The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/6.4/sys/amd64/amd64/machdep.c 177665 2008-03-27 13:53:52Z kib $");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_msgbuf.h"
   55 #include "opt_perfmon.h"
   56 
   57 #include <sys/param.h>
   58 #include <sys/proc.h>
   59 #include <sys/systm.h>
   60 #include <sys/bio.h>
   61 #include <sys/buf.h>
   62 #include <sys/bus.h>
   63 #include <sys/callout.h>
   64 #include <sys/cons.h>
   65 #include <sys/cpu.h>
   66 #include <sys/eventhandler.h>
   67 #include <sys/exec.h>
   68 #include <sys/imgact.h>
   69 #include <sys/kdb.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/linker.h>
   73 #include <sys/lock.h>
   74 #include <sys/malloc.h>
   75 #include <sys/memrange.h>
   76 #include <sys/msgbuf.h>
   77 #include <sys/mutex.h>
   78 #include <sys/pcpu.h>
   79 #include <sys/ptrace.h>
   80 #include <sys/reboot.h>
   81 #include <sys/sched.h>
   82 #include <sys/signalvar.h>
   83 #include <sys/sysctl.h>
   84 #include <sys/sysent.h>
   85 #include <sys/sysproto.h>
   86 #include <sys/ucontext.h>
   87 #include <sys/vmmeter.h>
   88 
   89 #include <vm/vm.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/vm_kern.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_map.h>
   94 #include <vm/vm_object.h>
   95 #include <vm/vm_pager.h>
   96 #include <vm/vm_param.h>
   97 
   98 #ifdef DDB
   99 #ifndef KDB
  100 #error KDB must be enabled in order for DDB to work!
  101 #endif
  102 #endif
  103 #include <ddb/ddb.h>
  104 
  105 #include <net/netisr.h>
  106 
  107 #include <machine/clock.h>
  108 #include <machine/cpu.h>
  109 #include <machine/cputypes.h>
  110 #include <machine/intr_machdep.h>
  111 #include <machine/md_var.h>
  112 #include <machine/metadata.h>
  113 #include <machine/pc/bios.h>
  114 #include <machine/pcb.h>
  115 #include <machine/proc.h>
  116 #include <machine/reg.h>
  117 #include <machine/sigframe.h>
  118 #include <machine/specialreg.h>
  119 #ifdef PERFMON
  120 #include <machine/perfmon.h>
  121 #endif
  122 #include <machine/tss.h>
  123 #ifdef SMP
  124 #include <machine/smp.h>
  125 #endif
  126 
  127 #ifdef DEV_ATPIC
  128 #include <amd64/isa/icu.h>
  129 #else
  130 #include <machine/apicvar.h>
  131 #endif
  132 
  133 #include <isa/isareg.h>
  134 #include <isa/rtc.h>
  135 
  136 /* Sanity check for __curthread() */
  137 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  138 
  139 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  140 
  141 extern void printcpuinfo(void); /* XXX header file */
  142 extern void identify_cpu(void);
  143 extern void panicifcpuunsupported(void);
  144 
  145 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  146 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  147 
  148 static void cpu_startup(void *);
  149 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  150 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  151 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
  152 
  153 #ifdef DDB
  154 extern vm_offset_t ksym_start, ksym_end;
  155 #endif
  156 
  157 /* Intel ICH registers */
  158 #define ICH_PMBASE      0x400
  159 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  160 
  161 int     _udatasel, _ucodesel, _ucode32sel;
  162 
  163 int cold = 1;
  164 
  165 long Maxmem = 0;
  166 long realmem = 0;
  167 
  168 #define PHYSMAP_SIZE    (2 * 30)
  169 
  170 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  171 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  172 
  173 /* must be 2 less so 0 0 can signal end of chunks */
  174 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  175 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  176 
  177 struct kva_md_info kmi;
  178 
  179 static struct trapframe proc0_tf;
  180 struct region_descriptor r_gdt, r_idt;
  181 
  182 struct pcpu __pcpu[MAXCPU];
  183 
  184 struct mtx icu_lock;
  185 
  186 struct mem_range_softc mem_range_softc;
  187 
  188 static void
  189 cpu_startup(dummy)
  190         void *dummy;
  191 {
  192         char *sysenv;
  193 
  194         /*
  195          * On MacBooks, we need to disallow the legacy USB circuit to
  196          * generate an SMI# because this can cause several problems,
  197          * namely: incorrect CPU frequency detection and failure to
  198          * start the APs.
  199          * We do this by disabling a bit in the SMI_EN (SMI Control and
  200          * Enable register) of the Intel ICH LPC Interface Bridge. 
  201          */
  202         sysenv = getenv("smbios.system.product");
  203         if (sysenv != NULL) {
  204                 if (strncmp(sysenv, "MacBook", 7) == 0) {
  205                         if (bootverbose)
  206                                 printf("Disabling LEGACY_USB_EN bit on "
  207                                     "Intel ICH.\n");
  208                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  209                 }
  210                 freeenv(sysenv);
  211         }
  212 
  213         /*
  214          * Good {morning,afternoon,evening,night}.
  215          */
  216         startrtclock();
  217         printcpuinfo();
  218         panicifcpuunsupported();
  219 #ifdef PERFMON
  220         perfmon_init();
  221 #endif
  222         printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
  223             ptoa((uintmax_t)Maxmem) / 1048576);
  224         realmem = Maxmem;
  225         /*
  226          * Display any holes after the first chunk of extended memory.
  227          */
  228         if (bootverbose) {
  229                 int indx;
  230 
  231                 printf("Physical memory chunk(s):\n");
  232                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  233                         vm_paddr_t size;
  234 
  235                         size = phys_avail[indx + 1] - phys_avail[indx];
  236                         printf(
  237                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  238                             (uintmax_t)phys_avail[indx],
  239                             (uintmax_t)phys_avail[indx + 1] - 1,
  240                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  241                 }
  242         }
  243 
  244         vm_ksubmap_init(&kmi);
  245 
  246         printf("avail memory = %ju (%ju MB)\n",
  247             ptoa((uintmax_t)cnt.v_free_count),
  248             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  249 
  250         /*
  251          * Set up buffers, so they can be used to read disk labels.
  252          */
  253         bufinit();
  254         vm_pager_bufferinit();
  255 
  256         cpu_setregs();
  257 }
  258 
  259 /*
  260  * Send an interrupt to process.
  261  *
  262  * Stack is set up to allow sigcode stored
  263  * at top to call routine, followed by kcall
  264  * to sigreturn routine below.  After sigreturn
  265  * resets the signal mask, the stack, and the
  266  * frame pointer, it returns to the user
  267  * specified pc, psl.
  268  */
  269 void
  270 sendsig(catcher, sig, mask, code)
  271         sig_t catcher;
  272         int sig;
  273         sigset_t *mask;
  274         u_long code;
  275 {
  276         struct sigframe sf, *sfp;
  277         struct proc *p;
  278         struct thread *td;
  279         struct sigacts *psp;
  280         char *sp;
  281         struct trapframe *regs;
  282         int oonstack;
  283 
  284         td = curthread;
  285         p = td->td_proc;
  286         PROC_LOCK_ASSERT(p, MA_OWNED);
  287         psp = p->p_sigacts;
  288         mtx_assert(&psp->ps_mtx, MA_OWNED);
  289         regs = td->td_frame;
  290         oonstack = sigonstack(regs->tf_rsp);
  291 
  292         /* Save user context. */
  293         bzero(&sf, sizeof(sf));
  294         sf.sf_uc.uc_sigmask = *mask;
  295         sf.sf_uc.uc_stack = td->td_sigstk;
  296         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  297             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  298         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  299         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  300         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  301         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  302         fpstate_drop(td);
  303 
  304         /* Allocate space for the signal handler context. */
  305         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  306             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  307                 sp = td->td_sigstk.ss_sp +
  308                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  309 #if defined(COMPAT_43)
  310                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  311 #endif
  312         } else
  313                 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
  314         /* Align to 16 bytes. */
  315         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  316 
  317         /* Translate the signal if appropriate. */
  318         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  319                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  320 
  321         /* Build the argument list for the signal handler. */
  322         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  323         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  324         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  325                 /* Signal handler installed with SA_SIGINFO. */
  326                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  327                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  328 
  329                 /* Fill in POSIX parts */
  330                 sf.sf_si.si_signo = sig;
  331                 sf.sf_si.si_code = code;
  332                 sf.sf_si.si_addr = (void *)regs->tf_addr;
  333                 regs->tf_rcx = regs->tf_addr;   /* arg 4 in %rcx */
  334         } else {
  335                 /* Old FreeBSD-style arguments. */
  336                 regs->tf_rsi = code;            /* arg 2 in %rsi */
  337                 regs->tf_rcx = regs->tf_addr;   /* arg 4 in %rcx */
  338                 sf.sf_ahu.sf_handler = catcher;
  339         }
  340         mtx_unlock(&psp->ps_mtx);
  341         PROC_UNLOCK(p);
  342 
  343         /*
  344          * Copy the sigframe out to the user's stack.
