The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/5.2/sys/amd64/amd64/machdep.c 144700 2005-04-06 01:44:36Z peter $");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_msgbuf.h"
   55 #include "opt_perfmon.h"
   56 
   57 #include <sys/param.h>
   58 #include <sys/systm.h>
   59 #include <sys/sysproto.h>
   60 #include <sys/signalvar.h>
   61 #include <sys/imgact.h>
   62 #include <sys/kernel.h>
   63 #include <sys/ktr.h>
   64 #include <sys/linker.h>
   65 #include <sys/lock.h>
   66 #include <sys/malloc.h>
   67 #include <sys/mutex.h>
   68 #include <sys/pcpu.h>
   69 #include <sys/proc.h>
   70 #include <sys/bio.h>
   71 #include <sys/buf.h>
   72 #include <sys/reboot.h>
   73 #include <sys/callout.h>
   74 #include <sys/msgbuf.h>
   75 #include <sys/sched.h>
   76 #include <sys/sysent.h>
   77 #include <sys/sysctl.h>
   78 #include <sys/ucontext.h>
   79 #include <sys/vmmeter.h>
   80 #include <sys/bus.h>
   81 #include <sys/eventhandler.h>
   82 
   83 #include <vm/vm.h>
   84 #include <vm/vm_param.h>
   85 #include <vm/vm_kern.h>
   86 #include <vm/vm_object.h>
   87 #include <vm/vm_page.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_pager.h>
   90 #include <vm/vm_extern.h>
   91 
   92 #include <sys/user.h>
   93 #include <sys/exec.h>
   94 #include <sys/cons.h>
   95 
   96 #include <ddb/ddb.h>
   97 
   98 #include <net/netisr.h>
   99 
  100 #include <machine/cpu.h>
  101 #include <machine/cputypes.h>
  102 #include <machine/reg.h>
  103 #include <machine/clock.h>
  104 #include <machine/specialreg.h>
  105 #include <machine/intr_machdep.h>
  106 #include <machine/md_var.h>
  107 #include <machine/metadata.h>
  108 #include <machine/proc.h>
  109 #ifdef PERFMON
  110 #include <machine/perfmon.h>
  111 #endif
  112 #include <machine/tss.h>
  113 #ifdef SMP
  114 #include <machine/smp.h>
  115 #endif
  116 
  117 #include <amd64/isa/icu.h>
  118 
  119 #include <isa/isareg.h>
  120 #include <isa/rtc.h>
  121 #include <sys/ptrace.h>
  122 #include <machine/sigframe.h>
  123 
  124 /* Sanity check for __curthread() */
  125 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  126 
  127 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  128 extern void dblfault_handler(void);
  129 
  130 extern void printcpuinfo(void); /* XXX header file */
  131 extern void identify_cpu(void);
  132 extern void panicifcpuunsupported(void);
  133 extern void initializecpu(void);
  134 
  135 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  136 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  137 
  138 static void cpu_startup(void *);
  139 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  140 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  141 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
  142 
  143 int     _udatasel, _ucodesel, _ucode32sel;
  144 u_long  atdevbase;
  145 
  146 int cold = 1;
  147 
  148 long Maxmem = 0;
  149 
  150 vm_paddr_t phys_avail[10];
  151 
  152 /* must be 2 less so 0 0 can signal end of chunks */
  153 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
  154 
  155 struct kva_md_info kmi;
  156 
  157 static struct trapframe proc0_tf;
  158 struct region_descriptor r_gdt, r_idt;
  159 
  160 struct pcpu __pcpu[MAXCPU];
  161 
  162 struct mtx icu_lock;
  163 
  164 static void
  165 cpu_startup(dummy)
  166         void *dummy;
  167 {
  168         /*
  169          * Good {morning,afternoon,evening,night}.
  170          */
  171         startrtclock();
  172         printcpuinfo();
  173         panicifcpuunsupported();
  174 #ifdef PERFMON
  175         perfmon_init();
  176 #endif
  177         printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
  178             ptoa((uintmax_t)Maxmem) / 1048576);
  179         /*
  180          * Display any holes after the first chunk of extended memory.
  181          */
  182         if (bootverbose) {
  183                 int indx;
  184 
  185                 printf("Physical memory chunk(s):\n");
  186                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  187                         vm_paddr_t size;
  188 
  189                         size = phys_avail[indx + 1] - phys_avail[indx];
  190                         printf(
  191                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  192                             (uintmax_t)phys_avail[indx],
  193                             (uintmax_t)phys_avail[indx + 1] - 1,
  194                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  195                 }
  196         }
  197 
  198         vm_ksubmap_init(&kmi);
  199 
  200         printf("avail memory = %ju (%ju MB)\n",
  201             ptoa((uintmax_t)cnt.v_free_count),
  202             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  203 
  204         /*
  205          * Set up buffers, so they can be used to read disk labels.
  206          */
  207         bufinit();
  208         vm_pager_bufferinit();
  209 
  210         cpu_setregs();
  211 }
  212 
  213 /*
  214  * Send an interrupt to process.
  215  *
  216  * Stack is set up to allow sigcode stored
  217  * at top to call routine, followed by kcall
  218  * to sigreturn routine below.  After sigreturn
  219  * resets the signal mask, the stack, and the
  220  * frame pointer, it returns to the user
  221  * specified pc, psl.
  222  */
  223 void
  224 sendsig(catcher, sig, mask, code)
  225         sig_t catcher;
  226         int sig;
  227         sigset_t *mask;
  228         u_long code;
  229 {
  230         struct sigframe sf, *sfp;
  231         struct proc *p;
  232         struct thread *td;
  233         struct sigacts *psp;
  234         char *sp;
  235         struct trapframe *regs;
  236         int oonstack;
  237 
  238         td = curthread;
  239         p = td->td_proc;
  240         PROC_LOCK_ASSERT(p, MA_OWNED);
  241         psp = p->p_sigacts;
  242         mtx_assert(&psp->ps_mtx, MA_OWNED);
  243         regs = td->td_frame;
  244         oonstack = sigonstack(regs->tf_rsp);
  245 
  246         /* Save user context. */
  247         bzero(&sf, sizeof(sf));
  248         sf.sf_uc.uc_sigmask = *mask;
  249         sf.sf_uc.uc_stack = p->p_sigstk;
  250         sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
  251             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  252         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  253         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  254         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  255         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  256         fpstate_drop(td);
  257 
  258         /* Allocate space for the signal handler context. */
  259         if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
  260             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  261                 sp = p->p_sigstk.ss_sp +
  262                     p->p_sigstk.ss_size - sizeof(struct sigframe);
  263 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
  264                 p->p_sigstk.ss_flags |= SS_ONSTACK;
  265 #endif
  266         } else
  267                 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
  268         /* Align to 16 bytes. */
  269         sfp = (struct sigframe *)((unsigned long)sp & ~0xF);
  270 
  271         /* Translate the signal if appropriate. */
  272         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  273                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  274 
  275         /* Build the argument list for the signal handler. */
  276         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  277         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  278         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  279                 /* Signal handler installed with SA_SIGINFO. */
  280                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  281                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  282 
  283                 /* Fill in POSIX parts */
  284                 sf.sf_si.si_signo = sig;
  285                 sf.sf_si.si_code = code;
  286                 regs->tf_rcx = regs->tf_addr;   /* arg 4 in %rcx */
  287         } else {
  288                 /* Old FreeBSD-style arguments. */
  289                 regs->tf_rsi = code;            /* arg 2 in %rsi */
  290                 regs->tf_rcx = regs->tf_addr;   /* arg 4 in %rcx */
  291                 sf.sf_ahu.sf_handler = catcher;
  292         }
  293         mtx_unlock(&psp->ps_mtx);
  294         PROC_UNLOCK(p);
  295 
  296         /*
  297          * Copy the sigframe out to the user's stack.
