_sz;
 1541 
 1542         /*
 1543          * make gdt memory segments
 1544          */
 1545         for (x = 0; x < NGDT; x++) {
 1546                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
 1547                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
 1548                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1549         }
 1550         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1551         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1552             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1553 
 1554         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1555         r_gdt.rd_base =  (long) gdt;
 1556         lgdt(&r_gdt);
 1557         pc = &__pcpu[0];
 1558 
 1559         wrmsr(MSR_FSBASE, 0);           /* User value */
 1560         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1561         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1562 
 1563         pcpu_init(pc, 0, sizeof(struct pcpu));
 1564         dpcpu_init((void *)(physfree + KERNBASE), 0);
 1565         physfree += DPCPU_SIZE;
 1566         PCPU_SET(prvspace, pc);
 1567         PCPU_SET(curthread, &thread0);
 1568         PCPU_SET(tssp, &common_tss[0]);
 1569         PCPU_SET(commontssp, &common_tss[0]);
 1570         PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1571         PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
 1572         PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
 1573         PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
 1574 
 1575         /*
 1576          * Initialize mutexes.
 1577          *
 1578          * icu_lock: in order to allow an interrupt to occur in a critical
 1579          *           section, to set pcpu->ipending (etc...) properly, we
 1580          *           must be able to get the icu lock, so it can't be
 1581          *           under witness.
 1582          */
 1583         mutex_init();
 1584         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1585         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
 1586 
 1587         /* exceptions */
 1588         for (x = 0; x < NIDT; x++)
 1589                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1590         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1591         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1592         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
 1593         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1594         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1595         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1596         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1597         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1598         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1599         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1600         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1601         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1602         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1603         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1604         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1605         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1606         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1607         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1608         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1609 #ifdef KDTRACE_HOOKS
 1610         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
 1611 #endif
 1612 #ifdef XENHVM
 1613         setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
 1614 #endif
 1615 
 1616         r_idt.rd_limit = sizeof(idt0) - 1;
 1617         r_idt.rd_base = (long) idt;
 1618         lidt(&r_idt);
 1619 
 1620         /*
 1621          * Initialize the clock before the console so that console
 1622          * initialization can use DELAY().
 1623          */
 1624         clock_init();
 1625 
 1626         /*
 1627          * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
 1628          * transition).
 1629          * Once bootblocks have updated, we can test directly for
 1630          * efi_systbl != NULL here...
 1631          */
 1632         if (preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP)
 1633             != NULL)
 1634                 vty_set_preferred(VTY_VT);
 1635 
 1636         identify_cpu();         /* Final stage of CPU initialization */
 1637         initializecpu();        /* Initialize CPU registers */
 1638         initializecpucache();
 1639 
 1640         /* doublefault stack space, runs on ist1 */
 1641         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1642 
 1643         /*
 1644          * NMI stack, runs on ist2.  The pcpu pointer is stored just
 1645          * above the start of the ist2 stack.
 1646          */
 1647         np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
 1648         np->np_pcpu = (register_t) pc;
 1649         common_tss[0].tss_ist2 = (long) np;
 1650 
 1651         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1652         common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE;
 1653 
 1654         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1655         ltr(gsel_tss);
 1656 
 1657         /* Set up the fast syscall stuff */
 1658         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1659         wrmsr(MSR_EFER, msr);
 1660         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1661         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1662         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1663               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1664         wrmsr(MSR_STAR, msr);
 1665         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1666 
 1667         getmemsize(kmdp, physfree);
 1668         init_param2(physmem);
 1669 
 1670         /* now running on new page tables, configured,and u/iom is accessible */
 1671 
 1672         cninit();
 1673 
 1674 #ifdef DEV_ISA
 1675 #ifdef DEV_ATPIC
 1676         elcr_probe();
 1677         atpic_startup();
 1678 #else
 1679         /* Reset and mask the atpics and leave them shut down. */
 1680         atpic_reset();
 1681 
 1682         /*
 1683          * Point the ICU spurious interrupt vectors at the APIC spurious
 1684          * interrupt handler.
