The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/5.4/sys/amd64/amd64/machdep.c 144697 2005-04-06 01:06:15Z cperciva $");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_msgbuf.h"
   55 #include "opt_perfmon.h"
   56 
   57 #include <sys/param.h>
   58 #include <sys/proc.h>
   59 #include <sys/systm.h>
   60 #include <sys/bio.h>
   61 #include <sys/buf.h>
   62 #include <sys/bus.h>
   63 #include <sys/callout.h>
   64 #include <sys/cons.h>
   65 #include <sys/cpu.h>
   66 #include <sys/eventhandler.h>
   67 #include <sys/exec.h>
   68 #include <sys/imgact.h>
   69 #include <sys/kdb.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/linker.h>
   73 #include <sys/lock.h>
   74 #include <sys/malloc.h>
   75 #include <sys/memrange.h>
   76 #include <sys/msgbuf.h>
   77 #include <sys/mutex.h>
   78 #include <sys/pcpu.h>
   79 #include <sys/ptrace.h>
   80 #include <sys/reboot.h>
   81 #include <sys/sched.h>
   82 #include <sys/signalvar.h>
   83 #include <sys/sysctl.h>
   84 #include <sys/sysent.h>
   85 #include <sys/sysproto.h>
   86 #include <sys/ucontext.h>
   87 #include <sys/vmmeter.h>
   88 
   89 #include <vm/vm.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/vm_kern.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_map.h>
   94 #include <vm/vm_object.h>
   95 #include <vm/vm_pager.h>
   96 #include <vm/vm_param.h>
   97 
   98 #ifdef DDB
   99 #ifndef KDB
  100 #error KDB must be enabled in order for DDB to work!
  101 #endif
  102 #endif
  103 #include <ddb/ddb.h>
  104 
  105 #include <net/netisr.h>
  106 
  107 #include <machine/clock.h>
  108 #include <machine/cpu.h>
  109 #include <machine/cputypes.h>
  110 #include <machine/intr_machdep.h>
  111 #include <machine/md_var.h>
  112 #include <machine/metadata.h>
  113 #include <machine/pc/bios.h>
  114 #include <machine/pcb.h>
  115 #include <machine/proc.h>
  116 #include <machine/reg.h>
  117 #include <machine/sigframe.h>
  118 #include <machine/specialreg.h>
  119 #ifdef PERFMON
  120 #include <machine/perfmon.h>
  121 #endif
  122 #include <machine/tss.h>
  123 #ifdef SMP
  124 #include <machine/smp.h>
  125 #endif
  126 
  127 #include <amd64/isa/icu.h>
  128 
  129 #include <isa/isareg.h>
  130 #include <isa/rtc.h>
  131 
  132 /* Sanity check for __curthread() */
  133 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  134 
  135 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  136 extern void dblfault_handler(void);
  137 
  138 extern void printcpuinfo(void); /* XXX header file */
  139 extern void identify_cpu(void);
  140 extern void panicifcpuunsupported(void);
  141 
  142 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  143 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  144 
  145 static void cpu_startup(void *);
  146 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  147 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  148 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
  149 
  150 #ifdef DDB
  151 extern vm_offset_t ksym_start, ksym_end;
  152 #endif
  153 
  154 int     _udatasel, _ucodesel, _ucode32sel;
  155 
  156 int cold = 1;
  157 
  158 long Maxmem = 0;
  159 long realmem = 0;
  160 
  161 vm_paddr_t phys_avail[20];
  162 
  163 /* must be 2 less so 0 0 can signal end of chunks */
  164 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
  165 
  166 struct kva_md_info kmi;
  167 
  168 static struct trapframe proc0_tf;
  169 struct region_descriptor r_gdt, r_idt;
  170 
  171 struct pcpu __pcpu[MAXCPU];
  172 
  173 struct mtx icu_lock;
  174 
  175 struct mem_range_softc mem_range_softc;
  176 
  177 static void
  178 cpu_startup(dummy)
  179         void *dummy;
  180 {
  181         /*
  182          * Good {morning,afternoon,evening,night}.
  183          */
  184         startrtclock();
  185         printcpuinfo();
  186         panicifcpuunsupported();
  187 #ifdef PERFMON
  188         perfmon_init();
  189 #endif
  190         printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
  191             ptoa((uintmax_t)Maxmem) / 1048576);
  192         realmem = Maxmem;
  193         /*
  194          * Display any holes after the first chunk of extended memory.
  195          */
  196         if (bootverbose) {
  197                 int indx;
  198 
  199                 printf("Physical memory chunk(s):\n");
  200                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  201                         vm_paddr_t size;
  202 
  203                         size = phys_avail[indx + 1] - phys_avail[indx];
  204                         printf(
  205                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  206                             (uintmax_t)phys_avail[indx],
  207                             (uintmax_t)phys_avail[indx + 1] - 1,
  208                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  209                 }
  210         }
  211 
  212         vm_ksubmap_init(&kmi);
  213 
  214         printf("avail memory = %ju (%ju MB)\n",
  215             ptoa((uintmax_t)cnt.v_free_count),
  216             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  217 
  218         /*
  219          * Set up buffers, so they can be used to read disk labels.
  220          */
  221         bufinit();
  222         vm_pager_bufferinit();
  223 
  224         cpu_setregs();
  225 }
  226 
  227 /*
  228  * Send an interrupt to process.
  229  *
  230  * Stack is set up to allow sigcode stored
  231  * at top to call routine, followed by kcall
  232  * to sigreturn routine below.  After sigreturn
  233  * resets the signal mask, the stack, and the
  234  * frame pointer, it returns to the user
  235  * specified pc, psl.
  236  */
  237 void
  238 sendsig(catcher, sig, mask, code)
  239         sig_t catcher;
  240         int sig;
  241         sigset_t *mask;
  242         u_long code;
  243 {
  244         struct sigframe sf, *sfp;
  245         struct proc *p;
  246         struct thread *td;
  247         struct sigacts *psp;
  248         char *sp;
  249         struct trapframe *regs;
  250         int oonstack;
  251 
  252         td = curthread;
  253         p = td->td_proc;
  254         PROC_LOCK_ASSERT(p, MA_OWNED);
  255         psp = p->p_sigacts;
  256         mtx_assert(&psp->ps_mtx, MA_OWNED);
  257         regs = td->td_frame;
  258         oonstack = sigonstack(regs->tf_rsp);
  259 
  260         /* Save user context. */
  261         bzero(&sf, sizeof(sf));
  262         sf.sf_uc.uc_sigmask = *mask;
  263         sf.sf_uc.uc_stack = td->td_sigstk;
  264         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  265             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  266         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  267         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  268         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  269         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  270         fpstate_drop(td);
  271 
  272         /* Allocate space for the signal handler context. */
  273         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  274             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  275                 sp = td->td_sigstk.ss_sp +
  276                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  277 #if defined(COMPAT_43)
  278                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  279 #endif
  280         } else
  281                 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
  282         /* Align to 16 bytes. */
  283         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  284 
  285         /* Translate the signal if appropriate. */
  286         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  287                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  288 
  289         /* Build the argument list for the signal handler. */
  290         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  291         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  292         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  293                 /* Signal handler installed with SA_SIGINFO. */
  294                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  295                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  296 
  297                 /* Fill in POSIX parts */
  298                 sf.sf_si.si_signo = sig;
  299                 sf.sf_si.si_code = code;
  300                 regs->tf_rcx = regs->tf_addr;   /* arg 4 in %rcx */
  301         } else {
  302                 /* Old FreeBSD-style arguments. */
  303                 regs->tf_rsi = code;            /* arg 2 in %rsi */
  304                 regs->tf_rcx = regs->tf_addr;   /* arg 4 in %rcx */
  305                 sf.sf_ahu.sf_handler = catcher;
  306         }
  307         mtx_unlock(&psp->ps_mtx);
  308         PROC_UNLOCK(p);
  309 
  310         /*
  311          * Copy the sigframe out to the user's stack.
