The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/8.2/sys/amd64/amd64/machdep.c 216458 2010-12-15 15:25:56Z kib $");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_msgbuf.h"
   55 #include "opt_perfmon.h"
   56 #include "opt_sched.h"
   57 
   58 #include <sys/param.h>
   59 #include <sys/proc.h>
   60 #include <sys/systm.h>
   61 #include <sys/bio.h>
   62 #include <sys/buf.h>
   63 #include <sys/bus.h>
   64 #include <sys/callout.h>
   65 #include <sys/cons.h>
   66 #include <sys/cpu.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/exec.h>
   69 #include <sys/imgact.h>
   70 #include <sys/kdb.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/linker.h>
   74 #include <sys/lock.h>
   75 #include <sys/malloc.h>
   76 #include <sys/memrange.h>
   77 #include <sys/msgbuf.h>
   78 #include <sys/mutex.h>
   79 #include <sys/pcpu.h>
   80 #include <sys/ptrace.h>
   81 #include <sys/reboot.h>
   82 #include <sys/sched.h>
   83 #include <sys/signalvar.h>
   84 #include <sys/sysctl.h>
   85 #include <sys/sysent.h>
   86 #include <sys/sysproto.h>
   87 #include <sys/ucontext.h>
   88 #include <sys/vmmeter.h>
   89 
   90 #include <vm/vm.h>
   91 #include <vm/vm_extern.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_page.h>
   94 #include <vm/vm_map.h>
   95 #include <vm/vm_object.h>
   96 #include <vm/vm_pager.h>
   97 #include <vm/vm_param.h>
   98 
   99 #ifdef DDB
  100 #ifndef KDB
  101 #error KDB must be enabled in order for DDB to work!
  102 #endif
  103 #include <ddb/ddb.h>
  104 #include <ddb/db_sym.h>
  105 #endif
  106 
  107 #include <net/netisr.h>
  108 
  109 #include <machine/clock.h>
  110 #include <machine/cpu.h>
  111 #include <machine/cputypes.h>
  112 #include <machine/intr_machdep.h>
  113 #include <machine/mca.h>
  114 #include <machine/md_var.h>
  115 #include <machine/metadata.h>
  116 #include <machine/pc/bios.h>
  117 #include <machine/pcb.h>
  118 #include <machine/proc.h>
  119 #include <machine/reg.h>
  120 #include <machine/sigframe.h>
  121 #include <machine/specialreg.h>
  122 #ifdef PERFMON
  123 #include <machine/perfmon.h>
  124 #endif
  125 #include <machine/tss.h>
  126 #ifdef SMP
  127 #include <machine/smp.h>
  128 #endif
  129 
  130 #ifdef DEV_ATPIC
  131 #include <amd64/isa/icu.h>
  132 #else
  133 #include <machine/apicvar.h>
  134 #endif
  135 
  136 #include <isa/isareg.h>
  137 #include <isa/rtc.h>
  138 
  139 /* Sanity check for __curthread() */
  140 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  141 
  142 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  143 
  144 extern void printcpuinfo(void); /* XXX header file */
  145 extern void identify_cpu(void);
  146 extern void panicifcpuunsupported(void);
  147 
  148 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  149 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  150 
  151 static void cpu_startup(void *);
  152 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  153 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  154 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  155 
  156 #ifdef DDB
  157 extern vm_offset_t ksym_start, ksym_end;
  158 #endif
  159 
  160 /* Intel ICH registers */
  161 #define ICH_PMBASE      0x400
  162 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  163 
  164 int     _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
  165 
  166 int cold = 1;
  167 
  168 long Maxmem = 0;
  169 long realmem = 0;
  170 
  171 /*
  172  * The number of PHYSMAP entries must be one less than the number of
  173  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  174  * physical address that is accessible by ISA DMA is split into two
  175  * PHYSSEG entries.
  176  */
  177 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  178 
  179 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  180 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  181 
  182 /* must be 2 less so 0 0 can signal end of chunks */
  183 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  184 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  185 
  186 struct kva_md_info kmi;
  187 
  188 static struct trapframe proc0_tf;
  189 struct region_descriptor r_gdt, r_idt;
  190 
  191 struct pcpu __pcpu[MAXCPU];
  192 
  193 struct mtx icu_lock;
  194 
  195 struct mem_range_softc mem_range_softc;
  196 
  197 struct mtx dt_lock;     /* lock for GDT and LDT */
  198 
  199 static void
  200 cpu_startup(dummy)
  201         void *dummy;
  202 {
  203         uintmax_t memsize;
  204         char *sysenv;
  205 
  206         /*
  207          * On MacBooks, we need to disallow the legacy USB circuit to
  208          * generate an SMI# because this can cause several problems,
  209          * namely: incorrect CPU frequency detection and failure to
  210          * start the APs.
  211          * We do this by disabling a bit in the SMI_EN (SMI Control and
  212          * Enable register) of the Intel ICH LPC Interface Bridge. 
  213          */
  214         sysenv = getenv("smbios.system.product");
  215         if (sysenv != NULL) {
  216                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  217                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  218                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  219                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  220                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  221                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  222                         if (bootverbose)
  223                                 printf("Disabling LEGACY_USB_EN bit on "
  224                                     "Intel ICH.\n");
  225                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  226                 }
  227                 freeenv(sysenv);
  228         }
  229 
  230         /*
  231          * Good {morning,afternoon,evening,night}.
  232          */
  233         startrtclock();
  234         printcpuinfo();
  235         panicifcpuunsupported();
  236 #ifdef PERFMON
  237         perfmon_init();
  238 #endif
  239         realmem = Maxmem;
  240 
  241         /*
  242          * Display physical memory if SMBIOS reports reasonable amount.
  243          */
  244         memsize = 0;
  245         sysenv = getenv("smbios.memory.enabled");
  246         if (sysenv != NULL) {
  247                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  248                 freeenv(sysenv);
  249         }
  250         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  251                 memsize = ptoa((uintmax_t)Maxmem);
  252         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  253 
  254         /*
  255          * Display any holes after the first chunk of extended memory.
  256          */
  257         if (bootverbose) {
  258                 int indx;
  259 
  260                 printf("Physical memory chunk(s):\n");
  261                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  262                         vm_paddr_t size;
  263 
  264                         size = phys_avail[indx + 1] - phys_avail[indx];
  265                         printf(
  266                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  267                             (uintmax_t)phys_avail[indx],
  268                             (uintmax_t)phys_avail[indx + 1] - 1,
  269                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  270                 }
  271         }
  272 
  273         vm_ksubmap_init(&kmi);
  274 
  275         printf("avail memory = %ju (%ju MB)\n",
  276             ptoa((uintmax_t)cnt.v_free_count),
  277             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  278 
  279         /*
  280          * Set up buffers, so they can be used to read disk labels.
  281          */
  282         bufinit();
  283         vm_pager_bufferinit();
  284 
  285         cpu_setregs();
  286 }
  287 
  288 /*
  289  * Send an interrupt to process.
  290  *
  291  * Stack is set up to allow sigcode stored
  292  * at top to call routine, followed by call
  293  * to sigreturn routine below.  After sigreturn
  294  * resets the signal mask, the stack, and the
  295  * frame pointer, it returns to the user
  296  * specified pc, psl.
  297  */
  298 void
  299 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  300 {
  301         struct sigframe sf, *sfp;
  302         struct proc *p;
  303         struct thread *td;
  304         struct sigacts *psp;
  305         char *sp;
  306         struct trapframe *regs;
  307         int sig;
  308         int oonstack;
  309 
  310         td = curthread;
  311         p = td->td_proc;
  312         PROC_LOCK_ASSERT(p, MA_OWNED);
  313         sig = ksi->ksi_signo;
  314         psp = p->p_sigacts;
  315         mtx_assert(&psp->ps_mtx, MA_OWNED);
  316         regs = td->td_frame;
  317         oonstack = sigonstack(regs->tf_rsp);
  318 
  319         /* Save user context. */
  320         bzero(&sf, sizeof(sf));
  321         sf.sf_uc.uc_sigmask = *mask;
  322         sf.sf_uc.uc_stack = td->td_sigstk;
  323         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  324             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  325         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  326         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  327         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  328         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  329         fpstate_drop(td);
  330         sf.sf_uc.uc_mcontext.mc_fsbase = td->td_pcb->pcb_fsbase;
  331         sf.sf_uc.uc_mcontext.mc_gsbase = td->td_pcb->pcb_gsbase;
  332 
  333         /* Allocate space for the signal handler context. */
  334         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  335             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  336                 sp = td->td_sigstk.ss_sp +
  337                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  338 #if defined(COMPAT_43)
  339                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  340 #endif
  341         } else
  342                 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
  343         /* Align to 16 bytes. */
  344         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  345 
  346         /* Translate the signal if appropriate. */
  347         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  348                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  349 
  350         /* Build the argument list for the signal handler. */
  351         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  352         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  353         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  354                 /* Signal handler installed with SA_SIGINFO. */
  355                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  356                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  357 
  358                 /* Fill in POSIX parts */
  359                 sf.sf_si = ksi->ksi_info;
  360                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  361                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  362         } else {
  363                 /* Old FreeBSD-style arguments. */
  364                 regs->tf_rsi = ksi->ksi_code;   /* arg 2 in %rsi */
  365                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  366                 sf.sf_ahu.sf_handler = catcher;
  367         }
  368         mtx_unlock(&psp->ps_mtx);
  369         PROC_UNLOCK(p);
  370 
  371         /*
  372          * Copy the sigframe out to the user's stack.
