The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: stable/7/sys/amd64/amd64/machdep.c 230285 2012-01-17 22:09:33Z bz $");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_msgbuf.h"
   55 #include "opt_perfmon.h"
   56 
   57 #include <sys/param.h>
   58 #include <sys/proc.h>
   59 #include <sys/systm.h>
   60 #include <sys/bio.h>
   61 #include <sys/buf.h>
   62 #include <sys/bus.h>
   63 #include <sys/callout.h>
   64 #include <sys/clock.h>
   65 #include <sys/cons.h>
   66 #include <sys/cpu.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/exec.h>
   69 #include <sys/imgact.h>
   70 #include <sys/kdb.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/linker.h>
   74 #include <sys/lock.h>
   75 #include <sys/malloc.h>
   76 #include <sys/memrange.h>
   77 #include <sys/msgbuf.h>
   78 #include <sys/mutex.h>
   79 #include <sys/pcpu.h>
   80 #include <sys/ptrace.h>
   81 #include <sys/reboot.h>
   82 #include <sys/sched.h>
   83 #include <sys/signalvar.h>
   84 #include <sys/sysctl.h>
   85 #include <sys/sysent.h>
   86 #include <sys/sysproto.h>
   87 #include <sys/ucontext.h>
   88 #include <sys/vmmeter.h>
   89 
   90 #include <vm/vm.h>
   91 #include <vm/vm_extern.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_page.h>
   94 #include <vm/vm_map.h>
   95 #include <vm/vm_object.h>
   96 #include <vm/vm_pager.h>
   97 #include <vm/vm_param.h>
   98 
   99 #ifdef DDB
  100 #ifndef KDB
  101 #error KDB must be enabled in order for DDB to work!
  102 #endif
  103 #endif
  104 #include <ddb/ddb.h>
  105 
  106 #include <net/netisr.h>
  107 
  108 #include <machine/clock.h>
  109 #include <machine/cpu.h>
  110 #include <machine/cputypes.h>
  111 #include <machine/intr_machdep.h>
  112 #include <machine/mca.h>
  113 #include <machine/md_var.h>
  114 #include <machine/metadata.h>
  115 #include <machine/pc/bios.h>
  116 #include <machine/pcb.h>
  117 #include <machine/proc.h>
  118 #include <machine/reg.h>
  119 #include <machine/sigframe.h>
  120 #include <machine/specialreg.h>
  121 #ifdef PERFMON
  122 #include <machine/perfmon.h>
  123 #endif
  124 #include <machine/tss.h>
  125 #ifdef SMP
  126 #include <machine/smp.h>
  127 #endif
  128 
  129 #ifdef DEV_ATPIC
  130 #include <amd64/isa/icu.h>
  131 #else
  132 #include <machine/apicvar.h>
  133 #endif
  134 
  135 #include <isa/isareg.h>
  136 #include <isa/rtc.h>
  137 
  138 /* Sanity check for __curthread() */
  139 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  140 
  141 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  142 
  143 extern void printcpuinfo(void); /* XXX header file */
  144 extern void identify_cpu(void);
  145 extern void panicifcpuunsupported(void);
  146 
  147 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  148 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  149 
  150 static void cpu_startup(void *);
  151 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  152 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  153 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  154 
  155 #ifdef DDB
  156 extern vm_offset_t ksym_start, ksym_end;
  157 #endif
  158 
  159 /* Intel ICH registers */
  160 #define ICH_PMBASE      0x400
  161 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  162 
  163 int     _udatasel, _ucodesel, _ucode32sel;
  164 
  165 int cold = 1;
  166 
  167 long Maxmem = 0;
  168 long realmem = 0;
  169 
  170 /*
  171  * The number of PHYSMAP entries must be one less than the number of
  172  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  173  * physical address that is accessible by ISA DMA is split into two
  174  * PHYSSEG entries.
  175  */
  176 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  177 
  178 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  179 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  180 
  181 /* must be 2 less so 0 0 can signal end of chunks */
  182 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  183 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  184 
  185 struct kva_md_info kmi;
  186 
  187 static struct trapframe proc0_tf;
  188 struct region_descriptor r_gdt, r_idt;
  189 
  190 struct pcpu __pcpu[MAXCPU];
  191 
  192 struct mtx icu_lock;
  193 
  194 struct mem_range_softc mem_range_softc;
  195 
  196 static void
  197 cpu_startup(dummy)
  198         void *dummy;
  199 {
  200         char *sysenv;
  201 
  202         /*
  203          * On MacBooks, we need to disallow the legacy USB circuit to
  204          * generate an SMI# because this can cause several problems,
  205          * namely: incorrect CPU frequency detection and failure to
  206          * start the APs.
  207          * We do this by disabling a bit in the SMI_EN (SMI Control and
  208          * Enable register) of the Intel ICH LPC Interface Bridge. 
  209          */
  210         sysenv = getenv("smbios.system.product");
  211         if (sysenv != NULL) {
  212                 if (strncmp(sysenv, "MacBook", 7) == 0) {
  213                         if (bootverbose)
  214                                 printf("Disabling LEGACY_USB_EN bit on "
  215                                     "Intel ICH.\n");
  216                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  217                 }
  218                 freeenv(sysenv);
  219         }
  220 
  221         /*
  222          * Good {morning,afternoon,evening,night}.
  223          */
  224         startrtclock();
  225         printcpuinfo();
  226         panicifcpuunsupported();
  227 #ifdef PERFMON
  228         perfmon_init();
  229 #endif
  230         printf("usable memory = %ju (%ju MB)\n", ptoa((uintmax_t)physmem),
  231             ptoa((uintmax_t)physmem) / 1048576);
  232         realmem = Maxmem;
  233         /*
  234          * Display any holes after the first chunk of extended memory.
  235          */
  236         if (bootverbose) {
  237                 int indx;
  238 
  239                 printf("Physical memory chunk(s):\n");
  240                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  241                         vm_paddr_t size;
  242 
  243                         size = phys_avail[indx + 1] - phys_avail[indx];
  244                         printf(
  245                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  246                             (uintmax_t)phys_avail[indx],
  247                             (uintmax_t)phys_avail[indx + 1] - 1,
  248                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  249                 }
  250         }
  251 
  252         vm_ksubmap_init(&kmi);
  253 
  254         printf("avail memory  = %ju (%ju MB)\n",
  255             ptoa((uintmax_t)cnt.v_free_count),
  256             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  257 
  258         /*
  259          * Set up buffers, so they can be used to read disk labels.
  260          */
  261         bufinit();
  262         vm_pager_bufferinit();
  263 
  264         cpu_setregs();
  265 }
  266 
  267 /*
  268  * Send an interrupt to process.
  269  *
  270  * Stack is set up to allow sigcode stored
  271  * at top to call routine, followed by kcall
  272  * to sigreturn routine below.  After sigreturn
  273  * resets the signal mask, the stack, and the
  274  * frame pointer, it returns to the user
  275  * specified pc, psl.
  276  */
  277 void
  278 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  279 {
  280         struct sigframe sf, *sfp;
  281         struct proc *p;
  282         struct thread *td;
  283         struct sigacts *psp;
  284         char *sp;
  285         struct trapframe *regs;
  286         int sig;
  287         int oonstack;
  288 
  289         td = curthread;
  290         p = td->td_proc;
  291         PROC_LOCK_ASSERT(p, MA_OWNED);
  292         sig = ksi->ksi_signo;
  293         psp = p->p_sigacts;
  294         mtx_assert(&psp->ps_mtx, MA_OWNED);
  295         regs = td->td_frame;
  296         oonstack = sigonstack(regs->tf_rsp);
  297 
  298         /* Save user context. */
  299         bzero(&sf, sizeof(sf));
  300         sf.sf_uc.uc_sigmask = *mask;
  301         sf.sf_uc.uc_stack = td->td_sigstk;
  302         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  303             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  304         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  305         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  306         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  307         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  308         fpstate_drop(td);
  309         bzero(sf.sf_uc.uc_mcontext.mc_spare,
  310             sizeof(sf.sf_uc.uc_mcontext.mc_spare));
  311         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  312 
  313         /* Allocate space for the signal handler context. */
  314         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  315             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  316                 sp = td->td_sigstk.ss_sp +
  317                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  318 #if defined(COMPAT_43)
  319                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  320 #endif
  321         } else
  322                 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
  323         /* Align to 16 bytes. */
  324         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  325 
  326         /* Translate the signal if appropriate. */
  327         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  328                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  329 
  330         /* Build the argument list for the signal handler. */
  331         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  332         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  333         bzero(&sf.sf_si, sizeof(sf.sf_si));
  334         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  335                 /* Signal handler installed with SA_SIGINFO. */
  336                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  337                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  338 
  339                 /* Fill in POSIX parts */
  340                 sf.sf_si = ksi->ksi_info;
  341                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  342                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  343         } else {
  344                 /* Old FreeBSD-style arguments. */
  345                 regs->tf_rsi = ksi->ksi_code;   /* arg 2 in %rsi */
  346                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  347                 sf.sf_ahu.sf_handler = catcher;
  348         }
  349         mtx_unlock(&psp->ps_mtx);
  350         PROC_UNLOCK(p);
  351 
  352         /*
  353          * Copy the sigframe out to the user's stack.