 1685          */
 1686         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1687         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1688 #endif
 1689 #else
 1690 #error "have you forgotten the isa device?";
 1691 #endif
 1692 
 1693         kdb_init();
 1694 
 1695 #ifdef KDB
 1696         if (boothowto & RB_KDB)
 1697                 kdb_enter(KDB_WHY_BOOTFLAGS,
 1698                     "Boot flags requested debugger");
 1699 #endif
 1700 
 1701         msgbufinit(msgbufp, msgbufsize);
 1702         fpuinit();
 1703 
 1704         /*
 1705          * Set up thread0 pcb after fpuinit calculated pcb + fpu save
 1706          * area size.  Zero out the extended state header in fpu save
 1707          * area.
 1708          */
 1709         thread0.td_pcb = get_pcb_td(&thread0);
 1710         bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
 1711         if (use_xsave) {
 1712                 xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
 1713                     1);
 1714                 xhdr->xstate_bv = xsave_mask;
 1715         }
 1716         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1717         common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
 1718         /* Ensure the stack is aligned to 16 bytes */
 1719         common_tss[0].tss_rsp0 &= ~0xFul;
 1720         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1721         PCPU_SET(curpcb, thread0.td_pcb);
 1722 
 1723         /* transfer to user mode */
 1724 
 1725         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1726         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1727         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1728         _ufssel = GSEL(GUFS32_SEL, SEL_UPL);
 1729         _ugssel = GSEL(GUGS32_SEL, SEL_UPL);
 1730 
 1731         load_ds(_udatasel);
 1732         load_es(_udatasel);
 1733         load_fs(_ufssel);
 1734 
 1735         /* setup proc 0's pcb */
 1736         thread0.td_pcb->pcb_flags = 0;
 1737         thread0.td_frame = &proc0_tf;
 1738 
 1739         env = kern_getenv("kernelname");
 1740         if (env != NULL)
 1741                 strlcpy(kernelname, env, sizeof(kernelname));
 1742 
 1743         cpu_probe_amdc1e();
 1744 
 1745 #ifdef FDT
 1746         x86_init_fdt();
 1747 #endif
 1748 
 1749         /* Location of kernel stack for locore */
 1750         return ((u_int64_t)thread0.td_pcb);
 1751 }
 1752 
 1753 void
 1754 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1755 {
 1756 
 1757         pcpu->pc_acpi_id = 0xffffffff;
 1758 }
 1759 
 1760 static int
 1761 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
 1762 {
 1763         struct bios_smap *smapbase;
 1764         struct bios_smap_xattr smap;
 1765         caddr_t kmdp;
 1766         uint32_t *smapattr;
 1767         int count, error, i;
 1768 
 1769         /* Retrieve the system memory map from the loader. */
 1770         kmdp = preload_search_by_type("elf kernel");
 1771         if (kmdp == NULL)
 1772                 kmdp = preload_search_by_type("elf64 kernel");
 1773         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 1774             MODINFO_METADATA | MODINFOMD_SMAP);
 1775         if (smapbase == NULL)
 1776                 return (0);
 1777         smapattr = (uint32_t *)preload_search_info(kmdp,
 1778             MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
 1779         count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
 1780         error = 0;
 1781         for (i = 0; i < count; i++) {
 1782                 smap.base = smapbase[i].base;
 1783                 smap.length = smapbase[i].length;
 1784                 smap.type = smapbase[i].type;
 1785                 if (smapattr != NULL)
 1786                         smap.xattr = smapattr[i];
 1787                 else
 1788                         smap.xattr = 0;
 1789                 error = SYSCTL_OUT(req, &smap, sizeof(smap));
 1790         }
 1791         return (error);
 1792 }
 1793 SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
 1794     smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
 1795 
 1796 static int
 1797 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
 1798 {
 1799         struct efi_map_header *efihdr;
 1800         caddr_t kmdp;
 1801         uint32_t efisize;
 1802 
 1803         kmdp = preload_search_by_type("elf kernel");
 1804         if (kmdp == NULL)