  298          */
  299         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  300 #ifdef DEBUG
  301                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  302 #endif
  303                 PROC_LOCK(p);
  304                 sigexit(td, SIGILL);
  305         }
  306 
  307         regs->tf_rsp = (long)sfp;
  308         regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  309         regs->tf_rflags &= ~PSL_T;
  310         regs->tf_cs = _ucodesel;
  311         PROC_LOCK(p);
  312         mtx_lock(&psp->ps_mtx);
  313 }
  314 
  315 /*
  316  * Build siginfo_t for SA thread
  317  */
  318 void
  319 cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
  320 {
  321         struct proc *p;
  322         struct thread *td;
  323         struct trapframe *regs;
  324 
  325         td = curthread;
  326         p = td->td_proc;
  327         regs = td->td_frame;
  328         PROC_LOCK_ASSERT(p, MA_OWNED);
  329 
  330         bzero(si, sizeof(*si));
  331         si->si_signo = sig;
  332         si->si_code = code;
  333         si->si_addr = (void *)regs->tf_addr;
  334         /* XXXKSE fill other fields */
  335 }
  336 
  337 /*
  338  * System call to cleanup state after a signal
  339  * has been taken.  Reset signal mask and
  340  * stack state from context left by sendsig (above).
  341  * Return to previous pc and psl as specified by
  342  * context left by sendsig. Check carefully to
  343  * make sure that the user has not modified the
  344  * state to gain improper privileges.
  345  *
  346  * MPSAFE
  347  */
  348 int
  349 sigreturn(td, uap)
  350         struct thread *td;
  351         struct sigreturn_args /* {
  352                 const __ucontext *sigcntxp;
  353         } */ *uap;
  354 {
  355         ucontext_t uc;
  356         struct proc *p = td->td_proc;
  357         struct trapframe *regs;
  358         const ucontext_t *ucp;
  359         long rflags;
  360         int cs, error, ret;
  361 
  362         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  363         if (error != 0)
  364                 return (error);
  365         ucp = &uc;
  366         regs = td->td_frame;
  367         rflags = ucp->uc_mcontext.mc_rflags;
  368         /*
  369          * Don't allow users to change privileged or reserved flags.
  370          */
  371         /*
  372          * XXX do allow users to change the privileged flag PSL_RF.
  373          * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
  374          * should sometimes set it there too.  tf_rflags is kept in
  375          * the signal context during signal handling and there is no
  376          * other place to remember it, so the PSL_RF bit may be
  377          * corrupted by the signal handler without us knowing.
  378          * Corruption of the PSL_RF bit at worst causes one more or
  379          * one less debugger trap, so allowing it is fairly harmless.
  380          */
  381         if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
  382                 printf("sigreturn: rflags = 0x%lx\n", rflags);
  383                 return (EINVAL);
  384         }
  385 
  386         /*
  387          * Don't allow users to load a valid privileged %cs.  Let the
  388          * hardware check for invalid selectors, excess privilege in
  389          * other selectors, invalid %eip's and invalid %esp's.
  390          */
  391         cs = ucp->uc_mcontext.mc_cs;
  392         if (!CS_SECURE(cs)) {
  393                 printf("sigreturn: cs = 0x%x\n", cs);
  394                 trapsignal(td, SIGBUS, T_PROTFLT);
  395                 return (EINVAL);
  396         }
  397 
  398         ret = set_fpcontext(td, &ucp->uc_mcontext);
  399         if (ret != 0)
  400                 return (ret);
  401         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  402 
  403         PROC_LOCK(p);
  404 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
  405         if (ucp->uc_mcontext.mc_onstack & 1)
  406                 p->p_sigstk.ss_flags |= SS_ONSTACK;
  407         else
  408                 p->p_sigstk.ss_flags &= ~SS_ONSTACK;
  409 #endif
  410 
  411         td->td_sigmask = ucp->uc_sigmask;
  412         SIG_CANTMASK(td->td_sigmask);
  413         signotify(td);
  414         PROC_UNLOCK(p);
  415         td->td_pcb->pcb_flags |= PCB_FULLCTX;
  416         return (EJUSTRETURN);
  417 }
  418 
  419 #ifdef COMPAT_FREEBSD4
  420 int
  421 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  422 {
  423  
  424         return sigreturn(td, (struct sigreturn_args *)uap);
  425 }
  426 #endif
  427 
  428 
  429 /*
  430  * Machine dependent boot() routine
  431  *
  432  * I haven't seen anything to put here yet
  433  * Possibly some stuff might be grafted back here from boot()
  434  */
  435 void
  436 cpu_boot(int howto)
  437 {
  438 }
  439 
  440 /*
  441  * Shutdown the CPU as much as possible
  442  */
  443 void
  444 cpu_halt(void)
  445 {
  446         for (;;)
  447                 __asm__ ("hlt");
  448 }
  449 
  450 /*
  451  * Hook to idle the CPU when possible.  In the SMP case we default to
  452  * off because a halted cpu will not currently pick up a new thread in the
  453  * run queue until the next timer tick.  If turned on this will result in
  454  * approximately a 4.2% loss in real time performance in buildworld tests
  455  * (but improves user and sys times oddly enough), and saves approximately
  456  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
  457  *
  458  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
  459  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
  460  * Then we can have our cake and eat it too.
  461  *
  462  * XXX I'm turning it on for SMP as well by default for now.  It seems to
  463  * help lock contention somewhat, and this is critical for HTT. -Peter
  464  */
  465 static int      cpu_idle_hlt = 1;
  466 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
  467     &cpu_idle_hlt, 0, "Idle loop HLT enable");
  468 
  469 static void
  470 cpu_idle_default(void)
  471 {
  472         /*
  473          * we must absolutely guarentee that hlt is the
  474          * absolute next instruction after sti or we
  475          * introduce a timing window.
