1 /*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD: releng/8.3/sys/amd64/amd64/machdep.c 230472 2012-01-22 21:25:47Z gavin $");
43
44 #include "opt_atalk.h"
45 #include "opt_atpic.h"
46 #include "opt_compat.h"
47 #include "opt_cpu.h"
48 #include "opt_ddb.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_isa.h"
52 #include "opt_kstack_pages.h"
53 #include "opt_maxmem.h"
54 #include "opt_perfmon.h"
55 #include "opt_sched.h"
56 #include "opt_kdtrace.h"
57
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/systm.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/bus.h>
64 #include <sys/callout.h>
65 #include <sys/cons.h>
66 #include <sys/cpu.h>
67 #include <sys/eventhandler.h>
68 #include <sys/exec.h>
69 #include <sys/imgact.h>
70 #include <sys/kdb.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/linker.h>
74 #include <sys/lock.h>
75 #include <sys/malloc.h>
76 #include <sys/msgbuf.h>
77 #include <sys/mutex.h>
78 #include <sys/pcpu.h>
79 #include <sys/ptrace.h>
80 #include <sys/reboot.h>
81 #include <sys/sched.h>
82 #include <sys/signalvar.h>
83 #include <sys/sysctl.h>
84 #include <sys/sysent.h>
85 #include <sys/sysproto.h>
86 #include <sys/ucontext.h>
87 #include <sys/vmmeter.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_param.h>
97
98 #ifdef DDB
99 #ifndef KDB
100 #error KDB must be enabled in order for DDB to work!
101 #endif
102 #include <ddb/ddb.h>
103 #include <ddb/db_sym.h>
104 #endif
105
106 #include <net/netisr.h>
107
108 #include <machine/clock.h>
109 #include <machine/cpu.h>
110 #include <machine/cputypes.h>
111 #include <machine/intr_machdep.h>
112 #include <machine/mca.h>
113 #include <machine/md_var.h>
114 #include <machine/metadata.h>
115 #include <machine/pc/bios.h>
116 #include <machine/pcb.h>
117 #include <machine/proc.h>
118 #include <machine/reg.h>
119 #include <machine/sigframe.h>
120 #include <machine/specialreg.h>
121 #ifdef PERFMON
122 #include <machine/perfmon.h>
123 #endif
124 #include <machine/tss.h>
125 #ifdef SMP
126 #include <machine/smp.h>
127 #endif
128
129 #ifdef DEV_ATPIC
130 #include <amd64/isa/icu.h>
131 #else
132 #include <machine/apicvar.h>
133 #endif
134
135 #include <isa/isareg.h>
136 #include <isa/rtc.h>
137
138 /* Sanity check for __curthread() */
139 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
140
141 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
142
143 extern void printcpuinfo(void); /* XXX header file */
144 extern void identify_cpu(void);
145 extern void panicifcpuunsupported(void);
146
147 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
148 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
149
150 static void cpu_startup(void *);
151 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
152 static int set_fpcontext(struct thread *td, const mcontext_t *mcp);
153 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
154
155 #ifdef DDB
156 extern vm_offset_t ksym_start, ksym_end;
157 #endif
158
159 struct msgbuf *msgbufp;
160
161 /* Intel ICH registers */
162 #define ICH_PMBASE 0x400
163 #define ICH_SMI_EN ICH_PMBASE + 0x30
164
165 int _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
166
167 int cold = 1;
168
169 long Maxmem = 0;
170 long realmem = 0;
171
172 /*
173 * The number of PHYSMAP entries must be one less than the number of
174 * PHYSSEG entries because the PHYSMAP entry that spans the largest
175 * physical address that is accessible by ISA DMA is split into two
176 * PHYSSEG entries.
177 */
178 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
179
180 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
181 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
182
183 /* must be 2 less so 0 0 can signal end of chunks */
184 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
185 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
186
187 struct kva_md_info kmi;
188
189 static struct trapframe proc0_tf;
190 struct region_descriptor r_gdt, r_idt;
191
192 struct pcpu __pcpu[MAXCPU];
193
194 struct mtx icu_lock;
195
196 struct mtx dt_lock; /* lock for GDT and LDT */
197
198 static void
199 cpu_startup(dummy)
200 void *dummy;
201 {
202 uintmax_t memsize;
203 char *sysenv;
204
205 /*
206 * On MacBooks, we need to disallow the legacy USB circuit to
207 * generate an SMI# because this can cause several problems,
208 * namely: incorrect CPU frequency detection and failure to
209 * start the APs.
210 * We do this by disabling a bit in the SMI_EN (SMI Control and
211 * Enable register) of the Intel ICH LPC Interface Bridge.
212 */
213 sysenv = getenv("smbios.system.product");
214 if (sysenv != NULL) {
215 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
216 strncmp(sysenv, "MacBook3,1", 10) == 0 ||
217 strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
218 strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
219 strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
220 strncmp(sysenv, "Macmini1,1", 10) == 0) {
221 if (bootverbose)
222 printf("Disabling LEGACY_USB_EN bit on "
223 "Intel ICH.\n");
224 outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
225 }
226 freeenv(sysenv);
227 }
228
229 /*
230 * Good {morning,afternoon,evening,night}.