  354          */
  355         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  356 #ifdef DEBUG
  357                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  358 #endif
  359                 PROC_LOCK(p);
  360                 sigexit(td, SIGILL);
  361         }
  362 
  363         regs->tf_rsp = (long)sfp;
  364         regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  365         regs->tf_rflags &= ~(PSL_T | PSL_D);
  366         regs->tf_cs = _ucodesel;
  367         PROC_LOCK(p);
  368         mtx_lock(&psp->ps_mtx);
  369 }
  370 
  371 /*
  372  * System call to cleanup state after a signal
  373  * has been taken.  Reset signal mask and
  374  * stack state from context left by sendsig (above).
  375  * Return to previous pc and psl as specified by
  376  * context left by sendsig. Check carefully to
  377  * make sure that the user has not modified the
  378  * state to gain improper privileges.
  379  *
  380  * MPSAFE
  381  */
  382 int
  383 sigreturn(td, uap)
  384         struct thread *td;
  385         struct sigreturn_args /* {
  386                 const struct __ucontext *sigcntxp;
  387         } */ *uap;
  388 {
  389         ucontext_t uc;
  390         struct proc *p = td->td_proc;
  391         struct trapframe *regs;
  392         const ucontext_t *ucp;
  393         long rflags;
  394         int cs, error, ret;
  395         ksiginfo_t ksi;
  396 
  397         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  398         if (error != 0)
  399                 return (error);
  400         ucp = &uc;
  401         regs = td->td_frame;
  402         rflags = ucp->uc_mcontext.mc_rflags;
  403         /*
  404          * Don't allow users to change privileged or reserved flags.
  405          */
  406         /*
  407          * XXX do allow users to change the privileged flag PSL_RF.
  408          * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
  409          * should sometimes set it there too.  tf_rflags is kept in
  410          * the signal context during signal handling and there is no
  411          * other place to remember it, so the PSL_RF bit may be
  412          * corrupted by the signal handler without us knowing.
  413          * Corruption of the PSL_RF bit at worst causes one more or
  414          * one less debugger trap, so allowing it is fairly harmless.
  415          */
  416         if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
  417                 printf("sigreturn: rflags = 0x%lx\n", rflags);
  418                 return (EINVAL);
  419         }
  420 
  421         /*
  422          * Don't allow users to load a valid privileged %cs.  Let the
  423          * hardware check for invalid selectors, excess privilege in
  424          * other selectors, invalid %eip's and invalid %esp's.
  425          */
  426         cs = ucp->uc_mcontext.mc_cs;
  427         if (!CS_SECURE(cs)) {
  428                 printf("sigreturn: cs = 0x%x\n", cs);
  429                 ksiginfo_init_trap(&ksi);
  430                 ksi.ksi_signo = SIGBUS;
  431                 ksi.ksi_code = BUS_OBJERR;
  432                 ksi.ksi_trapno = T_PROTFLT;
  433                 ksi.ksi_addr = (void *)regs->tf_rip;
  434                 trapsignal(td, &ksi);
  435                 return (EINVAL);
  436         }
  437 
  438         ret = set_fpcontext(td, &ucp->uc_mcontext);
  439         if (ret != 0)
  440                 return (ret);
  441         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  442 
  443         PROC_LOCK(p);
  444 #if defined(COMPAT_43)
  445         if (ucp->uc_mcontext.mc_onstack & 1)
  446                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  447         else
  448                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  449 #endif
  450 
  451         td->td_sigmask = ucp->uc_sigmask;
  452         SIG_CANTMASK(td->td_sigmask);
  453         signotify(td);
  454         PROC_UNLOCK(p);
  455         td->td_pcb->pcb_flags |= PCB_FULLCTX;
  456         return (EJUSTRETURN);
  457 }
  458 
  459 #ifdef COMPAT_FREEBSD4
  460 int
  461 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  462 {
  463  
  464         return sigreturn(td, (struct sigreturn_args *)uap);
  465 }
  466 #endif
  467 
  468 
  469 /*
  470  * Machine dependent boot() routine
  471  *
  472  * I haven't seen anything to put here yet
  473  * Possibly some stuff might be grafted back here from boot()
  474  */
  475 void
  476 cpu_boot(int howto)
  477 {
  478 }
  479 
  480 /* Get current clock frequency for the given cpu id. */
  481 int
  482 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  483 {
  484         register_t reg;
  485         uint64_t tsc1, tsc2;
  486 
  487         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  488                 return (EINVAL);
  489 
  490         /* If we're booting, trust the rate calibrated moments ago. */
  491         if (cold) {
  492                 *rate = tsc_freq;
  493                 return (0);
  494         }
  495 
  496 #ifdef SMP
  497         /* Schedule ourselves on the indicated cpu. */
  498         thread_lock(curthread);
  499         sched_bind(curthread, cpu_id);
  500         thread_unlock(curthread);
  501 #endif
  502 
  503         /* Calibrate by measuring a short delay. */
  504         reg = intr_disable();
  505         tsc1 = rdtsc();
  506         DELAY(1000);
  507         tsc2 = rdtsc();
  508         intr_restore(reg);
  509 
  510 #ifdef SMP
  511         thread_lock(curthread);
  512         sched_unbind(curthread);
  513         thread_unlock(curthread);
  514 #endif
  515 
  516         /*
  517          * Calculate the difference in readings, convert to Mhz, and
  518          * subtract 0.5% of the total.  Empirical testing has shown that
  519          * overhead in DELAY() works out to approximately this value.
  520          */
  521         tsc2 -= tsc1;
  522         *rate = tsc2 * 1000 - tsc2 * 5;
  523         return (0);
  524 }
  525 
  526 /*
  527  * Shutdown the CPU as much as possible
  528  */
  529 void
  530 cpu_halt(void)
  531 {
  532         for (;;)
  533                 __asm__ ("hlt");
  534 }
  535 
  536 /*
  537  * Hook to idle the CPU when possible.  In the SMP case we default to
  538  * off because a halted cpu will not currently pick up a new thread in the
  539  * run queue until the next timer tick.  If turned on this will result in
  540  * approximately a 4.2% loss in real time performance in buildworld tests
  541  * (but improves user and sys times oddly enough), and saves approximately
  542  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
  543  *
  544  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
  545  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
  546  * Then we can have our cake and eat it too.
  547  *
  548  * XXX I'm turning it on for SMP as well by default for now.  It seems to
  549  * help lock contention somewhat, and this is critical for HTT. -Peter
  550  */
  551 static int      cpu_idle_hlt = 1;
  552 TUNABLE_INT("machdep.cpu_idle_hlt", &cpu_idle_hlt);
  553 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
  554     &cpu_idle_hlt, 0, "Idle loop HLT enable");
  555 
  556 static void
  557 cpu_idle_default(void)
  558 {
  559         /*
  560          * we must absolutely guarentee that hlt is the
  561          * absolute next instruction after sti or we
  562          * introduce a timing window.
  563          */
  564         __asm __volatile("sti; hlt");
  565 }
  566 
  567 /*
  568  * Note that we have to be careful here to avoid a race between checking
  569  * sched_runnable() and actually halting.  If we don't do this, we may waste
  570  * the time between calling hlt and the next interrupt even though there
  571  * is a runnable process.