  312          */
  313         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  314 #ifdef DEBUG
  315                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  316 #endif
  317                 PROC_LOCK(p);
  318                 sigexit(td, SIGILL);
  319         }
  320 
  321         regs->tf_rsp = (long)sfp;
  322         regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  323         regs->tf_rflags &= ~PSL_T;
  324         regs->tf_cs = _ucodesel;
  325         PROC_LOCK(p);
  326         mtx_lock(&psp->ps_mtx);
  327 }
  328 
  329 /*
  330  * Build siginfo_t for SA thread
  331  */
  332 void
  333 cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
  334 {
  335         struct proc *p;
  336         struct thread *td;
  337         struct trapframe *regs;
  338 
  339         td = curthread;
  340         p = td->td_proc;
  341         regs = td->td_frame;
  342         PROC_LOCK_ASSERT(p, MA_OWNED);
  343 
  344         bzero(si, sizeof(*si));
  345         si->si_signo = sig;
  346         si->si_code = code;
  347         si->si_addr = (void *)regs->tf_addr;
  348         /* XXXKSE fill other fields */
  349 }
  350 
  351 /*
  352  * System call to cleanup state after a signal
  353  * has been taken.  Reset signal mask and
  354  * stack state from context left by sendsig (above).
  355  * Return to previous pc and psl as specified by
  356  * context left by sendsig. Check carefully to
  357  * make sure that the user has not modified the
  358  * state to gain improper privileges.
  359  *
  360  * MPSAFE
  361  */
  362 int
  363 sigreturn(td, uap)
  364         struct thread *td;
  365         struct sigreturn_args /* {
  366                 const __ucontext *sigcntxp;
  367         } */ *uap;
  368 {
  369         ucontext_t uc;
  370         struct proc *p = td->td_proc;
  371         struct trapframe *regs;
  372         const ucontext_t *ucp;
  373         long rflags;
  374         int cs, error, ret;
  375 
  376         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  377         if (error != 0)
  378                 return (error);
  379         ucp = &uc;
  380         regs = td->td_frame;
  381         rflags = ucp->uc_mcontext.mc_rflags;
  382         /*
  383          * Don't allow users to change privileged or reserved flags.
  384          */
  385         /*
  386          * XXX do allow users to change the privileged flag PSL_RF.
  387          * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
  388          * should sometimes set it there too.  tf_rflags is kept in
  389          * the signal context during signal handling and there is no
  390          * other place to remember it, so the PSL_RF bit may be
  391          * corrupted by the signal handler without us knowing.
  392          * Corruption of the PSL_RF bit at worst causes one more or
  393          * one less debugger trap, so allowing it is fairly harmless.
  394          */
  395         if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
  396                 printf("sigreturn: rflags = 0x%lx\n", rflags);
  397                 return (EINVAL);
  398         }
  399 
  400         /*
  401          * Don't allow users to load a valid privileged %cs.  Let the
  402          * hardware check for invalid selectors, excess privilege in
  403          * other selectors, invalid %eip's and invalid %esp's.
  404          */
  405         cs = ucp->uc_mcontext.mc_cs;
  406         if (!CS_SECURE(cs)) {
  407                 printf("sigreturn: cs = 0x%x\n", cs);
  408                 trapsignal(td, SIGBUS, T_PROTFLT);
  409                 return (EINVAL);
  410         }
  411 
  412         ret = set_fpcontext(td, &ucp->uc_mcontext);
  413         if (ret != 0)
  414                 return (ret);
  415         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  416 
  417         PROC_LOCK(p);
  418 #if defined(COMPAT_43)
  419         if (ucp->uc_mcontext.mc_onstack & 1)
  420                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  421         else
  422                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  423 #endif
  424 
  425         td->td_sigmask = ucp->uc_sigmask;
  426         SIG_CANTMASK(td->td_sigmask);
  427         signotify(td);
  428         PROC_UNLOCK(p);
  429         td->td_pcb->pcb_flags |= PCB_FULLCTX;
  430         return (EJUSTRETURN);
  431 }
  432 
  433 #ifdef COMPAT_FREEBSD4
  434 int
  435 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  436 {
  437  
  438         return sigreturn(td, (struct sigreturn_args *)uap);
  439 }
  440 #endif
  441 
  442 
  443 /*
  444  * Machine dependent boot() routine
  445  *
  446  * I haven't seen anything to put here yet
  447  * Possibly some stuff might be grafted back here from boot()
  448  */
  449 void
  450 cpu_boot(int howto)
  451 {
  452 }
  453 
  454 /* Get current clock frequency for the given cpu id. */
  455 int
  456 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  457 {
  458         register_t reg;
  459         uint64_t tsc1, tsc2;
  460 
  461         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  462                 return (EINVAL);
  463 
  464         /* If we're booting, trust the rate calibrated moments ago. */
  465         if (cold) {
  466                 *rate = tsc_freq;
  467                 return (0);
  468         }
  469 
  470 #ifdef SMP
  471         /* Schedule ourselves on the indicated cpu. */
  472         mtx_lock_spin(&sched_lock);
  473         sched_bind(curthread, cpu_id);
  474         mtx_unlock_spin(&sched_lock);
  475 #endif
  476 
  477         /* Calibrate by measuring a short delay. */
  478         reg = intr_disable();
  479         tsc1 = rdtsc();
  480         DELAY(1000);
  481         tsc2 = rdtsc();
  482         intr_restore(reg);
  483 
  484 #ifdef SMP
  485         mtx_lock_spin(&sched_lock);
  486         sched_unbind(curthread);
  487         mtx_unlock_spin(&sched_lock);
  488 #endif
  489 
  490         /*
  491          * Calculate the difference in readings, convert to Mhz, and
  492          * subtract 0.5% of the total.  Empirical testing has shown that
  493          * overhead in DELAY() works out to approximately this value.
  494          */
  495         tsc2 -= tsc1;
  496         *rate = tsc2 * 1000 - tsc2 * 5;
  497         return (0);
  498 }
  499 
  500 /*
  501  * Shutdown the CPU as much as possible
  502  */
  503 void
  504 cpu_halt(void)
  505 {
  506         for (;;)
  507                 __asm__ ("hlt");
  508 }
  509 
  510 /*
  511  * Hook to idle the CPU when possible.  In the SMP case we default to
  512  * off because a halted cpu will not currently pick up a new thread in the
  513  * run queue until the next timer tick.  If turned on this will result in
  514  * approximately a 4.2% loss in real time performance in buildworld tests
  515  * (but improves user and sys times oddly enough), and saves approximately
  516  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
  517  *
  518  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
  519  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
  520  * Then we can have our cake and eat it too.
  521  *
  522  * XXX I'm turning it on for SMP as well by default for now.  It seems to
  523  * help lock contention somewhat, and this is critical for HTT. -Peter
  524  */
  525 static int      cpu_idle_hlt = 1;
  526 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
  527     &cpu_idle_hlt, 0, "Idle loop HLT enable");
  528 
  529 static void
  530 cpu_idle_default(void)
  531 {
  532         /*
  533          * we must absolutely guarentee that hlt is the
  534          * absolute next instruction after sti or we
  535          * introduce a timing window.
  536          */
  537         __asm __volatile("sti; hlt");
  538 }
  539 
  540 /*
  541  * Note that we have to be careful here to avoid a race between checking
  542  * sched_runnable() and actually halting.  If we don't do this, we may waste
  543  * the time between calling hlt and the next interrupt even though there
  544  * is a runnable process.