  373          */
  374         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  375 #ifdef DEBUG
  376                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  377 #endif
  378                 PROC_LOCK(p);
  379                 sigexit(td, SIGILL);
  380         }
  381 
  382         regs->tf_rsp = (long)sfp;
  383         regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  384         regs->tf_rflags &= ~(PSL_T | PSL_D);
  385         regs->tf_cs = _ucodesel;
  386         regs->tf_ds = _udatasel;
  387         regs->tf_es = _udatasel;
  388         regs->tf_fs = _ufssel;
  389         regs->tf_gs = _ugssel;
  390         regs->tf_flags = TF_HASSEGS;
  391         td->td_pcb->pcb_full_iret = 1;
  392         PROC_LOCK(p);
  393         mtx_lock(&psp->ps_mtx);
  394 }
  395 
  396 /*
  397  * System call to cleanup state after a signal
  398  * has been taken.  Reset signal mask and
  399  * stack state from context left by sendsig (above).
  400  * Return to previous pc and psl as specified by
  401  * context left by sendsig. Check carefully to
  402  * make sure that the user has not modified the
  403  * state to gain improper privileges.
  404  *
  405  * MPSAFE
  406  */
  407 int
  408 sigreturn(td, uap)
  409         struct thread *td;
  410         struct sigreturn_args /* {
  411                 const struct __ucontext *sigcntxp;
  412         } */ *uap;
  413 {
  414         ucontext_t uc;
  415         struct proc *p = td->td_proc;
  416         struct trapframe *regs;
  417         ucontext_t *ucp;
  418         long rflags;
  419         int cs, error, ret;
  420         ksiginfo_t ksi;
  421 
  422         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  423         if (error != 0) {
  424                 uprintf("pid %d (%s): sigreturn copyin failed\n",
  425                     p->p_pid, td->td_name);
  426                 return (error);
  427         }
  428         ucp = &uc;
  429         if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
  430                 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
  431                     td->td_name, ucp->uc_mcontext.mc_flags);
  432                 return (EINVAL);
  433         }
  434         regs = td->td_frame;
  435         rflags = ucp->uc_mcontext.mc_rflags;
  436         /*
  437          * Don't allow users to change privileged or reserved flags.
  438          */
  439         /*
  440          * XXX do allow users to change the privileged flag PSL_RF.
  441          * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
  442          * should sometimes set it there too.  tf_rflags is kept in
  443          * the signal context during signal handling and there is no
  444          * other place to remember it, so the PSL_RF bit may be
  445          * corrupted by the signal handler without us knowing.
  446          * Corruption of the PSL_RF bit at worst causes one more or
  447          * one less debugger trap, so allowing it is fairly harmless.
  448          */
  449         if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
  450                 uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
  451                     td->td_name, rflags);
  452                 return (EINVAL);
  453         }
  454 
  455         /*
  456          * Don't allow users to load a valid privileged %cs.  Let the
  457          * hardware check for invalid selectors, excess privilege in
  458          * other selectors, invalid %eip's and invalid %esp's.
  459          */
  460         cs = ucp->uc_mcontext.mc_cs;
  461         if (!CS_SECURE(cs)) {
  462                 uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
  463                     td->td_name, cs);
  464                 ksiginfo_init_trap(&ksi);
  465                 ksi.ksi_signo = SIGBUS;
  466                 ksi.ksi_code = BUS_OBJERR;
  467                 ksi.ksi_trapno = T_PROTFLT;
  468                 ksi.ksi_addr = (void *)regs->tf_rip;
  469                 trapsignal(td, &ksi);
  470                 return (EINVAL);
  471         }
  472 
  473         ret = set_fpcontext(td, &ucp->uc_mcontext);
  474         if (ret != 0) {
  475                 uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
  476                     p->p_pid, td->td_name, ret);
  477                 return (ret);
  478         }
  479         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  480         td->td_pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
  481         td->td_pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
  482 
  483 #if defined(COMPAT_43)
  484         if (ucp->uc_mcontext.mc_onstack & 1)
  485                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  486         else
  487                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  488 #endif
  489 
  490         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  491         td->td_pcb->pcb_full_iret = 1;
  492         return (EJUSTRETURN);
  493 }
  494 
  495 #ifdef COMPAT_FREEBSD4
  496 int
  497 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  498 {
  499  
  500         return sigreturn(td, (struct sigreturn_args *)uap);
  501 }
  502 #endif
  503 
  504 
  505 /*
  506  * Machine dependent boot() routine
  507  *
  508  * I haven't seen anything to put here yet
  509  * Possibly some stuff might be grafted back here from boot()
  510  */
  511 void
  512 cpu_boot(int howto)
  513 {
  514 }
  515 
  516 /*
  517  * Flush the D-cache for non-DMA I/O so that the I-cache can
  518  * be made coherent later.
  519  */
  520 void
  521 cpu_flush_dcache(void *ptr, size_t len)
  522 {
  523         /* Not applicable */
  524 }
  525 
  526 /* Get current clock frequency for the given cpu id. */
  527 int
  528 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  529 {
  530         register_t reg;
  531         uint64_t tsc1, tsc2;
  532 
  533         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  534                 return (EINVAL);
  535 
  536         /* If we're booting, trust the rate calibrated moments ago. */
  537         if (cold) {
  538                 *rate = tsc_freq;
  539                 return (0);
  540         }
  541 
  542 #ifdef SMP
  543         /* Schedule ourselves on the indicated cpu. */
  544         thread_lock(curthread);
  545         sched_bind(curthread, cpu_id);
  546         thread_unlock(curthread);
  547 #endif
  548 
  549         /* Calibrate by measuring a short delay. */
  550         reg = intr_disable();
  551         tsc1 = rdtsc();
  552         DELAY(1000);
  553         tsc2 = rdtsc();
  554         intr_restore(reg);
  555 
  556 #ifdef SMP
  557         thread_lock(curthread);
  558         sched_unbind(curthread);
  559         thread_unlock(curthread);
  560 #endif
  561 
  562         /*
  563          * Calculate the difference in readings, convert to Mhz, and
  564          * subtract 0.5% of the total.  Empirical testing has shown that
  565          * overhead in DELAY() works out to approximately this value.
  566          */
  567         tsc2 -= tsc1;
  568         *rate = tsc2 * 1000 - tsc2 * 5;
  569         return (0);
  570 }
  571 
  572 /*
  573  * Shutdown the CPU as much as possible
  574  */
  575 void
  576 cpu_halt(void)
  577 {
  578         for (;;)
  579                 __asm__ ("hlt");
  580 }
  581 
  582 void (*cpu_idle_hook)(void) = NULL;     /* ACPI idle hook. */
  583 
  584 static void
  585 cpu_idle_hlt(int busy)
  586 {
  587         /*
  588          * we must absolutely guarentee that hlt is the next instruction
  589          * after sti or we introduce a timing window.
  590          */
  591         disable_intr();
  592         if (sched_runnable())
  593                 enable_intr();
  594         else
  595                 __asm __volatile("sti; hlt");
  596 }
  597 
  598 static void
  599 cpu_idle_acpi(int busy)
  600 {
  601         disable_intr();
  602         if (sched_runnable())
  603                 enable_intr();
  604         else if (cpu_idle_hook)
  605                 cpu_idle_hook();
  606         else
  607                 __asm __volatile("sti; hlt");
  608 }
  609 
  610 static int cpu_ident_amdc1e = 0;
  611 
  612 static int
  613 cpu_probe_amdc1e(void)
  614 {
  615         int i;
  616 
  617         /*
  618          * Forget it, if we're not using local APIC timer.
  619          */
  620         if (resource_disabled("apic", 0) ||
  621             (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
  622                 return (0);
  623 
  624         /*
  625          * Detect the presence of C1E capability mostly on latest
  626          * dual-cores (or future) k8 family.
  627          */
  628         if (cpu_vendor_id == CPU_VENDOR_AMD &&
  629             (cpu_id & 0x00000f00) == 0x00000f00 &&
  630             (cpu_id & 0x0fff0000) >=  0x00040000) {
  631                 cpu_ident_amdc1e = 1;
  632                 return (1);
  633         }
  634 
  635         return (0);
  636 }
  637 
  638 /*
  639  * C1E renders the local APIC timer dead, so we disable it by
  640  * reading the Interrupt Pending Message register and clearing
  641  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
  642  * 
  643  * Reference:
  644  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
  645  *   #32559 revision 3.00+
  646  */
  647 #define MSR_AMDK8_IPM           0xc0010055
  648 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
  649 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
  650 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
  651 
  652 static void
  653 cpu_idle_amdc1e(int busy)
  654 {
  655 
  656         disable_intr();
  657         if (sched_runnable())
  658                 enable_intr();
  659         else {
  660                 uint64_t msr;
  661 
  662                 msr = rdmsr(MSR_AMDK8_IPM);
  663                 if (msr & AMDK8_CMPHALT)
  664                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
  665 
  666                 if (cpu_idle_hook)
  667                         cpu_idle_hook();
  668                 else
  669                         __asm __volatile("sti; hlt");
  670         }
  671 }
  672 
  673 static void
  674 cpu_idle_spin(int busy)
  675 {
  676         return;
  677 }
  678 
  679 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
  680 
  681 void
  682 cpu_idle(int busy)
  683 {
  684 #ifdef SMP
  685         if (mp_grab_cpu_hlt())
  686                 return;
  687 #endif
  688         cpu_idle_fn(busy);
  689 }
  690 
  691 /*
  692  * mwait cpu power states.  Lower 4 bits are sub-states.