  476          */
  477         __asm __volatile("sti; hlt");
  478 }
  479 
  480 /*
  481  * Note that we have to be careful here to avoid a race between checking
  482  * sched_runnable() and actually halting.  If we don't do this, we may waste
  483  * the time between calling hlt and the next interrupt even though there
  484  * is a runnable process.
  485  */
  486 void
  487 cpu_idle(void)
  488 {
  489 
  490         if (cpu_idle_hlt) {
  491                 disable_intr();
  492                 if (sched_runnable())
  493                         enable_intr();
  494                 else
  495                         (*cpu_idle_hook)();
  496         }
  497 }
  498 
  499 /* Other subsystems (e.g., ACPI) can hook this later. */
  500 void (*cpu_idle_hook)(void) = cpu_idle_default;
  501 
  502 /*
  503  * Clear registers on exec
  504  */
  505 void
  506 exec_setregs(td, entry, stack, ps_strings)
  507         struct thread *td;
  508         u_long entry;
  509         u_long stack;
  510         u_long ps_strings;
  511 {
  512         struct trapframe *regs = td->td_frame;
  513         struct pcb *pcb = td->td_pcb;
  514         
  515         wrmsr(MSR_FSBASE, 0);
  516         wrmsr(MSR_KGSBASE, 0);  /* User value while we're in the kernel */
  517         pcb->pcb_fsbase = 0;
  518         pcb->pcb_gsbase = 0;
  519         load_ds(_udatasel);
  520         load_es(_udatasel);
  521         load_fs(_udatasel);
  522         load_gs(_udatasel);
  523         pcb->pcb_ds = _udatasel;
  524         pcb->pcb_es = _udatasel;
  525         pcb->pcb_fs = _udatasel;
  526         pcb->pcb_gs = _udatasel;
  527 
  528         bzero((char *)regs, sizeof(struct trapframe));
  529         regs->tf_rip = entry;
  530         regs->tf_rsp = ((stack - 8) & ~0xF) + 8;
  531         regs->tf_rdi = stack;           /* argv */
  532         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  533         regs->tf_ss = _udatasel;
  534         regs->tf_cs = _ucodesel;
  535 
  536         /*
  537          * Arrange to trap the next fpu or `fwait' instruction (see fpu.c
  538          * for why fwait must be trapped at least if there is an fpu or an
  539          * emulator).  This is mainly to handle the case where npx0 is not
  540          * configured, since the fpu routines normally set up the trap
  541          * otherwise.  It should be done only at boot time, but doing it
  542          * here allows modifying `fpu_exists' for testing the emulator on
  543          * systems with an fpu.
  544          */
  545         load_cr0(rcr0() | CR0_MP | CR0_TS);
  546 
  547         /* Initialize the fpu (if any) for the current process. */
  548         /*
  549          * XXX the above load_cr0() also initializes it and is a layering
  550          * violation.  It drops the fpu state partially
  551          * and this would be fatal if we were interrupted now, and decided
  552          * to force the state to the pcb, and checked the invariant
  553          * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
  554          * ALL of this can happen except the check.  The check used to
  555          * happen and be fatal later when we didn't complete the drop
  556          * before returning to user mode.  This should be fixed properly
  557          * soon.
  558          */
  559         fpstate_drop(td);
  560 }
  561 
  562 void
  563 cpu_setregs(void)
  564 {
  565         register_t cr0;
  566 
  567         cr0 = rcr0();
  568         cr0 |= CR0_NE;                  /* Done by fpuinit() */
  569         cr0 |= CR0_MP | CR0_TS;         /* Done at every execve() too. */
  570         cr0 |= CR0_WP | CR0_AM;
  571         load_cr0(cr0);
  572 }
  573 
  574 static int
  575 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
  576 {
  577         int error;
  578         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
  579                 req);
  580         if (!error && req->newptr)
  581                 resettodr();
  582         return (error);
  583 }
  584 
  585 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
  586         &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
  587 
  588 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
  589         CTLFLAG_RW, &disable_rtc_set, 0, "");
  590 
  591 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
  592         CTLFLAG_RW, &wall_cmos_clock, 0, "");
  593 
  594 /*
  595  * Initialize 386 and configure to run kernel
  596  */
  597 
  598 /*
  599  * Initialize segments & interrupt table
  600  */
  601 
  602 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
  603 static struct gate_descriptor idt0[NIDT];
  604 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
  605 
  606 static char dblfault_stack[PAGE_SIZE] __aligned(16);
  607 
  608 struct amd64tss common_tss[MAXCPU];
  609 
  610 /* software prototypes -- in more palatable form */
  611 struct soft_segment_descriptor gdt_segs[] = {
  612 /* GNULL_SEL    0 Null Descriptor */
  613 {       0x0,                    /* segment base address  */
  614         0x0,                    /* length */
  615         0,                      /* segment type */
  616         0,                      /* segment descriptor priority level */
  617         0,                      /* segment descriptor present */
  618         0,                      /* long */
  619         0,                      /* default 32 vs 16 bit size */
  620         0                       /* limit granularity (byte/page units)*/ },
  621 /* GCODE_SEL    1 Code Descriptor for kernel */
  622 {       0x0,                    /* segment base address  */
  623         0xfffff,                /* length - all address space */
  624         SDT_MEMERA,             /* segment type */
  625         SEL_KPL,                /* segment descriptor priority level */
  626         1,                      /* segment descriptor present */
  627         1,                      /* long */
  628         0,                      /* default 32 vs 16 bit size */
  629         1                       /* limit granularity (byte/page units)*/ },
  630 /* GDATA_SEL    2 Data Descriptor for kernel */
  631 {       0x0,                    /* segment base address  */
  632         0xfffff,                /* length - all address space */
  633         SDT_MEMRWA,             /* segment type */
  634         SEL_KPL,                /* segment descriptor priority level */
  635         1,                      /* segment descriptor present */
  636         1,                      /* long */
  637         0,                      /* default 32 vs 16 bit size */
  638         1                       /* limit granularity (byte/page units)*/ },
  639 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
  640 {       0x0,                    /* segment base address  */
  641         0xfffff,                /* length - all address space */
  642         SDT_MEMERA,             /* segment type */
  643         SEL_UPL,                /* segment descriptor priority level */
  644         1,                      /* segment descriptor present */
  645         0,                      /* long */
  646         1,                      /* default 32 vs 16 bit size */
