The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD$");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_msgbuf.h"
   55 #include "opt_perfmon.h"
   56 
   57 #include <sys/param.h>
   58 #include <sys/proc.h>
   59 #include <sys/systm.h>
   60 #include <sys/bio.h>
   61 #include <sys/buf.h>
   62 #include <sys/bus.h>
   63 #include <sys/callout.h>
   64 #include <sys/clock.h>
   65 #include <sys/cons.h>
   66 #include <sys/cpu.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/exec.h>
   69 #include <sys/imgact.h>
   70 #include <sys/kdb.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/linker.h>
   74 #include <sys/lock.h>
   75 #include <sys/malloc.h>
   76 #include <sys/memrange.h>
   77 #include <sys/msgbuf.h>
   78 #include <sys/mutex.h>
   79 #include <sys/pcpu.h>
   80 #include <sys/ptrace.h>
   81 #include <sys/reboot.h>
   82 #include <sys/sched.h>
   83 #include <sys/signalvar.h>
   84 #include <sys/sysctl.h>
   85 #include <sys/sysent.h>
   86 #include <sys/sysproto.h>
   87 #include <sys/ucontext.h>
   88 #include <sys/vmmeter.h>
   89 
   90 #include <vm/vm.h>
   91 #include <vm/vm_extern.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_page.h>
   94 #include <vm/vm_map.h>
   95 #include <vm/vm_object.h>
   96 #include <vm/vm_pager.h>
   97 #include <vm/vm_param.h>
   98 
   99 #ifdef DDB
  100 #ifndef KDB
  101 #error KDB must be enabled in order for DDB to work!
  102 #endif
  103 #endif
  104 #include <ddb/ddb.h>
  105 
  106 #include <net/netisr.h>
  107 
  108 #include <machine/clock.h>
  109 #include <machine/cpu.h>
  110 #include <machine/cputypes.h>
  111 #include <machine/intr_machdep.h>
  112 #include <machine/md_var.h>
  113 #include <machine/metadata.h>
  114 #include <machine/pc/bios.h>
  115 #include <machine/pcb.h>
  116 #include <machine/proc.h>
  117 #include <machine/reg.h>
  118 #include <machine/sigframe.h>
  119 #include <machine/specialreg.h>
  120 #ifdef PERFMON
  121 #include <machine/perfmon.h>
  122 #endif
  123 #include <machine/tss.h>
  124 #ifdef SMP
  125 #include <machine/smp.h>
  126 #endif
  127 
  128 #ifdef DEV_ATPIC
  129 #include <amd64/isa/icu.h>
  130 #else
  131 #include <machine/apicvar.h>
  132 #endif
  133 
  134 #include <isa/isareg.h>
  135 #include <isa/rtc.h>
  136 
  137 /* Sanity check for __curthread() */
  138 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  139 
  140 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  141 
  142 extern void printcpuinfo(void); /* XXX header file */
  143 extern void identify_cpu(void);
  144 extern void panicifcpuunsupported(void);
  145 
  146 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  147 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  148 
  149 static void cpu_startup(void *);
  150 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  151 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  152 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
  153 
  154 #ifdef DDB
  155 extern vm_offset_t ksym_start, ksym_end;
  156 #endif
  157 
  158 /* Intel ICH registers */
  159 #define ICH_PMBASE      0x400
  160 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  161 
  162 int     _udatasel, _ucodesel, _ucode32sel;
  163 
  164 int cold = 1;
  165 
  166 long Maxmem = 0;
  167 long realmem = 0;
  168 
  169 /*
  170  * The number of PHYSMAP entries must be one less than the number of
  171  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  172  * physical address that is accessible by ISA DMA is split into two
  173  * PHYSSEG entries.
  174  */
  175 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  176 
  177 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  178 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  179 
  180 /* must be 2 less so 0 0 can signal end of chunks */
  181 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  182 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  183 
  184 struct kva_md_info kmi;
  185 
  186 static struct trapframe proc0_tf;
  187 struct region_descriptor r_gdt, r_idt;
  188 
  189 struct pcpu __pcpu[MAXCPU];
  190 
  191 struct mtx icu_lock;
  192 
  193 struct mem_range_softc mem_range_softc;
  194 
  195 static void
  196 cpu_startup(dummy)
  197         void *dummy;
  198 {
  199         char *sysenv;
  200 
  201         /*
  202          * On MacBooks, we need to disallow the legacy USB circuit to
  203          * generate an SMI# because this can cause several problems,
  204          * namely: incorrect CPU frequency detection and failure to
  205          * start the APs.
  206          * We do this by disabling a bit in the SMI_EN (SMI Control and
  207          * Enable register) of the Intel ICH LPC Interface Bridge. 
  208          */
  209         sysenv = getenv("smbios.system.product");
  210         if (sysenv != NULL) {
  211                 if (strncmp(sysenv, "MacBook", 7) == 0) {
  212                         if (bootverbose)
  213                                 printf("Disabling LEGACY_USB_EN bit on "
  214                                     "Intel ICH.\n");
  215                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  216                 }
  217                 freeenv(sysenv);
  218         }
  219 
  220         /*
  221          * Good {morning,afternoon,evening,night}.
  222          */
  223         startrtclock();
  224         printcpuinfo();
  225         panicifcpuunsupported();
  226 #ifdef PERFMON
  227         perfmon_init();
  228 #endif
  229         printf("usable memory = %ju (%ju MB)\n", ptoa((uintmax_t)physmem),
  230             ptoa((uintmax_t)physmem) / 1048576);
  231         realmem = Maxmem;
  232         /*
  233          * Display any holes after the first chunk of extended memory.
  234          */
  235         if (bootverbose) {
  236                 int indx;
  237 
  238                 printf("Physical memory chunk(s):\n");
  239                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  240                         vm_paddr_t size;
  241 
  242                         size = phys_avail[indx + 1] - phys_avail[indx];
  243                         printf(
  244                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  245                             (uintmax_t)phys_avail[indx],
  246                             (uintmax_t)phys_avail[indx + 1] - 1,
  247                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  248                 }
  249         }
  250 
  251         vm_ksubmap_init(&kmi);
  252 
  253         printf("avail memory  = %ju (%ju MB)\n",
  254             ptoa((uintmax_t)cnt.v_free_count),
  255             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  256 
  257         /*
  258          * Set up buffers, so they can be used to read disk labels.
  259          */
  260         bufinit();
  261         vm_pager_bufferinit();
  262 
  263         cpu_setregs();
  264 }
  265 
  266 /*
  267  * Send an interrupt to process.
  268  *
  269  * Stack is set up to allow sigcode stored
  270  * at top to call routine, followed by kcall
  271  * to sigreturn routine below.  After sigreturn
  272  * resets the signal mask, the stack, and the
  273  * frame pointer, it returns to the user
  274  * specified pc, psl.
  275  */
  276 void
  277 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  278 {
  279         struct sigframe sf, *sfp;
  280         struct proc *p;
  281         struct thread *td;
  282         struct sigacts *psp;
  283         char *sp;
  284         struct trapframe *regs;
  285         int sig;
  286         int oonstack;
  287 
  288         td = curthread;
  289         p = td->td_proc;
  290         PROC_LOCK_ASSERT(p, MA_OWNED);
  291         sig = ksi->ksi_signo;
  292         psp = p->p_sigacts;
  293         mtx_assert(&psp->ps_mtx, MA_OWNED);
  294         regs = td->td_frame;
  295         oonstack = sigonstack(regs->tf_rsp);
  296 
  297         /* Save user context. */
  298         bzero(&sf, sizeof(sf));
  299         sf.sf_uc.uc_sigmask = *mask;
  300         sf.sf_uc.uc_stack = td->td_sigstk;
  301         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  302             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  303         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  304         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  305         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  306         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  307         fpstate_drop(td);
  308 
  309         /* Allocate space for the signal handler context. */
  310         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  311             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  312                 sp = td->td_sigstk.ss_sp +
  313                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  314 #if defined(COMPAT_43)
  315                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  316 #endif
  317         } else
  318                 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
  319         /* Align to 16 bytes. */
  320         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  321 
  322         /* Translate the signal if appropriate. */
  323         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  324                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  325 
  326         /* Build the argument list for the signal handler. */
  327         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  328         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  329         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  330                 /* Signal handler installed with SA_SIGINFO. */
  331                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  332                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  333 
  334                 /* Fill in POSIX parts */
  335                 sf.sf_si = ksi->ksi_info;
  336                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  337                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  338         } else {
  339                 /* Old FreeBSD-style arguments. */
  340                 regs->tf_rsi = ksi->ksi_code;   /* arg 2 in %rsi */
  341                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  342                 sf.sf_ahu.sf_handler = catcher;
  343         }
  344         mtx_unlock(&psp->ps_mtx);
  345         PROC_UNLOCK(p);
  346 
  347         /*
  348          * Copy the sigframe out to the user's stack.