  545  */
  546 void
  547 cpu_idle(void)
  548 {
  549 
  550 #ifdef SMP
  551         if (mp_grab_cpu_hlt())
  552                 return;
  553 #endif
  554         if (cpu_idle_hlt) {
  555                 disable_intr();
  556                 if (sched_runnable())
  557                         enable_intr();
  558                 else
  559                         (*cpu_idle_hook)();
  560         }
  561 }
  562 
  563 /* Other subsystems (e.g., ACPI) can hook this later. */
  564 void (*cpu_idle_hook)(void) = cpu_idle_default;
  565 
  566 /*
  567  * Clear registers on exec
  568  */
  569 void
  570 exec_setregs(td, entry, stack, ps_strings)
  571         struct thread *td;
  572         u_long entry;
  573         u_long stack;
  574         u_long ps_strings;
  575 {
  576         struct trapframe *regs = td->td_frame;
  577         struct pcb *pcb = td->td_pcb;
  578         
  579         wrmsr(MSR_FSBASE, 0);
  580         wrmsr(MSR_KGSBASE, 0);  /* User value while we're in the kernel */
  581         pcb->pcb_fsbase = 0;
  582         pcb->pcb_gsbase = 0;
  583         load_ds(_udatasel);
  584         load_es(_udatasel);
  585         load_fs(_udatasel);
  586         load_gs(_udatasel);
  587         pcb->pcb_ds = _udatasel;
  588         pcb->pcb_es = _udatasel;
  589         pcb->pcb_fs = _udatasel;
  590         pcb->pcb_gs = _udatasel;
  591 
  592         bzero((char *)regs, sizeof(struct trapframe));
  593         regs->tf_rip = entry;
  594         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  595         regs->tf_rdi = stack;           /* argv */
  596         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  597         regs->tf_ss = _udatasel;
  598         regs->tf_cs = _ucodesel;
  599 
  600         /*
  601          * Reset the hardware debug registers if they were in use.
  602          * They won't have any meaning for the newly exec'd process.
  603          */
  604         if (pcb->pcb_flags & PCB_DBREGS) {
  605                 pcb->pcb_dr0 = 0;
  606                 pcb->pcb_dr1 = 0;
  607                 pcb->pcb_dr2 = 0;
  608                 pcb->pcb_dr3 = 0;
  609                 pcb->pcb_dr6 = 0;
  610                 pcb->pcb_dr7 = 0;
  611                 if (pcb == PCPU_GET(curpcb)) {
  612                         /*
  613                          * Clear the debug registers on the running
  614                          * CPU, otherwise they will end up affecting
  615                          * the next process we switch to.
  616                          */
  617                         reset_dbregs();
  618                 }
  619                 pcb->pcb_flags &= ~PCB_DBREGS;
  620         }
  621 
  622         /*
  623          * Drop the FP state if we hold it, so that the process gets a
  624          * clean FP state if it uses the FPU again.
  625          */
  626         fpstate_drop(td);
  627 }
  628 
  629 void
  630 cpu_setregs(void)
  631 {
  632         register_t cr0;
  633 
  634         cr0 = rcr0();
  635         /*
  636          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  637          * BSP.  See the comments there about why we set them.
  638          */
  639         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  640         load_cr0(cr0);
  641 }
  642 
  643 static int
  644 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
  645 {
  646         int error;
  647         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
  648                 req);
  649         if (!error && req->newptr)
  650                 resettodr();
  651         return (error);
  652 }
  653 
  654 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
  655         &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
  656 
  657 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
  658         CTLFLAG_RW, &disable_rtc_set, 0, "");
  659 
  660 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
  661         CTLFLAG_RW, &wall_cmos_clock, 0, "");
  662 
  663 /*
  664  * Initialize 386 and configure to run kernel
  665  */
  666 
  667 /*
  668  * Initialize segments & interrupt table
  669  */
  670 
  671 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
  672 static struct gate_descriptor idt0[NIDT];
  673 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
  674 
  675 static char dblfault_stack[PAGE_SIZE] __aligned(16);
  676 
  677 struct amd64tss common_tss[MAXCPU];
  678 
  679 /* software prototypes -- in more palatable form */
  680 struct soft_segment_descriptor gdt_segs[] = {
  681 /* GNULL_SEL    0 Null Descriptor */
  682 {       0x0,                    /* segment base address  */
  683         0x0,                    /* length */
  684         0,                      /* segment type */
  685         0,                      /* segment descriptor priority level */
  686         0,                      /* segment descriptor present */
  687         0,                      /* long */
  688         0,                      /* default 32 vs 16 bit size */
  689         0                       /* limit granularity (byte/page units)*/ },
  690 /* GCODE_SEL    1 Code Descriptor for kernel */
  691 {       0x0,                    /* segment base address  */
  692         0xfffff,                /* length - all address space */
  693         SDT_MEMERA,             /* segment type */
  694         SEL_KPL,                /* segment descriptor priority level */
  695         1,                      /* segment descriptor present */
  696         1,                      /* long */
  697         0,                      /* default 32 vs 16 bit size */
  698         1                       /* limit granularity (byte/page units)*/ },
  699 /* GDATA_SEL    2 Data Descriptor for kernel */
  700 {       0x0,                    /* segment base address  */
  701         0xfffff,                /* length - all address space */
  702         SDT_MEMRWA,             /* segment type */
  703         SEL_KPL,                /* segment descriptor priority level */
  704         1,                      /* segment descriptor present */
  705         1,                      /* long */
  706         0,                      /* default 32 vs 16 bit size */
  707         1                       /* limit granularity (byte/page units)*/ },
  708 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
  709 {       0x0,                    /* segment base address  */
  710         0xfffff,                /* length - all address space */
  711         SDT_MEMERA,             /* segment type */
  712         SEL_UPL,                /* segment descriptor priority level */
  713         1,                      /* segment descriptor present */
  714         0,                      /* long */
  715         1,                      /* default 32 vs 16 bit size */
  716         1                       /* limit granularity (byte/page units)*/ },
  717 /* GUDATA_SEL   4 32/64 bit Data Descriptor for user */
  718 {       0x0,                    /* segment base address  */
  719         0xfffff,                /* length - all address space */
  720         SDT_MEMRWA,             /* segment type */
  721         SEL_UPL,                /* segment descriptor priority level */
  722         1,                      /* segment descriptor present */
  723         0,                      /* long */
  724         1,                      /* default 32 vs 16 bit size */
  725         1                       /* limit granularity (byte/page units)*/ },
  726 /* GUCODE_SEL   5 64 bit Code Descriptor for user */
  727 {       0x0,                    /* segment base address  */
  728         0xfffff,                /* length - all address space */
  729         SDT_MEMERA,             /* segment type */
  730         SEL_UPL,                /* segment descriptor priority level */
  731         1,                      /* segment descriptor present */
  732         1,                      /* long */
  733         0,                      /* default 32 vs 16 bit size */
  734         1                       /* limit granularity (byte/page units)*/ },
  735 /* GPROC0_SEL   6 Proc 0 Tss Descriptor */
  736 {
  737         0x0,                    /* segment base address */
  738         sizeof(struct amd64tss)-1,/* length - all address space */
  739         SDT_SYSTSS,             /* segment type */
  740         SEL_KPL,                /* segment descriptor priority level */
  741         1,                      /* segment descriptor present */
  742         0,                      /* long */
  743         0,                      /* unused - default 32 vs 16 bit size */
  744         0                       /* limit granularity (byte/page units)*/ },
  745 /* Actually, the TSS is a system descriptor which is double size */
  746 {       0x0,                    /* segment base address  */
  747         0x0,                    /* length */
  748         0,                      /* segment type */
  749         0,                      /* segment descriptor priority level */
  750         0,                      /* segment descriptor present */
  751         0,                      /* long */
  752         0,                      /* default 32 vs 16 bit size */
  753         0                       /* limit granularity (byte/page units)*/ },
  754 };
  755 
  756 void
  757 setidt(idx, func, typ, dpl, ist)