  647         1                       /* limit granularity (byte/page units)*/ },
  648 /* GUDATA_SEL   4 32/64 bit Data Descriptor for user */
  649 {       0x0,                    /* segment base address  */
  650         0xfffff,                /* length - all address space */
  651         SDT_MEMRWA,             /* segment type */
  652         SEL_UPL,                /* segment descriptor priority level */
  653         1,                      /* segment descriptor present */
  654         0,                      /* long */
  655         1,                      /* default 32 vs 16 bit size */
  656         1                       /* limit granularity (byte/page units)*/ },
  657 /* GUCODE_SEL   5 64 bit Code Descriptor for user */
  658 {       0x0,                    /* segment base address  */
  659         0xfffff,                /* length - all address space */
  660         SDT_MEMERA,             /* segment type */
  661         SEL_UPL,                /* segment descriptor priority level */
  662         1,                      /* segment descriptor present */
  663         1,                      /* long */
  664         0,                      /* default 32 vs 16 bit size */
  665         1                       /* limit granularity (byte/page units)*/ },
  666 /* GPROC0_SEL   6 Proc 0 Tss Descriptor */
  667 {
  668         0x0,                    /* segment base address */
  669         sizeof(struct amd64tss)-1,/* length - all address space */
  670         SDT_SYSTSS,             /* segment type */
  671         SEL_KPL,                /* segment descriptor priority level */
  672         1,                      /* segment descriptor present */
  673         0,                      /* long */
  674         0,                      /* unused - default 32 vs 16 bit size */
  675         0                       /* limit granularity (byte/page units)*/ },
  676 /* Actually, the TSS is a system descriptor which is double size */
  677 {       0x0,                    /* segment base address  */
  678         0x0,                    /* length */
  679         0,                      /* segment type */
  680         0,                      /* segment descriptor priority level */
  681         0,                      /* segment descriptor present */
  682         0,                      /* long */
  683         0,                      /* default 32 vs 16 bit size */
  684         0                       /* limit granularity (byte/page units)*/ },
  685 };
  686 
  687 void
  688 setidt(idx, func, typ, dpl, ist)
  689         int idx;
  690         inthand_t *func;
  691         int typ;
  692         int dpl;
  693         int ist;
  694 {
  695         struct gate_descriptor *ip;
  696 
  697         ip = idt + idx;
  698         ip->gd_looffset = (uintptr_t)func;
  699         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
  700         ip->gd_ist = ist;
  701         ip->gd_xx = 0;
  702         ip->gd_type = typ;
  703         ip->gd_dpl = dpl;
  704         ip->gd_p = 1;
  705         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
  706 }
  707 
  708 #define IDTVEC(name)    __CONCAT(X,name)
  709 
  710 extern inthand_t
  711         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
  712         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
  713         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
  714         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
  715         IDTVEC(xmm), IDTVEC(dblfault),
  716         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  717 
  718 void
  719 sdtossd(sd, ssd)
  720         struct user_segment_descriptor *sd;
  721         struct soft_segment_descriptor *ssd;
  722 {
  723 
  724         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
  725         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
  726         ssd->ssd_type  = sd->sd_type;
  727         ssd->ssd_dpl   = sd->sd_dpl;
  728         ssd->ssd_p     = sd->sd_p;
  729         ssd->ssd_long  = sd->sd_long;
  730         ssd->ssd_def32 = sd->sd_def32;
  731         ssd->ssd_gran  = sd->sd_gran;
  732 }
  733 
  734 void
  735 ssdtosd(ssd, sd)
  736         struct soft_segment_descriptor *ssd;
  737         struct user_segment_descriptor *sd;
  738 {
  739 
  740         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  741         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
  742         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  743         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  744         sd->sd_type  = ssd->ssd_type;
  745         sd->sd_dpl   = ssd->ssd_dpl;
  746         sd->sd_p     = ssd->ssd_p;
  747         sd->sd_long  = ssd->ssd_long;
  748         sd->sd_def32 = ssd->ssd_def32;
  749         sd->sd_gran  = ssd->ssd_gran;
  750 }
  751 
  752 void
  753 ssdtosyssd(ssd, sd)
  754         struct soft_segment_descriptor *ssd;
  755         struct system_segment_descriptor *sd;
  756 {
  757 
  758         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  759         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
  760         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  761         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  762         sd->sd_type  = ssd->ssd_type;
  763         sd->sd_dpl   = ssd->ssd_dpl;
  764         sd->sd_p     = ssd->ssd_p;
  765         sd->sd_gran  = ssd->ssd_gran;
  766 }
  767 
  768 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
  769 #include <isa/isavar.h>
  770 u_int
  771 isa_irq_pending(void)
  772 {
  773 
  774         return (0);
  775 }
  776 #endif
  777 
  778 #define PHYSMAP_SIZE    (2 * 8)
  779 
  780 struct bios_smap {
  781         u_int64_t       base;
  782         u_int64_t       length;
  783         u_int32_t       type;
  784 } __packed;
  785 
  786 u_int basemem;
  787 
  788 /*
  789  * Populate the (physmap) array with base/bound pairs describing the
  790  * available physical memory in the system, then test this memory and
  791  * build the phys_avail array describing the actually-available memory.
  792  *
  793  * If we cannot accurately determine the physical memory map, then use
  794  * value from the 0xE801 call, and failing that, the RTC.
  795  *
  796  * Total memory size may be set by the kernel environment variable
  797  * hw.physmem or the compile-time define MAXMEM.
  798  *
  799  * XXX first should be vm_paddr_t.
  800  */
  801 static void
  802 getmemsize(caddr_t kmdp, u_int64_t first)
  803 {
  804         int i, physmap_idx, pa_indx;
  805         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
  806         pt_entry_t *pte;
  807         char *cp;
  808         struct bios_smap *smapbase, *smap, *smapend;
  809         u_int32_t smapsize;
  810 
  811         bzero(physmap, sizeof(physmap));
  812         basemem = 0;
  813         physmap_idx = 0;
  814 
  815         /*
  816          * get memory map from INT 15:E820, kindly supplied by the loader.
  817          *
  818          * subr_module.c says:
  819          * "Consumer may safely assume that size value precedes data."
  820          * ie: an int32_t immediately precedes smap.