  572  */
  573 void
  574 cpu_idle(void)
  575 {
  576 
  577 #ifdef SMP
  578         if (mp_grab_cpu_hlt())
  579                 return;
  580 #endif
  581         if (cpu_idle_hlt) {
  582                 disable_intr();
  583                 if (sched_runnable())
  584                         enable_intr();
  585                 else
  586                         (*cpu_idle_hook)();
  587         }
  588 }
  589 
  590 /* Other subsystems (e.g., ACPI) can hook this later. */
  591 void (*cpu_idle_hook)(void) = cpu_idle_default;
  592 
  593 /*
  594  * Reset registers to default values on exec.
  595  */
  596 void
  597 exec_setregs(td, entry, stack, ps_strings)
  598         struct thread *td;
  599         u_long entry;
  600         u_long stack;
  601         u_long ps_strings;
  602 {
  603         struct trapframe *regs = td->td_frame;
  604         struct pcb *pcb = td->td_pcb;
  605         
  606         critical_enter();
  607         wrmsr(MSR_FSBASE, 0);
  608         wrmsr(MSR_KGSBASE, 0);  /* User value while we're in the kernel */
  609         pcb->pcb_fsbase = 0;
  610         pcb->pcb_gsbase = 0;
  611         critical_exit();
  612         pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
  613         load_ds(_udatasel);
  614         load_es(_udatasel);
  615         load_fs(_udatasel);
  616         load_gs(_udatasel);
  617         pcb->pcb_ds = _udatasel;
  618         pcb->pcb_es = _udatasel;
  619         pcb->pcb_fs = _udatasel;
  620         pcb->pcb_gs = _udatasel;
  621         pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
  622 
  623         bzero((char *)regs, sizeof(struct trapframe));
  624         regs->tf_rip = entry;
  625         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  626         regs->tf_rdi = stack;           /* argv */
  627         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  628         regs->tf_ss = _udatasel;
  629         regs->tf_cs = _ucodesel;
  630 
  631         /*
  632          * Reset the hardware debug registers if they were in use.
  633          * They won't have any meaning for the newly exec'd process.
  634          */
  635         if (pcb->pcb_flags & PCB_DBREGS) {
  636                 pcb->pcb_dr0 = 0;
  637                 pcb->pcb_dr1 = 0;
  638                 pcb->pcb_dr2 = 0;
  639                 pcb->pcb_dr3 = 0;
  640                 pcb->pcb_dr6 = 0;
  641                 pcb->pcb_dr7 = 0;
  642                 if (pcb == PCPU_GET(curpcb)) {
  643                         /*
  644                          * Clear the debug registers on the running
  645                          * CPU, otherwise they will end up affecting
  646                          * the next process we switch to.
  647                          */
  648                         reset_dbregs();
  649                 }
  650                 pcb->pcb_flags &= ~PCB_DBREGS;
  651         }
  652 
  653         /*
  654          * Drop the FP state if we hold it, so that the process gets a
  655          * clean FP state if it uses the FPU again.
  656          */
  657         fpstate_drop(td);
  658 }
  659 
  660 void
  661 cpu_setregs(void)
  662 {
  663         register_t cr0;
  664 
  665         cr0 = rcr0();
  666         /*
  667          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  668          * BSP.  See the comments there about why we set them.
  669          */
  670         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  671         load_cr0(cr0);
  672 }
  673 
  674 /*
  675  * Initialize amd64 and configure to run kernel
  676  */
  677 
  678 /*
  679  * Initialize segments & interrupt table
  680  */
  681 
  682 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
  683 static struct gate_descriptor idt0[NIDT];
  684 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
  685 
  686 static char dblfault_stack[PAGE_SIZE] __aligned(16);
  687 
  688 static char nmi0_stack[PAGE_SIZE] __aligned(16);
  689 CTASSERT(sizeof(struct nmi_pcpu) == 16);
  690 
  691 struct amd64tss common_tss[MAXCPU];
  692 
  693 /* software prototypes -- in more palatable form */
  694 struct soft_segment_descriptor gdt_segs[] = {
  695 /* GNULL_SEL    0 Null Descriptor */
  696 {       0x0,                    /* segment base address  */
  697         0x0,                    /* length */
  698         0,                      /* segment type */
  699         0,                      /* segment descriptor priority level */
  700         0,                      /* segment descriptor present */
  701         0,                      /* long */
  702         0,                      /* default 32 vs 16 bit size */
  703         0                       /* limit granularity (byte/page units)*/ },
  704 /* GCODE_SEL    1 Code Descriptor for kernel */
  705 {       0x0,                    /* segment base address  */
  706         0xfffff,                /* length - all address space */
  707         SDT_MEMERA,             /* segment type */
  708         SEL_KPL,                /* segment descriptor priority level */
  709         1,                      /* segment descriptor present */
  710         1,                      /* long */
  711         0,                      /* default 32 vs 16 bit size */
  712         1                       /* limit granularity (byte/page units)*/ },
  713 /* GDATA_SEL    2 Data Descriptor for kernel */
  714 {       0x0,                    /* segment base address  */
  715         0xfffff,                /* length - all address space */
  716         SDT_MEMRWA,             /* segment type */
  717         SEL_KPL,                /* segment descriptor priority level */
  718         1,                      /* segment descriptor present */
  719         1,                      /* long */
  720         0,                      /* default 32 vs 16 bit size */
  721         1                       /* limit granularity (byte/page units)*/ },
  722 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
  723 {       0x0,                    /* segment base address  */
  724         0xfffff,                /* length - all address space */
  725         SDT_MEMERA,             /* segment type */
  726         SEL_UPL,                /* segment descriptor priority level */
  727         1,                      /* segment descriptor present */
  728         0,                      /* long */
  729         1,                      /* default 32 vs 16 bit size */
  730         1                       /* limit granularity (byte/page units)*/ },
  731 /* GUDATA_SEL   4 32/64 bit Data Descriptor for user */
  732 {       0x0,                    /* segment base address  */
  733         0xfffff,                /* length - all address space */
  734         SDT_MEMRWA,             /* segment type */
  735         SEL_UPL,                /* segment descriptor priority level */
  736         1,                      /* segment descriptor present */
  737         0,                      /* long */
  738         1,                      /* default 32 vs 16 bit size */
  739         1                       /* limit granularity (byte/page units)*/ },
  740 /* GUCODE_SEL   5 64 bit Code Descriptor for user */
  741 {       0x0,                    /* segment base address  */
  742         0xfffff,                /* length - all address space */
  743         SDT_MEMERA,             /* segment type */
  744         SEL_UPL,                /* segment descriptor priority level */
  745         1,                      /* segment descriptor present */
  746         1,                      /* long */
  747         0,                      /* default 32 vs 16 bit size */
  748         1                       /* limit granularity (byte/page units)*/ },
  749 /* GPROC0_SEL   6 Proc 0 Tss Descriptor */
  750 {
  751         0x0,                    /* segment base address */
  752         sizeof(struct amd64tss)-1,/* length */
  753         SDT_SYSTSS,             /* segment type */
  754         SEL_KPL,                /* segment descriptor priority level */
  755         1,                      /* segment descriptor present */
  756         0,                      /* long */
  757         0,                      /* unused - default 32 vs 16 bit size */
  758         0                       /* limit granularity (byte/page units)*/ },
  759 /* Actually, the TSS is a system descriptor which is double size */
  760 {       0x0,                    /* segment base address  */
  761         0x0,                    /* length */
  762         0,                      /* segment type */
  763         0,                      /* segment descriptor priority level */
  764         0,                      /* segment descriptor present */
  765         0,                      /* long */
  766         0,                      /* default 32 vs 16 bit size */
  767         0                       /* limit granularity (byte/page units)*/ },
  768 /* GUGS32_SEL   8 32 bit GS Descriptor for user */
  769 {       0x0,                    /* segment base address  */
  770         0xfffff,                /* length - all address space */
  771         SDT_MEMRWA,             /* segment type */
  772         SEL_UPL,                /* segment descriptor priority level */
  773         1,                      /* segment descriptor present */
  774         0,                      /* long */
  775         1,                      /* default 32 vs 16 bit size */
  776         1                       /* limit granularity (byte/page units)*/ },
  777 };
  778 
  779 void
  780 setidt(idx, func, typ, dpl, ist)
  781         int idx;
  782         inthand_t *func;
  783         int typ;
  784         int dpl;
  785         int ist;
  786 {
  787         struct gate_descriptor *ip;