 1805                 kmdp = preload_search_by_type("elf64 kernel");
 1806         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
 1807             MODINFO_METADATA | MODINFOMD_EFI_MAP);
 1808         if (efihdr == NULL)
 1809                 return (0);
 1810         efisize = *((uint32_t *)efihdr - 1);
 1811         return (SYSCTL_OUT(req, efihdr, efisize));
 1812 }
 1813 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
 1814     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
 1815 
 1816 void
 1817 spinlock_enter(void)
 1818 {
 1819         struct thread *td;
 1820         register_t flags;
 1821 
 1822         td = curthread;
 1823         if (td->td_md.md_spinlock_count == 0) {
 1824                 flags = intr_disable();
 1825                 td->td_md.md_spinlock_count = 1;
 1826                 td->td_md.md_saved_flags = flags;
 1827         } else
 1828                 td->td_md.md_spinlock_count++;
 1829         critical_enter();
 1830 }
 1831 
 1832 void
 1833 spinlock_exit(void)
 1834 {
 1835         struct thread *td;
 1836         register_t flags;
 1837 
 1838         td = curthread;
 1839         critical_exit();
 1840         flags = td->td_md.md_saved_flags;
 1841         td->td_md.md_spinlock_count--;
 1842         if (td->td_md.md_spinlock_count == 0)
 1843                 intr_restore(flags);
 1844 }
 1845 
 1846 /*
 1847  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1848  * we want to start a backtrace from the function that caused us to enter
 1849  * the debugger. We have the context in the trapframe, but base the trace
 1850  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1851  * enough for a backtrace.
 1852  */
 1853 void
 1854 makectx(struct trapframe *tf, struct pcb *pcb)
 1855 {
 1856 
 1857         pcb->pcb_r12 = tf->tf_r12;
 1858         pcb->pcb_r13 = tf->tf_r13;
 1859         pcb->pcb_r14 = tf->tf_r14;
 1860         pcb->pcb_r15 = tf->tf_r15;
 1861         pcb->pcb_rbp = tf->tf_rbp;
 1862         pcb->pcb_rbx = tf->tf_rbx;
 1863         pcb->pcb_rip = tf->tf_rip;
 1864         pcb->pcb_rsp = tf->tf_rsp;
 1865 }
 1866 
 1867 int
 1868 ptrace_set_pc(struct thread *td, unsigned long addr)
 1869 {
 1870 
 1871         td->td_frame->tf_rip = addr;
 1872         set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 1873         return (0);
 1874 }
 1875 
 1876 int
 1877 ptrace_single_step(struct thread *td)
 1878 {
 1879         td->td_frame->tf_rflags |= PSL_T;
 1880         return (0);
 1881 }
 1882 
 1883 int
 1884 ptrace_clear_single_step(struct thread *td)
 1885 {
 1886         td->td_frame->tf_rflags &= ~PSL_T;
 1887         return (0);
 1888 }
 1889 
 1890 int
 1891 fill_regs(struct thread *td, struct reg *regs)
 1892 {
 1893         struct trapframe *tp;
 1894 
 1895         tp = td->td_frame;
 1896         return (fill_frame_regs(tp, regs));
 1897 }
 1898 
 1899 int
 1900 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 1901 {
 1902         regs->r_r15 = tp->tf_r15;
 1903         regs->r_r14 = tp->tf_r14;
 1904         regs->r_r13 = tp->tf_r13;
 1905         regs->r_r12 = tp->tf_r12;
 1906         regs->r_r11 = tp->tf_r11;
 1907         regs->r_r10 = tp->tf_r10;
 1908         regs->r_r9  = tp->tf_r9;
 1909         regs->r_r8  = tp->tf_r8;
 1910         regs->r_rdi = tp->tf_rdi;
 1911         regs->r_rsi = tp->tf_rsi;
 1912         regs->r_rbp = tp->tf_rbp;
 1913         regs->r_rbx = tp->tf_rbx;
 1914         regs->r_rdx = tp->tf_rdx;
 1915         regs->r_rcx = tp->tf_rcx;
 1916         regs->r_rax = tp->tf_rax;
 1917         regs->r_rip = tp->tf_rip;
 1918         regs->r_cs = tp->tf_cs;
 1919         regs->r_rflags = tp->tf_rflags;
 1920         regs->r_rsp = tp->tf_rsp;
 1921         regs->r_ss = tp->tf_ss;
 1922         if (tp->tf_flags & TF_HASSEGS) {
 1923                 regs->r_ds = tp->tf_ds;
 1924                 regs->r_es = tp->tf_es;
 1925                 regs->r_fs = tp->tf_fs;
 1926                 regs->r_gs = tp->tf_gs;
 1927         } else {
 1928                 regs->r_ds = 0;
 1929                 regs->r_es = 0;
 1930                 regs->r_fs = 0;
 1931                 regs->r_gs = 0;
 1932         }
 1933         return (0);
 1934 }
 1935 
 1936 int
 1937 set_regs(struct thread *td, struct reg *regs)
 1938 {
 1939         struct trapframe *tp;
 1940         register_t rflags;
 1941 
 1942         tp = td->td_frame;
 1943         rflags = regs->r_rflags & 0xffffffff;