  821          */
  822         smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP);
  823         if (smapbase == NULL)
  824                 panic("No BIOS smap info from loader!");
  825 
  826         smapsize = *((u_int32_t *)smapbase - 1);
  827         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
  828 
  829         for (smap = smapbase; smap < smapend; smap++) {
  830                 if (boothowto & RB_VERBOSE)
  831                         printf("SMAP type=%02x base=%016lx len=%016lx\n",
  832                             smap->type, smap->base, smap->length);
  833 
  834                 if (smap->type != 0x01)
  835                         continue;
  836 
  837                 if (smap->length == 0)
  838                         continue;
  839 
  840                 for (i = 0; i <= physmap_idx; i += 2) {
  841                         if (smap->base < physmap[i + 1]) {
  842                                 if (boothowto & RB_VERBOSE)
  843                                         printf(
  844         "Overlapping or non-montonic memory region, ignoring second region\n");
  845                                 goto next_run;
  846                         }
  847                 }
  848 
  849                 if (smap->base == physmap[physmap_idx + 1]) {
  850                         physmap[physmap_idx + 1] += smap->length;
  851 next_run:
  852                         continue;
  853                 }
  854 
  855                 physmap_idx += 2;
  856                 if (physmap_idx == PHYSMAP_SIZE) {
  857                         printf(
  858                 "Too many segments in the physical address map, giving up\n");
  859                         break;
  860                 }
  861                 physmap[physmap_idx] = smap->base;
  862                 physmap[physmap_idx + 1] = smap->base + smap->length;
  863         }
  864 
  865         /*
  866          * Find the 'base memory' segment for SMP
  867          */
  868         basemem = 0;
  869         for (i = 0; i <= physmap_idx; i += 2) {
  870                 if (physmap[i] == 0x00000000) {
  871                         basemem = physmap[i + 1] / 1024;
  872                         break;
  873                 }
  874         }
  875         if (basemem == 0)
  876                 panic("BIOS smap did not include a basemem segment!");
  877 
  878 #ifdef SMP
  879         /* make hole for AP bootstrap code */
  880         physmap[1] = mp_bootaddress(physmap[1] / 1024);
  881 #endif
  882 
  883         /*
  884          * Maxmem isn't the "maximum memory", it's one larger than the
  885          * highest page of the physical address space.  It should be
  886          * called something like "Maxphyspage".  We may adjust this
  887          * based on ``hw.physmem'' and the results of the memory test.
  888          */
  889         Maxmem = atop(physmap[physmap_idx + 1]);
  890 
  891 #ifdef MAXMEM
  892         Maxmem = MAXMEM / 4;
  893 #endif
  894 
  895         /*
  896          * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
  897          * for the appropriate modifiers.  This overrides MAXMEM.
  898          */
  899         cp = getenv("hw.physmem");
  900         if (cp != NULL) {
  901                 u_int64_t AllowMem, sanity;
  902                 char *ep;
  903 
  904                 sanity = AllowMem = strtouq(cp, &ep, 0);
  905                 if ((ep != cp) && (*ep != 0)) {
  906                         switch(*ep) {
  907                         case 'g':
  908                         case 'G':
  909                                 AllowMem <<= 10;
  910                         case 'm':
  911                         case 'M':
  912                                 AllowMem <<= 10;
  913                         case 'k':
  914                         case 'K':
  915                                 AllowMem <<= 10;
  916                                 break;
  917                         default:
  918                                 AllowMem = sanity = 0;
  919                         }
  920                         if (AllowMem < sanity)
  921                                 AllowMem = 0;
  922                 }
  923                 if (AllowMem == 0)
  924                         printf("Ignoring invalid memory size of '%s'\n", cp);
  925                 else
  926                         Maxmem = atop(AllowMem);
  927                 freeenv(cp);
  928         }
  929 
  930         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
  931             (boothowto & RB_VERBOSE))
  932                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
  933 
  934         /*
  935          * If Maxmem has been increased beyond what the system has detected,
  936          * extend the last memory segment to the new limit.
  937          */
  938         if (atop(physmap[physmap_idx + 1]) < Maxmem)
  939                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
  940 
  941         /* call pmap initialization to make new kernel address space */
  942         pmap_bootstrap(&first);
  943 
  944         /*
  945          * Size up each available chunk of physical memory.
  946          */
  947         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
  948         pa_indx = 0;
  949         phys_avail[pa_indx++] = physmap[0];
  950         phys_avail[pa_indx] = physmap[0];
  951         pte = CMAP1;
  952 
  953         /*
  954          * physmap is in bytes, so when converting to page boundaries,
  955          * round up the start address and round down the end address.
  956          */
  957         for (i = 0; i <= physmap_idx; i += 2) {
  958                 vm_paddr_t end;
  959 
  960                 end = ptoa((vm_paddr_t)Maxmem);
  961                 if (physmap[i + 1] < end)
  962                         end = trunc_page(physmap[i + 1]);
  963                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
  964                         int tmp, page_bad;
  965                         int *ptr = (int *)CADDR1;
  966 
  967                         /*
  968                          * block out kernel memory as not available.
  969                          */
  970                         if (pa >= 0x100000 && pa < first)
  971                                 continue;
  972 
  973                         page_bad = FALSE;
  974 
  975                         /*
  976                          * map page into kernel: valid, read/write,non-cacheable
  977                          */
  978                         *pte = pa | PG_V | PG_RW | PG_N;
  979                         invltlb();
  980 
  981                         tmp = *(int *)ptr;
  982                         /*
  983                          * Test for alternating 1's and 0's
  984                          */
  985                         *(volatile int *)ptr = 0xaaaaaaaa;
  986                         if (*(volatile int *)ptr != 0xaaaaaaaa) {
  987                                 page_bad = TRUE;
  988                         }
  989                         /*
  990                          * Test for alternating 0's and 1's
  991                          */
  992                         *(volatile int *)ptr = 0x55555555;
  993                         if (*(volatile int *)ptr != 0x55555555) {
  994                         page_bad = TRUE;
  995                         }
  996                         /*
  997                          * Test for all 1's
  998                          */
  999                         *(volatile int *)ptr = 0xffffffff;
 1000                         if (*(volatile int *)ptr != 0xffffffff) {
 1001                                 page_bad = TRUE;
 1002                         }
 1003                         /*
 1004                          * Test for all 0's
 1005                          */
 1006                         *(volatile int *)ptr = 0x0;
 1007                         if (*(volatile int *)ptr != 0x0) {
 1008                                 page_bad = TRUE;
 1009                         }
 1010                         /*
 1011                          * Restore original value.
 1012                          */
 1013                         *(int *)ptr = tmp;
 1014 
 1015                         /*
 1016                          * Adjust array of valid/good pages.
 1017                          */
 1018                         if (page_bad == TRUE) {
 1019                                 continue;
 1020                         }
 1021                         /*
 1022                          * If this good page is a continuation of the
 1023                          * previous set of good pages, then just increase
 1024                          * the end pointer. Otherwise start a new chunk.
 1025                          * Note that "end" points one higher than end,
 1026                          * making the range >= start and < end.
 1027                          * If we're also doing a speculative memory
 1028                          * test and we at or past the end, bump up Maxmem
 1029                          * so that we keep going. The first bad page
 1030                          * will terminate the loop.