  693  */
  694 #define MWAIT_C0        0xf0
  695 #define MWAIT_C1        0x00
  696 #define MWAIT_C2        0x10
  697 #define MWAIT_C3        0x20
  698 #define MWAIT_C4        0x30
  699 
  700 #define MWAIT_DISABLED  0x0
  701 #define MWAIT_WOKEN     0x1
  702 #define MWAIT_WAITING   0x2
  703 
  704 static void
  705 cpu_idle_mwait(int busy)
  706 {
  707         int *mwait;
  708 
  709         mwait = (int *)PCPU_PTR(monitorbuf);
  710         *mwait = MWAIT_WAITING;
  711         if (sched_runnable())
  712                 return;
  713         cpu_monitor(mwait, 0, 0);
  714         if (*mwait == MWAIT_WAITING)
  715                 cpu_mwait(0, MWAIT_C1);
  716 }
  717 
  718 static void
  719 cpu_idle_mwait_hlt(int busy)
  720 {
  721         int *mwait;
  722 
  723         mwait = (int *)PCPU_PTR(monitorbuf);
  724         if (busy == 0) {
  725                 *mwait = MWAIT_DISABLED;
  726                 cpu_idle_hlt(busy);
  727                 return;
  728         }
  729         *mwait = MWAIT_WAITING;
  730         if (sched_runnable())
  731                 return;
  732         cpu_monitor(mwait, 0, 0);
  733         if (*mwait == MWAIT_WAITING)
  734                 cpu_mwait(0, MWAIT_C1);
  735 }
  736 
  737 int
  738 cpu_idle_wakeup(int cpu)
  739 {
  740         struct pcpu *pcpu;
  741         int *mwait;
  742 
  743         if (cpu_idle_fn == cpu_idle_spin)
  744                 return (1);
  745         if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
  746                 return (0);
  747         pcpu = pcpu_find(cpu);
  748         mwait = (int *)pcpu->pc_monitorbuf;
  749         /*
  750          * This doesn't need to be atomic since missing the race will
  751          * simply result in unnecessary IPIs.
  752          */
  753         if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
  754                 return (0);
  755         *mwait = MWAIT_WOKEN;
  756 
  757         return (1);
  758 }
  759 
  760 /*
  761  * Ordered by speed/power consumption.
  762  */
  763 struct {
  764         void    *id_fn;
  765         char    *id_name;
  766 } idle_tbl[] = {
  767         { cpu_idle_spin, "spin" },
  768         { cpu_idle_mwait, "mwait" },
  769         { cpu_idle_mwait_hlt, "mwait_hlt" },
  770         { cpu_idle_amdc1e, "amdc1e" },
  771         { cpu_idle_hlt, "hlt" },
  772         { cpu_idle_acpi, "acpi" },
  773         { NULL, NULL }
  774 };
  775 
  776 static int
  777 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
  778 {
  779         char *avail, *p;
  780         int error;
  781         int i;
  782 
  783         avail = malloc(256, M_TEMP, M_WAITOK);
  784         p = avail;
  785         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  786                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  787                     (cpu_feature2 & CPUID2_MON) == 0)
  788                         continue;
  789                 if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
  790                     cpu_ident_amdc1e == 0)
  791                         continue;
  792                 p += sprintf(p, "%s, ", idle_tbl[i].id_name);
  793         }
  794         error = sysctl_handle_string(oidp, avail, 0, req);
  795         free(avail, M_TEMP);
  796         return (error);
  797 }
  798 
  799 static int
  800 idle_sysctl(SYSCTL_HANDLER_ARGS)
  801 {
  802         char buf[16];
  803         int error;
  804         char *p;
  805         int i;
  806 
  807         p = "unknown";
  808         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  809                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
  810                         p = idle_tbl[i].id_name;
  811                         break;
  812                 }
  813         }
  814         strncpy(buf, p, sizeof(buf));
  815         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  816         if (error != 0 || req->newptr == NULL)
  817                 return (error);
  818         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  819                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  820                     (cpu_feature2 & CPUID2_MON) == 0)
  821                         continue;
  822                 if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
  823                     cpu_ident_amdc1e == 0)
  824                         continue;
  825                 if (strcmp(idle_tbl[i].id_name, buf))
  826                         continue;
  827                 cpu_idle_fn = idle_tbl[i].id_fn;
  828                 return (0);
  829         }
  830         return (EINVAL);
  831 }
  832 
  833 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
  834     0, 0, idle_sysctl_available, "A", "list of available idle functions");
  835 
  836 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
  837     idle_sysctl, "A", "currently selected idle function");
  838 
  839 /*
  840  * Reset registers to default values on exec.
  841  */
  842 void
  843 exec_setregs(td, entry, stack, ps_strings)
  844         struct thread *td;
  845         u_long entry;
  846         u_long stack;
  847         u_long ps_strings;
  848 {
  849         struct trapframe *regs = td->td_frame;
  850         struct pcb *pcb = td->td_pcb;
  851 
  852         mtx_lock(&dt_lock);
  853         if (td->td_proc->p_md.md_ldt != NULL)
  854                 user_ldt_free(td);
  855         else
  856                 mtx_unlock(&dt_lock);
  857         
  858         pcb->pcb_fsbase = 0;
  859         pcb->pcb_gsbase = 0;
  860         pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
  861         pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
  862         pcb->pcb_full_iret = 1;
  863 
  864         bzero((char *)regs, sizeof(struct trapframe));
  865         regs->tf_rip = entry;
  866         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  867         regs->tf_rdi = stack;           /* argv */
  868         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  869         regs->tf_ss = _udatasel;
  870         regs->tf_cs = _ucodesel;
  871         regs->tf_ds = _udatasel;
  872         regs->tf_es = _udatasel;
  873         regs->tf_fs = _ufssel;
  874         regs->tf_gs = _ugssel;
  875         regs->tf_flags = TF_HASSEGS;
  876         td->td_retval[1] = 0;
  877 
  878         /*
  879          * Reset the hardware debug registers if they were in use.
  880          * They won't have any meaning for the newly exec'd process.
  881          */
  882         if (pcb->pcb_flags & PCB_DBREGS) {
  883                 pcb->pcb_dr0 = 0;
  884                 pcb->pcb_dr1 = 0;
  885                 pcb->pcb_dr2 = 0;
  886                 pcb->pcb_dr3 = 0;
  887                 pcb->pcb_dr6 = 0;
  888                 pcb->pcb_dr7 = 0;
  889                 if (pcb == PCPU_GET(curpcb)) {
  890                         /*
  891                          * Clear the debug registers on the running
  892                          * CPU, otherwise they will end up affecting
  893                          * the next process we switch to.
  894                          */
  895                         reset_dbregs();
  896                 }
  897                 pcb->pcb_flags &= ~PCB_DBREGS;
  898         }
  899 
  900         /*
  901          * Drop the FP state if we hold it, so that the process gets a
  902          * clean FP state if it uses the FPU again.
  903          */
  904         fpstate_drop(td);
  905 }
  906 
  907 void
  908 cpu_setregs(void)
  909 {
  910         register_t cr0;
  911 
  912         cr0 = rcr0();
  913         /*
  914          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  915          * BSP.  See the comments there about why we set them.
  916          */
  917         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  918         load_cr0(cr0);
  919 }
  920 
  921 /*
  922  * Initialize amd64 and configure to run kernel
  923  */
  924 
  925 /*
  926  * Initialize segments & interrupt table
  927  */
  928 
  929 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
  930 static struct gate_descriptor idt0[NIDT];
  931 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
  932 
  933 static char dblfault_stack[PAGE_SIZE] __aligned(16);
  934 
  935 static char nmi0_stack[PAGE_SIZE] __aligned(16);
  936 CTASSERT(sizeof(struct nmi_pcpu) == 16);
  937 
  938 struct amd64tss common_tss[MAXCPU];
  939 
  940 /*
  941  * Software prototypes -- in more palatable form.
  942  *
  943  * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
  944  * slots as corresponding segments for i386 kernel.