 1944         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 1945                 return (EINVAL);
 1946         tp->tf_r15 = regs->r_r15;
 1947         tp->tf_r14 = regs->r_r14;
 1948         tp->tf_r13 = regs->r_r13;
 1949         tp->tf_r12 = regs->r_r12;
 1950         tp->tf_r11 = regs->r_r11;
 1951         tp->tf_r10 = regs->r_r10;
 1952         tp->tf_r9  = regs->r_r9;
 1953         tp->tf_r8  = regs->r_r8;
 1954         tp->tf_rdi = regs->r_rdi;
 1955         tp->tf_rsi = regs->r_rsi;
 1956         tp->tf_rbp = regs->r_rbp;
 1957         tp->tf_rbx = regs->r_rbx;
 1958         tp->tf_rdx = regs->r_rdx;
 1959         tp->tf_rcx = regs->r_rcx;
 1960         tp->tf_rax = regs->r_rax;
 1961         tp->tf_rip = regs->r_rip;
 1962         tp->tf_cs = regs->r_cs;
 1963         tp->tf_rflags = rflags;
 1964         tp->tf_rsp = regs->r_rsp;
 1965         tp->tf_ss = regs->r_ss;
 1966         if (0) {        /* XXXKIB */
 1967                 tp->tf_ds = regs->r_ds;
 1968                 tp->tf_es = regs->r_es;
 1969                 tp->tf_fs = regs->r_fs;
 1970                 tp->tf_gs = regs->r_gs;
 1971                 tp->tf_flags = TF_HASSEGS;
 1972         }
 1973         set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 1974         return (0);
 1975 }
 1976 
 1977 /* XXX check all this stuff! */
 1978 /* externalize from sv_xmm */
 1979 static void
 1980 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 1981 {
 1982         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1983         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1984         int i;
 1985 
 1986         /* pcb -> fpregs */
 1987         bzero(fpregs, sizeof(*fpregs));
 1988 
 1989         /* FPU control/status */
 1990         penv_fpreg->en_cw = penv_xmm->en_cw;
 1991         penv_fpreg->en_sw = penv_xmm->en_sw;
 1992         penv_fpreg->en_tw = penv_xmm->en_tw;
 1993         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 1994         penv_fpreg->en_rip = penv_xmm->en_rip;
 1995         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 1996         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 1997         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 1998 
 1999         /* FPU registers */
 2000         for (i = 0; i < 8; ++i)
 2001                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 2002 
 2003         /* SSE registers */
 2004         for (i = 0; i < 16; ++i)
 2005                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 2006 }
 2007 
 2008 /* internalize from fpregs into sv_xmm */
 2009 static void
 2010 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 2011 {
 2012         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2013         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2014         int i;
 2015 
 2016         /* fpregs -> pcb */
 2017         /* FPU control/status */
 2018         penv_xmm->en_cw = penv_fpreg->en_cw;
 2019         penv_xmm->en_sw = penv_fpreg->en_sw;
 2020         penv_xmm->en_tw = penv_fpreg->en_tw;
 2021         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 2022         penv_xmm->en_rip = penv_fpreg->en_rip;
 2023         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 2024         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 2025         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 2026 
 2027         /* FPU registers */
 2028         for (i = 0; i < 8; ++i)
 2029                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 2030 
 2031         /* SSE registers */
 2032         for (i = 0; i < 16; ++i)
 2033                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 2034 }
 2035 
 2036 /* externalize from td->pcb */
 2037 int
 2038 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2039 {
 2040 
 2041         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 2042             P_SHOULDSTOP(td->td_proc),
 2043             ("not suspended thread %p", td));
 2044         fpugetregs(td);
 2045         fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
 2046         return (0);
 2047 }
 2048 
 2049 /* internalize to td->pcb */
 2050 int
 2051 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2052 {
 2053 
 2054         set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
 2055         fpuuserinited(td);
 2056         return (0);
 2057 }
 2058 
 2059 /*
 2060  * Get machine context.