  349          */
  350         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  351 #ifdef DEBUG
  352                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  353 #endif
  354                 PROC_LOCK(p);
  355                 sigexit(td, SIGILL);
  356         }
  357 
  358         regs->tf_rsp = (long)sfp;
  359         regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  360         regs->tf_rflags &= ~PSL_T;
  361         regs->tf_cs = _ucodesel;
  362         PROC_LOCK(p);
  363         mtx_lock(&psp->ps_mtx);
  364 }
  365 
  366 /*
  367  * System call to cleanup state after a signal
  368  * has been taken.  Reset signal mask and
  369  * stack state from context left by sendsig (above).
  370  * Return to previous pc and psl as specified by
  371  * context left by sendsig. Check carefully to
  372  * make sure that the user has not modified the
  373  * state to gain improper privileges.
  374  *
  375  * MPSAFE
  376  */
  377 int
  378 sigreturn(td, uap)
  379         struct thread *td;
  380         struct sigreturn_args /* {
  381                 const struct __ucontext *sigcntxp;
  382         } */ *uap;
  383 {
  384         ucontext_t uc;
  385         struct proc *p = td->td_proc;
  386         struct trapframe *regs;
  387         const ucontext_t *ucp;
  388         long rflags;
  389         int cs, error, ret;
  390         ksiginfo_t ksi;
  391 
  392         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  393         if (error != 0)
  394                 return (error);
  395         ucp = &uc;
  396         regs = td->td_frame;
  397         rflags = ucp->uc_mcontext.mc_rflags;
  398         /*
  399          * Don't allow users to change privileged or reserved flags.
  400          */
  401         /*
  402          * XXX do allow users to change the privileged flag PSL_RF.
  403          * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
  404          * should sometimes set it there too.  tf_rflags is kept in
  405          * the signal context during signal handling and there is no
  406          * other place to remember it, so the PSL_RF bit may be
  407          * corrupted by the signal handler without us knowing.
  408          * Corruption of the PSL_RF bit at worst causes one more or
  409          * one less debugger trap, so allowing it is fairly harmless.
  410          */
  411         if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
  412                 printf("sigreturn: rflags = 0x%lx\n", rflags);
  413                 return (EINVAL);
  414         }
  415 
  416         /*
  417          * Don't allow users to load a valid privileged %cs.  Let the
  418          * hardware check for invalid selectors, excess privilege in
  419          * other selectors, invalid %eip's and invalid %esp's.
  420          */
  421         cs = ucp->uc_mcontext.mc_cs;
  422         if (!CS_SECURE(cs)) {
  423                 printf("sigreturn: cs = 0x%x\n", cs);
  424                 ksiginfo_init_trap(&ksi);
  425                 ksi.ksi_signo = SIGBUS;
  426                 ksi.ksi_code = BUS_OBJERR;
  427                 ksi.ksi_trapno = T_PROTFLT;
  428                 ksi.ksi_addr = (void *)regs->tf_rip;
  429                 trapsignal(td, &ksi);
  430                 return (EINVAL);
  431         }
  432 
  433         ret = set_fpcontext(td, &ucp->uc_mcontext);
  434         if (ret != 0)
  435                 return (ret);
  436         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  437 
  438         PROC_LOCK(p);
  439 #if defined(COMPAT_43)
  440         if (ucp->uc_mcontext.mc_onstack & 1)
  441                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  442         else
  443                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  444 #endif
  445 
  446         td->td_sigmask = ucp->uc_sigmask;
  447         SIG_CANTMASK(td->td_sigmask);
  448         signotify(td);
  449         PROC_UNLOCK(p);
  450         td->td_pcb->pcb_flags |= PCB_FULLCTX;
  451         return (EJUSTRETURN);
  452 }
  453 
  454 #ifdef COMPAT_FREEBSD4
  455 int
  456 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  457 {
  458  
  459         return sigreturn(td, (struct sigreturn_args *)uap);
  460 }
  461 #endif
  462 
  463 
  464 /*
  465  * Machine dependent boot() routine
  466  *
  467  * I haven't seen anything to put here yet
  468  * Possibly some stuff might be grafted back here from boot()
  469  */
  470 void
  471 cpu_boot(int howto)
  472 {
  473 }
  474 
  475 /* Get current clock frequency for the given cpu id. */
  476 int
  477 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  478 {
  479         register_t reg;
  480         uint64_t tsc1, tsc2;
  481 
  482         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  483                 return (EINVAL);
  484 
  485         /* If we're booting, trust the rate calibrated moments ago. */
  486         if (cold) {
  487                 *rate = tsc_freq;
  488                 return (0);
  489         }
  490 
  491 #ifdef SMP
  492         /* Schedule ourselves on the indicated cpu. */
  493         thread_lock(curthread);
  494         sched_bind(curthread, cpu_id);
  495         thread_unlock(curthread);
  496 #endif
  497 
  498         /* Calibrate by measuring a short delay. */
  499         reg = intr_disable();
  500         tsc1 = rdtsc();
  501         DELAY(1000);
  502         tsc2 = rdtsc();
  503         intr_restore(reg);
  504 
  505 #ifdef SMP
  506         thread_lock(curthread);
  507         sched_unbind(curthread);
  508         thread_unlock(curthread);
  509 #endif
  510 
  511         /*
  512          * Calculate the difference in readings, convert to Mhz, and
  513          * subtract 0.5% of the total.  Empirical testing has shown that
  514          * overhead in DELAY() works out to approximately this value.
  515          */
  516         tsc2 -= tsc1;
  517         *rate = tsc2 * 1000 - tsc2 * 5;
  518         return (0);
  519 }
  520 
  521 /*
  522  * Shutdown the CPU as much as possible
  523  */
  524 void
  525 cpu_halt(void)
  526 {
  527         for (;;)
  528                 __asm__ ("hlt");
  529 }
  530 
  531 /*
  532  * Hook to idle the CPU when possible.  In the SMP case we default to
  533  * off because a halted cpu will not currently pick up a new thread in the
  534  * run queue until the next timer tick.  If turned on this will result in
  535  * approximately a 4.2% loss in real time performance in buildworld tests
  536  * (but improves user and sys times oddly enough), and saves approximately
  537  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
  538  *
  539  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
  540  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
  541  * Then we can have our cake and eat it too.
  542  *
  543  * XXX I'm turning it on for SMP as well by default for now.  It seems to
  544  * help lock contention somewhat, and this is critical for HTT. -Peter
  545  */
  546 static int      cpu_idle_hlt = 1;
  547 TUNABLE_INT("machdep.cpu_idle_hlt", &cpu_idle_hlt);
  548 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
  549     &cpu_idle_hlt, 0, "Idle loop HLT enable");
  550 
  551 static void
  552 cpu_idle_default(void)
  553 {
  554         /*
  555          * we must absolutely guarentee that hlt is the
  556          * absolute next instruction after sti or we
  557          * introduce a timing window.