  758         int idx;
  759         inthand_t *func;
  760         int typ;
  761         int dpl;
  762         int ist;
  763 {
  764         struct gate_descriptor *ip;
  765 
  766         ip = idt + idx;
  767         ip->gd_looffset = (uintptr_t)func;
  768         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
  769         ip->gd_ist = ist;
  770         ip->gd_xx = 0;
  771         ip->gd_type = typ;
  772         ip->gd_dpl = dpl;
  773         ip->gd_p = 1;
  774         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
  775 }
  776 
  777 #define IDTVEC(name)    __CONCAT(X,name)
  778 
  779 extern inthand_t
  780         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
  781         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
  782         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
  783         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
  784         IDTVEC(xmm), IDTVEC(dblfault),
  785         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  786 
  787 void
  788 sdtossd(sd, ssd)
  789         struct user_segment_descriptor *sd;
  790         struct soft_segment_descriptor *ssd;
  791 {
  792 
  793         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
  794         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
  795         ssd->ssd_type  = sd->sd_type;
  796         ssd->ssd_dpl   = sd->sd_dpl;
  797         ssd->ssd_p     = sd->sd_p;
  798         ssd->ssd_long  = sd->sd_long;
  799         ssd->ssd_def32 = sd->sd_def32;
  800         ssd->ssd_gran  = sd->sd_gran;
  801 }
  802 
  803 void
  804 ssdtosd(ssd, sd)
  805         struct soft_segment_descriptor *ssd;
  806         struct user_segment_descriptor *sd;
  807 {
  808 
  809         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  810         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
  811         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  812         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  813         sd->sd_type  = ssd->ssd_type;
  814         sd->sd_dpl   = ssd->ssd_dpl;
  815         sd->sd_p     = ssd->ssd_p;
  816         sd->sd_long  = ssd->ssd_long;
  817         sd->sd_def32 = ssd->ssd_def32;
  818         sd->sd_gran  = ssd->ssd_gran;
  819 }
  820 
  821 void
  822 ssdtosyssd(ssd, sd)
  823         struct soft_segment_descriptor *ssd;
  824         struct system_segment_descriptor *sd;
  825 {
  826 
  827         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  828         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
  829         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  830         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  831         sd->sd_type  = ssd->ssd_type;
  832         sd->sd_dpl   = ssd->ssd_dpl;
  833         sd->sd_p     = ssd->ssd_p;
  834         sd->sd_gran  = ssd->ssd_gran;
  835 }
  836 
  837 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
  838 #include <isa/isavar.h>
  839 u_int
  840 isa_irq_pending(void)
  841 {
  842 
  843         return (0);
  844 }
  845 #endif
  846 
  847 #define PHYSMAP_SIZE    (2 * 8)
  848 
  849 u_int basemem;
  850 
  851 /*
  852  * Populate the (physmap) array with base/bound pairs describing the
  853  * available physical memory in the system, then test this memory and
  854  * build the phys_avail array describing the actually-available memory.
  855  *
  856  * If we cannot accurately determine the physical memory map, then use
  857  * value from the 0xE801 call, and failing that, the RTC.
  858  *
  859  * Total memory size may be set by the kernel environment variable
  860  * hw.physmem or the compile-time define MAXMEM.
  861  *
  862  * XXX first should be vm_paddr_t.
  863  */
  864 static void
  865 getmemsize(caddr_t kmdp, u_int64_t first)
  866 {
  867         int i, physmap_idx, pa_indx;
  868         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
  869         pt_entry_t *pte;
  870         char *cp;
  871         struct bios_smap *smapbase, *smap, *smapend;
  872         u_int32_t smapsize;
  873         quad_t dcons_addr, dcons_size;
  874 
  875         bzero(physmap, sizeof(physmap));
  876         basemem = 0;
  877         physmap_idx = 0;
  878 
  879         /*
  880          * get memory map from INT 15:E820, kindly supplied by the loader.
  881          *
  882          * subr_module.c says:
  883          * "Consumer may safely assume that size value precedes data."
  884          * ie: an int32_t immediately precedes smap.
  885          */
  886         smapbase = (struct bios_smap *)preload_search_info(kmdp,
  887             MODINFO_METADATA | MODINFOMD_SMAP);
  888         if (smapbase == NULL)
  889                 panic("No BIOS smap info from loader!");
  890 
  891         smapsize = *((u_int32_t *)smapbase - 1);
  892         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
  893 
  894         for (smap = smapbase; smap < smapend; smap++) {
  895                 if (boothowto & RB_VERBOSE)
  896                         printf("SMAP type=%02x base=%016lx len=%016lx\n",
  897                             smap->type, smap->base, smap->length);
  898 
  899                 if (smap->type != 0x01)
  900                         continue;
  901 
  902                 if (smap->length == 0)
  903                         continue;
  904 
  905                 for (i = 0; i <= physmap_idx; i += 2) {
  906                         if (smap->base < physmap[i + 1]) {
  907                                 if (boothowto & RB_VERBOSE)
  908                                         printf(
  909         "Overlapping or non-montonic memory region, ignoring second region\n");
  910                                 goto next_run;
  911                         }
  912                 }
  913 
  914                 if (smap->base == physmap[physmap_idx + 1]) {
  915                         physmap[physmap_idx + 1] += smap->length;
  916 next_run:
  917                         continue;
  918                 }
  919 
  920                 physmap_idx += 2;
  921                 if (physmap_idx == PHYSMAP_SIZE) {
  922                         printf(
  923                 "Too many segments in the physical address map, giving up\n");
  924                         break;
  925                 }
  926                 physmap[physmap_idx] = smap->base;
  927                 physmap[physmap_idx + 1] = smap->base + smap->length;
  928         }
  929 
  930         /*
  931          * Find the 'base memory' segment for SMP
  932          */
  933         basemem = 0;
  934         for (i = 0; i <= physmap_idx; i += 2) {
  935                 if (physmap[i] == 0x00000000) {
  936                         basemem = physmap[i + 1] / 1024;
  937                         break;
  938                 }
  939         }
  940         if (basemem == 0)
  941                 panic("BIOS smap did not include a basemem segment!");
  942 
  943 #ifdef SMP
  944         /* make hole for AP bootstrap code */
  945         physmap[1] = mp_bootaddress(physmap[1] / 1024);
  946 #endif
  947 
  948         /*
  949          * Maxmem isn't the "maximum memory", it's one larger than the
  950          * highest page of the physical address space.  It should be
  951          * called something like "Maxphyspage".  We may adjust this
  952          * based on ``hw.physmem'' and the results of the memory test.
  953          */
  954         Maxmem = atop(physmap[physmap_idx + 1]);
  955 
  956 #ifdef MAXMEM
  957         Maxmem = MAXMEM / 4;
  958 #endif
  959 
  960         /*
  961          * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
  962          * for the appropriate modifiers.  This overrides MAXMEM.
  963          */
  964         cp = getenv("hw.physmem");
  965         if (cp != NULL) {
  966                 u_int64_t AllowMem, sanity;
  967                 char *ep;
  968 
  969                 sanity = AllowMem = strtouq(cp, &ep, 0);
  970                 if ((ep != cp) && (*ep != 0)) {
  971                         switch(*ep) {
  972                         case 'g':
  973                         case 'G':
  974                                 AllowMem <<= 10;
  975                         case 'm':
  976                         case 'M':
  977                                 AllowMem <<= 10;
  978                         case 'k':
  979                         case 'K':
  980                                 AllowMem <<= 10;
  981                                 break;
  982                         default:
  983                                 AllowMem = sanity = 0;
  984                         }
  985                         if (AllowMem < sanity)
  986                                 AllowMem = 0;
  987                 }
  988                 if (AllowMem == 0)
  989                         printf("Ignoring invalid memory size of '%s'\n", cp);
  990                 else
  991                         Maxmem = atop(AllowMem);
  992                 freeenv(cp);
  993         }
  994 
  995         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
  996             (boothowto & RB_VERBOSE))
  997                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
  998 
  999         /*
 1000          * If Maxmem has been increased beyond what the system has detected,
 1001          * extend the last memory segment to the new limit.