 2061  */
 2062 int
 2063 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2064 {
 2065         struct pcb *pcb;
 2066         struct trapframe *tp;
 2067 
 2068         pcb = td->td_pcb;
 2069         tp = td->td_frame;
 2070         PROC_LOCK(curthread->td_proc);
 2071         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 2072         PROC_UNLOCK(curthread->td_proc);
 2073         mcp->mc_r15 = tp->tf_r15;
 2074         mcp->mc_r14 = tp->tf_r14;
 2075         mcp->mc_r13 = tp->tf_r13;
 2076         mcp->mc_r12 = tp->tf_r12;
 2077         mcp->mc_r11 = tp->tf_r11;
 2078         mcp->mc_r10 = tp->tf_r10;
 2079         mcp->mc_r9  = tp->tf_r9;
 2080         mcp->mc_r8  = tp->tf_r8;
 2081         mcp->mc_rdi = tp->tf_rdi;
 2082         mcp->mc_rsi = tp->tf_rsi;
 2083         mcp->mc_rbp = tp->tf_rbp;
 2084         mcp->mc_rbx = tp->tf_rbx;
 2085         mcp->mc_rcx = tp->tf_rcx;
 2086         mcp->mc_rflags = tp->tf_rflags;
 2087         if (flags & GET_MC_CLEAR_RET) {
 2088                 mcp->mc_rax = 0;
 2089                 mcp->mc_rdx = 0;
 2090                 mcp->mc_rflags &= ~PSL_C;
 2091         } else {
 2092                 mcp->mc_rax = tp->tf_rax;
 2093                 mcp->mc_rdx = tp->tf_rdx;
 2094         }
 2095         mcp->mc_rip = tp->tf_rip;
 2096         mcp->mc_cs = tp->tf_cs;
 2097         mcp->mc_rsp = tp->tf_rsp;
 2098         mcp->mc_ss = tp->tf_ss;
 2099         mcp->mc_ds = tp->tf_ds;
 2100         mcp->mc_es = tp->tf_es;
 2101         mcp->mc_fs = tp->tf_fs;
 2102         mcp->mc_gs = tp->tf_gs;
 2103         mcp->mc_flags = tp->tf_flags;
 2104         mcp->mc_len = sizeof(*mcp);
 2105         get_fpcontext(td, mcp, NULL, 0);
 2106         mcp->mc_fsbase = pcb->pcb_fsbase;
 2107         mcp->mc_gsbase = pcb->pcb_gsbase;
 2108         mcp->mc_xfpustate = 0;
 2109         mcp->mc_xfpustate_len = 0;
 2110         bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
 2111         return (0);
 2112 }
 2113 
 2114 /*
 2115  * Set machine context.
 2116  *
 2117  * However, we don't set any but the user modifiable flags, and we won't
 2118  * touch the cs selector.