  558          */
  559         __asm __volatile("sti; hlt");
  560 }
  561 
  562 /*
  563  * Note that we have to be careful here to avoid a race between checking
  564  * sched_runnable() and actually halting.  If we don't do this, we may waste
  565  * the time between calling hlt and the next interrupt even though there
  566  * is a runnable process.
  567  */
  568 void
  569 cpu_idle(void)
  570 {
  571 
  572 #ifdef SMP
  573         if (mp_grab_cpu_hlt())
  574                 return;
  575 #endif
  576         if (cpu_idle_hlt) {
  577                 disable_intr();
  578                 if (sched_runnable())
  579                         enable_intr();
  580                 else
  581                         (*cpu_idle_hook)();
  582         }
  583 }
  584 
  585 /* Other subsystems (e.g., ACPI) can hook this later. */
  586 void (*cpu_idle_hook)(void) = cpu_idle_default;
  587 
  588 /*
  589  * Clear registers on exec
  590  */
  591 void
  592 exec_setregs(td, entry, stack, ps_strings)
  593         struct thread *td;
  594         u_long entry;
  595         u_long stack;
  596         u_long ps_strings;
  597 {
  598         struct trapframe *regs = td->td_frame;
  599         struct pcb *pcb = td->td_pcb;
  600         
  601         critical_enter();
  602         wrmsr(MSR_FSBASE, 0);
  603         wrmsr(MSR_KGSBASE, 0);  /* User value while we're in the kernel */
  604         pcb->pcb_fsbase = 0;
  605         pcb->pcb_gsbase = 0;
  606         critical_exit();
  607         load_ds(_udatasel);
  608         load_es(_udatasel);
  609         load_fs(_udatasel);
  610         load_gs(_udatasel);
  611         pcb->pcb_ds = _udatasel;
  612         pcb->pcb_es = _udatasel;
  613         pcb->pcb_fs = _udatasel;
  614         pcb->pcb_gs = _udatasel;
  615 
  616         bzero((char *)regs, sizeof(struct trapframe));
  617         regs->tf_rip = entry;
  618         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  619         regs->tf_rdi = stack;           /* argv */
  620         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  621         regs->tf_ss = _udatasel;
  622         regs->tf_cs = _ucodesel;
  623 
  624         /*
  625          * Reset the hardware debug registers if they were in use.
  626          * They won't have any meaning for the newly exec'd process.
  627          */
  628         if (pcb->pcb_flags & PCB_DBREGS) {
  629                 pcb->pcb_dr0 = 0;
  630                 pcb->pcb_dr1 = 0;
  631                 pcb->pcb_dr2 = 0;
  632                 pcb->pcb_dr3 = 0;
  633                 pcb->pcb_dr6 = 0;
  634                 pcb->pcb_dr7 = 0;
  635                 if (pcb == PCPU_GET(curpcb)) {
  636                         /*
  637                          * Clear the debug registers on the running
  638                          * CPU, otherwise they will end up affecting
  639                          * the next process we switch to.
  640                          */
  641                         reset_dbregs();
  642                 }
  643                 pcb->pcb_flags &= ~PCB_DBREGS;
  644         }
  645 
  646         /*
  647          * Drop the FP state if we hold it, so that the process gets a
  648          * clean FP state if it uses the FPU again.
  649          */
  650         fpstate_drop(td);
  651 }
  652 
  653 void
  654 cpu_setregs(void)
  655 {
  656         register_t cr0;
  657 
  658         cr0 = rcr0();
  659         /*
  660          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  661          * BSP.  See the comments there about why we set them.
  662          */
  663         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  664         load_cr0(cr0);
  665 }
  666 
  667 /*
  668  * Initialize amd64 and configure to run kernel
  669  */
  670 
  671 /*
  672  * Initialize segments & interrupt table
  673  */
  674 
  675 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
  676 static struct gate_descriptor idt0[NIDT];
  677 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
  678 
  679 static char dblfault_stack[PAGE_SIZE] __aligned(16);
  680 
  681 struct amd64tss common_tss[MAXCPU];
  682 
  683 /* software prototypes -- in more palatable form */
  684 struct soft_segment_descriptor gdt_segs[] = {
  685 /* GNULL_SEL    0 Null Descriptor */
  686 {       0x0,                    /* segment base address  */
  687         0x0,                    /* length */
  688         0,                      /* segment type */
  689         0,                      /* segment descriptor priority level */
  690         0,                      /* segment descriptor present */
  691         0,                      /* long */
  692         0,                      /* default 32 vs 16 bit size */
  693         0                       /* limit granularity (byte/page units)*/ },
  694 /* GCODE_SEL    1 Code Descriptor for kernel */
  695 {       0x0,                    /* segment base address  */
  696         0xfffff,                /* length - all address space */
  697         SDT_MEMERA,             /* segment type */
  698         SEL_KPL,                /* segment descriptor priority level */
  699         1,                      /* segment descriptor present */
  700         1,                      /* long */
  701         0,                      /* default 32 vs 16 bit size */
  702         1                       /* limit granularity (byte/page units)*/ },
  703 /* GDATA_SEL    2 Data Descriptor for kernel */
  704 {       0x0,                    /* segment base address  */
  705         0xfffff,                /* length - all address space */
  706         SDT_MEMRWA,             /* segment type */
  707         SEL_KPL,                /* segment descriptor priority level */
  708         1,                      /* segment descriptor present */
  709         1,                      /* long */
  710         0,                      /* default 32 vs 16 bit size */
  711         1                       /* limit granularity (byte/page units)*/ },
  712 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
  713 {       0x0,                    /* segment base address  */
  714         0xfffff,                /* length - all address space */
  715         SDT_MEMERA,             /* segment type */
  716         SEL_UPL,                /* segment descriptor priority level */
  717         1,                      /* segment descriptor present */
  718         0,                      /* long */
  719         1,                      /* default 32 vs 16 bit size */
  720         1                       /* limit granularity (byte/page units)*/ },
  721 /* GUDATA_SEL   4 32/64 bit Data Descriptor for user */
  722 {       0x0,                    /* segment base address  */
  723         0xfffff,                /* length - all address space */
  724         SDT_MEMRWA,             /* segment type */
  725         SEL_UPL,                /* segment descriptor priority level */
  726         1,                      /* segment descriptor present */
  727         0,                      /* long */
  728         1,                      /* default 32 vs 16 bit size */
  729         1                       /* limit granularity (byte/page units)*/ },
  730 /* GUCODE_SEL   5 64 bit Code Descriptor for user */
  731 {       0x0,                    /* segment base address  */
  732         0xfffff,                /* length - all address space */
  733         SDT_MEMERA,             /* segment type */
  734         SEL_UPL,                /* segment descriptor priority level */
  735         1,                      /* segment descriptor present */
  736         1,                      /* long */
  737         0,                      /* default 32 vs 16 bit size */
  738         1                       /* limit granularity (byte/page units)*/ },
  739 /* GPROC0_SEL   6 Proc 0 Tss Descriptor */
  740 {
  741         0x0,                    /* segment base address */
  742         sizeof(struct amd64tss)-1,/* length - all address space */
  743         SDT_SYSTSS,             /* segment type */
  744         SEL_KPL,                /* segment descriptor priority level */
  745         1,                      /* segment descriptor present */
  746         0,                      /* long */
  747         0,                      /* unused - default 32 vs 16 bit size */
  748         0                       /* limit granularity (byte/page units)*/ },
  749 /* Actually, the TSS is a system descriptor which is double size */
  750 {       0x0,                    /* segment base address  */
  751         0x0,                    /* length */
  752         0,                      /* segment type */
  753         0,                      /* segment descriptor priority level */
  754         0,                      /* segment descriptor present */
  755         0,                      /* long */
  756         0,                      /* default 32 vs 16 bit size */
  757         0                       /* limit granularity (byte/page units)*/ },
  758 /* GUGS32_SEL   8 32 bit GS Descriptor for user */
  759 {       0x0,                    /* segment base address  */
  760         0xfffff,                /* length - all address space */
  761         SDT_MEMRWA,             /* segment type */
  762         SEL_UPL,                /* segment descriptor priority level */