 1002          */
 1003         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 1004                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 1005 
 1006         /* call pmap initialization to make new kernel address space */
 1007         pmap_bootstrap(&first);
 1008 
 1009         /*
 1010          * Size up each available chunk of physical memory.
 1011          */
 1012         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1013         pa_indx = 0;
 1014         phys_avail[pa_indx++] = physmap[0];
 1015         phys_avail[pa_indx] = physmap[0];
 1016         pte = CMAP1;
 1017 
 1018         /*
 1019          * Get dcons buffer address
 1020          */
 1021         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1022             getenv_quad("dcons.size", &dcons_size) == 0)
 1023                 dcons_addr = 0;
 1024 
 1025         /*
 1026          * physmap is in bytes, so when converting to page boundaries,
 1027          * round up the start address and round down the end address.
 1028          */
 1029         for (i = 0; i <= physmap_idx; i += 2) {
 1030                 vm_paddr_t end;
 1031 
 1032                 end = ptoa((vm_paddr_t)Maxmem);
 1033                 if (physmap[i + 1] < end)
 1034                         end = trunc_page(physmap[i + 1]);
 1035                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1036                         int tmp, page_bad;
 1037                         int *ptr = (int *)CADDR1;
 1038 
 1039                         /*
 1040                          * block out kernel memory as not available.
 1041                          */
 1042                         if (pa >= 0x100000 && pa < first)
 1043                                 continue;
 1044 
 1045                         /*
 1046                          * block out dcons buffer
 1047                          */
 1048                         if (dcons_addr > 0
 1049                             && pa >= trunc_page(dcons_addr)
 1050                             && pa < dcons_addr + dcons_size)
 1051                                 continue;
 1052 
 1053                         page_bad = FALSE;
 1054 
 1055                         /*
 1056                          * map page into kernel: valid, read/write,non-cacheable
 1057                          */
 1058                         *pte = pa | PG_V | PG_RW | PG_N;
 1059                         invltlb();
 1060 
 1061                         tmp = *(int *)ptr;
 1062                         /*
 1063                          * Test for alternating 1's and 0's
 1064                          */
 1065                         *(volatile int *)ptr = 0xaaaaaaaa;
 1066                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1067                                 page_bad = TRUE;
 1068                         /*
 1069                          * Test for alternating 0's and 1's
 1070                          */
 1071                         *(volatile int *)ptr = 0x55555555;
 1072                         if (*(volatile int *)ptr != 0x55555555)
 1073                                 page_bad = TRUE;
 1074                         /*
 1075                          * Test for all 1's
 1076                          */
 1077                         *(volatile int *)ptr = 0xffffffff;
 1078                         if (*(volatile int *)ptr != 0xffffffff)
 1079                                 page_bad = TRUE;
 1080                         /*
 1081                          * Test for all 0's
 1082                          */
 1083                         *(volatile int *)ptr = 0x0;
 1084                         if (*(volatile int *)ptr != 0x0)
 1085                                 page_bad = TRUE;
 1086                         /*
 1087                          * Restore original value.
 1088                          */
 1089                         *(int *)ptr = tmp;
 1090 
 1091                         /*
 1092                          * Adjust array of valid/good pages.
 1093                          */
 1094                         if (page_bad == TRUE)
 1095                                 continue;
 1096                         /*
 1097                          * If this good page is a continuation of the
 1098                          * previous set of good pages, then just increase
 1099                          * the end pointer. Otherwise start a new chunk.
 1100                          * Note that "end" points one higher than end,
 1101                          * making the range >= start and < end.
 1102                          * If we're also doing a speculative memory
 1103                          * test and we at or past the end, bump up Maxmem
 1104                          * so that we keep going. The first bad page
 1105                          * will terminate the loop.
 1106                          */
 1107                         if (phys_avail[pa_indx] == pa) {
 1108                                 phys_avail[pa_indx] += PAGE_SIZE;
 1109                         } else {
 1110                                 pa_indx++;
 1111                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1112                                         printf(
 1113                 "Too many holes in the physical address space, giving up\n");
 1114                                         pa_indx--;
 1115                                         break;
 1116                                 }
 1117                                 phys_avail[pa_indx++] = pa;     /* start */
 1118                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1119                         }
 1120                         physmem++;
 1121                 }
 1122         }
 1123         *pte = 0;
 1124         invltlb();
 1125 
 1126         /*
 1127          * XXX
 1128          * The last chunk must contain at least one page plus the message
 1129          * buffer to avoid complicating other code (message buffer address
 1130          * calculation, etc.).
 1131          */
 1132         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1133             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1134                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1135                 phys_avail[pa_indx--] = 0;
 1136                 phys_avail[pa_indx--] = 0;
 1137         }
 1138 
 1139         Maxmem = atop(phys_avail[pa_indx]);
 1140 
 1141         /* Trim off space for the message buffer. */
 1142         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1143 
 1144         avail_end = phys_avail[pa_indx];
 1145 }
 1146 
 1147 u_int64_t
 1148 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1149 {
 1150         caddr_t kmdp;
 1151         int gsel_tss, off, x;
 1152         struct pcpu *pc;
 1153         u_int64_t msr;
 1154         char *env;
 1155 
 1156 #ifdef DEV_ISA
 1157         /* Preemptively mask the atpics and leave them shut down */
 1158         outb(IO_ICU1 + ICU_IMR_OFFSET, 0xff);
 1159         outb(IO_ICU2 + ICU_IMR_OFFSET, 0xff);
 1160 #else
 1161 #error "have you forgotten the isa device?";
 1162 #endif
 1163 
 1164         thread0.td_kstack = physfree + KERNBASE;
 1165         bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
 1166         physfree += KSTACK_PAGES * PAGE_SIZE;
 1167         thread0.td_pcb = (struct pcb *)
 1168            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1169 
 1170         /*
 1171          * This may be done better later if it gets more high level
 1172          * components in it. If so just link td->td_proc here.
 1173          */
 1174         proc_linkup(&proc0, &ksegrp0, &thread0);
 1175 
 1176         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1177         preload_bootstrap_relocate(KERNBASE);
 1178         kmdp = preload_search_by_type("elf kernel");
 1179         if (kmdp == NULL)
 1180                 kmdp = preload_search_by_type("elf64 kernel");
 1181         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1182         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1183 #ifdef DDB
 1184         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1185         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1186 #endif
 1187 
 1188         /* Init basic tunables, hz etc */
 1189         init_param1();
 1190 
 1191         /*
 1192          * make gdt memory segments
 1193          */
 1194         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1195 
 1196         for (x = 0; x < NGDT; x++) {
 1197                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
 1198                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1199         }
 1200         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1201             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1202 
 1203         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1204         r_gdt.rd_base =  (long) gdt;
 1205         lgdt(&r_gdt);
 1206         pc = &__pcpu[0];
 1207 
 1208         wrmsr(MSR_FSBASE, 0);           /* User value */
 1209         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1210         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1211 
 1212         pcpu_init(pc, 0, sizeof(struct pcpu));
 1213         PCPU_SET(prvspace, pc);
 1214         PCPU_SET(curthread, &thread0);
 1215         PCPU_SET(curpcb, thread0.td_pcb);
 1216         PCPU_SET(tssp, &common_tss[0]);
 1217 
 1218         /*
 1219          * Initialize mutexes.
 1220          *
 1221          * icu_lock: in order to allow an interrupt to occur in a critical
 1222          *           section, to set pcpu->ipending (etc...) properly, we
 1223          *           must be able to get the icu lock, so it can't be
 1224          *           under witness.