  345          */
  346         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  347 #ifdef DEBUG
  348                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  349 #endif
  350                 PROC_LOCK(p);
  351                 sigexit(td, SIGILL);
  352         }
  353 
  354         regs->tf_rsp = (long)sfp;
  355         regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  356         regs->tf_rflags &= ~(PSL_T | PSL_D);
  357         regs->tf_cs = _ucodesel;
  358         PROC_LOCK(p);
  359         mtx_lock(&psp->ps_mtx);
  360 }
  361 
  362 /*
  363  * Build siginfo_t for SA thread
  364  */
  365 void
  366 cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
  367 {
  368         struct proc *p;
  369         struct thread *td;
  370         struct trapframe *regs;
  371 
  372         td = curthread;
  373         p = td->td_proc;
  374         regs = td->td_frame;
  375         PROC_LOCK_ASSERT(p, MA_OWNED);
  376 
  377         bzero(si, sizeof(*si));
  378         si->si_signo = sig;
  379         si->si_code = code;
  380         si->si_addr = (void *)regs->tf_addr;
  381         /* XXXKSE fill other fields */
  382 }
  383 
  384 /*
  385  * System call to cleanup state after a signal
  386  * has been taken.  Reset signal mask and
  387  * stack state from context left by sendsig (above).
  388  * Return to previous pc and psl as specified by
  389  * context left by sendsig. Check carefully to
  390  * make sure that the user has not modified the
  391  * state to gain improper privileges.
  392  *
  393  * MPSAFE
  394  */
  395 int
  396 sigreturn(td, uap)
  397         struct thread *td;
  398         struct sigreturn_args /* {
  399                 const __ucontext *sigcntxp;
  400         } */ *uap;
  401 {
  402         ucontext_t uc;
  403         struct proc *p = td->td_proc;
  404         struct trapframe *regs;
  405         const ucontext_t *ucp;
  406         long rflags;
  407         int cs, error, ret;
  408 
  409         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  410         if (error != 0)
  411                 return (error);
  412         ucp = &uc;
  413         regs = td->td_frame;
  414         rflags = ucp->uc_mcontext.mc_rflags;
  415         /*
  416          * Don't allow users to change privileged or reserved flags.
  417          */
  418         /*
  419          * XXX do allow users to change the privileged flag PSL_RF.
  420          * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
  421          * should sometimes set it there too.  tf_rflags is kept in
  422          * the signal context during signal handling and there is no
  423          * other place to remember it, so the PSL_RF bit may be
  424          * corrupted by the signal handler without us knowing.
  425          * Corruption of the PSL_RF bit at worst causes one more or
  426          * one less debugger trap, so allowing it is fairly harmless.
  427          */
  428         if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
  429                 printf("sigreturn: rflags = 0x%lx\n", rflags);
  430                 return (EINVAL);
  431         }
  432 
  433         /*
  434          * Don't allow users to load a valid privileged %cs.  Let the
  435          * hardware check for invalid selectors, excess privilege in
  436          * other selectors, invalid %eip's and invalid %esp's.
  437          */
  438         cs = ucp->uc_mcontext.mc_cs;
  439         if (!CS_SECURE(cs)) {
  440                 printf("sigreturn: cs = 0x%x\n", cs);
  441                 trapsignal(td, SIGBUS, T_PROTFLT);
  442                 return (EINVAL);
  443         }
  444 
  445         ret = set_fpcontext(td, &ucp->uc_mcontext);
  446         if (ret != 0)
  447                 return (ret);
  448         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  449 
  450         PROC_LOCK(p);
  451 #if defined(COMPAT_43)
  452         if (ucp->uc_mcontext.mc_onstack & 1)
  453                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  454         else
  455                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  456 #endif
  457 
  458         td->td_sigmask = ucp->uc_sigmask;
  459         SIG_CANTMASK(td->td_sigmask);
  460         signotify(td);
  461         PROC_UNLOCK(p);
  462         td->td_pcb->pcb_flags |= PCB_FULLCTX;
  463         return (EJUSTRETURN);
  464 }
  465 
  466 #ifdef COMPAT_FREEBSD4
  467 int
  468 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  469 {
  470  
  471         return sigreturn(td, (struct sigreturn_args *)uap);
  472 }
  473 #endif
  474 
  475 
  476 /*
  477  * Machine dependent boot() routine
  478  *
  479  * I haven't seen anything to put here yet
  480  * Possibly some stuff might be grafted back here from boot()
  481  */
  482 void
  483 cpu_boot(int howto)
  484 {
  485 }
  486 
  487 /* Get current clock frequency for the given cpu id. */
  488 int
  489 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  490 {
  491         register_t reg;
  492         uint64_t tsc1, tsc2;
  493 
  494         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  495                 return (EINVAL);
  496 
  497         /* If we're booting, trust the rate calibrated moments ago. */
  498         if (cold) {
  499                 *rate = tsc_freq;
  500                 return (0);
  501         }
  502 
  503 #ifdef SMP
  504         /* Schedule ourselves on the indicated cpu. */
  505         mtx_lock_spin(&sched_lock);
  506         sched_bind(curthread, cpu_id);
  507         mtx_unlock_spin(&sched_lock);
  508 #endif
  509 
  510         /* Calibrate by measuring a short delay. */
  511         reg = intr_disable();
  512         tsc1 = rdtsc();
  513         DELAY(1000);
  514         tsc2 = rdtsc();
  515         intr_restore(reg);
  516 
  517 #ifdef SMP
  518         mtx_lock_spin(&sched_lock);
  519         sched_unbind(curthread);
  520         mtx_unlock_spin(&sched_lock);
  521 #endif
  522 
  523         /*
  524          * Calculate the difference in readings, convert to Mhz, and
  525          * subtract 0.5% of the total.  Empirical testing has shown that
  526          * overhead in DELAY() works out to approximately this value.
  527          */
  528         tsc2 -= tsc1;
  529         *rate = tsc2 * 1000 - tsc2 * 5;
  530         return (0);
  531 }
  532 
  533 /*
  534  * Shutdown the CPU as much as possible
  535  */
  536 void
  537 cpu_halt(void)
  538 {
  539         for (;;)
  540                 __asm__ ("hlt");
  541 }
  542 
  543 /*
  544  * Hook to idle the CPU when possible.  In the SMP case we default to
  545  * off because a halted cpu will not currently pick up a new thread in the
  546  * run queue until the next timer tick.  If turned on this will result in
  547  * approximately a 4.2% loss in real time performance in buildworld tests
  548  * (but improves user and sys times oddly enough), and saves approximately
  549  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
  550  *
  551  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
  552  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
  553  * Then we can have our cake and eat it too.
  554  *
  555  * XXX I'm turning it on for SMP as well by default for now.  It seems to
  556  * help lock contention somewhat, and this is critical for HTT. -Peter
  557  */
  558 static int      cpu_idle_hlt = 1;
  559 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
  560     &cpu_idle_hlt, 0, "Idle loop HLT enable");
  561 
  562 static void
  563 cpu_idle_default(void)
  564 {
  565         /*
  566          * we must absolutely guarentee that hlt is the
  567          * absolute next instruction after sti or we
  568          * introduce a timing window.