  763         1,                      /* segment descriptor present */
  764         0,                      /* long */
  765         1,                      /* default 32 vs 16 bit size */
  766         1                       /* limit granularity (byte/page units)*/ },
  767 };
  768 
  769 void
  770 setidt(idx, func, typ, dpl, ist)
  771         int idx;
  772         inthand_t *func;
  773         int typ;
  774         int dpl;
  775         int ist;
  776 {
  777         struct gate_descriptor *ip;
  778 
  779         ip = idt + idx;
  780         ip->gd_looffset = (uintptr_t)func;
  781         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
  782         ip->gd_ist = ist;
  783         ip->gd_xx = 0;
  784         ip->gd_type = typ;
  785         ip->gd_dpl = dpl;
  786         ip->gd_p = 1;
  787         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
  788 }
  789 
  790 extern inthand_t
  791         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
  792         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
  793         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
  794         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
  795         IDTVEC(xmm), IDTVEC(dblfault),
  796         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  797 
  798 void
  799 sdtossd(sd, ssd)
  800         struct user_segment_descriptor *sd;
  801         struct soft_segment_descriptor *ssd;
  802 {
  803 
  804         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
  805         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
  806         ssd->ssd_type  = sd->sd_type;
  807         ssd->ssd_dpl   = sd->sd_dpl;
  808         ssd->ssd_p     = sd->sd_p;
  809         ssd->ssd_long  = sd->sd_long;
  810         ssd->ssd_def32 = sd->sd_def32;
  811         ssd->ssd_gran  = sd->sd_gran;
  812 }
  813 
  814 void
  815 ssdtosd(ssd, sd)
  816         struct soft_segment_descriptor *ssd;
  817         struct user_segment_descriptor *sd;
  818 {
  819 
  820         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  821         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
  822         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  823         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  824         sd->sd_type  = ssd->ssd_type;
  825         sd->sd_dpl   = ssd->ssd_dpl;
  826         sd->sd_p     = ssd->ssd_p;
  827         sd->sd_long  = ssd->ssd_long;
  828         sd->sd_def32 = ssd->ssd_def32;
  829         sd->sd_gran  = ssd->ssd_gran;
  830 }
  831 
  832 void
  833 ssdtosyssd(ssd, sd)
  834         struct soft_segment_descriptor *ssd;
  835         struct system_segment_descriptor *sd;
  836 {
  837 
  838         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  839         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
  840         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  841         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  842         sd->sd_type  = ssd->ssd_type;
  843         sd->sd_dpl   = ssd->ssd_dpl;
  844         sd->sd_p     = ssd->ssd_p;
  845         sd->sd_gran  = ssd->ssd_gran;
  846 }
  847 
  848 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
  849 #include <isa/isavar.h>
  850 u_int
  851 isa_irq_pending(void)
  852 {
  853 
  854         return (0);
  855 }
  856 #endif
  857 
  858 u_int basemem;
  859 
  860 /*
  861  * Populate the (physmap) array with base/bound pairs describing the
  862  * available physical memory in the system, then test this memory and
  863  * build the phys_avail array describing the actually-available memory.
  864  *
  865  * If we cannot accurately determine the physical memory map, then use
  866  * value from the 0xE801 call, and failing that, the RTC.
  867  *
  868  * Total memory size may be set by the kernel environment variable
  869  * hw.physmem or the compile-time define MAXMEM.
  870  *
  871  * XXX first should be vm_paddr_t.
  872  */
  873 static void
  874 getmemsize(caddr_t kmdp, u_int64_t first)
  875 {
  876         int i, off, physmap_idx, pa_indx, da_indx;
  877         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
  878         u_long physmem_tunable;
  879         pt_entry_t *pte;
  880         struct bios_smap *smapbase, *smap, *smapend;
  881         u_int32_t smapsize;
  882         quad_t dcons_addr, dcons_size;
  883 
  884         bzero(physmap, sizeof(physmap));
  885         basemem = 0;
  886         physmap_idx = 0;
  887 
  888         /*
  889          * get memory map from INT 15:E820, kindly supplied by the loader.
  890          *
  891          * subr_module.c says:
  892          * "Consumer may safely assume that size value precedes data."
  893          * ie: an int32_t immediately precedes smap.
  894          */
  895         smapbase = (struct bios_smap *)preload_search_info(kmdp,
  896             MODINFO_METADATA | MODINFOMD_SMAP);
  897         if (smapbase == NULL)
  898                 panic("No BIOS smap info from loader!");
  899 
  900         smapsize = *((u_int32_t *)smapbase - 1);
  901         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
  902 
  903         for (smap = smapbase; smap < smapend; smap++) {
  904                 if (boothowto & RB_VERBOSE)
  905                         printf("SMAP type=%02x base=%016lx len=%016lx\n",
  906                             smap->type, smap->base, smap->length);
  907 
  908                 if (smap->type != 0x01)
  909                         continue;
  910 
  911                 if (smap->length == 0)
  912                         continue;
  913 
  914                 for (i = 0; i <= physmap_idx; i += 2) {
  915                         if (smap->base < physmap[i + 1]) {
  916                                 if (boothowto & RB_VERBOSE)
  917                                         printf(
  918         "Overlapping or non-monotonic memory region, ignoring second region\n");
  919                                 continue;
  920                         }
  921                 }
  922 
  923                 if (smap->base == physmap[physmap_idx + 1]) {
  924                         physmap[physmap_idx + 1] += smap->length;
  925                         continue;
  926                 }
  927 
  928                 physmap_idx += 2;
  929                 if (physmap_idx == PHYSMAP_SIZE) {
  930                         printf(
  931                 "Too many segments in the physical address map, giving up\n");
  932                         break;
  933                 }
  934                 physmap[physmap_idx] = smap->base;
  935                 physmap[physmap_idx + 1] = smap->base + smap->length;
  936         }
  937 
  938         /*
  939          * Find the 'base memory' segment for SMP
  940          */
  941         basemem = 0;
  942         for (i = 0; i <= physmap_idx; i += 2) {
  943                 if (physmap[i] == 0x00000000) {
  944                         basemem = physmap[i + 1] / 1024;
  945                         break;
  946                 }
  947         }
  948         if (basemem == 0)
  949                 panic("BIOS smap did not include a basemem segment!");
  950 
  951 #ifdef SMP
  952         /* make hole for AP bootstrap code */
  953         physmap[1] = mp_bootaddress(physmap[1] / 1024);
  954 #endif
  955 
  956         /*
  957          * Maxmem isn't the "maximum memory", it's one larger than the
  958          * highest page of the physical address space.  It should be
  959          * called something like "Maxphyspage".  We may adjust this
  960          * based on ``hw.physmem'' and the results of the memory test.
  961          */
  962         Maxmem = atop(physmap[physmap_idx + 1]);
  963 
  964 #ifdef MAXMEM
  965         Maxmem = MAXMEM / 4;
  966 #endif
  967 
  968         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
  969                 Maxmem = atop(physmem_tunable);
  970 
  971         /*
  972          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
  973          * in the system.
  974          */
  975         if (Maxmem > atop(physmap[physmap_idx + 1]))
  976                 Maxmem = atop(physmap[physmap_idx + 1]);
  977 
  978         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
  979             (boothowto & RB_VERBOSE))
  980                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
  981 
  982         /* call pmap initialization to make new kernel address space */
  983         pmap_bootstrap(&first);
  984 
  985         /*
  986          * Size up each available chunk of physical memory.
  987          */
  988         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
  989         pa_indx = 0;
  990         da_indx = 1;
  991         phys_avail[pa_indx++] = physmap[0];
  992         phys_avail[pa_indx] = physmap[0];
  993         dump_avail[da_indx] = physmap[0];
  994         pte = CMAP1;
  995 
  996         /*
  997          * Get dcons buffer address
  998          */
  999         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1000             getenv_quad("dcons.size", &dcons_size) == 0)
 1001                 dcons_addr = 0;
 1002 
 1003         /*
 1004          * physmap is in bytes, so when converting to page boundaries,
 1005          * round up the start address and round down the end address.