  788 
  789         ip = idt + idx;
  790         ip->gd_looffset = (uintptr_t)func;
  791         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
  792         ip->gd_ist = ist;
  793         ip->gd_xx = 0;
  794         ip->gd_type = typ;
  795         ip->gd_dpl = dpl;
  796         ip->gd_p = 1;
  797         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
  798 }
  799 
  800 extern inthand_t
  801         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
  802         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
  803         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
  804         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
  805         IDTVEC(xmm), IDTVEC(dblfault),
  806         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  807 
  808 void
  809 sdtossd(sd, ssd)
  810         struct user_segment_descriptor *sd;
  811         struct soft_segment_descriptor *ssd;
  812 {
  813 
  814         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
  815         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
  816         ssd->ssd_type  = sd->sd_type;
  817         ssd->ssd_dpl   = sd->sd_dpl;
  818         ssd->ssd_p     = sd->sd_p;
  819         ssd->ssd_long  = sd->sd_long;
  820         ssd->ssd_def32 = sd->sd_def32;
  821         ssd->ssd_gran  = sd->sd_gran;
  822 }
  823 
  824 void
  825 ssdtosd(ssd, sd)
  826         struct soft_segment_descriptor *ssd;
  827         struct user_segment_descriptor *sd;
  828 {
  829 
  830         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  831         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
  832         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  833         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  834         sd->sd_type  = ssd->ssd_type;
  835         sd->sd_dpl   = ssd->ssd_dpl;
  836         sd->sd_p     = ssd->ssd_p;
  837         sd->sd_long  = ssd->ssd_long;
  838         sd->sd_def32 = ssd->ssd_def32;
  839         sd->sd_gran  = ssd->ssd_gran;
  840 }
  841 
  842 void
  843 ssdtosyssd(ssd, sd)
  844         struct soft_segment_descriptor *ssd;
  845         struct system_segment_descriptor *sd;
  846 {
  847 
  848         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
  849         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
  850         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
  851         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
  852         sd->sd_type  = ssd->ssd_type;
  853         sd->sd_dpl   = ssd->ssd_dpl;
  854         sd->sd_p     = ssd->ssd_p;
  855         sd->sd_gran  = ssd->ssd_gran;
  856 }
  857 
  858 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
  859 #include <isa/isavar.h>
  860 u_int
  861 isa_irq_pending(void)
  862 {
  863 
  864         return (0);
  865 }
  866 #endif
  867 
  868 u_int basemem;
  869 
  870 static int
  871 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
  872 {
  873         int i, insert_idx, physmap_idx;
  874 
  875         physmap_idx = *physmap_idxp;
  876 
  877         if (boothowto & RB_VERBOSE)
  878                 printf("SMAP type=%02x base=%016lx len=%016lx\n",
  879                     smap->type, smap->base, smap->length);
  880 
  881         if (smap->type != SMAP_TYPE_MEMORY)
  882                 return (1);
  883 
  884         if (smap->length == 0)
  885                 return (0);
  886 
  887         /*
  888          * Find insertion point while checking for overlap.  Start off by
  889          * assuming the new entry will be added to the end.
  890          */
  891         insert_idx = physmap_idx + 2;
  892         for (i = 0; i <= physmap_idx; i += 2) {
  893                 if (smap->base < physmap[i + 1]) {
  894                         if (smap->base + smap->length <= physmap[i]) {
  895                                 insert_idx = i;
  896                                 break;
  897                         }
  898                         if (boothowto & RB_VERBOSE)
  899                                 printf(
  900                     "Overlapping memory regions, ignoring second region\n");
  901                         return (1);
  902                 }
  903         }
  904 
  905         /* See if we can prepend to the next entry. */
  906         if (insert_idx <= physmap_idx &&
  907             smap->base + smap->length == physmap[insert_idx]) {
  908                 physmap[insert_idx] = smap->base;
  909                 return (1);
  910         }
  911 
  912         /* See if we can append to the previous entry. */
  913         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
  914                 physmap[insert_idx - 1] += smap->length;
  915                 return (1);
  916         }
  917 
  918         physmap_idx += 2;
  919         *physmap_idxp = physmap_idx;
  920         if (physmap_idx == PHYSMAP_SIZE) {
  921                 printf(
  922                 "Too many segments in the physical address map, giving up\n");
  923                 return (0);
  924         }
  925 
  926         /*
  927          * Move the last 'N' entries down to make room for the new
  928          * entry if needed.
  929          */
  930         for (i = physmap_idx; i > insert_idx; i -= 2) {
  931                 physmap[i] = physmap[i - 2];
  932                 physmap[i + 1] = physmap[i - 1];
  933         }
  934 
  935         /* Insert the new entry. */
  936         physmap[insert_idx] = smap->base;
  937         physmap[insert_idx + 1] = smap->base + smap->length;
  938         return (1);
  939 }
  940 
  941 /*
  942  * Populate the (physmap) array with base/bound pairs describing the
  943  * available physical memory in the system, then test this memory and
  944  * build the phys_avail array describing the actually-available memory.
  945  *
  946  * If we cannot accurately determine the physical memory map, then use
  947  * value from the 0xE801 call, and failing that, the RTC.
  948  *
  949  * Total memory size may be set by the kernel environment variable
  950  * hw.physmem or the compile-time define MAXMEM.
  951  *
  952  * XXX first should be vm_paddr_t.
  953  */
  954 static void
  955 getmemsize(caddr_t kmdp, u_int64_t first)
  956 {
  957         int i, off, physmap_idx, pa_indx, da_indx;
  958         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
  959         u_long physmem_tunable, memtest;
  960         pt_entry_t *pte;
  961         struct bios_smap *smapbase, *smap, *smapend;
  962         u_int32_t smapsize;
  963         quad_t dcons_addr, dcons_size;
  964 
  965         bzero(physmap, sizeof(physmap));
  966         basemem = 0;
  967         physmap_idx = 0;
  968 
  969         /*
  970          * get memory map from INT 15:E820, kindly supplied by the loader.
  971          *
  972          * subr_module.c says:
  973          * "Consumer may safely assume that size value precedes data."
  974          * ie: an int32_t immediately precedes smap.
  975          */
  976         smapbase = (struct bios_smap *)preload_search_info(kmdp,
  977             MODINFO_METADATA | MODINFOMD_SMAP);
  978         if (smapbase == NULL)
  979                 panic("No BIOS smap info from loader!");
  980 
  981         smapsize = *((u_int32_t *)smapbase - 1);
  982         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
  983 
  984         for (smap = smapbase; smap < smapend; smap++)
  985                 if (!add_smap_entry(smap, physmap, &physmap_idx))
  986                         break;
  987 
  988         /*
  989          * Find the 'base memory' segment for SMP
  990          */
  991         basemem = 0;
  992         for (i = 0; i <= physmap_idx; i += 2) {
  993                 if (physmap[i] == 0x00000000) {
  994                         basemem = physmap[i + 1] / 1024;
  995                         break;
  996                 }
  997         }
  998         if (basemem == 0)
  999                 panic("BIOS smap did not include a basemem segment!");
 1000 
 1001 #ifdef SMP
 1002         /* make hole for AP bootstrap code */
 1003         physmap[1] = mp_bootaddress(physmap[1] / 1024);
 1004 #endif
 1005 
 1006         /*
 1007          * Maxmem isn't the "maximum memory", it's one larger than the
 1008          * highest page of the physical address space.  It should be
 1009          * called something like "Maxphyspage".  We may adjust this
 1010          * based on ``hw.physmem'' and the results of the memory test.
 1011          */
 1012         Maxmem = atop(physmap[physmap_idx + 1]);
 1013 
 1014 #ifdef MAXMEM
 1015         Maxmem = MAXMEM / 4;
 1016 #endif
 1017 
 1018         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1019                 Maxmem = atop(physmem_tunable);
 1020 
 1021         /*
 1022          * By default keep the memtest enabled.  Use a general name so that
 1023          * one could eventually do more with the code than just disable it.
 1024          */
 1025         memtest = 1;
 1026         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1027 
 1028         /*
 1029          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
 1030          * in the system.
 1031          */
 1032         if (Maxmem > atop(physmap[physmap_idx + 1]))
 1033                 Maxmem = atop(physmap[physmap_idx + 1]);
 1034 
 1035         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1036             (boothowto & RB_VERBOSE))
 1037                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1038 
 1039         /* call pmap initialization to make new kernel address space */
 1040         pmap_bootstrap(&first);
 1041 
 1042         /*
 1043          * Size up each available chunk of physical memory.