  569          */
  570         __asm __volatile("sti; hlt");
  571 }
  572 
  573 /*
  574  * Note that we have to be careful here to avoid a race between checking
  575  * sched_runnable() and actually halting.  If we don't do this, we may waste
  576  * the time between calling hlt and the next interrupt even though there
  577  * is a runnable process.
  578  */
  579 void
  580 cpu_idle(void)
  581 {
  582 
  583 #ifdef SMP
  584         if (mp_grab_cpu_hlt())
  585                 return;
  586 #endif
  587         if (cpu_idle_hlt) {
  588                 disable_intr();
  589                 if (sched_runnable())
  590                         enable_intr();
  591                 else
  592                         (*cpu_idle_hook)();
  593         }
  594 }
  595 
  596 /* Other subsystems (e.g., ACPI) can hook this later. */
  597 void (*cpu_idle_hook)(void) = cpu_idle_default;
  598 
  599 /*
  600  * Clear registers on exec
  601  */
  602 void
  603 exec_setregs(td, entry, stack, ps_strings)
  604         struct thread *td;
  605         u_long entry;
  606         u_long stack;
  607         u_long ps_strings;
  608 {
  609         struct trapframe *regs = td->td_frame;
  610         struct pcb *pcb = td->td_pcb;
  611         
  612         critical_enter();
  613         wrmsr(MSR_FSBASE, 0);
  614         wrmsr(MSR_KGSBASE, 0);  /* User value while we're in the kernel */
  615         pcb->pcb_fsbase = 0;
  616         pcb->pcb_gsbase = 0;
  617         critical_exit();
  618         load_ds(_udatasel);
  619         load_es(_udatasel);
  620         load_fs(_udatasel);
  621         load_gs(_udatasel);
  622         pcb->pcb_ds = _udatasel;
  623         pcb->pcb_es = _udatasel;
  624         pcb->pcb_fs = _udatasel;
  625         pcb->pcb_gs = _udatasel;
  626 
  627         bzero((char *)regs, sizeof(struct trapframe));
  628         regs->tf_rip = entry;
  629         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  630         regs->tf_rdi = stack;           /* argv */
  631         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  632         regs->tf_ss = _udatasel;
  633         regs->tf_cs = _ucodesel;
  634 
  635         /*
  636          * Reset the hardware debug registers if they were in use.
  637          * They won't have any meaning for the newly exec'd process.
  638          */
  639         if (pcb->pcb_flags & PCB_DBREGS) {
  640                 pcb->pcb_dr0 = 0;
  641                 pcb->pcb_dr1 = 0;
  642                 pcb->pcb_dr2 = 0;
  643                 pcb->pcb_dr3 = 0;
  644                 pcb->pcb_dr6 = 0;
  645                 pcb->pcb_dr7 = 0;
  646                 if (pcb == PCPU_GET(curpcb)) {
  647                         /*
  648                          * Clear the debug registers on the running
  649                          * CPU, otherwise they will end up affecting
  650                          * the next process we switch to.
  651                          */
  652                         reset_dbregs();
  653                 }
  654                 pcb->pcb_flags &= ~PCB_DBREGS;
  655         }
  656 
  657         /*
  658          * Drop the FP state if we hold it, so that the process gets a
  659          * clean FP state if it uses the FPU again.
  660          */
  661         fpstate_drop(td);
  662 }
  663 
  664 void
  665 cpu_setregs(void)
  666 {
  667         register_t cr0;
  668 
  669         cr0 = rcr0();
  670         /*
  671          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  672          * BSP.  See the comments there about why we set them.
  673          */
  674         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  675         load_cr0(cr0);
  676 }
  677 
  678 static int
  679 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
  680 {
  681         int error;
  682         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
  683                 req);
  684         if (!error && req->newptr)
  685                 resettodr();
  686         return (error);
  687 }
  688 
  689 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
  690         &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
  691 
  692 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
  693         CTLFLAG_RW, &disable_rtc_set, 0, "");
  694 
  695 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
  696         CTLFLAG_RW, &wall_cmos_clock, 0, "");
  697 
  698 /*
  699  * Initialize amd64 and configure to run kernel
  700  */
  701 
  702 /*
  703  * Initialize segments & interrupt table
  704  */
  705 
  706 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
  707 static struct gate_descriptor idt0[NIDT];
  708 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
  709 
  710 static char dblfault_stack[PAGE_SIZE] __aligned(16);
  711 
  712 struct amd64tss common_tss[MAXCPU];
  713 
  714 /* software prototypes -- in more palatable form */
  715 struct soft_segment_descriptor gdt_segs[] = {
  716 /* GNULL_SEL    0 Null Descriptor */
  717 {       0x0,                    /* segment base address  */
  718         0x0,                    /* length */
  719         0,                      /* segment type */
  720         0,                      /* segment descriptor priority level */
  721         0,                      /* segment descriptor present */
  722         0,                      /* long */
  723         0,                      /* default 32 vs 16 bit size */
  724         0                       /* limit granularity (byte/page units)*/ },
  725 /* GCODE_SEL    1 Code Descriptor for kernel */
  726 {       0x0,                    /* segment base address  */
  727         0xfffff,                /* length - all address space */
  728         SDT_MEMERA,             /* segment type */
  729         SEL_KPL,                /* segment descriptor priority level */
  730         1,                      /* segment descriptor present */
  731         1,                      /* long */
  732         0,                      /* default 32 vs 16 bit size */
  733         1                       /* limit granularity (byte/page units)*/ },
  734 /* GDATA_SEL    2 Data Descriptor for kernel */
  735 {       0x0,                    /* segment base address  */
  736         0xfffff,                /* length - all address space */
  737         SDT_MEMRWA,             /* segment type */
  738         SEL_KPL,                /* segment descriptor priority level */
  739         1,                      /* segment descriptor present */
  740         1,                      /* long */
  741         0,                      /* default 32 vs 16 bit size */
  742         1                       /* limit granularity (byte/page units)*/ },
  743 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
  744 {       0x0,                    /* segment base address  */
  745         0xfffff,                /* length - all address space */
  746         SDT_MEMERA,             /* segment type */
  747         SEL_UPL,                /* segment descriptor priority level */
  748         1,                      /* segment descriptor present */
  749         0,                      /* long */
  750         1,                      /* default 32 vs 16 bit size */
  751         1                       /* limit granularity (byte/page units)*/ },
  752 /* GUDATA_SEL   4 32/64 bit Data Descriptor for user */
  753 {       0x0,                    /* segment base address  */
  754         0xfffff,                /* length - all address space */
  755         SDT_MEMRWA,             /* segment type */
  756         SEL_UPL,                /* segment descriptor priority level */
  757         1,                      /* segment descriptor present */
  758         0,                      /* long */
  759         1,                      /* default 32 vs 16 bit size */
  760         1                       /* limit granularity (byte/page units)*/ },
  761 /* GUCODE_SEL   5 64 bit Code Descriptor for user */
  762 {       0x0,                    /* segment base address  */
  763         0xfffff,                /* length - all address space */
  764         SDT_MEMERA,             /* segment type */
  765         SEL_UPL,                /* segment descriptor priority level */
  766         1,                      /* segment descriptor present */
  767         1,                      /* long */
  768         0,                      /* default 32 vs 16 bit size */
  769         1                       /* limit granularity (byte/page units)*/ },
  770 /* GPROC0_SEL   6 Proc 0 Tss Descriptor */
  771 {
  772         0x0,                    /* segment base address */
  773         sizeof(struct amd64tss)-1,/* length - all address space */
  774         SDT_SYSTSS,             /* segment type */
  775         SEL_KPL,                /* segment descriptor priority level */
  776         1,                      /* segment descriptor present */
  777         0,                      /* long */
  778         0,                      /* unused - default 32 vs 16 bit size */