 1006          */
 1007         for (i = 0; i <= physmap_idx; i += 2) {
 1008                 vm_paddr_t end;
 1009 
 1010                 end = ptoa((vm_paddr_t)Maxmem);
 1011                 if (physmap[i + 1] < end)
 1012                         end = trunc_page(physmap[i + 1]);
 1013                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1014                         int tmp, page_bad, full;
 1015                         int *ptr = (int *)CADDR1;
 1016 
 1017                         full = FALSE;
 1018                         /*
 1019                          * block out kernel memory as not available.
 1020                          */
 1021                         if (pa >= 0x100000 && pa < first)
 1022                                 goto do_dump_avail;
 1023 
 1024                         /*
 1025                          * block out dcons buffer
 1026                          */
 1027                         if (dcons_addr > 0
 1028                             && pa >= trunc_page(dcons_addr)
 1029                             && pa < dcons_addr + dcons_size)
 1030                                 goto do_dump_avail;
 1031 
 1032                         page_bad = FALSE;
 1033 
 1034                         /*
 1035                          * map page into kernel: valid, read/write,non-cacheable
 1036                          */
 1037                         *pte = pa | PG_V | PG_RW | PG_N;
 1038                         invltlb();
 1039 
 1040                         tmp = *(int *)ptr;
 1041                         /*
 1042                          * Test for alternating 1's and 0's
 1043                          */
 1044                         *(volatile int *)ptr = 0xaaaaaaaa;
 1045                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1046                                 page_bad = TRUE;
 1047                         /*
 1048                          * Test for alternating 0's and 1's
 1049                          */
 1050                         *(volatile int *)ptr = 0x55555555;
 1051                         if (*(volatile int *)ptr != 0x55555555)
 1052                                 page_bad = TRUE;
 1053                         /*
 1054                          * Test for all 1's
 1055                          */
 1056                         *(volatile int *)ptr = 0xffffffff;
 1057                         if (*(volatile int *)ptr != 0xffffffff)
 1058                                 page_bad = TRUE;
 1059                         /*
 1060                          * Test for all 0's
 1061                          */
 1062                         *(volatile int *)ptr = 0x0;
 1063                         if (*(volatile int *)ptr != 0x0)
 1064                                 page_bad = TRUE;
 1065                         /*
 1066                          * Restore original value.
 1067                          */
 1068                         *(int *)ptr = tmp;
 1069 
 1070                         /*
 1071                          * Adjust array of valid/good pages.
 1072                          */
 1073                         if (page_bad == TRUE)
 1074                                 continue;
 1075                         /*
 1076                          * If this good page is a continuation of the
 1077                          * previous set of good pages, then just increase
 1078                          * the end pointer. Otherwise start a new chunk.
 1079                          * Note that "end" points one higher than end,
 1080                          * making the range >= start and < end.
 1081                          * If we're also doing a speculative memory
 1082                          * test and we at or past the end, bump up Maxmem
 1083                          * so that we keep going. The first bad page
 1084                          * will terminate the loop.
 1085                          */
 1086                         if (phys_avail[pa_indx] == pa) {
 1087                                 phys_avail[pa_indx] += PAGE_SIZE;
 1088                         } else {
 1089                                 pa_indx++;
 1090                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1091                                         printf(
 1092                 "Too many holes in the physical address space, giving up\n");
 1093                                         pa_indx--;
 1094                                         full = TRUE;
 1095                                         goto do_dump_avail;
 1096                                 }
 1097                                 phys_avail[pa_indx++] = pa;     /* start */
 1098                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1099                         }
 1100                         physmem++;
 1101 do_dump_avail:
 1102                         if (dump_avail[da_indx] == pa) {
 1103                                 dump_avail[da_indx] += PAGE_SIZE;
 1104                         } else {
 1105                                 da_indx++;
 1106                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1107                                         da_indx--;
 1108                                         goto do_next;
 1109                                 }
 1110                                 dump_avail[da_indx++] = pa; /* start */
 1111                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1112                         }
 1113 do_next:
 1114                         if (full)
 1115                                 break;
 1116                 }
 1117         }
 1118         *pte = 0;
 1119         invltlb();
 1120 
 1121         /*
 1122          * XXX
 1123          * The last chunk must contain at least one page plus the message
 1124          * buffer to avoid complicating other code (message buffer address
 1125          * calculation, etc.).
 1126          */
 1127         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1128             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1129                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1130                 phys_avail[pa_indx--] = 0;
 1131                 phys_avail[pa_indx--] = 0;
 1132         }
 1133 
 1134         Maxmem = atop(phys_avail[pa_indx]);
 1135 
 1136         /* Trim off space for the message buffer. */
 1137         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1138 
 1139         /* Map the message buffer. */
 1140         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 1141                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 1142                     off);
 1143 }
 1144 
 1145 u_int64_t
 1146 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1147 {
 1148         caddr_t kmdp;
 1149         int gsel_tss, x;
 1150         struct pcpu *pc;
 1151         u_int64_t msr;
 1152         char *env;
 1153 
 1154         thread0.td_kstack = physfree + KERNBASE;
 1155         bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
 1156         physfree += KSTACK_PAGES * PAGE_SIZE;
 1157         thread0.td_pcb = (struct pcb *)
 1158            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1159 
 1160         /*
 1161          * This may be done better later if it gets more high level
 1162          * components in it. If so just link td->td_proc here.
 1163          */
 1164         proc_linkup0(&proc0, &thread0);
 1165 
 1166         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1167         preload_bootstrap_relocate(KERNBASE);
 1168         kmdp = preload_search_by_type("elf kernel");
 1169         if (kmdp == NULL)
 1170                 kmdp = preload_search_by_type("elf64 kernel");
 1171         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1172         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1173 #ifdef DDB
 1174         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1175         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1176 #endif
 1177 
 1178         /* Init basic tunables, hz etc */
 1179         init_param1();
 1180 
 1181         /*
 1182          * make gdt memory segments
 1183          */
 1184         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1185 
 1186         for (x = 0; x < NGDT; x++) {
 1187                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
 1188                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1189         }
 1190         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1191             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1192 
 1193         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1194         r_gdt.rd_base =  (long) gdt;
 1195         lgdt(&r_gdt);
 1196         pc = &__pcpu[0];
 1197 
 1198         wrmsr(MSR_FSBASE, 0);           /* User value */
 1199         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1200         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1201 
 1202         pcpu_init(pc, 0, sizeof(struct pcpu));
 1203         PCPU_SET(prvspace, pc);
 1204         PCPU_SET(curthread, &thread0);
 1205         PCPU_SET(curpcb, thread0.td_pcb);
 1206         PCPU_SET(tssp, &common_tss[0]);
 1207 
 1208         /*
 1209          * Initialize mutexes.
 1210          *
 1211          * icu_lock: in order to allow an interrupt to occur in a critical
 1212          *           section, to set pcpu->ipending (etc...) properly, we
 1213          *           must be able to get the icu lock, so it can't be
 1214          *           under witness.
 1215          */
 1216         mutex_init();
 1217         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1218 
 1219         /* exceptions */
 1220         for (x = 0; x < NIDT; x++)
 1221                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1222         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1223         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1224         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
 1225         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1226         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1227         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1228         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1229         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1230         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1231         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1232         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1233         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1234         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1235         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1236         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1237         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1238         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1239         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1240         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1241 
 1242         r_idt.rd_limit = sizeof(idt0) - 1;
 1243         r_idt.rd_base = (long) idt;
 1244         lidt(&r_idt);
 1245 
 1246         /*
 1247          * Initialize the i8254 before the console so that console
 1248          * initialization can use DELAY().
 1249          */
 1250         i8254_init();
 1251 
 1252         /*
 1253          * Initialize the console before we print anything out.