 1031                          */
 1032                         if (phys_avail[pa_indx] == pa) {
 1033                                 phys_avail[pa_indx] += PAGE_SIZE;
 1034                         } else {
 1035                                 pa_indx++;
 1036                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1037                                         printf(
 1038                 "Too many holes in the physical address space, giving up\n");
 1039                                         pa_indx--;
 1040                                         break;
 1041                                 }
 1042                                 phys_avail[pa_indx++] = pa;     /* start */
 1043                                 phys_avail[pa_indx] = pa + PAGE_SIZE;   /* end */
 1044                         }
 1045                         physmem++;
 1046                 }
 1047         }
 1048         *pte = 0;
 1049         invltlb();
 1050 
 1051         /*
 1052          * XXX
 1053          * The last chunk must contain at least one page plus the message
 1054          * buffer to avoid complicating other code (message buffer address
 1055          * calculation, etc.).
 1056          */
 1057         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1058             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1059                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1060                 phys_avail[pa_indx--] = 0;
 1061                 phys_avail[pa_indx--] = 0;
 1062         }
 1063 
 1064         Maxmem = atop(phys_avail[pa_indx]);
 1065 
 1066         /* Trim off space for the message buffer. */
 1067         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1068 
 1069         avail_end = phys_avail[pa_indx];
 1070 }
 1071 
 1072 u_int64_t
 1073 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1074 {
 1075         caddr_t kmdp;
 1076         int gsel_tss, off, x;
 1077         struct pcpu *pc;
 1078         u_int64_t msr;
 1079         char *env;
 1080 
 1081 #ifdef DEV_ISA
 1082         /* Preemptively mask the atpics and leave them shut down */
 1083         outb(IO_ICU1 + ICU_IMR_OFFSET, 0xff);
 1084         outb(IO_ICU2 + ICU_IMR_OFFSET, 0xff);
 1085 #else
 1086 #error "have you forgotten the isa device?";
 1087 #endif
 1088 
 1089         /* Turn on PTE NX (no execute) bit */
 1090         msr = rdmsr(MSR_EFER) | EFER_NXE;
 1091         wrmsr(MSR_EFER, msr);
 1092 
 1093         proc0.p_uarea = (struct user *)(physfree + KERNBASE);
 1094         bzero(proc0.p_uarea, UAREA_PAGES * PAGE_SIZE);
 1095         physfree += UAREA_PAGES * PAGE_SIZE;
 1096         thread0.td_kstack = physfree + KERNBASE;
 1097         bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
 1098         physfree += KSTACK_PAGES * PAGE_SIZE;
 1099         thread0.td_pcb = (struct pcb *)
 1100            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1101 
 1102         atdevbase = ISA_HOLE_START + KERNBASE;
 1103 
 1104         /*
 1105          * This may be done better later if it gets more high level
 1106          * components in it. If so just link td->td_proc here.
 1107          */
 1108         proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
 1109 
 1110         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1111         preload_bootstrap_relocate(KERNBASE);
 1112         kmdp = preload_search_by_type("elf kernel");
 1113         if (kmdp == NULL)
 1114                 kmdp = preload_search_by_type("elf64 kernel");
 1115         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1116         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1117 
 1118         /* Init basic tunables, hz etc */
 1119         init_param1();
 1120 
 1121         /*
 1122          * make gdt memory segments
 1123          */
 1124         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1125 
 1126         for (x = 0; x < NGDT; x++) {
 1127                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
 1128                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1129         }
 1130         ssdtosyssd(&gdt_segs[GPROC0_SEL], (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1131 
 1132         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1133         r_gdt.rd_base =  (long) gdt;
 1134         lgdt(&r_gdt);
 1135         pc = &__pcpu[0];
 1136 
 1137         wrmsr(MSR_FSBASE, 0);           /* User value */
 1138         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1139         wrmsr(MSR_KGSBASE, 0);          /* User value while we're in the kernel */
 1140 
 1141         pcpu_init(pc, 0, sizeof(struct pcpu));
 1142         PCPU_SET(prvspace, pc);
 1143         PCPU_SET(curthread, &thread0);
 1144         PCPU_SET(tssp, &common_tss[0]);
 1145 
 1146         /*
 1147          * Initialize mutexes.
 1148          *
 1149          * icu_lock: in order to allow an interrupt to occur in a critical
 1150          *           section, to set pcpu->ipending (etc...) properly, we
 1151          *           must be able to get the icu lock, so it can't be
 1152          *           under witness.
 1153          */
 1154         mutex_init();
 1155         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
 1156         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1157 
 1158         /* exceptions */
 1159         for (x = 0; x < NIDT; x++)
 1160                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1161         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1162         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1163         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 0);
 1164         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1165         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1166         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1167         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1168         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1169         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1170         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1171         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1172         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1173         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1174         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1175         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1176         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1177         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1178         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1179         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1180 
 1181         r_idt.rd_limit = sizeof(idt0) - 1;
 1182         r_idt.rd_base = (long) idt;
 1183         lidt(&r_idt);
 1184 
 1185         /*
 1186          * Initialize the console before we print anything out.