  945  */
  946 struct soft_segment_descriptor gdt_segs[] = {
  947 /* GNULL_SEL    0 Null Descriptor */
  948 {       .ssd_base = 0x0,
  949         .ssd_limit = 0x0,
  950         .ssd_type = 0,
  951         .ssd_dpl = 0,
  952         .ssd_p = 0,
  953         .ssd_long = 0,
  954         .ssd_def32 = 0,
  955         .ssd_gran = 0           },
  956 /* GNULL2_SEL   1 Null Descriptor */
  957 {       .ssd_base = 0x0,
  958         .ssd_limit = 0x0,
  959         .ssd_type = 0,
  960         .ssd_dpl = 0,
  961         .ssd_p = 0,
  962         .ssd_long = 0,
  963         .ssd_def32 = 0,
  964         .ssd_gran = 0           },
  965 /* GUFS32_SEL   2 32 bit %gs Descriptor for user */
  966 {       .ssd_base = 0x0,
  967         .ssd_limit = 0xfffff,
  968         .ssd_type = SDT_MEMRWA,
  969         .ssd_dpl = SEL_UPL,
  970         .ssd_p = 1,
  971         .ssd_long = 0,
  972         .ssd_def32 = 1,
  973         .ssd_gran = 1           },
  974 /* GUGS32_SEL   3 32 bit %fs Descriptor for user */
  975 {       .ssd_base = 0x0,
  976         .ssd_limit = 0xfffff,
  977         .ssd_type = SDT_MEMRWA,
  978         .ssd_dpl = SEL_UPL,
  979         .ssd_p = 1,
  980         .ssd_long = 0,
  981         .ssd_def32 = 1,
  982         .ssd_gran = 1           },
  983 /* GCODE_SEL    4 Code Descriptor for kernel */
  984 {       .ssd_base = 0x0,
  985         .ssd_limit = 0xfffff,
  986         .ssd_type = SDT_MEMERA,
  987         .ssd_dpl = SEL_KPL,
  988         .ssd_p = 1,
  989         .ssd_long = 1,
  990         .ssd_def32 = 0,
  991         .ssd_gran = 1           },
  992 /* GDATA_SEL    5 Data Descriptor for kernel */
  993 {       .ssd_base = 0x0,
  994         .ssd_limit = 0xfffff,
  995         .ssd_type = SDT_MEMRWA,
  996         .ssd_dpl = SEL_KPL,
  997         .ssd_p = 1,
  998         .ssd_long = 1,
  999         .ssd_def32 = 0,
 1000         .ssd_gran = 1           },
 1001 /* GUCODE32_SEL 6 32 bit Code Descriptor for user */
 1002 {       .ssd_base = 0x0,
 1003         .ssd_limit = 0xfffff,
 1004         .ssd_type = SDT_MEMERA,
 1005         .ssd_dpl = SEL_UPL,
 1006         .ssd_p = 1,
 1007         .ssd_long = 0,
 1008         .ssd_def32 = 1,
 1009         .ssd_gran = 1           },
 1010 /* GUDATA_SEL   7 32/64 bit Data Descriptor for user */
 1011 {       .ssd_base = 0x0,
 1012         .ssd_limit = 0xfffff,
 1013         .ssd_type = SDT_MEMRWA,
 1014         .ssd_dpl = SEL_UPL,
 1015         .ssd_p = 1,
 1016         .ssd_long = 0,
 1017         .ssd_def32 = 1,
 1018         .ssd_gran = 1           },
 1019 /* GUCODE_SEL   8 64 bit Code Descriptor for user */
 1020 {       .ssd_base = 0x0,
 1021         .ssd_limit = 0xfffff,
 1022         .ssd_type = SDT_MEMERA,
 1023         .ssd_dpl = SEL_UPL,
 1024         .ssd_p = 1,
 1025         .ssd_long = 1,
 1026         .ssd_def32 = 0,
 1027         .ssd_gran = 1           },
 1028 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1029 {       .ssd_base = 0x0,
 1030         .ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
 1031         .ssd_type = SDT_SYSTSS,
 1032         .ssd_dpl = SEL_KPL,
 1033         .ssd_p = 1,
 1034         .ssd_long = 0,
 1035         .ssd_def32 = 0,
 1036         .ssd_gran = 0           },
 1037 /* Actually, the TSS is a system descriptor which is double size */
 1038 {       .ssd_base = 0x0,
 1039         .ssd_limit = 0x0,
 1040         .ssd_type = 0,
 1041         .ssd_dpl = 0,
 1042         .ssd_p = 0,
 1043         .ssd_long = 0,
 1044         .ssd_def32 = 0,
 1045         .ssd_gran = 0           },
 1046 /* GUSERLDT_SEL 11 LDT Descriptor */
 1047 {       .ssd_base = 0x0,
 1048         .ssd_limit = 0x0,
 1049         .ssd_type = 0,
 1050         .ssd_dpl = 0,
 1051         .ssd_p = 0,
 1052         .ssd_long = 0,
 1053         .ssd_def32 = 0,
 1054         .ssd_gran = 0           },
 1055 /* GUSERLDT_SEL 12 LDT Descriptor, double size */
 1056 {       .ssd_base = 0x0,
 1057         .ssd_limit = 0x0,
 1058         .ssd_type = 0,
 1059         .ssd_dpl = 0,
 1060         .ssd_p = 0,
 1061         .ssd_long = 0,
 1062         .ssd_def32 = 0,
 1063         .ssd_gran = 0           },
 1064 };
 1065 
 1066 void
 1067 setidt(idx, func, typ, dpl, ist)
 1068         int idx;
 1069         inthand_t *func;
 1070         int typ;
 1071         int dpl;
 1072         int ist;
 1073 {
 1074         struct gate_descriptor *ip;
 1075 
 1076         ip = idt + idx;
 1077         ip->gd_looffset = (uintptr_t)func;
 1078         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
 1079         ip->gd_ist = ist;
 1080         ip->gd_xx = 0;
 1081         ip->gd_type = typ;
 1082         ip->gd_dpl = dpl;
 1083         ip->gd_p = 1;
 1084         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
 1085 }
 1086 
 1087 extern inthand_t
 1088         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1089         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1090         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1091         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1092         IDTVEC(xmm), IDTVEC(dblfault),
 1093         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
 1094 
 1095 #ifdef DDB
 1096 /*
 1097  * Display the index and function name of any IDT entries that don't use
 1098  * the default 'rsvd' entry point.
 1099  */
 1100 DB_SHOW_COMMAND(idt, db_show_idt)
 1101 {
 1102         struct gate_descriptor *ip;
 1103         int idx;
 1104         uintptr_t func;
 1105 
 1106         ip = idt;
 1107         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1108                 func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
 1109                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1110                         db_printf("%3d\t", idx);
 1111                         db_printsym(func, DB_STGY_PROC);
 1112                         db_printf("\n");
 1113                 }
 1114                 ip++;
 1115         }
 1116 }
 1117 #endif
 1118 
 1119 void
 1120 sdtossd(sd, ssd)
 1121         struct user_segment_descriptor *sd;
 1122         struct soft_segment_descriptor *ssd;
 1123 {
 1124 
 1125         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1126         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1127         ssd->ssd_type  = sd->sd_type;
 1128         ssd->ssd_dpl   = sd->sd_dpl;
 1129         ssd->ssd_p     = sd->sd_p;
 1130         ssd->ssd_long  = sd->sd_long;
 1131         ssd->ssd_def32 = sd->sd_def32;
 1132         ssd->ssd_gran  = sd->sd_gran;
 1133 }
 1134 
 1135 void
 1136 ssdtosd(ssd, sd)
 1137         struct soft_segment_descriptor *ssd;
 1138         struct user_segment_descriptor *sd;
 1139 {
 1140 
 1141         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1142         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
 1143         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1144         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1145         sd->sd_type  = ssd->ssd_type;
 1146         sd->sd_dpl   = ssd->ssd_dpl;
 1147         sd->sd_p     = ssd->ssd_p;
 1148         sd->sd_long  = ssd->ssd_long;
 1149         sd->sd_def32 = ssd->ssd_def32;
 1150         sd->sd_gran  = ssd->ssd_gran;
 1151 }
 1152 
 1153 void
 1154 ssdtosyssd(ssd, sd)
 1155         struct soft_segment_descriptor *ssd;
 1156         struct system_segment_descriptor *sd;
 1157 {
 1158 
 1159         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1160         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
 1161         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1162         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1163         sd->sd_type  = ssd->ssd_type;
 1164         sd->sd_dpl   = ssd->ssd_dpl;
 1165         sd->sd_p     = ssd->ssd_p;
 1166         sd->sd_gran  = ssd->ssd_gran;
 1167 }
 1168 
 1169 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
 1170 #include <isa/isavar.h>
 1171 #include <isa/isareg.h>
 1172 /*
 1173  * Return a bitmap of the current interrupt requests.  This is 8259-specific
 1174  * and is only suitable for use at probe time.
 1175  * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
 1176  * It shouldn't be here.  There should probably be an APIC centric
 1177  * implementation in the apic driver code, if at all.
 1178  */
 1179 intrmask_t
 1180 isa_irq_pending(void)
 1181 {
 1182         u_char irr1;
 1183         u_char irr2;
 1184 
 1185         irr1 = inb(IO_ICU1);
 1186         irr2 = inb(IO_ICU2);
 1187         return ((irr2 << 8) | irr1);
 1188 }
 1189 #endif
 1190 
 1191 u_int basemem;
 1192 
 1193 static int
 1194 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 1195 {
 1196         int i, insert_idx, physmap_idx;
 1197 
 1198         physmap_idx = *physmap_idxp;
 1199 
 1200         if (boothowto & RB_VERBOSE)
 1201                 printf("SMAP type=%02x base=%016lx len=%016lx\n",
 1202                     smap->type, smap->base, smap->length);
 1203 
 1204         if (smap->type != SMAP_TYPE_MEMORY)
 1205                 return (1);
 1206 
 1207         if (smap->length == 0)
 1208                 return (0);
 1209 
 1210         /*
 1211          * Find insertion point while checking for overlap.  Start off by
 1212          * assuming the new entry will be added to the end.
 1213          */
 1214         insert_idx = physmap_idx + 2;
 1215         for (i = 0; i <= physmap_idx; i += 2) {
 1216                 if (smap->base < physmap[i + 1]) {
 1217                         if (smap->base + smap->length <= physmap[i]) {
 1218                                 insert_idx = i;
 1219                                 break;
 1220                         }
 1221                         if (boothowto & RB_VERBOSE)
 1222                                 printf(
 1223                     "Overlapping memory regions, ignoring second region\n");
 1224                         return (1);
 1225                 }
 1226         }
 1227 
 1228         /* See if we can prepend to the next entry. */
 1229         if (insert_idx <= physmap_idx &&
 1230             smap->base + smap->length == physmap[insert_idx]) {
 1231                 physmap[insert_idx] = smap->base;
 1232                 return (1);
 1233         }
 1234 
 1235         /* See if we can append to the previous entry. */
 1236         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 1237                 physmap[insert_idx - 1] += smap->length;
 1238                 return (1);
 1239         }
 1240 
 1241         physmap_idx += 2;
 1242         *physmap_idxp = physmap_idx;
 1243         if (physmap_idx == PHYSMAP_SIZE) {
 1244                 printf(
 1245                 "Too many segments in the physical address map, giving up\n");
 1246                 return (0);
 1247         }
 1248 
 1249         /*
 1250          * Move the last 'N' entries down to make room for the new
 1251          * entry if needed.