 2119  */
 2120 int
 2121 set_mcontext(struct thread *td, mcontext_t *mcp)
 2122 {
 2123         struct pcb *pcb;
 2124         struct trapframe *tp;
 2125         char *xfpustate;
 2126         long rflags;
 2127         int ret;
 2128 
 2129         pcb = td->td_pcb;
 2130         tp = td->td_frame;
 2131         if (mcp->mc_len != sizeof(*mcp) ||
 2132             (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
 2133                 return (EINVAL);
 2134         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 2135             (tp->tf_rflags & ~PSL_USERCHANGE);
 2136         if (mcp->mc_flags & _MC_HASFPXSTATE) {
 2137                 if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
 2138                     sizeof(struct savefpu))
 2139                         return (EINVAL);
 2140                 xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
 2141                 ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
 2142                     mcp->mc_xfpustate_len);
 2143                 if (ret != 0)
 2144                         return (ret);
 2145         } else
 2146                 xfpustate = NULL;
 2147         ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
 2148         if (ret != 0)
 2149                 return (ret);
 2150         tp->tf_r15 = mcp->mc_r15;
 2151         tp->tf_r14 = mcp->mc_r14;
 2152         tp->tf_r13 = mcp->mc_r13;
 2153         tp->tf_r12 = mcp->mc_r12;
 2154         tp->tf_r11 = mcp->mc_r11;
 2155         tp->tf_r10 = mcp->mc_r10;
 2156         tp->tf_r9  = mcp->mc_r9;
 2157         tp->tf_r8  = mcp->mc_r8;
 2158         tp->tf_rdi = mcp->mc_rdi;
 2159         tp->tf_rsi = mcp->mc_rsi;
 2160         tp->tf_rbp = mcp->mc_rbp;
 2161         tp->tf_rbx = mcp->mc_rbx;
 2162         tp->tf_rdx = mcp->mc_rdx;
 2163         tp->tf_rcx = mcp->mc_rcx;
 2164         tp->tf_rax = mcp->mc_rax;
 2165         tp->tf_rip = mcp->mc_rip;
 2166         tp->tf_rflags = rflags;
 2167         tp->tf_rsp = mcp->mc_rsp;
 2168         tp->tf_ss = mcp->mc_ss;
 2169         tp->tf_flags = mcp->mc_flags;
 2170         if (tp->tf_flags & TF_HASSEGS) {
 2171                 tp->tf_ds = mcp->mc_ds;
 2172                 tp->tf_es = mcp->mc_es;
 2173                 tp->tf_fs = mcp->mc_fs;
 2174                 tp->tf_gs = mcp->mc_gs;
 2175         }
 2176         if (mcp->mc_flags & _MC_HASBASES) {
 2177                 pcb->pcb_fsbase = mcp->mc_fsbase;
 2178                 pcb->pcb_gsbase = mcp->mc_gsbase;
 2179         }
 2180         set_pcb_flags(pcb, PCB_FULL_IRET);
 2181         return (0);
 2182 }
 2183 
 2184 static void
 2185 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
 2186     size_t xfpusave_len)
 2187 {
 2188         size_t max_len, len;
 2189 
 2190         mcp->mc_ownedfp = fpugetregs(td);
 2191         bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
 2192             sizeof(mcp->mc_fpstate));
 2193         mcp->mc_fpformat = fpuformat();
 2194         if (!use_xsave || xfpusave_len == 0)
 2195                 return;
 2196         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
 2197         len = xfpusave_len;
 2198         if (len > max_len) {
 2199                 len = max_len;
 2200                 bzero(xfpusave + max_len, len - max_len);
 2201         }
 2202         mcp->mc_flags |= _MC_HASFPXSTATE;
 2203         mcp->mc_xfpustate_len = len;
 2204         bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
 2205 }
 2206 
 2207 static int
 2208 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
 2209     size_t xfpustate_len)
 2210 {
 2211         struct savefpu *fpstate;
 2212         int error;
 2213 
 2214         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2215                 return (0);
 2216         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 2217                 return (EINVAL);
 2218         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
 2219                 /* We don't care what state is left in the FPU or PCB. */
 2220                 fpstate_drop(td);
 2221                 error = 0;
 2222         } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2223             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2224                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 2225                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 2226                 error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
 2227         } else
 2228                 return (EINVAL);
 2229         return (error);
 2230 }
 2231 
 2232 void
 2233 fpstate_drop(struct thread *td)
 2234 {
 2235 
 2236         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 2237         critical_enter();
 2238         if (PCPU_GET(fpcurthread) == td)
 2239                 fpudrop();
 2240         /*
 2241          * XXX force a full drop of the fpu.  The above only drops it if we
 2242          * owned it.