 1044          */
 1045         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1046         pa_indx = 0;
 1047         da_indx = 1;
 1048         phys_avail[pa_indx++] = physmap[0];
 1049         phys_avail[pa_indx] = physmap[0];
 1050         dump_avail[da_indx] = physmap[0];
 1051         pte = CMAP1;
 1052 
 1053         /*
 1054          * Get dcons buffer address
 1055          */
 1056         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1057             getenv_quad("dcons.size", &dcons_size) == 0)
 1058                 dcons_addr = 0;
 1059 
 1060         /*
 1061          * physmap is in bytes, so when converting to page boundaries,
 1062          * round up the start address and round down the end address.
 1063          */
 1064         for (i = 0; i <= physmap_idx; i += 2) {
 1065                 vm_paddr_t end;
 1066 
 1067                 end = ptoa((vm_paddr_t)Maxmem);
 1068                 if (physmap[i + 1] < end)
 1069                         end = trunc_page(physmap[i + 1]);
 1070                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1071                         int tmp, page_bad, full;
 1072                         int *ptr = (int *)CADDR1;
 1073 
 1074                         full = FALSE;
 1075                         /*
 1076                          * block out kernel memory as not available.
 1077                          */
 1078                         if (pa >= 0x100000 && pa < first)
 1079                                 goto do_dump_avail;
 1080 
 1081                         /*
 1082                          * block out dcons buffer
 1083                          */
 1084                         if (dcons_addr > 0
 1085                             && pa >= trunc_page(dcons_addr)
 1086                             && pa < dcons_addr + dcons_size)
 1087                                 goto do_dump_avail;
 1088 
 1089                         page_bad = FALSE;
 1090                         if (memtest == 0)
 1091                                 goto skip_memtest;
 1092 
 1093                         /*
 1094                          * map page into kernel: valid, read/write,non-cacheable
 1095                          */
 1096                         *pte = pa | PG_V | PG_RW | PG_N;
 1097                         invltlb();
 1098 
 1099                         tmp = *(int *)ptr;
 1100                         /*
 1101                          * Test for alternating 1's and 0's
 1102                          */
 1103                         *(volatile int *)ptr = 0xaaaaaaaa;
 1104                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1105                                 page_bad = TRUE;
 1106                         /*
 1107                          * Test for alternating 0's and 1's
 1108                          */
 1109                         *(volatile int *)ptr = 0x55555555;
 1110                         if (*(volatile int *)ptr != 0x55555555)
 1111                                 page_bad = TRUE;
 1112                         /*
 1113                          * Test for all 1's
 1114                          */
 1115                         *(volatile int *)ptr = 0xffffffff;
 1116                         if (*(volatile int *)ptr != 0xffffffff)
 1117                                 page_bad = TRUE;
 1118                         /*
 1119                          * Test for all 0's
 1120                          */
 1121                         *(volatile int *)ptr = 0x0;
 1122                         if (*(volatile int *)ptr != 0x0)
 1123                                 page_bad = TRUE;
 1124                         /*
 1125                          * Restore original value.
 1126                          */
 1127                         *(int *)ptr = tmp;
 1128 
 1129 skip_memtest:
 1130                         /*
 1131                          * Adjust array of valid/good pages.
 1132                          */
 1133                         if (page_bad == TRUE)
 1134                                 continue;
 1135                         /*
 1136                          * If this good page is a continuation of the
 1137                          * previous set of good pages, then just increase
 1138                          * the end pointer. Otherwise start a new chunk.
 1139                          * Note that "end" points one higher than end,
 1140                          * making the range >= start and < end.
 1141                          * If we're also doing a speculative memory
 1142                          * test and we at or past the end, bump up Maxmem
 1143                          * so that we keep going. The first bad page
 1144                          * will terminate the loop.
 1145                          */
 1146                         if (phys_avail[pa_indx] == pa) {
 1147                                 phys_avail[pa_indx] += PAGE_SIZE;
 1148                         } else {
 1149                                 pa_indx++;
 1150                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1151                                         printf(
 1152                 "Too many holes in the physical address space, giving up\n");
 1153                                         pa_indx--;
 1154                                         full = TRUE;
 1155                                         goto do_dump_avail;
 1156                                 }
 1157                                 phys_avail[pa_indx++] = pa;     /* start */
 1158                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1159                         }
 1160                         physmem++;
 1161 do_dump_avail:
 1162                         if (dump_avail[da_indx] == pa) {
 1163                                 dump_avail[da_indx] += PAGE_SIZE;
 1164                         } else {
 1165                                 da_indx++;
 1166                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1167                                         da_indx--;
 1168                                         goto do_next;
 1169                                 }
 1170                                 dump_avail[da_indx++] = pa; /* start */
 1171                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1172                         }
 1173 do_next:
 1174                         if (full)
 1175                                 break;
 1176                 }
 1177         }
 1178         *pte = 0;
 1179         invltlb();
 1180 
 1181         /*
 1182          * XXX
 1183          * The last chunk must contain at least one page plus the message
 1184          * buffer to avoid complicating other code (message buffer address
 1185          * calculation, etc.).
 1186          */
 1187         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1188             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1189                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1190                 phys_avail[pa_indx--] = 0;
 1191                 phys_avail[pa_indx--] = 0;
 1192         }
 1193 
 1194         Maxmem = atop(phys_avail[pa_indx]);
 1195 
 1196         /* Trim off space for the message buffer. */
 1197         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1198 
 1199         /* Map the message buffer. */
 1200         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 1201                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 1202                     off);
 1203 }
 1204 
 1205 u_int64_t
 1206 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1207 {
 1208         caddr_t kmdp;
 1209         int gsel_tss, x;
 1210         struct pcpu *pc;
 1211         struct nmi_pcpu *np;
 1212         u_int64_t msr;
 1213         char *env;
 1214 
 1215         thread0.td_kstack = physfree + KERNBASE;
 1216         bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
 1217         physfree += KSTACK_PAGES * PAGE_SIZE;
 1218         thread0.td_pcb = (struct pcb *)
 1219            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1220 
 1221         /*
 1222          * This may be done better later if it gets more high level
 1223          * components in it. If so just link td->td_proc here.
 1224          */
 1225         proc_linkup0(&proc0, &thread0);
 1226 
 1227         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1228         preload_bootstrap_relocate(KERNBASE);
 1229         kmdp = preload_search_by_type("elf kernel");
 1230         if (kmdp == NULL)
 1231                 kmdp = preload_search_by_type("elf64 kernel");
 1232         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1233         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1234 #ifdef DDB
 1235         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1236         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1237 #endif
 1238 
 1239         /* Init basic tunables, hz etc */
 1240         init_param1();
 1241 
 1242         /*
 1243          * make gdt memory segments
 1244          */
 1245         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1246 
 1247         for (x = 0; x < NGDT; x++) {
 1248                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
 1249                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1250         }
 1251         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1252             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1253 
 1254         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1255         r_gdt.rd_base =  (long) gdt;
 1256         lgdt(&r_gdt);
 1257         pc = &__pcpu[0];
 1258 
 1259         wrmsr(MSR_FSBASE, 0);           /* User value */
 1260         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1261         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1262 
 1263         pcpu_init(pc, 0, sizeof(struct pcpu));
 1264         PCPU_SET(prvspace, pc);
 1265         PCPU_SET(curthread, &thread0);
 1266         PCPU_SET(curpcb, thread0.td_pcb);
 1267         PCPU_SET(tssp, &common_tss[0]);
 1268         PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
 1269 
 1270         /*
 1271          * Initialize mutexes.
 1272          *
 1273          * icu_lock: in order to allow an interrupt to occur in a critical
 1274          *           section, to set pcpu->ipending (etc...) properly, we
 1275          *           must be able to get the icu lock, so it can't be
 1276          *           under witness.
 1277          */
 1278         mutex_init();
 1279         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1280 
 1281         /* exceptions */
 1282         for (x = 0; x < NIDT; x++)
 1283                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1284         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1285         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1286         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
 1287         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1288         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1289         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1290         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1291         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1292         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1293         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1294         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1295         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1296         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1297         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1298         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1299         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1300         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1301         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1302         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1303 
 1304         r_idt.rd_limit = sizeof(idt0) - 1;
 1305         r_idt.rd_base = (long) idt;
 1306         lidt(&r_idt);
 1307 
 1308         /*
 1309          * Initialize the i8254 before the console so that console
 1310          * initialization can use DELAY().