 1252          */
 1253         for (i = physmap_idx; i > insert_idx; i -= 2) {
 1254                 physmap[i] = physmap[i - 2];
 1255                 physmap[i + 1] = physmap[i - 1];
 1256         }
 1257 
 1258         /* Insert the new entry. */
 1259         physmap[insert_idx] = smap->base;
 1260         physmap[insert_idx + 1] = smap->base + smap->length;
 1261         return (1);
 1262 }
 1263 
 1264 /*
 1265  * Populate the (physmap) array with base/bound pairs describing the
 1266  * available physical memory in the system, then test this memory and
 1267  * build the phys_avail array describing the actually-available memory.
 1268  *
 1269  * If we cannot accurately determine the physical memory map, then use
 1270  * value from the 0xE801 call, and failing that, the RTC.
 1271  *
 1272  * Total memory size may be set by the kernel environment variable
 1273  * hw.physmem or the compile-time define MAXMEM.
 1274  *
 1275  * XXX first should be vm_paddr_t.
 1276  */
 1277 static void
 1278 getmemsize(caddr_t kmdp, u_int64_t first)
 1279 {
 1280         int i, off, physmap_idx, pa_indx, da_indx;
 1281         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1282         u_long physmem_tunable;
 1283         pt_entry_t *pte;
 1284         struct bios_smap *smapbase, *smap, *smapend;
 1285         u_int32_t smapsize;
 1286         quad_t dcons_addr, dcons_size;
 1287 
 1288         bzero(physmap, sizeof(physmap));
 1289         basemem = 0;
 1290         physmap_idx = 0;
 1291 
 1292         /*
 1293          * get memory map from INT 15:E820, kindly supplied by the loader.
 1294          *
 1295          * subr_module.c says:
 1296          * "Consumer may safely assume that size value precedes data."
 1297          * ie: an int32_t immediately precedes smap.
 1298          */
 1299         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 1300             MODINFO_METADATA | MODINFOMD_SMAP);
 1301         if (smapbase == NULL)
 1302                 panic("No BIOS smap info from loader!");
 1303 
 1304         smapsize = *((u_int32_t *)smapbase - 1);
 1305         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 1306 
 1307         for (smap = smapbase; smap < smapend; smap++)
 1308                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 1309                         break;
 1310 
 1311         /*
 1312          * Find the 'base memory' segment for SMP
 1313          */
 1314         basemem = 0;
 1315         for (i = 0; i <= physmap_idx; i += 2) {
 1316                 if (physmap[i] == 0x00000000) {
 1317                         basemem = physmap[i + 1] / 1024;
 1318                         break;
 1319                 }
 1320         }
 1321         if (basemem == 0)
 1322                 panic("BIOS smap did not include a basemem segment!");
 1323 
 1324 #ifdef SMP
 1325         /* make hole for AP bootstrap code */
 1326         physmap[1] = mp_bootaddress(physmap[1] / 1024);
 1327 #endif
 1328 
 1329         /*
 1330          * Maxmem isn't the "maximum memory", it's one larger than the
 1331          * highest page of the physical address space.  It should be
 1332          * called something like "Maxphyspage".  We may adjust this
 1333          * based on ``hw.physmem'' and the results of the memory test.
 1334          */
 1335         Maxmem = atop(physmap[physmap_idx + 1]);
 1336 
 1337 #ifdef MAXMEM
 1338         Maxmem = MAXMEM / 4;
 1339 #endif
 1340 
 1341         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1342                 Maxmem = atop(physmem_tunable);
 1343 
 1344         /*
 1345          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
 1346          * in the system.
 1347          */
 1348         if (Maxmem > atop(physmap[physmap_idx + 1]))
 1349                 Maxmem = atop(physmap[physmap_idx + 1]);
 1350 
 1351         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1352             (boothowto & RB_VERBOSE))
 1353                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1354 
 1355         /* call pmap initialization to make new kernel address space */
 1356         pmap_bootstrap(&first);
 1357 
 1358         /*
 1359          * Size up each available chunk of physical memory.
 1360          */
 1361         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1362         pa_indx = 0;
 1363         da_indx = 1;
 1364         phys_avail[pa_indx++] = physmap[0];
 1365         phys_avail[pa_indx] = physmap[0];
 1366         dump_avail[da_indx] = physmap[0];
 1367         pte = CMAP1;
 1368 
 1369         /*
 1370          * Get dcons buffer address
 1371          */
 1372         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1373             getenv_quad("dcons.size", &dcons_size) == 0)
 1374                 dcons_addr = 0;
 1375 
 1376         /*
 1377          * physmap is in bytes, so when converting to page boundaries,
 1378          * round up the start address and round down the end address.
 1379          */
 1380         for (i = 0; i <= physmap_idx; i += 2) {
 1381                 vm_paddr_t end;
 1382 
 1383                 end = ptoa((vm_paddr_t)Maxmem);
 1384                 if (physmap[i + 1] < end)
 1385                         end = trunc_page(physmap[i + 1]);
 1386                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1387                         int tmp, page_bad, full;
 1388                         int *ptr = (int *)CADDR1;
 1389 
 1390                         full = FALSE;
 1391                         /*
 1392                          * block out kernel memory as not available.
 1393                          */
 1394                         if (pa >= 0x100000 && pa < first)
 1395                                 goto do_dump_avail;
 1396 
 1397                         /*
 1398                          * block out dcons buffer
 1399                          */
 1400                         if (dcons_addr > 0
 1401                             && pa >= trunc_page(dcons_addr)
 1402                             && pa < dcons_addr + dcons_size)
 1403                                 goto do_dump_avail;
 1404 
 1405                         page_bad = FALSE;
 1406 
 1407                         /*
 1408                          * map page into kernel: valid, read/write,non-cacheable
 1409                          */
 1410                         *pte = pa | PG_V | PG_RW | PG_N;
 1411                         invltlb();
 1412 
 1413                         tmp = *(int *)ptr;
 1414                         /*
 1415                          * Test for alternating 1's and 0's
 1416                          */
 1417                         *(volatile int *)ptr = 0xaaaaaaaa;
 1418                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1419                                 page_bad = TRUE;
 1420                         /*
 1421                          * Test for alternating 0's and 1's
 1422                          */
 1423                         *(volatile int *)ptr = 0x55555555;
 1424                         if (*(volatile int *)ptr != 0x55555555)
 1425                                 page_bad = TRUE;
 1426                         /*
 1427                          * Test for all 1's
 1428                          */
 1429                         *(volatile int *)ptr = 0xffffffff;
 1430                         if (*(volatile int *)ptr != 0xffffffff)
 1431                                 page_bad = TRUE;
 1432                         /*
 1433                          * Test for all 0's
 1434                          */
 1435                         *(volatile int *)ptr = 0x0;
 1436                         if (*(volatile int *)ptr != 0x0)
 1437                                 page_bad = TRUE;
 1438                         /*
 1439                          * Restore original value.
 1440                          */
 1441                         *(int *)ptr = tmp;
 1442 
 1443                         /*
 1444                          * Adjust array of valid/good pages.
 1445                          */
 1446                         if (page_bad == TRUE)
 1447                                 continue;
 1448                         /*
 1449                          * If this good page is a continuation of the
 1450                          * previous set of good pages, then just increase
 1451                          * the end pointer. Otherwise start a new chunk.
 1452                          * Note that "end" points one higher than end,
 1453                          * making the range >= start and < end.
 1454                          * If we're also doing a speculative memory
 1455                          * test and we at or past the end, bump up Maxmem
 1456                          * so that we keep going. The first bad page
 1457                          * will terminate the loop.
 1458                          */
 1459                         if (phys_avail[pa_indx] == pa) {
 1460                                 phys_avail[pa_indx] += PAGE_SIZE;
 1461                         } else {
 1462                                 pa_indx++;
 1463                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1464                                         printf(
 1465                 "Too many holes in the physical address space, giving up\n");
 1466                                         pa_indx--;
 1467                                         full = TRUE;
 1468                                         goto do_dump_avail;
 1469                                 }
 1470                                 phys_avail[pa_indx++] = pa;     /* start */
 1471                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1472                         }
 1473                         physmem++;
 1474 do_dump_avail:
 1475                         if (dump_avail[da_indx] == pa) {
 1476                                 dump_avail[da_indx] += PAGE_SIZE;
 1477                         } else {
 1478                                 da_indx++;
 1479                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1480                                         da_indx--;
 1481                                         goto do_next;
 1482                                 }
 1483                                 dump_avail[da_indx++] = pa; /* start */
 1484                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1485                         }
 1486 do_next:
 1487                         if (full)
 1488                                 break;
 1489                 }
 1490         }
 1491         *pte = 0;
 1492         invltlb();
 1493 
 1494         /*
 1495          * XXX
 1496          * The last chunk must contain at least one page plus the message
 1497          * buffer to avoid complicating other code (message buffer address
 1498          * calculation, etc.).
 1499          */
 1500         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1501             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1502                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1503                 phys_avail[pa_indx--] = 0;
 1504                 phys_avail[pa_indx--] = 0;
 1505         }
 1506 
 1507         Maxmem = atop(phys_avail[pa_indx]);
 1508 
 1509         /* Trim off space for the message buffer. */
 1510         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1511 
 1512         /* Map the message buffer. */
 1513         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 1514                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 1515                     off);
 1516 }
 1517 
 1518 u_int64_t
 1519 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1520 {
 1521         caddr_t kmdp;
 1522         int gsel_tss, x;
 1523         struct pcpu *pc;
 1524         struct nmi_pcpu *np;
 1525         u_int64_t msr;
 1526         char *env;
 1527 
 1528         thread0.td_kstack = physfree + KERNBASE;
 1529         bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
 1530         physfree += KSTACK_PAGES * PAGE_SIZE;
 1531         thread0.td_pcb = (struct pcb *)
 1532            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1533 
 1534         /*
 1535          * This may be done better later if it gets more high level
 1536          * components in it. If so just link td->td_proc here.