 1254          */
 1255         cninit();
 1256 
 1257 #ifdef DEV_ISA
 1258 #ifdef DEV_ATPIC
 1259         elcr_probe();
 1260         atpic_startup();
 1261 #else
 1262         /* Reset and mask the atpics and leave them shut down. */
 1263         atpic_reset();
 1264 
 1265         /*
 1266          * Point the ICU spurious interrupt vectors at the APIC spurious
 1267          * interrupt handler.
 1268          */
 1269         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1270         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1271 #endif
 1272 #else
 1273 #error "have you forgotten the isa device?";
 1274 #endif
 1275 
 1276         kdb_init();
 1277 
 1278 #ifdef KDB
 1279         if (boothowto & RB_KDB)
 1280                 kdb_enter("Boot flags requested debugger");
 1281 #endif
 1282 
 1283         identify_cpu();         /* Final stage of CPU initialization */
 1284         initializecpu();        /* Initialize CPU registers */
 1285 
 1286         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1287         common_tss[0].tss_rsp0 = thread0.td_kstack + \
 1288             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
 1289         /* Ensure the stack is aligned to 16 bytes */
 1290         common_tss[0].tss_rsp0 &= ~0xFul;
 1291         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1292 
 1293         /* doublefault stack space, runs on ist1 */
 1294         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1295 
 1296         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1297         common_tss[0].tss_iobase = sizeof(struct amd64tss);
 1298 
 1299         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1300         ltr(gsel_tss);
 1301 
 1302         /* Set up the fast syscall stuff */
 1303         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1304         wrmsr(MSR_EFER, msr);
 1305         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1306         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1307         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1308               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1309         wrmsr(MSR_STAR, msr);
 1310         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1311 
 1312         getmemsize(kmdp, physfree);
 1313         init_param2(physmem);
 1314 
 1315         /* now running on new page tables, configured,and u/iom is accessible */
 1316 
 1317         msgbufinit(msgbufp, MSGBUF_SIZE);
 1318         fpuinit();
 1319 
 1320         /* transfer to user mode */
 1321 
 1322         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1323         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1324         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1325 
 1326         /* setup proc 0's pcb */
 1327         thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
 1328         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1329         thread0.td_frame = &proc0_tf;
 1330 
 1331         env = getenv("kernelname");
 1332         if (env != NULL)
 1333                 strlcpy(kernelname, env, sizeof(kernelname));
 1334 
 1335         /* Location of kernel stack for locore */
 1336         return ((u_int64_t)thread0.td_pcb);
 1337 }
 1338 
 1339 void
 1340 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1341 {
 1342 
 1343         pcpu->pc_acpi_id = 0xffffffff;
 1344 }
 1345 
 1346 void
 1347 spinlock_enter(void)
 1348 {
 1349         struct thread *td;
 1350 
 1351         td = curthread;
 1352         if (td->td_md.md_spinlock_count == 0)
 1353                 td->td_md.md_saved_flags = intr_disable();
 1354         td->td_md.md_spinlock_count++;
 1355         critical_enter();
 1356 }
 1357 
 1358 void
 1359 spinlock_exit(void)
 1360 {
 1361         struct thread *td;
 1362 
 1363         td = curthread;
 1364         critical_exit();
 1365         td->td_md.md_spinlock_count--;
 1366         if (td->td_md.md_spinlock_count == 0)
 1367                 intr_restore(td->td_md.md_saved_flags);
 1368 }
 1369 
 1370 /*
 1371  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1372  * we want to start a backtrace from the function that caused us to enter
 1373  * the debugger. We have the context in the trapframe, but base the trace
 1374  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1375  * enough for a backtrace.
 1376  */
 1377 void
 1378 makectx(struct trapframe *tf, struct pcb *pcb)
 1379 {
 1380 
 1381         pcb->pcb_r12 = tf->tf_r12;
 1382         pcb->pcb_r13 = tf->tf_r13;
 1383         pcb->pcb_r14 = tf->tf_r14;
 1384         pcb->pcb_r15 = tf->tf_r15;
 1385         pcb->pcb_rbp = tf->tf_rbp;
 1386         pcb->pcb_rbx = tf->tf_rbx;
 1387         pcb->pcb_rip = tf->tf_rip;
 1388         pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
 1389 }
 1390 
 1391 int
 1392 ptrace_set_pc(struct thread *td, unsigned long addr)
 1393 {
 1394         td->td_frame->tf_rip = addr;
 1395         return (0);
 1396 }
 1397 
 1398 int
 1399 ptrace_single_step(struct thread *td)
 1400 {
 1401         td->td_frame->tf_rflags |= PSL_T;
 1402         return (0);
 1403 }
 1404 
 1405 int
 1406 ptrace_clear_single_step(struct thread *td)
 1407 {
 1408         td->td_frame->tf_rflags &= ~PSL_T;
 1409         return (0);
 1410 }
 1411 
 1412 int
 1413 fill_regs(struct thread *td, struct reg *regs)
 1414 {
 1415         struct trapframe *tp;
 1416 
 1417         tp = td->td_frame;
 1418         regs->r_r15 = tp->tf_r15;
 1419         regs->r_r14 = tp->tf_r14;
 1420         regs->r_r13 = tp->tf_r13;
 1421         regs->r_r12 = tp->tf_r12;
 1422         regs->r_r11 = tp->tf_r11;
 1423         regs->r_r10 = tp->tf_r10;
 1424         regs->r_r9  = tp->tf_r9;
 1425         regs->r_r8  = tp->tf_r8;
 1426         regs->r_rdi = tp->tf_rdi;
 1427         regs->r_rsi = tp->tf_rsi;
 1428         regs->r_rbp = tp->tf_rbp;
 1429         regs->r_rbx = tp->tf_rbx;
 1430         regs->r_rdx = tp->tf_rdx;
 1431         regs->r_rcx = tp->tf_rcx;
 1432         regs->r_rax = tp->tf_rax;
 1433         regs->r_rip = tp->tf_rip;
 1434         regs->r_cs = tp->tf_cs;
 1435         regs->r_rflags = tp->tf_rflags;
 1436         regs->r_rsp = tp->tf_rsp;
 1437         regs->r_ss = tp->tf_ss;
 1438         return (0);
 1439 }
 1440 
 1441 int
 1442 set_regs(struct thread *td, struct reg *regs)
 1443 {
 1444         struct trapframe *tp;
 1445         register_t rflags;
 1446 
 1447         tp = td->td_frame;
 1448         rflags = regs->r_rflags & 0xffffffff;
 1449         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 1450                 return (EINVAL);
 1451         tp->tf_r15 = regs->r_r15;
 1452         tp->tf_r14 = regs->r_r14;
 1453         tp->tf_r13 = regs->r_r13;
 1454         tp->tf_r12 = regs->r_r12;
 1455         tp->tf_r11 = regs->r_r11;
 1456         tp->tf_r10 = regs->r_r10;
 1457         tp->tf_r9  = regs->r_r9;
 1458         tp->tf_r8  = regs->r_r8;
 1459         tp->tf_rdi = regs->r_rdi;
 1460         tp->tf_rsi = regs->r_rsi;
 1461         tp->tf_rbp = regs->r_rbp;
 1462         tp->tf_rbx = regs->r_rbx;
 1463         tp->tf_rdx = regs->r_rdx;
 1464         tp->tf_rcx = regs->r_rcx;
 1465         tp->tf_rax = regs->r_rax;
 1466         tp->tf_rip = regs->r_rip;
 1467         tp->tf_cs = regs->r_cs;
 1468         tp->tf_rflags = rflags;
 1469         tp->tf_rsp = regs->r_rsp;
 1470         tp->tf_ss = regs->r_ss;
 1471         td->td_pcb->pcb_flags |= PCB_FULLCTX;
 1472         return (0);
 1473 }
 1474 
 1475 /* XXX check all this stuff! */
 1476 /* externalize from sv_xmm */
 1477 static void
 1478 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 1479 {
 1480         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1481         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1482         int i;
 1483 
 1484         /* pcb -> fpregs */
 1485         bzero(fpregs, sizeof(*fpregs));
 1486 
 1487         /* FPU control/status */
 1488         penv_fpreg->en_cw = penv_xmm->en_cw;
 1489         penv_fpreg->en_sw = penv_xmm->en_sw;
 1490         penv_fpreg->en_tw = penv_xmm->en_tw;
 1491         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 1492         penv_fpreg->en_rip = penv_xmm->en_rip;
 1493         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 1494         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 1495         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 1496 
 1497         /* FPU registers */
 1498         for (i = 0; i < 8; ++i)
 1499                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 1500 
 1501         /* SSE registers */
 1502         for (i = 0; i < 16; ++i)
 1503                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 1504 }
 1505 
 1506 /* internalize from fpregs into sv_xmm */
 1507 static void
 1508 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 1509 {
 1510         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1511         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1512         int i;
 1513 
 1514         /* fpregs -> pcb */
 1515         /* FPU control/status */
 1516         penv_xmm->en_cw = penv_fpreg->en_cw;
 1517         penv_xmm->en_sw = penv_fpreg->en_sw;
 1518         penv_xmm->en_tw = penv_fpreg->en_tw;
 1519         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 1520         penv_xmm->en_rip = penv_fpreg->en_rip;
 1521         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 1522         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 1523         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 1524 
 1525         /* FPU registers */
 1526         for (i = 0; i < 8; ++i)
 1527                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 1528 
 1529         /* SSE registers */
 1530         for (i = 0; i < 16; ++i)
 1531                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 1532 }
 1533 
 1534 /* externalize from td->pcb */
 1535 int
 1536 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1537 {
 1538 
 1539         fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
 1540         return (0);
 1541 }
 1542 
 1543 /* internalize to td->pcb */
 1544 int
 1545 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1546 {
 1547 
 1548         set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
 1549         return (0);
 1550 }
 1551 
 1552 /*
 1553  * Get machine context.