 1187          */
 1188         cninit();
 1189 
 1190 #ifdef DEV_ATPIC
 1191         atpic_startup();
 1192 #endif
 1193 
 1194 #ifdef DDB
 1195         kdb_init();
 1196         if (boothowto & RB_KDB)
 1197                 Debugger("Boot flags requested debugger");
 1198 #endif
 1199 
 1200         identify_cpu();         /* Final stage of CPU initialization */
 1201         initializecpu();        /* Initialize CPU registers */
 1202 
 1203         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1204         common_tss[0].tss_rsp0 = thread0.td_kstack + \
 1205             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
 1206         /* Ensure the stack is aligned to 16 bytes */
 1207         common_tss[0].tss_rsp0 &= ~0xF;
 1208         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1209 
 1210         /* doublefault stack space, runs on ist1 */
 1211         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1212 
 1213         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1214         common_tss[0].tss_iobase = sizeof(struct amd64tss);
 1215 
 1216         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1217         ltr(gsel_tss);
 1218 
 1219         /* Set up the fast syscall stuff */
 1220         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1221         wrmsr(MSR_EFER, msr);
 1222         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1223         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1224         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1225               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1226         wrmsr(MSR_STAR, msr);
 1227         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1228 
 1229         getmemsize(kmdp, physfree);
 1230         init_param2(physmem);
 1231 
 1232         /* now running on new page tables, configured,and u/iom is accessible */
 1233 
 1234         /* Map the message buffer. */
 1235         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 1236                 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
 1237 
 1238         msgbufinit(msgbufp, MSGBUF_SIZE);
 1239         fpuinit();
 1240 
 1241         /* transfer to user mode */
 1242 
 1243         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1244         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1245         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1246 
 1247         /* setup proc 0's pcb */
 1248         thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
 1249         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1250         thread0.td_frame = &proc0_tf;
 1251 
 1252         env = getenv("kernelname");
 1253         if (env != NULL)
 1254                 strlcpy(kernelname, env, sizeof(kernelname));
 1255 
 1256         /* Location of kernel stack for locore */
 1257         return ((u_int64_t)thread0.td_pcb);
 1258 }
 1259 
 1260 void
 1261 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1262 {
 1263 
 1264         pcpu->pc_acpi_id = 0xffffffff;
 1265 }
 1266 
 1267 int
 1268 ptrace_set_pc(struct thread *td, unsigned long addr)
 1269 {
 1270         td->td_frame->tf_rip = addr;
 1271         return (0);
 1272 }
 1273 
 1274 int
 1275 ptrace_single_step(struct thread *td)
 1276 {
 1277         td->td_frame->tf_rflags |= PSL_T;
 1278         return (0);
 1279 }
 1280 
 1281 int
 1282 fill_regs(struct thread *td, struct reg *regs)
 1283 {
 1284         struct pcb *pcb;
 1285         struct trapframe *tp;
 1286 
 1287         tp = td->td_frame;
 1288         regs->r_r15 = tp->tf_r15;
 1289         regs->r_r14 = tp->tf_r14;
 1290         regs->r_r13 = tp->tf_r13;
 1291         regs->r_r12 = tp->tf_r12;
 1292         regs->r_r11 = tp->tf_r11;
 1293         regs->r_r10 = tp->tf_r10;
 1294         regs->r_r9  = tp->tf_r9;
 1295         regs->r_r8  = tp->tf_r8;
 1296         regs->r_rdi = tp->tf_rdi;
 1297         regs->r_rsi = tp->tf_rsi;
 1298         regs->r_rbp = tp->tf_rbp;
 1299         regs->r_rbx = tp->tf_rbx;
 1300         regs->r_rdx = tp->tf_rdx;
 1301         regs->r_rcx = tp->tf_rcx;
 1302         regs->r_rax = tp->tf_rax;
 1303         regs->r_rip = tp->tf_rip;
 1304         regs->r_cs = tp->tf_cs;
 1305         regs->r_rflags = tp->tf_rflags;
 1306         regs->r_rsp = tp->tf_rsp;
 1307         regs->r_ss = tp->tf_ss;
 1308         pcb = td->td_pcb;
 1309         return (0);
 1310 }
 1311 
 1312 int
 1313 set_regs(struct thread *td, struct reg *regs)
 1314 {
 1315         struct pcb *pcb;
 1316         struct trapframe *tp;
 1317 
 1318         tp = td->td_frame;
 1319         if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
 1320             !CS_SECURE(regs->r_cs))
 1321                 return (EINVAL);
 1322         tp->tf_r15 = regs->r_r15;
 1323         tp->tf_r14 = regs->r_r14;
 1324         tp->tf_r13 = regs->r_r13;
 1325         tp->tf_r12 = regs->r_r12;
 1326         tp->tf_r11 = regs->r_r11;
 1327         tp->tf_r10 = regs->r_r10;
 1328         tp->tf_r9  = regs->r_r9;
 1329         tp->tf_r8  = regs->r_r8;
 1330         tp->tf_rdi = regs->r_rdi;
 1331         tp->tf_rsi = regs->r_rsi;
 1332         tp->tf_rbp = regs->r_rbp;
 1333         tp->tf_rbx = regs->r_rbx;
 1334         tp->tf_rdx = regs->r_rdx;
 1335         tp->tf_rcx = regs->r_rcx;
 1336         tp->tf_rax = regs->r_rax;
 1337         tp->tf_rip = regs->r_rip;
 1338         tp->tf_cs = regs->r_cs;
 1339         tp->tf_rflags = regs->r_rflags;
 1340         tp->tf_rsp = regs->r_rsp;
 1341         tp->tf_ss = regs->r_ss;
 1342         pcb = td->td_pcb;
 1343         return (0);
 1344 }
 1345 
 1346 /* XXX check all this stuff! */
 1347 /* externalize from sv_xmm */
 1348 static void
 1349 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 1350 {
 1351         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1352         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1353         int i;
 1354 
 1355         /* pcb -> fpregs */
 1356         bzero(fpregs, sizeof(*fpregs));
 1357 
 1358         /* FPU control/status */
 1359         penv_fpreg->en_cw = penv_xmm->en_cw;
 1360         penv_fpreg->en_sw = penv_xmm->en_sw;
 1361         penv_fpreg->en_tw = penv_xmm->en_tw;
 1362         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 1363         penv_fpreg->en_rip = penv_xmm->en_rip;
 1364         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 1365         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 1366         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 1367 
 1368         /* FPU registers */
 1369         for (i = 0; i < 8; ++i)
 1370                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 1371 
 1372         /* SSE registers */
 1373         for (i = 0; i < 16; ++i)
 1374                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 1375 }
 1376 
 1377 /* internalize from fpregs into sv_xmm */
 1378 static void
 1379 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 1380 {
 1381         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1382         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1383         int i;
 1384 
 1385         /* fpregs -> pcb */
 1386         /* FPU control/status */
 1387         penv_xmm->en_cw = penv_fpreg->en_cw;
 1388         penv_xmm->en_sw = penv_fpreg->en_sw;
 1389         penv_xmm->en_tw = penv_fpreg->en_tw;
 1390         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 1391         penv_xmm->en_rip = penv_fpreg->en_rip;
 1392         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 1393         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 1394         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
 1395 
 1396         /* FPU registers */
 1397         for (i = 0; i < 8; ++i)
 1398                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 1399 
 1400         /* SSE registers */
 1401         for (i = 0; i < 16; ++i)
 1402                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 1403 }
 1404 
 1405 /* externalize from td->pcb */
 1406 int
 1407 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1408 {
 1409 
 1410         fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
 1411         return (0);
 1412 }
 1413 
 1414 /* internalize to td->pcb */
 1415 int
 1416 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1417 {
 1418 
 1419         set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
 1420         return (0);
 1421 }
 1422 
 1423 /*
 1424  * Get machine context.