 1537          */
 1538         proc_linkup0(&proc0, &thread0);
 1539 
 1540         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1541         preload_bootstrap_relocate(KERNBASE);
 1542         kmdp = preload_search_by_type("elf kernel");
 1543         if (kmdp == NULL)
 1544                 kmdp = preload_search_by_type("elf64 kernel");
 1545         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1546         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1547 #ifdef DDB
 1548         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1549         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1550 #endif
 1551 
 1552         /* Init basic tunables, hz etc */
 1553         init_param1();
 1554 
 1555         /*
 1556          * make gdt memory segments
 1557          */
 1558         for (x = 0; x < NGDT; x++) {
 1559                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
 1560                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
 1561                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1562         }
 1563         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1564         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1565             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1566 
 1567         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1568         r_gdt.rd_base =  (long) gdt;
 1569         lgdt(&r_gdt);
 1570         pc = &__pcpu[0];
 1571 
 1572         wrmsr(MSR_FSBASE, 0);           /* User value */
 1573         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1574         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1575 
 1576         pcpu_init(pc, 0, sizeof(struct pcpu));
 1577         dpcpu_init((void *)(physfree + KERNBASE), 0);
 1578         physfree += DPCPU_SIZE;
 1579         PCPU_SET(prvspace, pc);
 1580         PCPU_SET(curthread, &thread0);
 1581         PCPU_SET(curpcb, thread0.td_pcb);
 1582         PCPU_SET(tssp, &common_tss[0]);
 1583         PCPU_SET(commontssp, &common_tss[0]);
 1584         PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1585         PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
 1586         PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
 1587         PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
 1588 
 1589         /*
 1590          * Initialize mutexes.
 1591          *
 1592          * icu_lock: in order to allow an interrupt to occur in a critical
 1593          *           section, to set pcpu->ipending (etc...) properly, we
 1594          *           must be able to get the icu lock, so it can't be
 1595          *           under witness.
 1596          */
 1597         mutex_init();
 1598         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1599         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
 1600 
 1601         /* exceptions */
 1602         for (x = 0; x < NIDT; x++)
 1603                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1604         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1605         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1606         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
 1607         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1608         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1609         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1610         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1611         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1612         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1613         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1614         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1615         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1616         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1617         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1618         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1619         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1620         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1621         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1622         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1623 
 1624         r_idt.rd_limit = sizeof(idt0) - 1;
 1625         r_idt.rd_base = (long) idt;
 1626         lidt(&r_idt);
 1627 
 1628         /*
 1629          * Initialize the i8254 before the console so that console
 1630          * initialization can use DELAY().
 1631          */
 1632         i8254_init();
 1633 
 1634         /*
 1635          * Initialize the console before we print anything out.
 1636          */
 1637         cninit();
 1638 
 1639 #ifdef DEV_ISA
 1640 #ifdef DEV_ATPIC
 1641         elcr_probe();
 1642         atpic_startup();
 1643 #else
 1644         /* Reset and mask the atpics and leave them shut down. */
 1645         atpic_reset();
 1646 
 1647         /*
 1648          * Point the ICU spurious interrupt vectors at the APIC spurious
 1649          * interrupt handler.
 1650          */
 1651         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1652         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1653 #endif
 1654 #else
 1655 #error "have you forgotten the isa device?";
 1656 #endif
 1657 
 1658         kdb_init();
 1659 
 1660 #ifdef KDB
 1661         if (boothowto & RB_KDB)
 1662                 kdb_enter(KDB_WHY_BOOTFLAGS,
 1663                     "Boot flags requested debugger");
 1664 #endif
 1665 
 1666         identify_cpu();         /* Final stage of CPU initialization */
 1667         initializecpu();        /* Initialize CPU registers */
 1668         initializecpucache();
 1669 
 1670         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1671         common_tss[0].tss_rsp0 = thread0.td_kstack + \
 1672             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
 1673         /* Ensure the stack is aligned to 16 bytes */
 1674         common_tss[0].tss_rsp0 &= ~0xFul;
 1675         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1676 
 1677         /* doublefault stack space, runs on ist1 */
 1678         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1679 
 1680         /*
 1681          * NMI stack, runs on ist2.  The pcpu pointer is stored just
 1682          * above the start of the ist2 stack.
 1683          */
 1684         np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
 1685         np->np_pcpu = (register_t) pc;
 1686         common_tss[0].tss_ist2 = (long) np;
 1687 
 1688         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1689         common_tss[0].tss_iobase = sizeof(struct amd64tss) +
 1690             IOPAGES * PAGE_SIZE;
 1691 
 1692         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1693         ltr(gsel_tss);
 1694 
 1695         /* Set up the fast syscall stuff */
 1696         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1697         wrmsr(MSR_EFER, msr);
 1698         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1699         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1700         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1701               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1702         wrmsr(MSR_STAR, msr);
 1703         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1704 
 1705         getmemsize(kmdp, physfree);
 1706         init_param2(physmem);
 1707 
 1708         /* now running on new page tables, configured,and u/iom is accessible */
 1709 
 1710         msgbufinit(msgbufp, MSGBUF_SIZE);
 1711         fpuinit();
 1712 
 1713         /* transfer to user mode */
 1714 
 1715         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1716         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1717         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1718         _ufssel = GSEL(GUFS32_SEL, SEL_UPL);
 1719         _ugssel = GSEL(GUGS32_SEL, SEL_UPL);
 1720 
 1721         load_ds(_udatasel);
 1722         load_es(_udatasel);
 1723         load_fs(_ufssel);
 1724 
 1725         /* setup proc 0's pcb */
 1726         thread0.td_pcb->pcb_flags = 0;
 1727         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1728         thread0.td_frame = &proc0_tf;
 1729 
 1730         env = getenv("kernelname");
 1731         if (env != NULL)
 1732                 strlcpy(kernelname, env, sizeof(kernelname));
 1733 
 1734 #ifdef XENHVM
 1735         if (inw(0x10) == 0x49d2) {
 1736                 if (bootverbose)
 1737                         printf("Xen detected: disabling emulated block and network devices\n");
 1738                 outw(0x10, 3);
 1739         }
 1740 #endif
 1741 
 1742         if (cpu_probe_amdc1e())
 1743                 cpu_idle_fn = cpu_idle_amdc1e;
 1744 
 1745         /* Location of kernel stack for locore */
 1746         return ((u_int64_t)thread0.td_pcb);
 1747 }
 1748 
 1749 void
 1750 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1751 {
 1752 
 1753         pcpu->pc_acpi_id = 0xffffffff;
 1754 }
 1755 
 1756 void
 1757 spinlock_enter(void)
 1758 {
 1759         struct thread *td;
 1760 
 1761         td = curthread;
 1762         if (td->td_md.md_spinlock_count == 0)
 1763                 td->td_md.md_saved_flags = intr_disable();
 1764         td->td_md.md_spinlock_count++;
 1765         critical_enter();
 1766 }
 1767 
 1768 void
 1769 spinlock_exit(void)
 1770 {
 1771         struct thread *td;
 1772 
 1773         td = curthread;
 1774         critical_exit();
 1775         td->td_md.md_spinlock_count--;
 1776         if (td->td_md.md_spinlock_count == 0)
 1777                 intr_restore(td->td_md.md_saved_flags);
 1778 }
 1779 
 1780 /*
 1781  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1782  * we want to start a backtrace from the function that caused us to enter
 1783  * the debugger. We have the context in the trapframe, but base the trace
 1784  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1785  * enough for a backtrace.