 2243          *
 2244          * XXX I don't much like fpugetuserregs()'s semantics of doing a full
 2245          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2246          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2247          * sendsig() is the only caller of fpugetuserregs()... perhaps we just
 2248          * have too many layers.
 2249          */
 2250         clear_pcb_flags(curthread->td_pcb,
 2251             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
 2252         critical_exit();
 2253 }
 2254 
 2255 int
 2256 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2257 {
 2258         struct pcb *pcb;
 2259 
 2260         if (td == NULL) {
 2261                 dbregs->dr[0] = rdr0();
 2262                 dbregs->dr[1] = rdr1();
 2263                 dbregs->dr[2] = rdr2();
 2264                 dbregs->dr[3] = rdr3();
 2265                 dbregs->dr[6] = rdr6();
 2266                 dbregs->dr[7] = rdr7();
 2267         } else {
 2268                 pcb = td->td_pcb;
 2269                 dbregs->dr[0] = pcb->pcb_dr0;
 2270                 dbregs->dr[1] = pcb->pcb_dr1;
 2271                 dbregs->dr[2] = pcb->pcb_dr2;
 2272                 dbregs->dr[3] = pcb->pcb_dr3;
 2273                 dbregs->dr[6] = pcb->pcb_dr6;
 2274                 dbregs->dr[7] = pcb->pcb_dr7;
 2275         }
 2276         dbregs->dr[4] = 0;
 2277         dbregs->dr[5] = 0;
 2278         dbregs->dr[8] = 0;
 2279         dbregs->dr[9] = 0;
 2280         dbregs->dr[10] = 0;
 2281         dbregs->dr[11] = 0;
 2282         dbregs->dr[12] = 0;
 2283         dbregs->dr[13] = 0;
 2284         dbregs->dr[14] = 0;
 2285         dbregs->dr[15] = 0;
 2286         return (0);
 2287 }
 2288 
 2289 int
 2290 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2291 {
 2292         struct pcb *pcb;
 2293         int i;
 2294 
 2295         if (td == NULL) {
 2296                 load_dr0(dbregs->dr[0]);
 2297                 load_dr1(dbregs->dr[1]);
 2298                 load_dr2(dbregs->dr[2]);
 2299                 load_dr3(dbregs->dr[3]);
 2300                 load_dr6(dbregs->dr[6]);
 2301                 load_dr7(dbregs->dr[7]);
 2302         } else {
 2303                 /*
 2304                  * Don't let an illegal value for dr7 get set.  Specifically,
 2305                  * check for undefined settings.  Setting these bit patterns
 2306                  * result in undefined behaviour and can lead to an unexpected
 2307                  * TRCTRAP or a general protection fault right here.
 2308                  * Upper bits of dr6 and dr7 must not be set
 2309                  */
 2310                 for (i = 0; i < 4; i++) {
 2311                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2312                                 return (EINVAL);
 2313                         if (td->td_frame->tf_cs == _ucode32sel &&
 2314                             DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
 2315                                 return (EINVAL);
 2316                 }
 2317                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 2318                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 2319                         return (EINVAL);
 2320 
 2321                 pcb = td->td_pcb;
 2322 
 2323                 /*
 2324                  * Don't let a process set a breakpoint that is not within the
 2325                  * process's address space.  If a process could do this, it
 2326                  * could halt the system by setting a breakpoint in the kernel
 2327                  * (if ddb was enabled).  Thus, we need to check to make sure
 2328                  * that no breakpoints are being enabled for addresses outside
 2329                  * process's address space.
 2330                  *
 2331                  * XXX - what about when the watched area of the user's
 2332                  * address space is written into from within the kernel
 2333                  * ... wouldn't that still cause a breakpoint to be generated
 2334                  * from within kernel mode?