 1425  */
 1426 int
 1427 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 1428 {
 1429         struct trapframe *tp;
 1430 
 1431         tp = td->td_frame;
 1432         PROC_LOCK(curthread->td_proc);
 1433         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 1434         PROC_UNLOCK(curthread->td_proc);
 1435         mcp->mc_r15 = tp->tf_r15;
 1436         mcp->mc_r14 = tp->tf_r14;
 1437         mcp->mc_r13 = tp->tf_r13;
 1438         mcp->mc_r12 = tp->tf_r12;
 1439         mcp->mc_r11 = tp->tf_r11;
 1440         mcp->mc_r10 = tp->tf_r10;
 1441         mcp->mc_r9  = tp->tf_r9;
 1442         mcp->mc_r8  = tp->tf_r8;
 1443         mcp->mc_rdi = tp->tf_rdi;
 1444         mcp->mc_rsi = tp->tf_rsi;
 1445         mcp->mc_rbp = tp->tf_rbp;
 1446         mcp->mc_rbx = tp->tf_rbx;
 1447         mcp->mc_rcx = tp->tf_rcx;
 1448         if (flags & GET_MC_CLEAR_RET) {
 1449                 mcp->mc_rax = 0;
 1450                 mcp->mc_rdx = 0;
 1451         } else {
 1452                 mcp->mc_rax = tp->tf_rax;
 1453                 mcp->mc_rdx = tp->tf_rdx;
 1454         }
 1455         mcp->mc_rip = tp->tf_rip;
 1456         mcp->mc_cs = tp->tf_cs;
 1457         mcp->mc_rflags = tp->tf_rflags;
 1458         mcp->mc_rsp = tp->tf_rsp;
 1459         mcp->mc_ss = tp->tf_ss;
 1460         mcp->mc_len = sizeof(*mcp);
 1461         get_fpcontext(td, mcp);
 1462         return (0);
 1463 }
 1464 
 1465 /*
 1466  * Set machine context.
 1467  *
 1468  * However, we don't set any but the user modifiable flags, and we won't
 1469  * touch the cs selector.
 1470  */
 1471 int
 1472 set_mcontext(struct thread *td, const mcontext_t *mcp)
 1473 {
 1474         struct trapframe *tp;
 1475         long rflags;
 1476         int ret;
 1477 
 1478         tp = td->td_frame;
 1479         if (mcp->mc_len != sizeof(*mcp))
 1480                 return (EINVAL);
 1481         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 1482             (tp->tf_rflags & ~PSL_USERCHANGE);
 1483         ret = set_fpcontext(td, mcp);
 1484         if (ret != 0)
 1485                 return (ret);
 1486         tp->tf_r15 = mcp->mc_r15;
 1487         tp->tf_r14 = mcp->mc_r14;
 1488         tp->tf_r13 = mcp->mc_r13;
 1489         tp->tf_r12 = mcp->mc_r12;
 1490         tp->tf_r11 = mcp->mc_r11;
 1491         tp->tf_r10 = mcp->mc_r10;
 1492         tp->tf_r9  = mcp->mc_r9;
 1493         tp->tf_r8  = mcp->mc_r8;
 1494         tp->tf_rdi = mcp->mc_rdi;
 1495         tp->tf_rsi = mcp->mc_rsi;
 1496         tp->tf_rbp = mcp->mc_rbp;
 1497         tp->tf_rbx = mcp->mc_rbx;
 1498         tp->tf_rdx = mcp->mc_rdx;
 1499         tp->tf_rcx = mcp->mc_rcx;
 1500         tp->tf_rax = mcp->mc_rax;
 1501         tp->tf_rip = mcp->mc_rip;
 1502         tp->tf_rflags = rflags;
 1503         tp->tf_rsp = mcp->mc_rsp;
 1504         tp->tf_ss = mcp->mc_ss;
 1505         return (0);
 1506 }
 1507 
 1508 static void
 1509 get_fpcontext(struct thread *td, mcontext_t *mcp)
 1510 {
 1511 
 1512         mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
 1513         mcp->mc_fpformat = fpuformat();
 1514 }
 1515 
 1516 static int
 1517 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 1518 {
 1519 
 1520         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 1521                 return (0);
 1522         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 1523                 return (EINVAL);
 1524         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 1525                 /* We don't care what state is left in the FPU or PCB. */
 1526                 fpstate_drop(td);
 1527         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 1528             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 1529                 /*
 1530                  * XXX we violate the dubious requirement that fpusetregs()
 1531                  * be called with interrupts disabled.
 1532                  * XXX obsolete on trap-16 systems?
 1533                  */
 1534                 fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate);
 1535         } else
 1536                 return (EINVAL);
 1537         return (0);
 1538 }
 1539 
 1540 void
 1541 fpstate_drop(struct thread *td)
 1542 {
 1543         register_t s;
 1544 
 1545         s = intr_disable();
 1546         if (PCPU_GET(fpcurthread) == td)
 1547                 fpudrop();
 1548         /*
 1549          * XXX force a full drop of the fpu.  The above only drops it if we
 1550          * owned it.
 1551          *
 1552          * XXX I don't much like fpugetregs()'s semantics of doing a full
 1553          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 1554          * We only need to drop to !PCB_INITDONE in sendsig().  But
 1555          * sendsig() is the only caller of fpugetregs()... perhaps we just
 1556          * have too many layers.
 1557          */
 1558         curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
 1559         intr_restore(s);
 1560 }
 1561 
 1562 int
 1563 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1564 {
 1565 
 1566         return (0);
 1567 }
 1568 
 1569 int
 1570 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1571 {
 1572 
 1573         return (0);
 1574 }
 1575 
 1576 #ifndef DDB
 1577 void
 1578 Debugger(const char *msg)
 1579 {
 1580         printf("Debugger(\"%s\") called.\n", msg);
 1581 }
 1582 #endif /* no DDB */
 1583 
 1584 #ifdef DDB
 1585 
 1586 /*
 1587  * Provide inb() and outb() as functions.  They are normally only
 1588  * available as macros calling inlined functions, thus cannot be
 1589  * called inside DDB.
 1590  *
 1591  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 1592  */
 1593 
 1594 #undef inb
 1595 #undef outb
 1596 
 1597 /* silence compiler warnings */
 1598 u_char inb(u_int);
 1599 void outb(u_int, u_char);
 1600 
 1601 u_char
 1602 inb(u_int port)
 1603 {
 1604         u_char  data;
 1605         /*
 1606          * We use %%dx and not %1 here because i/o is done at %dx and not at
 1607          * %edx, while gcc generates inferior code (movw instead of movl)
 1608          * if we tell it to load (u_short) port.
 1609          */
 1610         __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
 1611         return (data);
 1612 }
 1613 
 1614 void
 1615 outb(u_int port, u_char data)
 1616 {
 1617         u_char  al;
 1618         /*
 1619          * Use an unnecessary assignment to help gcc's register allocator.
 1620          * This make a large difference for gcc-1.40 and a tiny difference
 1621          * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
 1622          * best results.  gcc-2.6.0 can't handle this.
 1623          */
 1624         al = data;
 1625         __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
 1626 }
 1627 
 1628 #endif /* DDB */

Cache object: 93676baa53e46a1442e26590eea3f683


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.