 1554  */
 1555 int
 1556 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 1557 {
 1558         struct trapframe *tp;
 1559 
 1560         tp = td->td_frame;
 1561         PROC_LOCK(curthread->td_proc);
 1562         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 1563         PROC_UNLOCK(curthread->td_proc);
 1564         mcp->mc_r15 = tp->tf_r15;
 1565         mcp->mc_r14 = tp->tf_r14;
 1566         mcp->mc_r13 = tp->tf_r13;
 1567         mcp->mc_r12 = tp->tf_r12;
 1568         mcp->mc_r11 = tp->tf_r11;
 1569         mcp->mc_r10 = tp->tf_r10;
 1570         mcp->mc_r9  = tp->tf_r9;
 1571         mcp->mc_r8  = tp->tf_r8;
 1572         mcp->mc_rdi = tp->tf_rdi;
 1573         mcp->mc_rsi = tp->tf_rsi;
 1574         mcp->mc_rbp = tp->tf_rbp;
 1575         mcp->mc_rbx = tp->tf_rbx;
 1576         mcp->mc_rcx = tp->tf_rcx;
 1577         mcp->mc_rflags = tp->tf_rflags;
 1578         if (flags & GET_MC_CLEAR_RET) {
 1579                 mcp->mc_rax = 0;
 1580                 mcp->mc_rdx = 0;
 1581                 mcp->mc_rflags &= ~PSL_C;
 1582         } else {
 1583                 mcp->mc_rax = tp->tf_rax;
 1584                 mcp->mc_rdx = tp->tf_rdx;
 1585         }
 1586         mcp->mc_rip = tp->tf_rip;
 1587         mcp->mc_cs = tp->tf_cs;
 1588         mcp->mc_rsp = tp->tf_rsp;
 1589         mcp->mc_ss = tp->tf_ss;
 1590         mcp->mc_len = sizeof(*mcp);
 1591         get_fpcontext(td, mcp);
 1592         return (0);
 1593 }
 1594 
 1595 /*
 1596  * Set machine context.
 1597  *
 1598  * However, we don't set any but the user modifiable flags, and we won't
 1599  * touch the cs selector.
 1600  */
 1601 int
 1602 set_mcontext(struct thread *td, const mcontext_t *mcp)
 1603 {
 1604         struct trapframe *tp;
 1605         long rflags;
 1606         int ret;
 1607 
 1608         tp = td->td_frame;
 1609         if (mcp->mc_len != sizeof(*mcp))
 1610                 return (EINVAL);
 1611         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 1612             (tp->tf_rflags & ~PSL_USERCHANGE);
 1613         ret = set_fpcontext(td, mcp);
 1614         if (ret != 0)
 1615                 return (ret);
 1616         tp->tf_r15 = mcp->mc_r15;
 1617         tp->tf_r14 = mcp->mc_r14;
 1618         tp->tf_r13 = mcp->mc_r13;
 1619         tp->tf_r12 = mcp->mc_r12;
 1620         tp->tf_r11 = mcp->mc_r11;
 1621         tp->tf_r10 = mcp->mc_r10;
 1622         tp->tf_r9  = mcp->mc_r9;
 1623         tp->tf_r8  = mcp->mc_r8;
 1624         tp->tf_rdi = mcp->mc_rdi;
 1625         tp->tf_rsi = mcp->mc_rsi;
 1626         tp->tf_rbp = mcp->mc_rbp;
 1627         tp->tf_rbx = mcp->mc_rbx;
 1628         tp->tf_rdx = mcp->mc_rdx;
 1629         tp->tf_rcx = mcp->mc_rcx;
 1630         tp->tf_rax = mcp->mc_rax;
 1631         tp->tf_rip = mcp->mc_rip;
 1632         tp->tf_rflags = rflags;
 1633         tp->tf_rsp = mcp->mc_rsp;
 1634         tp->tf_ss = mcp->mc_ss;
 1635         td->td_pcb->pcb_flags |= PCB_FULLCTX;
 1636         return (0);
 1637 }
 1638 
 1639 static void
 1640 get_fpcontext(struct thread *td, mcontext_t *mcp)
 1641 {
 1642 
 1643         mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
 1644         mcp->mc_fpformat = fpuformat();
 1645 }
 1646 
 1647 static int
 1648 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 1649 {
 1650         struct savefpu *fpstate;
 1651 
 1652         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 1653                 return (0);
 1654         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 1655                 return (EINVAL);
 1656         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 1657                 /* We don't care what state is left in the FPU or PCB. */
 1658                 fpstate_drop(td);
 1659         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 1660             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 1661                 /*
 1662                  * XXX we violate the dubious requirement that fpusetregs()
 1663                  * be called with interrupts disabled.
 1664                  * XXX obsolete on trap-16 systems?
 1665                  */
 1666                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 1667                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 1668                 fpusetregs(td, fpstate);
 1669         } else
 1670                 return (EINVAL);
 1671         return (0);
 1672 }
 1673 
 1674 void
 1675 fpstate_drop(struct thread *td)
 1676 {
 1677         register_t s;
 1678 
 1679         s = intr_disable();
 1680         if (PCPU_GET(fpcurthread) == td)
 1681                 fpudrop();
 1682         /*
 1683          * XXX force a full drop of the fpu.  The above only drops it if we
 1684          * owned it.
 1685          *
 1686          * XXX I don't much like fpugetregs()'s semantics of doing a full
 1687          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 1688          * We only need to drop to !PCB_INITDONE in sendsig().  But
 1689          * sendsig() is the only caller of fpugetregs()... perhaps we just
 1690          * have too many layers.