 1311          */
 1312         i8254_init();
 1313 
 1314         /*
 1315          * Initialize the console before we print anything out.
 1316          */
 1317         cninit();
 1318 
 1319 #ifdef DEV_ISA
 1320 #ifdef DEV_ATPIC
 1321         elcr_probe();
 1322         atpic_startup();
 1323 #else
 1324         /* Reset and mask the atpics and leave them shut down. */
 1325         atpic_reset();
 1326 
 1327         /*
 1328          * Point the ICU spurious interrupt vectors at the APIC spurious
 1329          * interrupt handler.
 1330          */
 1331         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1332         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1333 #endif
 1334 #else
 1335 #error "have you forgotten the isa device?";
 1336 #endif
 1337 
 1338         kdb_init();
 1339 
 1340 #ifdef KDB
 1341         if (boothowto & RB_KDB)
 1342                 kdb_enter_why(KDB_WHY_BOOTFLAGS,
 1343                     "Boot flags requested debugger");
 1344 #endif
 1345 
 1346         identify_cpu();         /* Final stage of CPU initialization */
 1347         initializecpu();        /* Initialize CPU registers */
 1348         initializecpucache();
 1349 
 1350         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1351         common_tss[0].tss_rsp0 = thread0.td_kstack + \
 1352             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
 1353         /* Ensure the stack is aligned to 16 bytes */
 1354         common_tss[0].tss_rsp0 &= ~0xFul;
 1355         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1356 
 1357         /* doublefault stack space, runs on ist1 */
 1358         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1359 
 1360         /*
 1361          * NMI stack, runs on ist2.  The pcpu pointer is stored just
 1362          * above the start of the ist2 stack.
 1363          */
 1364         np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
 1365         np->np_pcpu = (register_t) pc;
 1366         common_tss[0].tss_ist2 = (long) np;
 1367 
 1368         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1369         common_tss[0].tss_iobase = sizeof(struct amd64tss);
 1370 
 1371         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1372         ltr(gsel_tss);
 1373 
 1374         /* Set up the fast syscall stuff */
 1375         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1376         wrmsr(MSR_EFER, msr);
 1377         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1378         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1379         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1380               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1381         wrmsr(MSR_STAR, msr);
 1382         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1383 
 1384         getmemsize(kmdp, physfree);
 1385         init_param2(physmem);
 1386 
 1387         /* now running on new page tables, configured,and u/iom is accessible */
 1388 
 1389         msgbufinit(msgbufp, MSGBUF_SIZE);
 1390         fpuinit();
 1391 
 1392         /* transfer to user mode */
 1393 
 1394         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1395         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1396         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1397 
 1398         /* setup proc 0's pcb */
 1399         thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
 1400         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1401         thread0.td_frame = &proc0_tf;
 1402 
 1403         env = getenv("kernelname");
 1404         if (env != NULL)
 1405                 strlcpy(kernelname, env, sizeof(kernelname));
 1406 
 1407         /* Location of kernel stack for locore */
 1408         return ((u_int64_t)thread0.td_pcb);
 1409 }
 1410 
 1411 void
 1412 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1413 {
 1414 
 1415         pcpu->pc_acpi_id = 0xffffffff;
 1416 }
 1417 
 1418 void
 1419 spinlock_enter(void)
 1420 {
 1421         struct thread *td;
 1422         register_t flags;
 1423 
 1424         td = curthread;
 1425         if (td->td_md.md_spinlock_count == 0) {
 1426                 flags = intr_disable();
 1427                 td->td_md.md_spinlock_count = 1;
 1428                 td->td_md.md_saved_flags = flags;
 1429         } else
 1430                 td->td_md.md_spinlock_count++;
 1431         critical_enter();
 1432 }
 1433 
 1434 void
 1435 spinlock_exit(void)
 1436 {
 1437         struct thread *td;
 1438         register_t flags;
 1439 
 1440         td = curthread;
 1441         critical_exit();
 1442         flags = td->td_md.md_saved_flags;
 1443         td->td_md.md_spinlock_count--;
 1444         if (td->td_md.md_spinlock_count == 0)
 1445                 intr_restore(flags);
 1446 }
 1447 
 1448 /*
 1449  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1450  * we want to start a backtrace from the function that caused us to enter
 1451  * the debugger. We have the context in the trapframe, but base the trace
 1452  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1453  * enough for a backtrace.
 1454  */
 1455 void
 1456 makectx(struct trapframe *tf, struct pcb *pcb)
 1457 {
 1458 
 1459         pcb->pcb_r12 = tf->tf_r12;
 1460         pcb->pcb_r13 = tf->tf_r13;
 1461         pcb->pcb_r14 = tf->tf_r14;
 1462         pcb->pcb_r15 = tf->tf_r15;
 1463         pcb->pcb_rbp = tf->tf_rbp;
 1464         pcb->pcb_rbx = tf->tf_rbx;
 1465         pcb->pcb_rip = tf->tf_rip;
 1466         pcb->pcb_rsp = tf->tf_rsp;
 1467 }
 1468 
 1469 int
 1470 ptrace_set_pc(struct thread *td, unsigned long addr)
 1471 {
 1472         td->td_frame->tf_rip = addr;
 1473         return (0);
 1474 }
 1475 
 1476 int
 1477 ptrace_single_step(struct thread *td)
 1478 {
 1479         td->td_frame->tf_rflags |= PSL_T;
 1480         return (0);
 1481 }
 1482 
 1483 int
 1484 ptrace_clear_single_step(struct thread *td)
 1485 {
 1486         td->td_frame->tf_rflags &= ~PSL_T;
 1487         return (0);
 1488 }
 1489 
 1490 int
 1491 fill_regs(struct thread *td, struct reg *regs)
 1492 {
 1493         struct trapframe *tp;
 1494 
 1495         tp = td->td_frame;
 1496         regs->r_r15 = tp->tf_r15;
 1497         regs->r_r14 = tp->tf_r14;
 1498         regs->r_r13 = tp->tf_r13;
 1499         regs->r_r12 = tp->tf_r12;
 1500         regs->r_r11 = tp->tf_r11;
 1501         regs->r_r10 = tp->tf_r10;
 1502         regs->r_r9  = tp->tf_r9;
 1503         regs->r_r8  = tp->tf_r8;
 1504         regs->r_rdi = tp->tf_rdi;
 1505         regs->r_rsi = tp->tf_rsi;
 1506         regs->r_rbp = tp->tf_rbp;
 1507         regs->r_rbx = tp->tf_rbx;
 1508         regs->r_rdx = tp->tf_rdx;
 1509         regs->r_rcx = tp->tf_rcx;
 1510         regs->r_rax = tp->tf_rax;
 1511         regs->r_rip = tp->tf_rip;
 1512         regs->r_cs = tp->tf_cs;
 1513         regs->r_rflags = tp->tf_rflags;
 1514         regs->r_rsp = tp->tf_rsp;
 1515         regs->r_ss = tp->tf_ss;
 1516         return (0);
 1517 }
 1518 
 1519 int
 1520 set_regs(struct thread *td, struct reg *regs)
 1521 {
 1522         struct trapframe *tp;
 1523         register_t rflags;
 1524 
 1525         tp = td->td_frame;
 1526         rflags = regs->r_rflags & 0xffffffff;
 1527         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 1528                 return (EINVAL);
 1529         tp->tf_r15 = regs->r_r15;
 1530         tp->tf_r14 = regs->r_r14;
 1531         tp->tf_r13 = regs->r_r13;
 1532         tp->tf_r12 = regs->r_r12;
 1533         tp->tf_r11 = regs->r_r11;
 1534         tp->tf_r10 = regs->r_r10;
 1535         tp->tf_r9  = regs->r_r9;
 1536         tp->tf_r8  = regs->r_r8;
 1537         tp->tf_rdi = regs->r_rdi;
 1538         tp->tf_rsi = regs->r_rsi;
 1539         tp->tf_rbp = regs->r_rbp;
 1540         tp->tf_rbx = regs->r_rbx;
 1541         tp->tf_rdx = regs->r_rdx;
 1542         tp->tf_rcx = regs->r_rcx;
 1543         tp->tf_rax = regs->r_rax;
 1544         tp->tf_rip = regs->r_rip;
 1545         tp->tf_cs = regs->r_cs;
 1546         tp->tf_rflags = rflags;
 1547         tp->tf_rsp = regs->r_rsp;
 1548         tp->tf_ss = regs->r_ss;