  779         0                       /* limit granularity (byte/page units)*/ },
  780 /* Actually, the TSS is a system descriptor which is double size */
  781 {       0x0,                    /* segment base address  */
  782         0x0,                    /* length */
  783         0,                      /* segment type */
  784         0,                      /* segment descriptor priority level */
  785         0,                      /* segment descriptor present */
  786         0,                      /* long */
  787         0,                      /* default 32 vs 16 bit size */
  788         0                       /* limit granularity (byte/page units)*/ },
  789 };
  790 
  791 void
  792 setidt(idx, func, typ, dpl, ist)
  793         int idx;
  794         inthand_t *func;
  795         int typ;
  796         int dpl;
  797         int ist;
  798 {
  799         struct gate_descriptor *ip;
  800 
  801         ip = idt + idx;
  802         ip->gd_looffset = (uintptr_t)func;
  803         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
  804         ip->gd_ist = ist;
  805         ip->gd_xx = 0;
  806         ip->gd_type = typ;
  807         ip->gd_dpl = dpl;
  808         ip->gd_p = 1;
  809         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
  810 }
  811 
  812 #define IDTVEC(name)    __CONCAT(X,name)
  813 
  814 extern inthand_t
  815         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
  816         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
  817         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
  818         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
  819         IDTVEC(xmm), IDTVEC(dblfault),
  820         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  821 
  822 void
  823 sdtossd(sd, ssd)
  824         struct user_segment_descriptor *sd;
  825         struct soft_segment_descriptor *ssd;
  826 {
  827 
  828         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
  829         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
  830         ssd->ssd_type  = sd->sd_type;
  831         ssd->ssd_dpl   = sd->sd_dpl;
  832         ssd->ssd_p     = sd->sd_p;
  833         ssd->ssd_long  = sd->sd_long;
  834         ssd->ssd_def32 = sd->sd_def32;
  835         ssd->ssd_gran  = sd->sd_gran;
  836 }
  837 
  838 void
  839 ssdtosd(ssd, sd)
  840         struct soft_segment_descriptor *ssd;
  841         struct user_segment_descriptor *sd;
  842 {
  843 
  844         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  845         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
  846         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  847         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  848         sd->sd_type  = ssd->ssd_type;
  849         sd->sd_dpl   = ssd->ssd_dpl;
  850         sd->sd_p     = ssd->ssd_p;
  851         sd->sd_long  = ssd->ssd_long;
  852         sd->sd_def32 = ssd->ssd_def32;
  853         sd->sd_gran  = ssd->ssd_gran;
  854 }
  855 
  856 void
  857 ssdtosyssd(ssd, sd)
  858         struct soft_segment_descriptor *ssd;
  859         struct system_segment_descriptor *sd;
  860 {
  861 
  862         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  863         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
  864         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  865         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  866         sd->sd_type  = ssd->ssd_type;
  867         sd->sd_dpl   = ssd->ssd_dpl;
  868         sd->sd_p     = ssd->ssd_p;
  869         sd->sd_gran  = ssd->ssd_gran;
  870 }
  871 
  872 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
  873 #include <isa/isavar.h>
  874 u_int
  875 isa_irq_pending(void)
  876 {
  877 
  878         return (0);
  879 }
  880 #endif
  881 
  882 u_int basemem;
  883 
  884 /*
  885  * Populate the (physmap) array with base/bound pairs describing the
  886  * available physical memory in the system, then test this memory and
  887  * build the phys_avail array describing the actually-available memory.
  888  *
  889  * If we cannot accurately determine the physical memory map, then use
  890  * value from the 0xE801 call, and failing that, the RTC.
  891  *
  892  * Total memory size may be set by the kernel environment variable
  893  * hw.physmem or the compile-time define MAXMEM.
  894  *
  895  * XXX first should be vm_paddr_t.
  896  */
  897 static void
  898 getmemsize(caddr_t kmdp, u_int64_t first)
  899 {
  900         int i, physmap_idx, pa_indx, da_indx;
  901         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
  902         u_long physmem_tunable;
  903         pt_entry_t *pte;
  904         struct bios_smap *smapbase, *smap, *smapend;
  905         u_int32_t smapsize;
  906         quad_t dcons_addr, dcons_size;
  907 
  908         bzero(physmap, sizeof(physmap));
  909         basemem = 0;
  910         physmap_idx = 0;
  911 
  912         /*
  913          * get memory map from INT 15:E820, kindly supplied by the loader.
  914          *
  915          * subr_module.c says:
  916          * "Consumer may safely assume that size value precedes data."
  917          * ie: an int32_t immediately precedes smap.
  918          */
  919         smapbase = (struct bios_smap *)preload_search_info(kmdp,
  920             MODINFO_METADATA | MODINFOMD_SMAP);
  921         if (smapbase == NULL)
  922                 panic("No BIOS smap info from loader!");
  923 
  924         smapsize = *((u_int32_t *)smapbase - 1);
  925         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
  926 
  927         for (smap = smapbase; smap < smapend; smap++) {
  928                 if (boothowto & RB_VERBOSE)
  929                         printf("SMAP type=%02x base=%016lx len=%016lx\n",
  930                             smap->type, smap->base, smap->length);
  931 
  932                 if (smap->type != SMAP_TYPE_MEMORY)
  933                         continue;
  934 
  935                 if (smap->length == 0)
  936                         continue;
  937 
  938                 for (i = 0; i <= physmap_idx; i += 2) {
  939                         if (smap->base < physmap[i + 1]) {
  940                                 if (boothowto & RB_VERBOSE)
  941                                         printf(
  942         "Overlapping or non-montonic memory region, ignoring second region\n");
  943                                 continue;
  944                         }
  945                 }
  946 
  947                 if (smap->base == physmap[physmap_idx + 1]) {
  948                         physmap[physmap_idx + 1] += smap->length;
  949                         continue;
  950                 }
  951 
  952                 physmap_idx += 2;
  953                 if (physmap_idx == PHYSMAP_SIZE) {
  954                         printf(
  955                 "Too many segments in the physical address map, giving up\n");
  956                         break;
  957                 }
  958                 physmap[physmap_idx] = smap->base;
  959                 physmap[physmap_idx + 1] = smap->base + smap->length;
  960         }
  961 
  962         /*
  963          * Find the 'base memory' segment for SMP
  964          */
  965         basemem = 0;
  966         for (i = 0; i <= physmap_idx; i += 2) {
  967                 if (physmap[i] == 0x00000000) {
  968                         basemem = physmap[i + 1] / 1024;
  969                         break;
  970                 }
  971         }
  972         if (basemem == 0)
  973                 panic("BIOS smap did not include a basemem segment!");
  974 
  975 #ifdef SMP
  976         /* make hole for AP bootstrap code */
  977         physmap[1] = mp_bootaddress(physmap[1] / 1024);
  978 #endif
  979 
  980         /*
  981          * Maxmem isn't the "maximum memory", it's one larger than the
  982          * highest page of the physical address space.  It should be
  983          * called something like "Maxphyspage".  We may adjust this
  984          * based on ``hw.physmem'' and the results of the memory test.
  985          */
  986         Maxmem = atop(physmap[physmap_idx + 1]);
  987 
  988 #ifdef MAXMEM
  989         Maxmem = MAXMEM / 4;
  990 #endif
  991 
  992         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
  993                 Maxmem = atop(physmem_tunable);
  994 
  995         /*
  996          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
  997          * in the system.
  998          */
  999         if (Maxmem > atop(physmap[physmap_idx + 1]))
 1000                 Maxmem = atop(physmap[physmap_idx + 1]);
 1001 
 1002         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1003             (boothowto & RB_VERBOSE))
 1004                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1005 
 1006         /* call pmap initialization to make new kernel address space */
 1007         pmap_bootstrap(&first);
 1008 
 1009         /*
 1010          * Size up each available chunk of physical memory.