 1786  */
 1787 void
 1788 makectx(struct trapframe *tf, struct pcb *pcb)
 1789 {
 1790 
 1791         pcb->pcb_r12 = tf->tf_r12;
 1792         pcb->pcb_r13 = tf->tf_r13;
 1793         pcb->pcb_r14 = tf->tf_r14;
 1794         pcb->pcb_r15 = tf->tf_r15;
 1795         pcb->pcb_rbp = tf->tf_rbp;
 1796         pcb->pcb_rbx = tf->tf_rbx;
 1797         pcb->pcb_rip = tf->tf_rip;
 1798         pcb->pcb_rsp = tf->tf_rsp;
 1799 }
 1800 
 1801 int
 1802 ptrace_set_pc(struct thread *td, unsigned long addr)
 1803 {
 1804         td->td_frame->tf_rip = addr;
 1805         return (0);
 1806 }
 1807 
 1808 int
 1809 ptrace_single_step(struct thread *td)
 1810 {
 1811         td->td_frame->tf_rflags |= PSL_T;
 1812         return (0);
 1813 }
 1814 
 1815 int
 1816 ptrace_clear_single_step(struct thread *td)
 1817 {
 1818         td->td_frame->tf_rflags &= ~PSL_T;
 1819         return (0);
 1820 }
 1821 
 1822 int
 1823 fill_regs(struct thread *td, struct reg *regs)
 1824 {
 1825         struct trapframe *tp;
 1826 
 1827         tp = td->td_frame;
 1828         regs->r_r15 = tp->tf_r15;
 1829         regs->r_r14 = tp->tf_r14;
 1830         regs->r_r13 = tp->tf_r13;
 1831         regs->r_r12 = tp->tf_r12;
 1832         regs->r_r11 = tp->tf_r11;
 1833         regs->r_r10 = tp->tf_r10;
 1834         regs->r_r9  = tp->tf_r9;
 1835         regs->r_r8  = tp->tf_r8;
 1836         regs->r_rdi = tp->tf_rdi;
 1837         regs->r_rsi = tp->tf_rsi;
 1838         regs->r_rbp = tp->tf_rbp;
 1839         regs->r_rbx = tp->tf_rbx;
 1840         regs->r_rdx = tp->tf_rdx;
 1841         regs->r_rcx = tp->tf_rcx;
 1842         regs->r_rax = tp->tf_rax;
 1843         regs->r_rip = tp->tf_rip;
 1844         regs->r_cs = tp->tf_cs;
 1845         regs->r_rflags = tp->tf_rflags;
 1846         regs->r_rsp = tp->tf_rsp;
 1847         regs->r_ss = tp->tf_ss;
 1848         if (tp->tf_flags & TF_HASSEGS) {
 1849                 regs->r_ds = tp->tf_ds;
 1850                 regs->r_es = tp->tf_es;
 1851                 regs->r_fs = tp->tf_fs;
 1852                 regs->r_gs = tp->tf_gs;
 1853         } else {
 1854                 regs->r_ds = 0;
 1855                 regs->r_es = 0;
 1856                 regs->r_fs = 0;
 1857                 regs->r_gs = 0;
 1858         }
 1859         return (0);
 1860 }
 1861 
 1862 int
 1863 set_regs(struct thread *td, struct reg *regs)
 1864 {
 1865         struct trapframe *tp;
 1866         register_t rflags;
 1867 
 1868         tp = td->td_frame;
 1869         rflags = regs->r_rflags & 0xffffffff;
 1870         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 1871                 return (EINVAL);
 1872         tp->tf_r15 = regs->r_r15;
 1873         tp->tf_r14 = regs->r_r14;
 1874         tp->tf_r13 = regs->r_r13;
 1875         tp->tf_r12 = regs->r_r12;
 1876         tp->tf_r11 = regs->r_r11;
 1877         tp->tf_r10 = regs->r_r10;
 1878         tp->tf_r9  = regs->r_r9;
 1879         tp->tf_r8  = regs->r_r8;
 1880         tp->tf_rdi = regs->r_rdi;
 1881         tp->tf_rsi = regs->r_rsi;
 1882         tp->tf_rbp = regs->r_rbp;
 1883         tp->tf_rbx = regs->r_rbx;
 1884         tp->tf_rdx = regs->r_rdx;
 1885         tp->tf_rcx = regs->r_rcx;
 1886         tp->tf_rax = regs->r_rax;
 1887         tp->tf_rip = regs->r_rip;
 1888         tp->tf_cs = regs->r_cs;
 1889         tp->tf_rflags = rflags;
 1890         tp->tf_rsp = regs->r_rsp;
 1891         tp->tf_ss = regs->r_ss;
 1892         if (0) {        /* XXXKIB */
 1893                 tp->tf_ds = regs->r_ds;
 1894                 tp->tf_es = regs->r_es;
 1895                 tp->tf_fs = regs->r_fs;
 1896                 tp->tf_gs = regs->r_gs;
 1897                 tp->tf_flags = TF_HASSEGS;
 1898                 td->td_pcb->pcb_full_iret = 1;
 1899         }
 1900         return (0);
 1901 }
 1902 
 1903 /* XXX check all this stuff! */
 1904 /* externalize from sv_xmm */
 1905 static void
 1906 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 1907 {
 1908         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1909         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1910         int i;
 1911 
 1912         /* pcb -> fpregs */
 1913         bzero(fpregs, sizeof(*fpregs));
 1914 
 1915         /* FPU control/status */
 1916         penv_fpreg->en_cw = penv_xmm->en_cw;
 1917         penv_fpreg->en_sw = penv_xmm->en_sw;
 1918         penv_fpreg->en_tw = penv_xmm->en_tw;
 1919         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 1920         penv_fpreg->en_rip = penv_xmm->en_rip;
 1921         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 1922         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 1923         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 1924 
 1925         /* FPU registers */
 1926         for (i = 0; i < 8; ++i)
 1927                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 1928 
 1929         /* SSE registers */
 1930         for (i = 0; i < 16; ++i)
 1931                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 1932 }
 1933 
 1934 /* internalize from fpregs into sv_xmm */
 1935 static void
 1936 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 1937 {
 1938         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 1939         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 1940         int i;
 1941 
 1942         /* fpregs -> pcb */
 1943         /* FPU control/status */
 1944         penv_xmm->en_cw = penv_fpreg->en_cw;
 1945         penv_xmm->en_sw = penv_fpreg->en_sw;
 1946         penv_xmm->en_tw = penv_fpreg->en_tw;
 1947         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 1948         penv_xmm->en_rip = penv_fpreg->en_rip;
 1949         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 1950         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 1951         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 1952 
 1953         /* FPU registers */
 1954         for (i = 0; i < 8; ++i)
 1955                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 1956 
 1957         /* SSE registers */
 1958         for (i = 0; i < 16; ++i)
 1959                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 1960 }
 1961 
 1962 /* externalize from td->pcb */
 1963 int
 1964 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 1965 {
 1966 
 1967         KASSERT(td == curthread || TD_IS_SUSPENDED(td),
 1968             ("not suspended thread %p", td));
 1969         fpugetregs(td);
 1970         fill_fpregs_xmm(&td->td_pcb->pcb_user_save, fpregs);
 1971         return (0);
 1972 }
 1973 
 1974 /* internalize to td->pcb */
 1975 int
 1976 set_fpregs(struct thread *td, struct fpreg *fpregs)
 1977 {
 1978 
 1979         set_fpregs_xmm(fpregs, &td->td_pcb->pcb_user_save);
 1980         fpuuserinited(td);
 1981         return (0);
 1982 }
 1983 
 1984 /*
 1985  * Get machine context.
 1986  */
 1987 int
 1988 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 1989 {
 1990         struct trapframe *tp;
 1991 
 1992         tp = td->td_frame;
 1993         PROC_LOCK(curthread->td_proc);
 1994         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 1995         PROC_UNLOCK(curthread->td_proc);
 1996         mcp->mc_r15 = tp->tf_r15;
 1997         mcp->mc_r14 = tp->tf_r14;
 1998         mcp->mc_r13 = tp->tf_r13;
 1999         mcp->mc_r12 = tp->tf_r12;
 2000         mcp->mc_r11 = tp->tf_r11;
 2001         mcp->mc_r10 = tp->tf_r10;
 2002         mcp->mc_r9  = tp->tf_r9;
 2003         mcp->mc_r8  = tp->tf_r8;
 2004         mcp->mc_rdi = tp->tf_rdi;
 2005         mcp->mc_rsi = tp->tf_rsi;
 2006         mcp->mc_rbp = tp->tf_rbp;
 2007         mcp->mc_rbx = tp->tf_rbx;
 2008         mcp->mc_rcx = tp->tf_rcx;
 2009         mcp->mc_rflags = tp->tf_rflags;
 2010         if (flags & GET_MC_CLEAR_RET) {
 2011                 mcp->mc_rax = 0;
 2012                 mcp->mc_rdx = 0;
 2013                 mcp->mc_rflags &= ~PSL_C;
 2014         } else {
 2015                 mcp->mc_rax = tp->tf_rax;
 2016                 mcp->mc_rdx = tp->tf_rdx;
 2017         }
 2018         mcp->mc_rip = tp->tf_rip;
 2019         mcp->mc_cs = tp->tf_cs;
 2020         mcp->mc_rsp = tp->tf_rsp;
 2021         mcp->mc_ss = tp->tf_ss;
 2022         mcp->mc_ds = tp->tf_ds;
 2023         mcp->mc_es = tp->tf_es;
 2024         mcp->mc_fs = tp->tf_fs;
 2025         mcp->mc_gs = tp->tf_gs;
 2026         mcp->mc_flags = tp->tf_flags;
 2027         mcp->mc_len = sizeof(*mcp);
 2028         get_fpcontext(td, mcp);
 2029         mcp->mc_fsbase = td->td_pcb->pcb_fsbase;
 2030         mcp->mc_gsbase = td->td_pcb->pcb_gsbase;
 2031         return (0);
 2032 }
 2033 
 2034 /*
 2035  * Set machine context.
 2036  *
 2037  * However, we don't set any but the user modifiable flags, and we won't
 2038  * touch the cs selector.
 2039  */
 2040 int
 2041 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2042 {
 2043         struct trapframe *tp;
 2044         long rflags;
 2045         int ret;
 2046 
 2047         tp = td->td_frame;
 2048         if (mcp->mc_len != sizeof(*mcp) ||
 2049             (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
 2050                 return (EINVAL);
 2051         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 2052             (tp->tf_rflags & ~PSL_USERCHANGE);
 2053         ret = set_fpcontext(td, mcp);
 2054         if (ret != 0)
 2055                 return (ret);
 2056         tp->tf_r15 = mcp->mc_r15;
 2057         tp->tf_r14 = mcp->mc_r14;
 2058         tp->tf_r13 = mcp->mc_r13;
 2059         tp->tf_r12 = mcp->mc_r12;
 2060         tp->tf_r11 = mcp->mc_r11;
 2061         tp->tf_r10 = mcp->mc_r10;
 2062         tp->tf_r9  = mcp->mc_r9;
 2063         tp->tf_r8  = mcp->mc_r8;
 2064         tp->tf_rdi = mcp->mc_rdi;
 2065         tp->tf_rsi = mcp->mc_rsi;
 2066         tp->tf_rbp = mcp->mc_rbp;
 2067         tp->tf_rbx = mcp->mc_rbx;
 2068         tp->tf_rdx = mcp->mc_rdx;
 2069         tp->tf_rcx = mcp->mc_rcx;
 2070         tp->tf_rax = mcp->mc_rax;
 2071         tp->tf_rip = mcp->mc_rip;
 2072         tp->tf_rflags = rflags;
 2073         tp->tf_rsp = mcp->mc_rsp;
 2074         tp->tf_ss = mcp->mc_ss;
 2075         tp->tf_flags = mcp->mc_flags;
 2076         if (tp->tf_flags & TF_HASSEGS) {
 2077                 tp->tf_ds = mcp->mc_ds;
 2078                 tp->tf_es = mcp->mc_es;
 2079                 tp->tf_fs = mcp->mc_fs;
 2080                 tp->tf_gs = mcp->mc_gs;
 2081         }
 2082         if (mcp->mc_flags & _MC_HASBASES) {
 2083                 td->td_pcb->pcb_fsbase = mcp->mc_fsbase;
 2084                 td->td_pcb->pcb_gsbase = mcp->mc_gsbase;
 2085         }
 2086         td->td_pcb->pcb_full_iret = 1;
 2087         return (0);
 2088 }
 2089 
 2090 static void
 2091 get_fpcontext(struct thread *td, mcontext_t *mcp)
 2092 {
 2093 
 2094         mcp->mc_ownedfp = fpugetregs(td);
 2095         bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate,
 2096             sizeof(mcp->mc_fpstate));
 2097         mcp->mc_fpformat = fpuformat();
 2098 }
 2099 
 2100 static int
 2101 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 2102 {
 2103         struct savefpu *fpstate;
 2104 
 2105         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2106                 return (0);
 2107         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 2108                 return (EINVAL);
 2109         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 2110                 /* We don't care what state is left in the FPU or PCB. */
 2111                 fpstate_drop(td);
 2112         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2113             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2114                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 2115                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 2116                 fpusetregs(td, fpstate);
 2117         } else
 2118                 return (EINVAL);
 2119         return (0);
 2120 }
 2121 
 2122 void
 2123 fpstate_drop(struct thread *td)
 2124 {
 2125 
 2126         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 2127         critical_enter();
 2128         if (PCPU_GET(fpcurthread) == td)
 2129                 fpudrop();
 2130         /*
 2131          * XXX force a full drop of the fpu.  The above only drops it if we
 2132          * owned it.