 1691          */
 1692         curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
 1693         intr_restore(s);
 1694 }
 1695 
 1696 int
 1697 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1698 {
 1699         struct pcb *pcb;
 1700 
 1701         if (td == NULL) {
 1702                 dbregs->dr[0] = rdr0();
 1703                 dbregs->dr[1] = rdr1();
 1704                 dbregs->dr[2] = rdr2();
 1705                 dbregs->dr[3] = rdr3();
 1706                 dbregs->dr[6] = rdr6();
 1707                 dbregs->dr[7] = rdr7();
 1708         } else {
 1709                 pcb = td->td_pcb;
 1710                 dbregs->dr[0] = pcb->pcb_dr0;
 1711                 dbregs->dr[1] = pcb->pcb_dr1;
 1712                 dbregs->dr[2] = pcb->pcb_dr2;
 1713                 dbregs->dr[3] = pcb->pcb_dr3;
 1714                 dbregs->dr[6] = pcb->pcb_dr6;
 1715                 dbregs->dr[7] = pcb->pcb_dr7;
 1716         }
 1717         dbregs->dr[4] = 0;
 1718         dbregs->dr[5] = 0;
 1719         dbregs->dr[8] = 0;
 1720         dbregs->dr[9] = 0;
 1721         dbregs->dr[10] = 0;
 1722         dbregs->dr[11] = 0;
 1723         dbregs->dr[12] = 0;
 1724         dbregs->dr[13] = 0;
 1725         dbregs->dr[14] = 0;
 1726         dbregs->dr[15] = 0;
 1727         return (0);
 1728 }
 1729 
 1730 int
 1731 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1732 {
 1733         struct pcb *pcb;
 1734         int i;
 1735 
 1736         if (td == NULL) {
 1737                 load_dr0(dbregs->dr[0]);
 1738                 load_dr1(dbregs->dr[1]);
 1739                 load_dr2(dbregs->dr[2]);
 1740                 load_dr3(dbregs->dr[3]);
 1741                 load_dr6(dbregs->dr[6]);
 1742                 load_dr7(dbregs->dr[7]);
 1743         } else {
 1744                 /*
 1745                  * Don't let an illegal value for dr7 get set.  Specifically,
 1746                  * check for undefined settings.  Setting these bit patterns
 1747                  * result in undefined behaviour and can lead to an unexpected
 1748                  * TRCTRAP or a general protection fault right here.
 1749                  * Upper bits of dr6 and dr7 must not be set
 1750                  */
 1751                 for (i = 0; i < 4; i++) {
 1752                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 1753                                 return (EINVAL);
 1754                         if (td->td_frame->tf_cs == _ucode32sel &&
 1755                             DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
 1756                                 return (EINVAL);
 1757                 }
 1758                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 1759                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 1760                         return (EINVAL);
 1761 
 1762                 pcb = td->td_pcb;
 1763 
 1764                 /*
 1765                  * Don't let a process set a breakpoint that is not within the
 1766                  * process's address space.  If a process could do this, it
 1767                  * could halt the system by setting a breakpoint in the kernel
 1768                  * (if ddb was enabled).  Thus, we need to check to make sure
 1769                  * that no breakpoints are being enabled for addresses outside
 1770                  * process's address space.
 1771                  *
 1772                  * XXX - what about when the watched area of the user's
 1773                  * address space is written into from within the kernel
 1774                  * ... wouldn't that still cause a breakpoint to be generated
 1775                  * from within kernel mode?
 1776                  */
 1777 
 1778                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 1779                         /* dr0 is enabled */
 1780                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 1781                                 return (EINVAL);
 1782                 }
 1783                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 1784                         /* dr1 is enabled */
 1785                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 1786                                 return (EINVAL);
 1787                 }
 1788                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 1789                         /* dr2 is enabled */
 1790                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 1791                                 return (EINVAL);
 1792                 }
 1793                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 1794                         /* dr3 is enabled */
 1795                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 1796                                 return (EINVAL);
 1797                 }
 1798 
 1799                 pcb->pcb_dr0 = dbregs->dr[0];
 1800                 pcb->pcb_dr1 = dbregs->dr[1];
 1801                 pcb->pcb_dr2 = dbregs->dr[2];
 1802                 pcb->pcb_dr3 = dbregs->dr[3];
 1803                 pcb->pcb_dr6 = dbregs->dr[6];
 1804                 pcb->pcb_dr7 = dbregs->dr[7];
 1805 
 1806                 pcb->pcb_flags |= PCB_DBREGS;
 1807         }
 1808 
 1809         return (0);
 1810 }
 1811 
 1812 void
 1813 reset_dbregs(void)
 1814 {
 1815 
 1816         load_dr7(0);    /* Turn off the control bits first */
 1817         load_dr0(0);
 1818         load_dr1(0);
 1819         load_dr2(0);
 1820         load_dr3(0);
 1821         load_dr6(0);
 1822 }
 1823 
 1824 /*
 1825  * Return > 0 if a hardware breakpoint has been hit, and the
 1826  * breakpoint was in user space.  Return 0, otherwise.
 1827  */
 1828 int
 1829 user_dbreg_trap(void)
 1830 {
 1831         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 1832         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 1833         int nbp;            /* number of breakpoints that triggered */
 1834         caddr_t addr[4];    /* breakpoint addresses */
 1835         int i;
 1836         
 1837         dr7 = rdr7();
 1838         if ((dr7 & 0x000000ff) == 0) {
 1839                 /*
 1840                  * all GE and LE bits in the dr7 register are zero,
 1841                  * thus the trap couldn't have been caused by the
 1842                  * hardware debug registers
 1843                  */
 1844                 return 0;
 1845         }
 1846 
 1847         nbp = 0;
 1848         dr6 = rdr6();
 1849         bp = dr6 & 0x0000000f;
 1850 
 1851         if (!bp) {
 1852                 /*
 1853                  * None of the breakpoint bits are set meaning this
 1854                  * trap was not caused by any of the debug registers
 1855                  */
 1856                 return 0;
 1857         }
 1858 
 1859         /*
 1860          * at least one of the breakpoints were hit, check to see
 1861          * which ones and if any of them are user space addresses
 1862          */
 1863 
 1864         if (bp & 0x01) {
 1865                 addr[nbp++] = (caddr_t)rdr0();
 1866         }
 1867         if (bp & 0x02) {
 1868                 addr[nbp++] = (caddr_t)rdr1();
 1869         }
 1870         if (bp & 0x04) {
 1871                 addr[nbp++] = (caddr_t)rdr2();
 1872         }
 1873         if (bp & 0x08) {
 1874                 addr[nbp++] = (caddr_t)rdr3();
 1875         }
 1876 
 1877         for (i = 0; i < nbp; i++) {
 1878                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 1879                         /*
 1880                          * addr[i] is in user space
 1881                          */
 1882                         return nbp;
 1883                 }
 1884         }
 1885 
 1886         /*
 1887          * None of the breakpoints are in user space.
 1888          */
 1889         return 0;
 1890 }
 1891 
 1892 #ifdef KDB
 1893 
 1894 /*
 1895  * Provide inb() and outb() as functions.  They are normally only
 1896  * available as macros calling inlined functions, thus cannot be
 1897  * called from the debugger.
 1898  *
 1899  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 1900  */
 1901 
 1902 #undef inb
 1903 #undef outb
 1904 
 1905 /* silence compiler warnings */
 1906 u_char inb(u_int);
 1907 void outb(u_int, u_char);
 1908 
 1909 u_char
 1910 inb(u_int port)
 1911 {
 1912         u_char  data;
 1913         /*
 1914          * We use %%dx and not %1 here because i/o is done at %dx and not at
 1915          * %edx, while gcc generates inferior code (movw instead of movl)
 1916          * if we tell it to load (u_short) port.
 1917          */
 1918         __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
 1919         return (data);
 1920 }
 1921 
 1922 void
 1923 outb(u_int port, u_char data)
 1924 {
 1925         u_char  al;
 1926         /*
 1927          * Use an unnecessary assignment to help gcc's register allocator.
 1928          * This make a large difference for gcc-1.40 and a tiny difference
 1929          * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
 1930          * best results.  gcc-2.6.0 can't handle this.
 1931          */
 1932         al = data;
 1933         __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
 1934 }
 1935 
 1936 #endif /* KDB */

Cache object: 2d5c4fd0582ed744c4e669d55741021f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.