 1011          */
 1012         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1013         pa_indx = 0;
 1014         da_indx = 1;
 1015         phys_avail[pa_indx++] = physmap[0];
 1016         phys_avail[pa_indx] = physmap[0];
 1017         dump_avail[da_indx] = physmap[0];
 1018         pte = CMAP1;
 1019 
 1020         /*
 1021          * Get dcons buffer address
 1022          */
 1023         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1024             getenv_quad("dcons.size", &dcons_size) == 0)
 1025                 dcons_addr = 0;
 1026 
 1027         /*
 1028          * physmap is in bytes, so when converting to page boundaries,
 1029          * round up the start address and round down the end address.
 1030          */
 1031         for (i = 0; i <= physmap_idx; i += 2) {
 1032                 vm_paddr_t end;
 1033 
 1034                 end = ptoa((vm_paddr_t)Maxmem);
 1035                 if (physmap[i + 1] < end)
 1036                         end = trunc_page(physmap[i + 1]);
 1037                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1038                         int tmp, page_bad, full;
 1039                         int *ptr = (int *)CADDR1;
 1040 
 1041                         full = FALSE;
 1042                         /*
 1043                          * block out kernel memory as not available.
 1044                          */
 1045                         if (pa >= 0x100000 && pa < first)
 1046                                 goto do_dump_avail;
 1047 
 1048                         /*
 1049                          * block out dcons buffer
 1050                          */
 1051                         if (dcons_addr > 0
 1052                             && pa >= trunc_page(dcons_addr)
 1053                             && pa < dcons_addr + dcons_size)
 1054                                 goto do_dump_avail;
 1055 
 1056                         page_bad = FALSE;
 1057 
 1058                         /*
 1059                          * map page into kernel: valid, read/write,non-cacheable
 1060                          */
 1061                         *pte = pa | PG_V | PG_RW | PG_N;
 1062                         invltlb();
 1063 
 1064                         tmp = *(int *)ptr;
 1065                         /*
 1066                          * Test for alternating 1's and 0's
 1067                          */
 1068                         *(volatile int *)ptr = 0xaaaaaaaa;
 1069                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1070                                 page_bad = TRUE;
 1071                         /*
 1072                          * Test for alternating 0's and 1's
 1073                          */
 1074                         *(volatile int *)ptr = 0x55555555;
 1075                         if (*(volatile int *)ptr != 0x55555555)
 1076                                 page_bad = TRUE;
 1077                         /*
 1078                          * Test for all 1's
 1079                          */
 1080                         *(volatile int *)ptr = 0xffffffff;
 1081                         if (*(volatile int *)ptr != 0xffffffff)
 1082                                 page_bad = TRUE;
 1083                         /*
 1084                          * Test for all 0's
 1085                          */
 1086                         *(volatile int *)ptr = 0x0;
 1087                         if (*(volatile int *)ptr != 0x0)
 1088                                 page_bad = TRUE;
 1089                         /*
 1090                          * Restore original value.
 1091                          */
 1092                         *(int *)ptr = tmp;
 1093 
 1094                         /*
 1095                          * Adjust array of valid/good pages.
 1096                          */
 1097                         if (page_bad == TRUE)
 1098                                 continue;
 1099                         /*
 1100                          * If this good page is a continuation of the
 1101                          * previous set of good pages, then just increase
 1102                          * the end pointer. Otherwise start a new chunk.
 1103                          * Note that "end" points one higher than end,
 1104                          * making the range >= start and < end.
 1105                          * If we're also doing a speculative memory
 1106                          * test and we at or past the end, bump up Maxmem
 1107                          * so that we keep going. The first bad page
 1108                          * will terminate the loop.
 1109                          */
 1110                         if (phys_avail[pa_indx] == pa) {
 1111                                 phys_avail[pa_indx] += PAGE_SIZE;
 1112                         } else {
 1113                                 pa_indx++;
 1114                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1115                                         printf(
 1116                 "Too many holes in the physical address space, giving up\n");
 1117                                         pa_indx--;
 1118                                         full = TRUE;
 1119                                         goto do_dump_avail;
 1120                                 }
 1121                                 phys_avail[pa_indx++] = pa;     /* start */
 1122                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1123                         }
 1124                         physmem++;
 1125 do_dump_avail:
 1126                         if (dump_avail[da_indx] == pa) {
 1127                                 dump_avail[da_indx] += PAGE_SIZE;
 1128                         } else {
 1129                                 da_indx++;
 1130                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1131                                         da_indx--;
 1132                                         goto do_next;
 1133                                 }
 1134                                 dump_avail[da_indx++] = pa; /* start */
 1135                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1136                         }
 1137 do_next:
 1138                         if (full)
 1139                                 break;
 1140                 }
 1141         }
 1142         *pte = 0;
 1143         invltlb();
 1144 
 1145         /*
 1146          * XXX
 1147          * The last chunk must contain at least one page plus the message
 1148          * buffer to avoid complicating other code (message buffer address
 1149          * calculation, etc.).
 1150          */
 1151         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1152             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1153                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1154                 phys_avail[pa_indx--] = 0;
 1155                 phys_avail[pa_indx--] = 0;
 1156         }
 1157 
 1158         Maxmem = atop(phys_avail[pa_indx]);
 1159 
 1160         /* Trim off space for the message buffer. */
 1161         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1162 
 1163         avail_end = phys_avail[pa_indx];
 1164 }
 1165 
 1166 u_int64_t
 1167 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1168 {
 1169         caddr_t kmdp;
 1170         int gsel_tss, off, x;
 1171         struct pcpu *pc;
 1172         u_int64_t msr;
 1173         char *env;
 1174 
 1175         thread0.td_kstack = physfree + KERNBASE;
 1176         bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
 1177         physfree += KSTACK_PAGES * PAGE_SIZE;
 1178         thread0.td_pcb = (struct pcb *)
 1179            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1180 
 1181         /*
 1182          * This may be done better later if it gets more high level
 1183          * components in it. If so just link td->td_proc here.
 1184          */
 1185         proc_linkup(&proc0, &ksegrp0, &thread0);
 1186 
 1187         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1188         preload_bootstrap_relocate(KERNBASE);
 1189         kmdp = preload_search_by_type("elf kernel");
 1190         if (kmdp == NULL)
 1191                 kmdp = preload_search_by_type("elf64 kernel");
 1192         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1193         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1194 #ifdef DDB
 1195         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1196         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1197 #endif
 1198 
 1199         /* Init basic tunables, hz etc */
 1200         init_param1();
 1201 
 1202         /*
 1203          * make gdt memory segments
 1204          */
 1205         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1206 
 1207         for (x = 0; x < NGDT; x++) {
 1208                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
 1209                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1210         }
 1211         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1212             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1213 
 1214         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1215         r_gdt.rd_base =  (long) gdt;
 1216         lgdt(&r_gdt);
 1217         pc = &__pcpu[0];
 1218 
 1219         wrmsr(MSR_FSBASE, 0);           /* User value */
 1220         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1221         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1222 
 1223         pcpu_init(pc, 0, sizeof(struct pcpu));
 1224         PCPU_SET(prvspace, pc);
 1225         PCPU_SET(curthread, &thread0);
 1226         PCPU_SET(curpcb, thread0.td_pcb);
 1227         PCPU_SET(tssp, &common_tss[0]);
 1228 
 1229         /*
 1230          * Initialize mutexes.
 1231          *
 1232          * icu_lock: in order to allow an interrupt to occur in a critical
 1233          *           section, to set pcpu->ipending (etc...) properly, we
 1234          *           must be able to get the icu lock, so it can't be
 1235          *           under witness.
 1236          */
 1237         mutex_init();
 1238         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
 1239         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1240 
 1241         /* exceptions */
 1242         for (x = 0; x < NIDT; x++)
 1243                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1244         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1245         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1246         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
 1247         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1248         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1249         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1250         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1251         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1252         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1253         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1254         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1255         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1256         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1257         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1258         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1259         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1260         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1261         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1262         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1263 
 1264         r_idt.rd_limit = sizeof(idt0) - 1;
 1265         r_idt.rd_base = (long) idt;
 1266         lidt(&r_idt);
 1267 
 1268         /*
 1269          * Initialize the console before we print anything out.