 1225          */
 1226         mutex_init();
 1227         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
 1228         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1229 
 1230         /* exceptions */
 1231         for (x = 0; x < NIDT; x++)
 1232                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1233         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1234         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1235         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 0);
 1236         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1237         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1238         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1239         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1240         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1241         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1242         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1243         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1244         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1245         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1246         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1247         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1248         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1249         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1250         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1251         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1252 
 1253         r_idt.rd_limit = sizeof(idt0) - 1;
 1254         r_idt.rd_base = (long) idt;
 1255         lidt(&r_idt);
 1256 
 1257         /*
 1258          * Initialize the console before we print anything out.
 1259          */
 1260         cninit();
 1261 
 1262 #ifdef DEV_ATPIC
 1263         elcr_probe();
 1264         atpic_startup();
 1265 #endif
 1266 
 1267         kdb_init();
 1268 
 1269 #ifdef KDB
 1270         if (boothowto & RB_KDB)
 1271                 kdb_enter("Boot flags requested debugger");
 1272 #endif
 1273 
 1274         identify_cpu();         /* Final stage of CPU initialization */
 1275         initializecpu();        /* Initialize CPU registers */
 1276 
 1277         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1278         common_tss[0].tss_rsp0 = thread0.td_kstack + \
 1279             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
 1280         /* Ensure the stack is aligned to 16 bytes */
 1281         common_tss[0].tss_rsp0 &= ~0xFul;
 1282         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1283 
 1284         /* doublefault stack space, runs on ist1 */
 1285         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1286 
 1287         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1288         common_tss[0].tss_iobase = sizeof(struct amd64tss);
 1289 
 1290         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1291         ltr(gsel_tss);
 1292 
 1293         /* Set up the fast syscall stuff */
 1294         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1295         wrmsr(MSR_EFER, msr);
 1296         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1297         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1298         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1299               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1300         wrmsr(MSR_STAR, msr);
 1301         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1302 
 1303         getmemsize(kmdp, physfree);
 1304         init_param2(physmem);
 1305 
 1306         /* now running on new page tables, configured,and u/iom is accessible */
 1307 
 1308         /* Map the message buffer. */
 1309         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 1310                 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
 1311 
 1312         msgbufinit(msgbufp, MSGBUF_SIZE);
 1313         fpuinit();
 1314 
 1315         /* transfer to user mode */
 1316 
 1317         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1318         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1319         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1320 
 1321         /* setup proc 0's pcb */
 1322         thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
 1323         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1324         thread0.td_frame = &proc0_tf;
 1325 
 1326         env = getenv("kernelname");
 1327         if (env != NULL)
 1328                 strlcpy(kernelname, env, sizeof(kernelname));
 1329 
 1330         /* Location of kernel stack for locore */
 1331         return ((u_int64_t)thread0.td_pcb);
 1332 }
 1333 
 1334 void
 1335 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1336 {
 1337 
 1338         pcpu->pc_acpi_id = 0xffffffff;
 1339 }
 1340 
 1341 /*
 1342  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1343  * we want to start a backtrace from the function that caused us to enter
 1344  * the debugger. We have the context in the trapframe, but base the trace
 1345  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1346  * enough for a backtrace.
 1347  */
 1348 void
 1349 makectx(struct trapframe *tf, struct pcb *pcb)
 1350 {
 1351 
 1352         pcb->pcb_r12 = tf->tf_r12;
 1353         pcb->pcb_r13 = tf->tf_r13;
 1354         pcb->pcb_r14 = tf->tf_r14;
 1355         pcb->pcb_r15 = tf->tf_r15;
 1356         pcb->pcb_rbp = tf->tf_rbp;
 1357         pcb->pcb_rbx = tf->tf_rbx;
 1358         pcb->pcb_rip = tf->tf_rip;
 1359         pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
 1360 }
 1361 
 1362 int
 1363 ptrace_set_pc(struct thread *td, unsigned long addr)
 1364 {
 1365         td->td_frame->tf_rip = addr;
 1366         return (0);
 1367 }
 1368 
 1369 int
 1370 ptrace_single_step(struct thread *td)
 1371 {
 1372         td->td_frame->tf_rflags |= PSL_T;
 1373         return (0);
 1374 }
 1375 
 1376 int
 1377 ptrace_clear_single_step(struct thread *td)
 1378 {
 1379         td->td_frame->tf_rflags &= ~PSL_T;
 1380         return (0);
 1381 }
 1382 
 1383 int
 1384 fill_regs(struct thread *td, struct reg *regs)
 1385 {
 1386         struct pcb *pcb;
 1387         struct trapframe *tp;
 1388 
 1389         tp = td->td_frame;
 1390         regs->r_r15 = tp->tf_r15;
 1391         regs->r_r14 = tp->tf_r14;
 1392         regs->r_r13 = tp->tf_r13;
 1393         regs->r_r12 = tp->tf_r12;
 1394         regs->r_r11 = tp->tf_r11;
 1395         regs->r_r10 = tp->tf_r10;
 1396         regs->r_r9  = tp->tf_r9;
 1397         regs->r_r8  = tp->tf_r8;
 1398         regs->r_rdi = tp->tf_rdi;
 1399         regs->r_rsi = tp->tf_rsi;
 1400         regs->r_rbp = tp->tf_rbp;
 1401         regs->r_rbx = tp->tf_rbx;
 1402         regs->r_rdx = tp->tf_rdx;
 1403         regs->r_rcx = tp->tf_rcx;
 1404         regs->r_rax = tp->tf_rax;
 1405         regs->r_rip = tp->tf_rip;
 1406         regs->r_cs = tp->tf_cs;
 1407         regs->r_rflags = tp->tf_rflags;
 1408         regs->r_rsp = tp->tf_rsp;
 1409         regs->r_ss = tp->tf_ss;
 1410         pcb = td->td_pcb;
 1411         return (0);
 1412 }
 1413 
 1414 int
 1415 set_regs(struct thread *td, struct reg *regs)
 1416 {
 1417         struct pcb *pcb;
 1418         struct trapframe *tp;
 1419         register_t rflags;
 1420 
 1421         tp = td->td_frame;
 1422         rflags = regs->r_rflags & 0xffffffff;
 1423         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 1424                 return (EINVAL);
 1425         tp->tf_r15 = regs->r_r15;
 1426         tp->tf_r14 = regs->r_r14;
 1427         tp->tf_r13 = regs->r_r13;
 1428         tp->tf_r12 = regs->r_r12;
 1429         tp->tf_r11 = regs->r_r11;
 1430         tp->tf_r10 = regs->r_r10;
 1431         tp->tf_r9  = regs->r_r9;
 1432         tp->tf_r8  = regs->r_r8;
 1433         tp->tf_rdi = regs->r_rdi;
 1434         tp->tf_rsi = regs->r_rsi;
 1435         tp->tf_rbp = regs->r_rbp;
 1436         tp->tf_rbx = regs->r_rbx;
 1437         tp->tf_rdx = regs->r_rdx;
 1438         tp->tf_rcx = regs->r_rcx;
 1439         tp->tf_rax = regs->r_rax;
 1440         tp->tf_rip = regs->r_rip;
 1441         tp->tf_cs = regs->r_cs;
 1442         tp->tf_rflags = rflags;
 1443         tp->tf_rsp = regs->r_rsp;
 1444         tp->tf_ss = regs->r_ss;
 1445         pcb = td->td_pcb;
 1446         return (0);
 1447 }
 1448 
 1449 /* XXX check all this stuff! */
 1450 /* externalize from sv_xmm */
 1451 static void
 1452 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 1453 {
 1454         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1455         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1456         int i;
 1457 
 1458         /* pcb -> fpregs */
 1459         bzero(fpregs, sizeof(*fpregs));
 1460 
 1461         /* FPU control/status */
 1462         penv_fpreg->en_cw = penv_xmm->en_cw;
 1463         penv_fpreg->en_sw = penv_xmm->en_sw;
 1464         penv_fpreg->en_tw = penv_xmm->en_tw;
 1465         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 1466         penv_fpreg->en_rip = penv_xmm->en_rip;
 1467         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 1468         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 1469         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 1470 
 1471         /* FPU registers */
 1472         for (i = 0; i < 8; ++i)
 1473                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 1474 
 1475         /* SSE registers */
 1476         for (i = 0; i < 16; ++i)
 1477                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 1478 }
 1479 
 1480 /* internalize from fpregs into sv_xmm */
 1481 static void
 1482 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 1483 {
 1484         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1485         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1486         int i;
 1487 
 1488         /* fpregs -> pcb */
 1489         /* FPU control/status */
 1490         penv_xmm->en_cw = penv_fpreg->en_cw;
 1491         penv_xmm->en_sw = penv_fpreg->en_sw;
 1492         penv_xmm->en_tw = penv_fpreg->en_tw;
 1493         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 1494         penv_xmm->en_rip = penv_fpreg->en_rip;
 1495         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 1496         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 1497         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
 1498 
 1499         /* FPU registers */
 1500         for (i = 0; i < 8; ++i)
 1501                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 1502 
 1503         /* SSE registers */
 1504         for (i = 0; i < 16; ++i)
 1505                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 1506 }
 1507 
 1508 /* externalize from td->pcb */
 1509 int
 1510 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1511 {
 1512 
 1513         fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
 1514         return (0);
 1515 }
 1516 
 1517 /* internalize to td->pcb */
 1518 int
 1519 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1520 {
 1521 
 1522         set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
 1523         return (0);
 1524 }
 1525 
 1526 /*
 1527  * Get machine context.