 1549         td->td_pcb->pcb_flags |= PCB_FULLCTX;
 1550         return (0);
 1551 }
 1552 
 1553 /* XXX check all this stuff! */
 1554 /* externalize from sv_xmm */
 1555 static void
 1556 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 1557 {
 1558         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1559         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1560         int i;
 1561 
 1562         /* pcb -> fpregs */
 1563         bzero(fpregs, sizeof(*fpregs));
 1564 
 1565         /* FPU control/status */
 1566         penv_fpreg->en_cw = penv_xmm->en_cw;
 1567         penv_fpreg->en_sw = penv_xmm->en_sw;
 1568         penv_fpreg->en_tw = penv_xmm->en_tw;
 1569         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 1570         penv_fpreg->en_rip = penv_xmm->en_rip;
 1571         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 1572         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 1573         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 1574 
 1575         /* FPU registers */
 1576         for (i = 0; i < 8; ++i)
 1577                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 1578 
 1579         /* SSE registers */
 1580         for (i = 0; i < 16; ++i)
 1581                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 1582 }
 1583 
 1584 /* internalize from fpregs into sv_xmm */
 1585 static void
 1586 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 1587 {
 1588         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1589         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1590         int i;
 1591 
 1592         /* fpregs -> pcb */
 1593         /* FPU control/status */
 1594         penv_xmm->en_cw = penv_fpreg->en_cw;
 1595         penv_xmm->en_sw = penv_fpreg->en_sw;
 1596         penv_xmm->en_tw = penv_fpreg->en_tw;
 1597         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 1598         penv_xmm->en_rip = penv_fpreg->en_rip;
 1599         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 1600         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 1601         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 1602 
 1603         /* FPU registers */
 1604         for (i = 0; i < 8; ++i)
 1605                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 1606 
 1607         /* SSE registers */
 1608         for (i = 0; i < 16; ++i)
 1609                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 1610 }
 1611 
 1612 /* externalize from td->pcb */
 1613 int
 1614 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1615 {
 1616 
 1617         fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
 1618         return (0);
 1619 }
 1620 
 1621 /* internalize to td->pcb */
 1622 int
 1623 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1624 {
 1625 
 1626         set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
 1627         return (0);
 1628 }
 1629 
 1630 /*
 1631  * Get machine context.
 1632  */
 1633 int
 1634 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 1635 {
 1636         struct trapframe *tp;
 1637 
 1638         tp = td->td_frame;
 1639         PROC_LOCK(curthread->td_proc);
 1640         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 1641         PROC_UNLOCK(curthread->td_proc);
 1642         mcp->mc_r15 = tp->tf_r15;
 1643         mcp->mc_r14 = tp->tf_r14;
 1644         mcp->mc_r13 = tp->tf_r13;
 1645         mcp->mc_r12 = tp->tf_r12;
 1646         mcp->mc_r11 = tp->tf_r11;
 1647         mcp->mc_r10 = tp->tf_r10;
 1648         mcp->mc_r9  = tp->tf_r9;
 1649         mcp->mc_r8  = tp->tf_r8;
 1650         mcp->mc_rdi = tp->tf_rdi;
 1651         mcp->mc_rsi = tp->tf_rsi;
 1652         mcp->mc_rbp = tp->tf_rbp;
 1653         mcp->mc_rbx = tp->tf_rbx;
 1654         mcp->mc_rcx = tp->tf_rcx;
 1655         mcp->mc_rflags = tp->tf_rflags;
 1656         if (flags & GET_MC_CLEAR_RET) {
 1657                 mcp->mc_rax = 0;
 1658                 mcp->mc_rdx = 0;
 1659                 mcp->mc_rflags &= ~PSL_C;
 1660         } else {
 1661                 mcp->mc_rax = tp->tf_rax;
 1662                 mcp->mc_rdx = tp->tf_rdx;
 1663         }
 1664         mcp->mc_rip = tp->tf_rip;
 1665         mcp->mc_cs = tp->tf_cs;
 1666         mcp->mc_rsp = tp->tf_rsp;
 1667         mcp->mc_ss = tp->tf_ss;
 1668         mcp->mc_len = sizeof(*mcp);
 1669         get_fpcontext(td, mcp);
 1670         bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
 1671         return (0);
 1672 }
 1673 
 1674 /*
 1675  * Set machine context.
 1676  *
 1677  * However, we don't set any but the user modifiable flags, and we won't
 1678  * touch the cs selector.
 1679  */
 1680 int
 1681 set_mcontext(struct thread *td, const mcontext_t *mcp)
 1682 {
 1683         struct trapframe *tp;
 1684         long rflags;
 1685         int ret;
 1686 
 1687         tp = td->td_frame;
 1688         if (mcp->mc_len != sizeof(*mcp))
 1689                 return (EINVAL);
 1690         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 1691             (tp->tf_rflags & ~PSL_USERCHANGE);
 1692         ret = set_fpcontext(td, mcp);
 1693         if (ret != 0)
 1694                 return (ret);
 1695         tp->tf_r15 = mcp->mc_r15;
 1696         tp->tf_r14 = mcp->mc_r14;
 1697         tp->tf_r13 = mcp->mc_r13;
 1698         tp->tf_r12 = mcp->mc_r12;
 1699         tp->tf_r11 = mcp->mc_r11;
 1700         tp->tf_r10 = mcp->mc_r10;
 1701         tp->tf_r9  = mcp->mc_r9;
 1702         tp->tf_r8  = mcp->mc_r8;
 1703         tp->tf_rdi = mcp->mc_rdi;
 1704         tp->tf_rsi = mcp->mc_rsi;
 1705         tp->tf_rbp = mcp->mc_rbp;
 1706         tp->tf_rbx = mcp->mc_rbx;
 1707         tp->tf_rdx = mcp->mc_rdx;
 1708         tp->tf_rcx = mcp->mc_rcx;
 1709         tp->tf_rax = mcp->mc_rax;
 1710         tp->tf_rip = mcp->mc_rip;
 1711         tp->tf_rflags = rflags;
 1712         tp->tf_rsp = mcp->mc_rsp;
 1713         tp->tf_ss = mcp->mc_ss;
 1714         td->td_pcb->pcb_flags |= PCB_FULLCTX;
 1715         return (0);
 1716 }
 1717 
 1718 static void
 1719 get_fpcontext(struct thread *td, mcontext_t *mcp)
 1720 {
 1721 
 1722         mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
 1723         mcp->mc_fpformat = fpuformat();
 1724 }
 1725 
 1726 static int
 1727 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 1728 {
 1729         struct savefpu *fpstate;
 1730 
 1731         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 1732                 return (0);
 1733         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 1734                 return (EINVAL);
 1735         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 1736                 /* We don't care what state is left in the FPU or PCB. */
 1737                 fpstate_drop(td);
 1738         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 1739             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 1740                 /*
 1741                  * XXX we violate the dubious requirement that fpusetregs()
 1742                  * be called with interrupts disabled.
 1743                  * XXX obsolete on trap-16 systems?
 1744                  */
 1745                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 1746                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 1747                 fpusetregs(td, fpstate);
 1748         } else
 1749                 return (EINVAL);
 1750         return (0);
 1751 }
 1752 
 1753 void
 1754 fpstate_drop(struct thread *td)
 1755 {
 1756         register_t s;
 1757 
 1758         s = intr_disable();
 1759         if (PCPU_GET(fpcurthread) == td)
 1760                 fpudrop();
 1761         /*
 1762          * XXX force a full drop of the fpu.  The above only drops it if we
 1763          * owned it.
 1764          *
 1765          * XXX I don't much like fpugetregs()'s semantics of doing a full
 1766          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 1767          * We only need to drop to !PCB_INITDONE in sendsig().  But
 1768          * sendsig() is the only caller of fpugetregs()... perhaps we just
 1769          * have too many layers.