 1270          */
 1271         cninit();
 1272 
 1273 #ifdef DEV_ISA
 1274 #ifdef DEV_ATPIC
 1275         elcr_probe();
 1276         atpic_startup();
 1277 #else
 1278         /* Reset and mask the atpics and leave them shut down. */
 1279         atpic_reset();
 1280 
 1281         /*
 1282          * Point the ICU spurious interrupt vectors at the APIC spurious
 1283          * interrupt handler.
 1284          */
 1285         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1286         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1287 #endif
 1288 #else
 1289 #error "have you forgotten the isa device?";
 1290 #endif
 1291 
 1292         kdb_init();
 1293 
 1294 #ifdef KDB
 1295         if (boothowto & RB_KDB)
 1296                 kdb_enter("Boot flags requested debugger");
 1297 #endif
 1298 
 1299         identify_cpu();         /* Final stage of CPU initialization */
 1300         initializecpu();        /* Initialize CPU registers */
 1301 
 1302         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1303         common_tss[0].tss_rsp0 = thread0.td_kstack + \
 1304             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
 1305         /* Ensure the stack is aligned to 16 bytes */
 1306         common_tss[0].tss_rsp0 &= ~0xFul;
 1307         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1308 
 1309         /* doublefault stack space, runs on ist1 */
 1310         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1311 
 1312         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1313         common_tss[0].tss_iobase = sizeof(struct amd64tss);
 1314 
 1315         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1316         ltr(gsel_tss);
 1317 
 1318         /* Set up the fast syscall stuff */
 1319         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1320         wrmsr(MSR_EFER, msr);
 1321         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1322         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1323         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1324               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1325         wrmsr(MSR_STAR, msr);
 1326         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1327 
 1328         getmemsize(kmdp, physfree);
 1329         init_param2(physmem);
 1330 
 1331         /* now running on new page tables, configured,and u/iom is accessible */
 1332 
 1333         /* Map the message buffer. */
 1334         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 1335                 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
 1336 
 1337         msgbufinit(msgbufp, MSGBUF_SIZE);
 1338         fpuinit();
 1339 
 1340         /* transfer to user mode */
 1341 
 1342         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1343         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1344         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1345 
 1346         /* setup proc 0's pcb */
 1347         thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
 1348         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1349         thread0.td_frame = &proc0_tf;
 1350 
 1351         env = getenv("kernelname");
 1352         if (env != NULL)
 1353                 strlcpy(kernelname, env, sizeof(kernelname));
 1354 
 1355         /* Location of kernel stack for locore */
 1356         return ((u_int64_t)thread0.td_pcb);
 1357 }
 1358 
 1359 void
 1360 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1361 {
 1362 
 1363         pcpu->pc_acpi_id = 0xffffffff;
 1364 }
 1365 
 1366 void
 1367 spinlock_enter(void)
 1368 {
 1369         struct thread *td;
 1370 
 1371         td = curthread;
 1372         if (td->td_md.md_spinlock_count == 0)
 1373                 td->td_md.md_saved_flags = intr_disable();
 1374         td->td_md.md_spinlock_count++;
 1375         critical_enter();
 1376 }
 1377 
 1378 void
 1379 spinlock_exit(void)
 1380 {
 1381         struct thread *td;
 1382 
 1383         td = curthread;
 1384         critical_exit();
 1385         td->td_md.md_spinlock_count--;
 1386         if (td->td_md.md_spinlock_count == 0)
 1387                 intr_restore(td->td_md.md_saved_flags);
 1388 }
 1389 
 1390 /*
 1391  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1392  * we want to start a backtrace from the function that caused us to enter
 1393  * the debugger. We have the context in the trapframe, but base the trace
 1394  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1395  * enough for a backtrace.
 1396  */
 1397 void
 1398 makectx(struct trapframe *tf, struct pcb *pcb)
 1399 {
 1400 
 1401         pcb->pcb_r12 = tf->tf_r12;
 1402         pcb->pcb_r13 = tf->tf_r13;
 1403         pcb->pcb_r14 = tf->tf_r14;
 1404         pcb->pcb_r15 = tf->tf_r15;
 1405         pcb->pcb_rbp = tf->tf_rbp;
 1406         pcb->pcb_rbx = tf->tf_rbx;
 1407         pcb->pcb_rip = tf->tf_rip;
 1408         pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
 1409 }
 1410 
 1411 int
 1412 ptrace_set_pc(struct thread *td, unsigned long addr)
 1413 {
 1414         td->td_frame->tf_rip = addr;
 1415         return (0);
 1416 }
 1417 
 1418 int
 1419 ptrace_single_step(struct thread *td)
 1420 {
 1421         td->td_frame->tf_rflags |= PSL_T;
 1422         return (0);
 1423 }
 1424 
 1425 int
 1426 ptrace_clear_single_step(struct thread *td)
 1427 {
 1428         td->td_frame->tf_rflags &= ~PSL_T;
 1429         return (0);
 1430 }
 1431 
 1432 int
 1433 fill_regs(struct thread *td, struct reg *regs)
 1434 {
 1435         struct trapframe *tp;
 1436 
 1437         tp = td->td_frame;
 1438         regs->r_r15 = tp->tf_r15;
 1439         regs->r_r14 = tp->tf_r14;
 1440         regs->r_r13 = tp->tf_r13;
 1441         regs->r_r12 = tp->tf_r12;
 1442         regs->r_r11 = tp->tf_r11;
 1443         regs->r_r10 = tp->tf_r10;
 1444         regs->r_r9  = tp->tf_r9;
 1445         regs->r_r8  = tp->tf_r8;
 1446         regs->r_rdi = tp->tf_rdi;
 1447         regs->r_rsi = tp->tf_rsi;
 1448         regs->r_rbp = tp->tf_rbp;
 1449         regs->r_rbx = tp->tf_rbx;
 1450         regs->r_rdx = tp->tf_rdx;
 1451         regs->r_rcx = tp->tf_rcx;
 1452         regs->r_rax = tp->tf_rax;
 1453         regs->r_rip = tp->tf_rip;
 1454         regs->r_cs = tp->tf_cs;
 1455         regs->r_rflags = tp->tf_rflags;
 1456         regs->r_rsp = tp->tf_rsp;
 1457         regs->r_ss = tp->tf_ss;
 1458         return (0);
 1459 }
 1460 
 1461 int
 1462 set_regs(struct thread *td, struct reg *regs)
 1463 {
 1464         struct trapframe *tp;
 1465         register_t rflags;
 1466 
 1467         tp = td->td_frame;
 1468         rflags = regs->r_rflags & 0xffffffff;
 1469         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 1470                 return (EINVAL);
 1471         tp->tf_r15 = regs->r_r15;
 1472         tp->tf_r14 = regs->r_r14;
 1473         tp->tf_r13 = regs->r_r13;
 1474         tp->tf_r12 = regs->r_r12;
 1475         tp->tf_r11 = regs->r_r11;
 1476         tp->tf_r10 = regs->r_r10;
 1477         tp->tf_r9  = regs->r_r9;
 1478         tp->tf_r8  = regs->r_r8;
 1479         tp->tf_rdi = regs->r_rdi;
 1480         tp->tf_rsi = regs->r_rsi;
 1481         tp->tf_rbp = regs->r_rbp;
 1482         tp->tf_rbx = regs->r_rbx;
 1483         tp->tf_rdx = regs->r_rdx;
 1484         tp->tf_rcx = regs->r_rcx;
 1485         tp->tf_rax = regs->r_rax;
 1486         tp->tf_rip = regs->r_rip;
 1487         tp->tf_cs = regs->r_cs;
 1488         tp->tf_rflags = rflags;
 1489         tp->tf_rsp = regs->r_rsp;
 1490         tp->tf_ss = regs->r_ss;
 1491         td->td_pcb->pcb_flags |= PCB_FULLCTX;
 1492         return (0);
 1493 }
 1494 
 1495 /* XXX check all this stuff! */
 1496 /* externalize from sv_xmm */
 1497 static void
 1498 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 1499 {
 1500         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1501         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1502         int i;
 1503 
 1504         /* pcb -> fpregs */
 1505         bzero(fpregs, sizeof(*fpregs));
 1506 
 1507         /* FPU control/status */
 1508         penv_fpreg->en_cw = penv_xmm->en_cw;
 1509         penv_fpreg->en_sw = penv_xmm->en_sw;
 1510         penv_fpreg->en_tw = penv_xmm->en_tw;
 1511         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 1512         penv_fpreg->en_rip = penv_xmm->en_rip;
 1513         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 1514         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 1515         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 1516 
 1517         /* FPU registers */
 1518         for (i = 0; i < 8; ++i)
 1519                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 1520 
 1521         /* SSE registers */
 1522         for (i = 0; i < 16; ++i)
 1523                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 1524 }
 1525 
 1526 /* internalize from fpregs into sv_xmm */
 1527 static void
 1528 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 1529 {
 1530         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1531         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1532         int i;
 1533 
 1534         /* fpregs -> pcb */
 1535         /* FPU control/status */
 1536         penv_xmm->en_cw = penv_fpreg->en_cw;
 1537         penv_xmm->en_sw = penv_fpreg->en_sw;
 1538         penv_xmm->en_tw = penv_fpreg->en_tw;
 1539         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 1540         penv_xmm->en_rip = penv_fpreg->en_rip;
 1541         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 1542         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 1543         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 1544 
 1545         /* FPU registers */
 1546         for (i = 0; i < 8; ++i)
 1547                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 1548 
 1549         /* SSE registers */
 1550         for (i = 0; i < 16; ++i)
 1551                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 1552 }
 1553 
 1554 /* externalize from td->pcb */
 1555 int
 1556 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1557 {
 1558 
 1559         fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
 1560         return (0);
 1561 }
 1562 
 1563 /* internalize to td->pcb */
 1564 int
 1565 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1566 {
 1567 
 1568         set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
 1569         return (0);
 1570 }
 1571 
 1572 /*
 1573  * Get machine context.