 1528  */
 1529 int
 1530 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 1531 {
 1532         struct trapframe *tp;
 1533 
 1534         tp = td->td_frame;
 1535         PROC_LOCK(curthread->td_proc);
 1536         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 1537         PROC_UNLOCK(curthread->td_proc);
 1538         mcp->mc_r15 = tp->tf_r15;
 1539         mcp->mc_r14 = tp->tf_r14;
 1540         mcp->mc_r13 = tp->tf_r13;
 1541         mcp->mc_r12 = tp->tf_r12;
 1542         mcp->mc_r11 = tp->tf_r11;
 1543         mcp->mc_r10 = tp->tf_r10;
 1544         mcp->mc_r9  = tp->tf_r9;
 1545         mcp->mc_r8  = tp->tf_r8;
 1546         mcp->mc_rdi = tp->tf_rdi;
 1547         mcp->mc_rsi = tp->tf_rsi;
 1548         mcp->mc_rbp = tp->tf_rbp;
 1549         mcp->mc_rbx = tp->tf_rbx;
 1550         mcp->mc_rcx = tp->tf_rcx;
 1551         if (flags & GET_MC_CLEAR_RET) {
 1552                 mcp->mc_rax = 0;
 1553                 mcp->mc_rdx = 0;
 1554         } else {
 1555                 mcp->mc_rax = tp->tf_rax;
 1556                 mcp->mc_rdx = tp->tf_rdx;
 1557         }
 1558         mcp->mc_rip = tp->tf_rip;
 1559         mcp->mc_cs = tp->tf_cs;
 1560         mcp->mc_rflags = tp->tf_rflags;
 1561         mcp->mc_rsp = tp->tf_rsp;
 1562         mcp->mc_ss = tp->tf_ss;
 1563         mcp->mc_len = sizeof(*mcp);
 1564         get_fpcontext(td, mcp);
 1565         return (0);
 1566 }
 1567 
 1568 /*
 1569  * Set machine context.
 1570  *
 1571  * However, we don't set any but the user modifiable flags, and we won't
 1572  * touch the cs selector.
 1573  */
 1574 int
 1575 set_mcontext(struct thread *td, const mcontext_t *mcp)
 1576 {
 1577         struct trapframe *tp;
 1578         long rflags;
 1579         int ret;
 1580 
 1581         tp = td->td_frame;
 1582         if (mcp->mc_len != sizeof(*mcp))
 1583                 return (EINVAL);
 1584         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 1585             (tp->tf_rflags & ~PSL_USERCHANGE);
 1586         ret = set_fpcontext(td, mcp);
 1587         if (ret != 0)
 1588                 return (ret);
 1589         tp->tf_r15 = mcp->mc_r15;
 1590         tp->tf_r14 = mcp->mc_r14;
 1591         tp->tf_r13 = mcp->mc_r13;
 1592         tp->tf_r12 = mcp->mc_r12;
 1593         tp->tf_r11 = mcp->mc_r11;
 1594         tp->tf_r10 = mcp->mc_r10;
 1595         tp->tf_r9  = mcp->mc_r9;
 1596         tp->tf_r8  = mcp->mc_r8;
 1597         tp->tf_rdi = mcp->mc_rdi;
 1598         tp->tf_rsi = mcp->mc_rsi;
 1599         tp->tf_rbp = mcp->mc_rbp;
 1600         tp->tf_rbx = mcp->mc_rbx;
 1601         tp->tf_rdx = mcp->mc_rdx;
 1602         tp->tf_rcx = mcp->mc_rcx;
 1603         tp->tf_rax = mcp->mc_rax;
 1604         tp->tf_rip = mcp->mc_rip;
 1605         tp->tf_rflags = rflags;
 1606         tp->tf_rsp = mcp->mc_rsp;
 1607         tp->tf_ss = mcp->mc_ss;
 1608         td->td_pcb->pcb_flags |= PCB_FULLCTX;
 1609         return (0);
 1610 }
 1611 
 1612 static void
 1613 get_fpcontext(struct thread *td, mcontext_t *mcp)
 1614 {
 1615 
 1616         mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
 1617         mcp->mc_fpformat = fpuformat();
 1618 }
 1619 
 1620 static int
 1621 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 1622 {
 1623 
 1624         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 1625                 return (0);
 1626         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 1627                 return (EINVAL);
 1628         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 1629                 /* We don't care what state is left in the FPU or PCB. */
 1630                 fpstate_drop(td);
 1631         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 1632             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 1633                 /*
 1634                  * XXX we violate the dubious requirement that fpusetregs()
 1635                  * be called with interrupts disabled.
 1636                  * XXX obsolete on trap-16 systems?
 1637                  */
 1638                 fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate);
 1639         } else
 1640                 return (EINVAL);
 1641         return (0);
 1642 }
 1643 
 1644 void
 1645 fpstate_drop(struct thread *td)
 1646 {
 1647         register_t s;
 1648 
 1649         s = intr_disable();
 1650         if (PCPU_GET(fpcurthread) == td)
 1651                 fpudrop();
 1652         /*
 1653          * XXX force a full drop of the fpu.  The above only drops it if we
 1654          * owned it.
 1655          *
 1656          * XXX I don't much like fpugetregs()'s semantics of doing a full
 1657          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 1658          * We only need to drop to !PCB_INITDONE in sendsig().  But
 1659          * sendsig() is the only caller of fpugetregs()... perhaps we just
 1660          * have too many layers.