 1770          */
 1771         curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
 1772         intr_restore(s);
 1773 }
 1774 
 1775 int
 1776 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 1777 {
 1778         struct pcb *pcb;
 1779 
 1780         if (td == NULL) {
 1781                 dbregs->dr[0] = rdr0();
 1782                 dbregs->dr[1] = rdr1();
 1783                 dbregs->dr[2] = rdr2();
 1784                 dbregs->dr[3] = rdr3();
 1785                 dbregs->dr[6] = rdr6();
 1786                 dbregs->dr[7] = rdr7();
 1787         } else {
 1788                 pcb = td->td_pcb;
 1789                 dbregs->dr[0] = pcb->pcb_dr0;
 1790                 dbregs->dr[1] = pcb->pcb_dr1;
 1791                 dbregs->dr[2] = pcb->pcb_dr2;
 1792                 dbregs->dr[3] = pcb->pcb_dr3;
 1793                 dbregs->dr[6] = pcb->pcb_dr6;
 1794                 dbregs->dr[7] = pcb->pcb_dr7;
 1795         }
 1796         dbregs->dr[4] = 0;
 1797         dbregs->dr[5] = 0;
 1798         dbregs->dr[8] = 0;
 1799         dbregs->dr[9] = 0;
 1800         dbregs->dr[10] = 0;
 1801         dbregs->dr[11] = 0;
 1802         dbregs->dr[12] = 0;
 1803         dbregs->dr[13] = 0;
 1804         dbregs->dr[14] = 0;
 1805         dbregs->dr[15] = 0;
 1806         return (0);
 1807 }
 1808 
 1809 int
 1810 set_dbregs(struct thread *td, struct dbreg *dbregs)
 1811 {
 1812         struct pcb *pcb;
 1813         int i;
 1814 
 1815         if (td == NULL) {
 1816                 load_dr0(dbregs->dr[0]);
 1817                 load_dr1(dbregs->dr[1]);
 1818                 load_dr2(dbregs->dr[2]);
 1819                 load_dr3(dbregs->dr[3]);
 1820                 load_dr6(dbregs->dr[6]);
 1821                 load_dr7(dbregs->dr[7]);
 1822         } else {
 1823                 /*
 1824                  * Don't let an illegal value for dr7 get set.  Specifically,
 1825                  * check for undefined settings.  Setting these bit patterns
 1826                  * result in undefined behaviour and can lead to an unexpected
 1827                  * TRCTRAP or a general protection fault right here.
 1828                  * Upper bits of dr6 and dr7 must not be set
 1829                  */
 1830                 for (i = 0; i < 4; i++) {
 1831                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 1832                                 return (EINVAL);
 1833                         if (td->td_frame->tf_cs == _ucode32sel &&
 1834                             DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
 1835                                 return (EINVAL);
 1836                 }
 1837                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 1838                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 1839                         return (EINVAL);
 1840 
 1841                 pcb = td->td_pcb;
 1842 
 1843                 /*
 1844                  * Don't let a process set a breakpoint that is not within the
 1845                  * process's address space.  If a process could do this, it
 1846                  * could halt the system by setting a breakpoint in the kernel
 1847                  * (if ddb was enabled).  Thus, we need to check to make sure
 1848                  * that no breakpoints are being enabled for addresses outside
 1849                  * process's address space.
 1850                  *
 1851                  * XXX - what about when the watched area of the user's
 1852                  * address space is written into from within the kernel
 1853                  * ... wouldn't that still cause a breakpoint to be generated
 1854                  * from within kernel mode?
 1855                  */
 1856 
 1857                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 1858                         /* dr0 is enabled */
 1859                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 1860                                 return (EINVAL);
 1861                 }
 1862                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 1863                         /* dr1 is enabled */
 1864                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 1865                                 return (EINVAL);
 1866                 }
 1867                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 1868                         /* dr2 is enabled */
 1869                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 1870                                 return (EINVAL);
 1871                 }
 1872                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 1873                         /* dr3 is enabled */
 1874                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 1875                                 return (EINVAL);
 1876                 }
 1877 
 1878                 pcb->pcb_dr0 = dbregs->dr[0];
 1879                 pcb->pcb_dr1 = dbregs->dr[1];
 1880                 pcb->pcb_dr2 = dbregs->dr[2];
 1881                 pcb->pcb_dr3 = dbregs->dr[3];
 1882                 pcb->pcb_dr6 = dbregs->dr[6];
 1883                 pcb->pcb_dr7 = dbregs->dr[7];
 1884 
 1885                 pcb->pcb_flags |= PCB_DBREGS;
 1886         }
 1887 
 1888         return (0);
 1889 }
 1890 
 1891 void
 1892 reset_dbregs(void)
 1893 {
 1894 
 1895         load_dr7(0);    /* Turn off the control bits first */
 1896         load_dr0(0);
 1897         load_dr1(0);
 1898         load_dr2(0);
 1899         load_dr3(0);
 1900         load_dr6(0);
 1901 }
 1902 
 1903 /*
 1904  * Return > 0 if a hardware breakpoint has been hit, and the
 1905  * breakpoint was in user space.  Return 0, otherwise.
 1906  */
 1907 int
 1908 user_dbreg_trap(void)
 1909 {
 1910         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 1911         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 1912         int nbp;            /* number of breakpoints that triggered */
 1913         caddr_t addr[4];    /* breakpoint addresses */
 1914         int i;
 1915         
 1916         dr7 = rdr7();
 1917         if ((dr7 & 0x000000ff) == 0) {
 1918                 /*
 1919                  * all GE and LE bits in the dr7 register are zero,
 1920                  * thus the trap couldn't have been caused by the
 1921                  * hardware debug registers
 1922                  */
 1923                 return 0;
 1924         }
 1925 
 1926         nbp = 0;
 1927         dr6 = rdr6();
 1928         bp = dr6 & 0x0000000f;
 1929 
 1930         if (!bp) {
 1931                 /*
 1932                  * None of the breakpoint bits are set meaning this
 1933                  * trap was not caused by any of the debug registers
 1934                  */
 1935                 return 0;
 1936         }
 1937 
 1938         /*
 1939          * at least one of the breakpoints were hit, check to see
 1940          * which ones and if any of them are user space addresses
 1941          */
 1942 
 1943         if (bp & 0x01) {
 1944                 addr[nbp++] = (caddr_t)rdr0();
 1945         }
 1946         if (bp & 0x02) {
 1947                 addr[nbp++] = (caddr_t)rdr1();
 1948         }
 1949         if (bp & 0x04) {
 1950                 addr[nbp++] = (caddr_t)rdr2();
 1951         }
 1952         if (bp & 0x08) {
 1953                 addr[nbp++] = (caddr_t)rdr3();
 1954         }
 1955 
 1956         for (i = 0; i < nbp; i++) {
 1957                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 1958                         /*
 1959                          * addr[i] is in user space
 1960                          */
 1961                         return nbp;
 1962                 }
 1963         }
 1964 
 1965         /*
 1966          * None of the breakpoints are in user space.
 1967          */
 1968         return 0;
 1969 }
 1970 
 1971 #ifdef KDB
 1972 
 1973 /*
 1974  * Provide inb() and outb() as functions.  They are normally only
 1975  * available as macros calling inlined functions, thus cannot be
 1976  * called from the debugger.
 1977  *
 1978  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 1979  */
 1980 
 1981 #undef inb
 1982 #undef outb
 1983 
 1984 /* silence compiler warnings */
 1985 u_char inb(u_int);
 1986 void outb(u_int, u_char);
 1987 
 1988 u_char
 1989 inb(u_int port)
 1990 {
 1991         u_char  data;
 1992         /*
 1993          * We use %%dx and not %1 here because i/o is done at %dx and not at
 1994          * %edx, while gcc generates inferior code (movw instead of movl)
 1995          * if we tell it to load (u_short) port.
 1996          */
 1997         __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
 1998         return (data);
 1999 }
 2000 
 2001 void
 2002 outb(u_int port, u_char data)
 2003 {
 2004         u_char  al;
 2005         /*
 2006          * Use an unnecessary assignment to help gcc's register allocator.
 2007          * This make a large difference for gcc-1.40 and a tiny difference
 2008          * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
 2009          * best results.  gcc-2.6.0 can't handle this.
 2010          */
 2011         al = data;
 2012         __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
 2013 }
 2014 
 2015 #endif /* KDB */

Cache object: 31bdb76f86da9abb54622b5854cc3401


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.