 1574  */
 1575 int
 1576 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 1577 {
 1578         struct trapframe *tp;
 1579 
 1580         tp = td->td_frame;
 1581         PROC_LOCK(curthread->td_proc);
 1582         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 1583         PROC_UNLOCK(curthread->td_proc);
 1584         mcp->mc_r15 = tp->tf_r15;
 1585         mcp->mc_r14 = tp->tf_r14;
 1586         mcp->mc_r13 = tp->tf_r13;
 1587         mcp->mc_r12 = tp->tf_r12;
 1588         mcp->mc_r11 = tp->tf_r11;
 1589         mcp->mc_r10 = tp->tf_r10;
 1590         mcp->mc_r9  = tp->tf_r9;
 1591         mcp->mc_r8  = tp->tf_r8;
 1592         mcp->mc_rdi = tp->tf_rdi;
 1593         mcp->mc_rsi = tp->tf_rsi;
 1594         mcp->mc_rbp = tp->tf_rbp;
 1595         mcp->mc_rbx = tp->tf_rbx;
 1596         mcp->mc_rcx = tp->tf_rcx;
 1597         mcp->mc_rflags = tp->tf_rflags;
 1598         if (flags & GET_MC_CLEAR_RET) {
 1599                 mcp->mc_rax = 0;
 1600                 mcp->mc_rdx = 0;
 1601                 mcp->mc_rflags &= ~PSL_C;
 1602         } else {
 1603                 mcp->mc_rax = tp->tf_rax;
 1604                 mcp->mc_rdx = tp->tf_rdx;
 1605         }
 1606         mcp->mc_rip = tp->tf_rip;
 1607         mcp->mc_cs = tp->tf_cs;
 1608         mcp->mc_rsp = tp->tf_rsp;
 1609         mcp->mc_ss = tp->tf_ss;
 1610         mcp->mc_len = sizeof(*mcp);
 1611         get_fpcontext(td, mcp);
 1612         return (0);
 1613 }
 1614 
 1615 /*
 1616  * Set machine context.
 1617  *
 1618  * However, we don't set any but the user modifiable flags, and we won't
 1619  * touch the cs selector.
 1620  */
 1621 int
 1622 set_mcontext(struct thread *td, const mcontext_t *mcp)
 1623 {
 1624         struct trapframe *tp;
 1625         long rflags;
 1626         int ret;
 1627 
 1628         tp = td->td_frame;
 1629         if (mcp->mc_len != sizeof(*mcp))
 1630                 return (EINVAL);
 1631         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 1632             (tp->tf_rflags & ~PSL_USERCHANGE);
 1633         ret = set_fpcontext(td, mcp);
 1634         if (ret != 0)
 1635                 return (ret);
 1636         tp->tf_r15 = mcp->mc_r15;
 1637         tp->tf_r14 = mcp->mc_r14;
 1638         tp->tf_r13 = mcp->mc_r13;
 1639         tp->tf_r12 = mcp->mc_r12;
 1640         tp->tf_r11 = mcp->mc_r11;
 1641         tp->tf_r10 = mcp->mc_r10;
 1642         tp->tf_r9  = mcp->mc_r9;
 1643         tp->tf_r8  = mcp->mc_r8;
 1644         tp->tf_rdi = mcp->mc_rdi;
 1645         tp->tf_rsi = mcp->mc_rsi;
 1646         tp->tf_rbp = mcp->mc_rbp;
 1647         tp->tf_rbx = mcp->mc_rbx;
 1648         tp->tf_rdx = mcp->mc_rdx;
 1649         tp->tf_rcx = mcp->mc_rcx;
 1650         tp->tf_rax = mcp->mc_rax;
 1651         tp->tf_rip = mcp->mc_rip;
 1652         tp->tf_rflags = rflags;
 1653         tp->tf_rsp = mcp->mc_rsp;
 1654         tp->tf_ss = mcp->mc_ss;
 1655         td->td_pcb->pcb_flags |= PCB_FULLCTX;
 1656         return (0);
 1657 }
 1658 
 1659 static void
 1660 get_fpcontext(struct thread *td, mcontext_t *mcp)
 1661 {
 1662 
 1663         mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
 1664         mcp->mc_fpformat = fpuformat();
 1665 }
 1666 
 1667 static int
 1668 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 1669 {
 1670         struct savefpu *fpstate;
 1671 
 1672         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 1673                 return (0);
 1674         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 1675                 return (EINVAL);
 1676         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 1677                 /* We don't care what state is left in the FPU or PCB. */
 1678                 fpstate_drop(td);
 1679         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 1680             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 1681                 /*
 1682                  * XXX we violate the dubious requirement that fpusetregs()
 1683                  * be called with interrupts disabled.
 1684                  * XXX obsolete on trap-16 systems?
 1685                  */
 1686                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 1687                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 1688                 fpusetregs(td, fpstate);
 1689         } else
 1690                 return (EINVAL);
 1691         return (0);
 1692 }
 1693 
 1694 void
 1695 fpstate_drop(struct thread *td)
 1696 {
 1697         register_t s;
 1698 
 1699         s = intr_disable();
 1700         if (PCPU_GET(fpcurthread) == td)
 1701                 fpudrop();
 1702         /*
 1703          * XXX force a full drop of the fpu.  The above only drops it if we
 1704          * owned it.
 1705          *
 1706          * XXX I don't much like fpugetregs()'s semantics of doing a full
 1707          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 1708          * We only need to drop to !PCB_INITDONE in sendsig().  But
 1709          * sendsig() is the only caller of fpugetregs()... perhaps we just
 1710          * have too many layers.