 2335                  */
 2336 
 2337                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2338                         /* dr0 is enabled */
 2339                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2340                                 return (EINVAL);
 2341                 }
 2342                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2343                         /* dr1 is enabled */
 2344                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2345                                 return (EINVAL);
 2346                 }
 2347                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2348                         /* dr2 is enabled */
 2349                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2350                                 return (EINVAL);
 2351                 }
 2352                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2353                         /* dr3 is enabled */
 2354                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2355                                 return (EINVAL);
 2356                 }
 2357 
 2358                 pcb->pcb_dr0 = dbregs->dr[0];
 2359                 pcb->pcb_dr1 = dbregs->dr[1];
 2360                 pcb->pcb_dr2 = dbregs->dr[2];
 2361                 pcb->pcb_dr3 = dbregs->dr[3];
 2362                 pcb->pcb_dr6 = dbregs->dr[6];
 2363                 pcb->pcb_dr7 = dbregs->dr[7];
 2364 
 2365                 set_pcb_flags(pcb, PCB_DBREGS);
 2366         }
 2367 
 2368         return (0);
 2369 }
 2370 
 2371 void
 2372 reset_dbregs(void)
 2373 {
 2374 
 2375         load_dr7(0);    /* Turn off the control bits first */
 2376         load_dr0(0);
 2377         load_dr1(0);
 2378         load_dr2(0);
 2379         load_dr3(0);
 2380         load_dr6(0);
 2381 }
 2382 
 2383 /*
 2384  * Return > 0 if a hardware breakpoint has been hit, and the
 2385  * breakpoint was in user space.  Return 0, otherwise.
 2386  */
 2387 int
 2388 user_dbreg_trap(void)
 2389 {
 2390         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 2391         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 2392         int nbp;            /* number of breakpoints that triggered */
 2393         caddr_t addr[4];    /* breakpoint addresses */
 2394         int i;
 2395         
 2396         dr7 = rdr7();
 2397         if ((dr7 & 0x000000ff) == 0) {
 2398                 /*
 2399                  * all GE and LE bits in the dr7 register are zero,
 2400                  * thus the trap couldn't have been caused by the
 2401                  * hardware debug registers
 2402                  */
 2403                 return 0;
 2404         }
 2405 
 2406         nbp = 0;
 2407         dr6 = rdr6();
 2408         bp = dr6 & 0x0000000f;
 2409 
 2410         if (!bp) {
 2411                 /*
 2412                  * None of the breakpoint bits are set meaning this
 2413                  * trap was not caused by any of the debug registers
 2414                  */
 2415                 return 0;
 2416         }
 2417 
 2418         /*
 2419          * at least one of the breakpoints were hit, check to see
 2420          * which ones and if any of them are user space addresses
 2421          */
 2422 
 2423         if (bp & 0x01) {
 2424                 addr[nbp++] = (caddr_t)rdr0();
 2425         }
 2426         if (bp & 0x02) {
 2427                 addr[nbp++] = (caddr_t)rdr1();
 2428         }
 2429         if (bp & 0x04) {
 2430                 addr[nbp++] = (caddr_t)rdr2();
 2431         }
 2432         if (bp & 0x08) {
 2433                 addr[nbp++] = (caddr_t)rdr3();
 2434         }
 2435 
 2436         for (i = 0; i < nbp; i++) {
 2437                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2438                         /*
 2439                          * addr[i] is in user space
 2440                          */
 2441                         return nbp;
 2442                 }
 2443         }
 2444 
 2445         /*
 2446          * None of the breakpoints are in user space.
 2447          */
 2448         return 0;
 2449 }
 2450 
 2451 #ifdef KDB
 2452 
 2453 /*
 2454  * Provide inb() and outb() as functions.  They are normally only available as
 2455  * inline functions, thus cannot be called from the debugger.
 2456  */
 2457 
 2458 /* silence compiler warnings */
 2459 u_char inb_(u_short);
 2460 void outb_(u_short, u_char);
 2461 
 2462 u_char
 2463 inb_(u_short port)
 2464 {
 2465         return inb(port);
 2466 }
 2467 
 2468 void
 2469 outb_(u_short port, u_char data)
 2470 {
 2471         outb(port, data);
 2472 }
 2473 
 2474 #endif /* KDB */

Cache object: adcf4f6d84cdbff8b178e83b641962cc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.