 2133          *
 2134          * XXX I don't much like fpugetuserregs()'s semantics of doing a full
 2135          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2136          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2137          * sendsig() is the only caller of fpugetuserregs()... perhaps we just
 2138          * have too many layers.
 2139          */
 2140         curthread->td_pcb->pcb_flags &= ~(PCB_FPUINITDONE |
 2141             PCB_USERFPUINITDONE);
 2142         critical_exit();
 2143 }
 2144 
 2145 int
 2146 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2147 {
 2148         struct pcb *pcb;
 2149 
 2150         if (td == NULL) {
 2151                 dbregs->dr[0] = rdr0();
 2152                 dbregs->dr[1] = rdr1();
 2153                 dbregs->dr[2] = rdr2();
 2154                 dbregs->dr[3] = rdr3();
 2155                 dbregs->dr[6] = rdr6();
 2156                 dbregs->dr[7] = rdr7();
 2157         } else {
 2158                 pcb = td->td_pcb;
 2159                 dbregs->dr[0] = pcb->pcb_dr0;
 2160                 dbregs->dr[1] = pcb->pcb_dr1;
 2161                 dbregs->dr[2] = pcb->pcb_dr2;
 2162                 dbregs->dr[3] = pcb->pcb_dr3;
 2163                 dbregs->dr[6] = pcb->pcb_dr6;
 2164                 dbregs->dr[7] = pcb->pcb_dr7;
 2165         }
 2166         dbregs->dr[4] = 0;
 2167         dbregs->dr[5] = 0;
 2168         dbregs->dr[8] = 0;
 2169         dbregs->dr[9] = 0;
 2170         dbregs->dr[10] = 0;
 2171         dbregs->dr[11] = 0;
 2172         dbregs->dr[12] = 0;
 2173         dbregs->dr[13] = 0;
 2174         dbregs->dr[14] = 0;
 2175         dbregs->dr[15] = 0;
 2176         return (0);
 2177 }
 2178 
 2179 int
 2180 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2181 {
 2182         struct pcb *pcb;
 2183         int i;
 2184 
 2185         if (td == NULL) {
 2186                 load_dr0(dbregs->dr[0]);
 2187                 load_dr1(dbregs->dr[1]);
 2188                 load_dr2(dbregs->dr[2]);
 2189                 load_dr3(dbregs->dr[3]);
 2190                 load_dr6(dbregs->dr[6]);
 2191                 load_dr7(dbregs->dr[7]);
 2192         } else {
 2193                 /*
 2194                  * Don't let an illegal value for dr7 get set.  Specifically,
 2195                  * check for undefined settings.  Setting these bit patterns
 2196                  * result in undefined behaviour and can lead to an unexpected
 2197                  * TRCTRAP or a general protection fault right here.
 2198                  * Upper bits of dr6 and dr7 must not be set
 2199                  */
 2200                 for (i = 0; i < 4; i++) {
 2201                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2202                                 return (EINVAL);
 2203                         if (td->td_frame->tf_cs == _ucode32sel &&
 2204                             DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
 2205                                 return (EINVAL);
 2206                 }
 2207                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 2208                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 2209                         return (EINVAL);
 2210 
 2211                 pcb = td->td_pcb;
 2212 
 2213                 /*
 2214                  * Don't let a process set a breakpoint that is not within the
 2215                  * process's address space.  If a process could do this, it
 2216                  * could halt the system by setting a breakpoint in the kernel
 2217                  * (if ddb was enabled).  Thus, we need to check to make sure
 2218                  * that no breakpoints are being enabled for addresses outside
 2219                  * process's address space.
 2220                  *
 2221                  * XXX - what about when the watched area of the user's
 2222                  * address space is written into from within the kernel
 2223                  * ... wouldn't that still cause a breakpoint to be generated
 2224                  * from within kernel mode?
 2225                  */
 2226 
 2227                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2228                         /* dr0 is enabled */
 2229                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2230                                 return (EINVAL);
 2231                 }
 2232                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2233                         /* dr1 is enabled */
 2234                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2235                                 return (EINVAL);
 2236                 }
 2237                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2238                         /* dr2 is enabled */
 2239                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2240                                 return (EINVAL);
 2241                 }
 2242                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2243                         /* dr3 is enabled */
 2244                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2245                                 return (EINVAL);
 2246                 }
 2247 
 2248                 pcb->pcb_dr0 = dbregs->dr[0];
 2249                 pcb->pcb_dr1 = dbregs->dr[1];
 2250                 pcb->pcb_dr2 = dbregs->dr[2];
 2251                 pcb->pcb_dr3 = dbregs->dr[3];
 2252                 pcb->pcb_dr6 = dbregs->dr[6];
 2253                 pcb->pcb_dr7 = dbregs->dr[7];
 2254 
 2255                 pcb->pcb_flags |= PCB_DBREGS;
 2256         }
 2257 
 2258         return (0);
 2259 }
 2260 
 2261 void
 2262 reset_dbregs(void)
 2263 {
 2264 
 2265         load_dr7(0);    /* Turn off the control bits first */
 2266         load_dr0(0);
 2267         load_dr1(0);
 2268         load_dr2(0);
 2269         load_dr3(0);
 2270         load_dr6(0);
 2271 }
 2272 
 2273 /*
 2274  * Return > 0 if a hardware breakpoint has been hit, and the
 2275  * breakpoint was in user space.  Return 0, otherwise.
 2276  */
 2277 int
 2278 user_dbreg_trap(void)
 2279 {
 2280         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 2281         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 2282         int nbp;            /* number of breakpoints that triggered */
 2283         caddr_t addr[4];    /* breakpoint addresses */
 2284         int i;
 2285         
 2286         dr7 = rdr7();
 2287         if ((dr7 & 0x000000ff) == 0) {
 2288                 /*
 2289                  * all GE and LE bits in the dr7 register are zero,
 2290                  * thus the trap couldn't have been caused by the
 2291                  * hardware debug registers
 2292                  */
 2293                 return 0;
 2294         }
 2295 
 2296         nbp = 0;
 2297         dr6 = rdr6();
 2298         bp = dr6 & 0x0000000f;
 2299 
 2300         if (!bp) {
 2301                 /*
 2302                  * None of the breakpoint bits are set meaning this
 2303                  * trap was not caused by any of the debug registers
 2304                  */
 2305                 return 0;
 2306         }
 2307 
 2308         /*
 2309          * at least one of the breakpoints were hit, check to see
 2310          * which ones and if any of them are user space addresses
 2311          */
 2312 
 2313         if (bp & 0x01) {
 2314                 addr[nbp++] = (caddr_t)rdr0();
 2315         }
 2316         if (bp & 0x02) {
 2317                 addr[nbp++] = (caddr_t)rdr1();
 2318         }
 2319         if (bp & 0x04) {
 2320                 addr[nbp++] = (caddr_t)rdr2();
 2321         }
 2322         if (bp & 0x08) {
 2323                 addr[nbp++] = (caddr_t)rdr3();
 2324         }
 2325 
 2326         for (i = 0; i < nbp; i++) {
 2327                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2328                         /*
 2329                          * addr[i] is in user space
 2330                          */
 2331                         return nbp;
 2332                 }
 2333         }
 2334 
 2335         /*
 2336          * None of the breakpoints are in user space.
 2337          */
 2338         return 0;
 2339 }
 2340 
 2341 #ifdef KDB
 2342 
 2343 /*
 2344  * Provide inb() and outb() as functions.  They are normally only available as
 2345  * inline functions, thus cannot be called from the debugger.
 2346  */
 2347 
 2348 /* silence compiler warnings */
 2349 u_char inb_(u_short);
 2350 void outb_(u_short, u_char);
 2351 
 2352 u_char
 2353 inb_(u_short port)
 2354 {
 2355         return inb(port);
 2356 }
 2357 
 2358 void
 2359 outb_(u_short port, u_char data)
 2360 {
 2361         outb(port, data);
 2362 }
 2363 
 2364 #endif /* KDB */

Cache object: fb05a67d1edccc1f0c3ce991400312a0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.