 1711          */
 1712         curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
 1713         intr_restore(s);
 1714 }
 1715 
 1716 int
 1717 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1718 {
 1719         struct pcb *pcb;
 1720 
 1721         if (td == NULL) {
 1722                 dbregs->dr[0] = rdr0();
 1723                 dbregs->dr[1] = rdr1();
 1724                 dbregs->dr[2] = rdr2();
 1725                 dbregs->dr[3] = rdr3();
 1726                 dbregs->dr[6] = rdr6();
 1727                 dbregs->dr[7] = rdr7();
 1728         } else {
 1729                 pcb = td->td_pcb;
 1730                 dbregs->dr[0] = pcb->pcb_dr0;
 1731                 dbregs->dr[1] = pcb->pcb_dr1;
 1732                 dbregs->dr[2] = pcb->pcb_dr2;
 1733                 dbregs->dr[3] = pcb->pcb_dr3;
 1734                 dbregs->dr[6] = pcb->pcb_dr6;
 1735                 dbregs->dr[7] = pcb->pcb_dr7;
 1736         }
 1737         dbregs->dr[4] = 0;
 1738         dbregs->dr[5] = 0;
 1739         dbregs->dr[8] = 0;
 1740         dbregs->dr[9] = 0;
 1741         dbregs->dr[10] = 0;
 1742         dbregs->dr[11] = 0;
 1743         dbregs->dr[12] = 0;
 1744         dbregs->dr[13] = 0;
 1745         dbregs->dr[14] = 0;
 1746         dbregs->dr[15] = 0;
 1747         return (0);
 1748 }
 1749 
 1750 int
 1751 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1752 {
 1753         struct pcb *pcb;
 1754         int i;
 1755         u_int64_t mask1, mask2;
 1756 
 1757         if (td == NULL) {
 1758                 load_dr0(dbregs->dr[0]);
 1759                 load_dr1(dbregs->dr[1]);
 1760                 load_dr2(dbregs->dr[2]);
 1761                 load_dr3(dbregs->dr[3]);
 1762                 load_dr6(dbregs->dr[6]);
 1763                 load_dr7(dbregs->dr[7]);
 1764         } else {
 1765                 /*
 1766                  * Don't let an illegal value for dr7 get set.  Specifically,
 1767                  * check for undefined settings.  Setting these bit patterns
 1768                  * result in undefined behaviour and can lead to an unexpected
 1769                  * TRCTRAP or a general protection fault right here.
 1770                  * Upper bits of dr6 and dr7 must not be set
 1771                  */
 1772                 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
 1773                      i++, mask1 <<= 2, mask2 <<= 2)
 1774                         if ((dbregs->dr[7] & mask1) == mask2)
 1775                                 return (EINVAL);
 1776                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 1777                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 1778                         return (EINVAL);
 1779 
 1780                 pcb = td->td_pcb;
 1781 
 1782                 /*
 1783                  * Don't let a process set a breakpoint that is not within the
 1784                  * process's address space.  If a process could do this, it
 1785                  * could halt the system by setting a breakpoint in the kernel
 1786                  * (if ddb was enabled).  Thus, we need to check to make sure
 1787                  * that no breakpoints are being enabled for addresses outside
 1788                  * process's address space.
 1789                  *
 1790                  * XXX - what about when the watched area of the user's
 1791                  * address space is written into from within the kernel
 1792                  * ... wouldn't that still cause a breakpoint to be generated
 1793                  * from within kernel mode?
 1794                  */
 1795 
 1796                 if (dbregs->dr[7] & 0x3) {
 1797                         /* dr0 is enabled */
 1798                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 1799                                 return (EINVAL);
 1800                 }
 1801                 if (dbregs->dr[7] & 0x3<<2) {
 1802                         /* dr1 is enabled */
 1803                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 1804                                 return (EINVAL);
 1805                 }
 1806                 if (dbregs->dr[7] & 0x3<<4) {
 1807                         /* dr2 is enabled */
 1808                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 1809                                 return (EINVAL);
 1810                 }
 1811                 if (dbregs->dr[7] & 0x3<<6) {
 1812                         /* dr3 is enabled */
 1813                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 1814                                 return (EINVAL);
 1815                 }
 1816 
 1817                 pcb->pcb_dr0 = dbregs->dr[0];
 1818                 pcb->pcb_dr1 = dbregs->dr[1];
 1819                 pcb->pcb_dr2 = dbregs->dr[2];
 1820                 pcb->pcb_dr3 = dbregs->dr[3];
 1821                 pcb->pcb_dr6 = dbregs->dr[6];
 1822                 pcb->pcb_dr7 = dbregs->dr[7];
 1823 
 1824                 pcb->pcb_flags |= PCB_DBREGS;
 1825         }
 1826 
 1827         return (0);
 1828 }
 1829 
 1830 void
 1831 reset_dbregs(void)
 1832 {
 1833 
 1834         load_dr7(0);    /* Turn off the control bits first */
 1835         load_dr0(0);
 1836         load_dr1(0);
 1837         load_dr2(0);
 1838         load_dr3(0);
 1839         load_dr6(0);
 1840 }
 1841 
 1842 /*
 1843  * Return > 0 if a hardware breakpoint has been hit, and the
 1844  * breakpoint was in user space.  Return 0, otherwise.
 1845  */
 1846 int
 1847 user_dbreg_trap(void)
 1848 {
 1849         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 1850         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 1851         int nbp;            /* number of breakpoints that triggered */
 1852         caddr_t addr[4];    /* breakpoint addresses */
 1853         int i;
 1854         
 1855         dr7 = rdr7();
 1856         if ((dr7 & 0x000000ff) == 0) {
 1857                 /*
 1858                  * all GE and LE bits in the dr7 register are zero,
 1859                  * thus the trap couldn't have been caused by the
 1860                  * hardware debug registers
 1861                  */
 1862                 return 0;
 1863         }
 1864 
 1865         nbp = 0;
 1866         dr6 = rdr6();
 1867         bp = dr6 & 0x0000000f;
 1868 
 1869         if (!bp) {
 1870                 /*
 1871                  * None of the breakpoint bits are set meaning this
 1872                  * trap was not caused by any of the debug registers
 1873                  */
 1874                 return 0;
 1875         }
 1876 
 1877         /*
 1878          * at least one of the breakpoints were hit, check to see
 1879          * which ones and if any of them are user space addresses
 1880          */
 1881 
 1882         if (bp & 0x01) {
 1883                 addr[nbp++] = (caddr_t)rdr0();
 1884         }
 1885         if (bp & 0x02) {
 1886                 addr[nbp++] = (caddr_t)rdr1();
 1887         }
 1888         if (bp & 0x04) {
 1889                 addr[nbp++] = (caddr_t)rdr2();
 1890         }
 1891         if (bp & 0x08) {
 1892                 addr[nbp++] = (caddr_t)rdr3();
 1893         }
 1894 
 1895         for (i=0; i<nbp; i++) {
 1896                 if (addr[i] <
 1897                     (caddr_t)VM_MAXUSER_ADDRESS) {
 1898                         /*
 1899                          * addr[i] is in user space
 1900                          */
 1901                         return nbp;
 1902                 }
 1903         }
 1904 
 1905         /*
 1906          * None of the breakpoints are in user space.
 1907          */
 1908         return 0;
 1909 }
 1910 
 1911 #ifdef KDB
 1912 
 1913 /*
 1914  * Provide inb() and outb() as functions.  They are normally only
 1915  * available as macros calling inlined functions, thus cannot be
 1916  * called from the debugger.
 1917  *
 1918  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 1919  */
 1920 
 1921 #undef inb
 1922 #undef outb
 1923 
 1924 /* silence compiler warnings */
 1925 u_char inb(u_int);
 1926 void outb(u_int, u_char);
 1927 
 1928 u_char
 1929 inb(u_int port)
 1930 {
 1931         u_char  data;
 1932         /*
 1933          * We use %%dx and not %1 here because i/o is done at %dx and not at
 1934          * %edx, while gcc generates inferior code (movw instead of movl)
 1935          * if we tell it to load (u_short) port.
 1936          */
 1937         __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
 1938         return (data);
 1939 }
 1940 
 1941 void
 1942 outb(u_int port, u_char data)
 1943 {
 1944         u_char  al;
 1945         /*
 1946          * Use an unnecessary assignment to help gcc's register allocator.
 1947          * This make a large difference for gcc-1.40 and a tiny difference
 1948          * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
 1949          * best results.  gcc-2.6.0 can't handle this.
 1950          */
 1951         al = data;
 1952         __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
 1953 }
 1954 
 1955 #endif /* KDB */

Cache object: 314d6d4fcf08a7a221c48a4106ace62d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.