 1661          */
 1662         curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
 1663         intr_restore(s);
 1664 }
 1665 
 1666 int
 1667 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1668 {
 1669         struct pcb *pcb;
 1670 
 1671         if (td == NULL) {
 1672                 dbregs->dr[0] = rdr0();
 1673                 dbregs->dr[1] = rdr1();
 1674                 dbregs->dr[2] = rdr2();
 1675                 dbregs->dr[3] = rdr3();
 1676                 dbregs->dr[6] = rdr6();
 1677                 dbregs->dr[7] = rdr7();
 1678         } else {
 1679                 pcb = td->td_pcb;
 1680                 dbregs->dr[0] = pcb->pcb_dr0;
 1681                 dbregs->dr[1] = pcb->pcb_dr1;
 1682                 dbregs->dr[2] = pcb->pcb_dr2;
 1683                 dbregs->dr[3] = pcb->pcb_dr3;
 1684                 dbregs->dr[6] = pcb->pcb_dr6;
 1685                 dbregs->dr[7] = pcb->pcb_dr7;
 1686         }
 1687         dbregs->dr[4] = 0;
 1688         dbregs->dr[5] = 0;
 1689         dbregs->dr[8] = 0;
 1690         dbregs->dr[9] = 0;
 1691         dbregs->dr[10] = 0;
 1692         dbregs->dr[11] = 0;
 1693         dbregs->dr[12] = 0;
 1694         dbregs->dr[13] = 0;
 1695         dbregs->dr[14] = 0;
 1696         dbregs->dr[15] = 0;
 1697         return (0);
 1698 }
 1699 
 1700 int
 1701 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1702 {
 1703         struct pcb *pcb;
 1704         int i;
 1705         u_int64_t mask1, mask2;
 1706 
 1707         if (td == NULL) {
 1708                 load_dr0(dbregs->dr[0]);
 1709                 load_dr1(dbregs->dr[1]);
 1710                 load_dr2(dbregs->dr[2]);
 1711                 load_dr3(dbregs->dr[3]);
 1712                 load_dr6(dbregs->dr[6]);
 1713                 load_dr7(dbregs->dr[7]);
 1714         } else {
 1715                 /*
 1716                  * Don't let an illegal value for dr7 get set.  Specifically,
 1717                  * check for undefined settings.  Setting these bit patterns
 1718                  * result in undefined behaviour and can lead to an unexpected
 1719                  * TRCTRAP or a general protection fault right here.
 1720                  */
 1721                 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
 1722                      i++, mask1 <<= 2, mask2 <<= 2)
 1723                         if ((dbregs->dr[7] & mask1) == mask2)
 1724                                 return (EINVAL);
 1725 
 1726                 pcb = td->td_pcb;
 1727 
 1728                 /*
 1729                  * Don't let a process set a breakpoint that is not within the
 1730                  * process's address space.  If a process could do this, it
 1731                  * could halt the system by setting a breakpoint in the kernel
 1732                  * (if ddb was enabled).  Thus, we need to check to make sure
 1733                  * that no breakpoints are being enabled for addresses outside
 1734                  * process's address space, unless, perhaps, we were called by
 1735                  * uid 0.
 1736                  *
 1737                  * XXX - what about when the watched area of the user's
 1738                  * address space is written into from within the kernel
 1739                  * ... wouldn't that still cause a breakpoint to be generated
 1740                  * from within kernel mode?
 1741                  */
 1742 
 1743                 if (suser(td) != 0) {
 1744                         if (dbregs->dr[7] & 0x3) {
 1745                                 /* dr0 is enabled */
 1746                                 if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 1747                                         return (EINVAL);
 1748                         }
 1749                         if (dbregs->dr[7] & 0x3<<2) {
 1750                                 /* dr1 is enabled */
 1751                                 if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 1752                                         return (EINVAL);
 1753                         }
 1754                         if (dbregs->dr[7] & 0x3<<4) {
 1755                                 /* dr2 is enabled */
 1756                                 if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 1757                                         return (EINVAL);
 1758                         }
 1759                         if (dbregs->dr[7] & 0x3<<6) {
 1760                                 /* dr3 is enabled */
 1761                                 if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 1762                                         return (EINVAL);
 1763                         }
 1764                 }
 1765 
 1766                 pcb->pcb_dr0 = dbregs->dr[0];
 1767                 pcb->pcb_dr1 = dbregs->dr[1];
 1768                 pcb->pcb_dr2 = dbregs->dr[2];
 1769                 pcb->pcb_dr3 = dbregs->dr[3];
 1770                 pcb->pcb_dr6 = dbregs->dr[6];
 1771                 pcb->pcb_dr7 = dbregs->dr[7];
 1772 
 1773                 pcb->pcb_flags |= PCB_DBREGS;
 1774         }
 1775 
 1776         return (0);
 1777 }
 1778 
 1779 void
 1780 reset_dbregs(void)
 1781 {
 1782 
 1783         load_dr7(0);    /* Turn off the control bits first */
 1784         load_dr0(0);
 1785         load_dr1(0);
 1786         load_dr2(0);
 1787         load_dr3(0);
 1788         load_dr6(0);
 1789 }
 1790 
 1791 /*
 1792  * Return > 0 if a hardware breakpoint has been hit, and the
 1793  * breakpoint was in user space.  Return 0, otherwise.
 1794  */
 1795 int
 1796 user_dbreg_trap(void)
 1797 {
 1798         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 1799         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 1800         int nbp;            /* number of breakpoints that triggered */
 1801         caddr_t addr[4];    /* breakpoint addresses */
 1802         int i;
 1803         
 1804         dr7 = rdr7();
 1805         if ((dr7 & 0x000000ff) == 0) {
 1806                 /*
 1807                  * all GE and LE bits in the dr7 register are zero,
 1808                  * thus the trap couldn't have been caused by the
 1809                  * hardware debug registers
 1810                  */
 1811                 return 0;
 1812         }
 1813 
 1814         nbp = 0;
 1815         dr6 = rdr6();
 1816         bp = dr6 & 0x0000000f;
 1817 
 1818         if (!bp) {
 1819                 /*
 1820                  * None of the breakpoint bits are set meaning this
 1821                  * trap was not caused by any of the debug registers
 1822                  */
 1823                 return 0;
 1824         }
 1825 
 1826         /*
 1827          * at least one of the breakpoints were hit, check to see
 1828          * which ones and if any of them are user space addresses
 1829          */
 1830 
 1831         if (bp & 0x01) {
 1832                 addr[nbp++] = (caddr_t)rdr0();
 1833         }
 1834         if (bp & 0x02) {
 1835                 addr[nbp++] = (caddr_t)rdr1();
 1836         }
 1837         if (bp & 0x04) {
 1838                 addr[nbp++] = (caddr_t)rdr2();
 1839         }
 1840         if (bp & 0x08) {
 1841                 addr[nbp++] = (caddr_t)rdr3();
 1842         }
 1843 
 1844         for (i=0; i<nbp; i++) {
 1845                 if (addr[i] <
 1846                     (caddr_t)VM_MAXUSER_ADDRESS) {
 1847                         /*
 1848                          * addr[i] is in user space
 1849                          */
 1850                         return nbp;
 1851                 }
 1852         }
 1853 
 1854         /*
 1855          * None of the breakpoints are in user space.
 1856          */
 1857         return 0;
 1858 }
 1859 
 1860 #ifdef KDB
 1861 
 1862 /*
 1863  * Provide inb() and outb() as functions.  They are normally only
 1864  * available as macros calling inlined functions, thus cannot be
 1865  * called from the debugger.
 1866  *
 1867  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 1868  */
 1869 
 1870 #undef inb
 1871 #undef outb
 1872 
 1873 /* silence compiler warnings */
 1874 u_char inb(u_int);
 1875 void outb(u_int, u_char);
 1876 
 1877 u_char
 1878 inb(u_int port)
 1879 {
 1880         u_char  data;
 1881         /*
 1882          * We use %%dx and not %1 here because i/o is done at %dx and not at
 1883          * %edx, while gcc generates inferior code (movw instead of movl)
 1884          * if we tell it to load (u_short) port.
 1885          */
 1886         __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
 1887         return (data);
 1888 }
 1889 
 1890 void
 1891 outb(u_int port, u_char data)
 1892 {
 1893         u_char  al;
 1894         /*
 1895          * Use an unnecessary assignment to help gcc's register allocator.
 1896          * This make a large difference for gcc-1.40 and a tiny difference
 1897          * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
 1898          * best results.  gcc-2.6.0 can't handle this.
 1899          */
 1900         al = data;
 1901         __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
 1902 }
 1903 
 1904 #endif /* KDB */

Cache object: 027382937a21f5040e2bd739204632ef


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.