231 */
232 startrtclock();
233 printcpuinfo();
234 panicifcpuunsupported();
235 #ifdef PERFMON
236 perfmon_init();
237 #endif
238 realmem = Maxmem;
239
240 /*
241 * Display physical memory if SMBIOS reports reasonable amount.
242 */
243 memsize = 0;
244 sysenv = getenv("smbios.memory.enabled");
245 if (sysenv != NULL) {
246 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
247 freeenv(sysenv);
248 }
249 if (memsize < ptoa((uintmax_t)cnt.v_free_count))
250 memsize = ptoa((uintmax_t)Maxmem);
251 printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20);
252
253 /*
254 * Display any holes after the first chunk of extended memory.
255 */
256 if (bootverbose) {
257 int indx;
258
259 printf("Physical memory chunk(s):\n");
260 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
261 vm_paddr_t size;
262
263 size = phys_avail[indx + 1] - phys_avail[indx];
264 printf(
265 "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
266 (uintmax_t)phys_avail[indx],
267 (uintmax_t)phys_avail[indx + 1] - 1,
268 (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
269 }
270 }
271
272 vm_ksubmap_init(&kmi);
273
274 printf("avail memory = %ju (%ju MB)\n",
275 ptoa((uintmax_t)cnt.v_free_count),
276 ptoa((uintmax_t)cnt.v_free_count) / 1048576);
277
278 /*
279 * Set up buffers, so they can be used to read disk labels.
280 */
281 bufinit();
282 vm_pager_bufferinit();
283
284 cpu_setregs();
285 }
286
287 /*
288 * Send an interrupt to process.
289 *
290 * Stack is set up to allow sigcode stored
291 * at top to call routine, followed by call
292 * to sigreturn routine below. After sigreturn
293 * resets the signal mask, the stack, and the
294 * frame pointer, it returns to the user
295 * specified pc, psl.
296 */
297 void
298 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
299 {
300 struct sigframe sf, *sfp;
301 struct pcb *pcb;
302 struct proc *p;
303 struct thread *td;
304 struct sigacts *psp;
305 char *sp;
306 struct trapframe *regs;
307 int sig;
308 int oonstack;
309
310 td = curthread;
311 pcb = td->td_pcb;
312 p = td->td_proc;
313 PROC_LOCK_ASSERT(p, MA_OWNED);
314 sig = ksi->ksi_signo;
315 psp = p->p_sigacts;
316 mtx_assert(&psp->ps_mtx, MA_OWNED);
317 regs = td->td_frame;
318 oonstack = sigonstack(regs->tf_rsp);
319
320 /* Save user context. */
321 bzero(&sf, sizeof(sf));
322 sf.sf_uc.uc_sigmask = *mask;
323 sf.sf_uc.uc_stack = td->td_sigstk;
324 sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
325 ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
326 sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
327 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
328 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
329 get_fpcontext(td, &sf.sf_uc.uc_mcontext);
330 fpstate_drop(td);
331 sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
332 sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
333 bzero(sf.sf_uc.uc_mcontext.mc_spare,
334 sizeof(sf.sf_uc.uc_mcontext.mc_spare));
335 bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
336
337 /* Allocate space for the signal handler context. */
338 if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
339 SIGISMEMBER(psp->ps_sigonstack, sig)) {
340 sp = td->td_sigstk.ss_sp +
341 td->td_sigstk.ss_size - sizeof(struct sigframe);
342 #if defined(COMPAT_43)
343 td->td_sigstk.ss_flags |= SS_ONSTACK;
344 #endif
345 } else
346 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
347 /* Align to 16 bytes. */
348 sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
349
350 /* Translate the signal if appropriate. */
351 if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
352 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
353
354 /* Build the argument list for the signal handler. */
355 regs->tf_rdi = sig; /* arg 1 in %rdi */
356 regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
357 bzero(&sf.sf_si, sizeof(sf.sf_si));
358 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
359 /* Signal handler installed with SA_SIGINFO. */
360 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
361 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
362
363 /* Fill in POSIX parts */
364 sf.sf_si = ksi->ksi_info;
365 sf.sf_si.si_signo = sig; /* maybe a translated signal */
366 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
367 } else {
368 /* Old FreeBSD-style arguments. */
369 regs->tf_rsi = ksi->ksi_code; /* arg 2 in %rsi */
370 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
371 sf.sf_ahu.sf_handler = catcher;
372 }
373 mtx_unlock(&psp->ps_mtx);
374 PROC_UNLOCK(p);
375
376 /*
377 * Copy the sigframe out to the user's stack.
378 */
379 if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
380 #ifdef DEBUG
381 printf("process %ld has trashed its stack\n", (long)p->p_pid);
382 #endif
383 PROC_LOCK(p);
384 sigexit(td, SIGILL);
385 }
386
387 regs->tf_rsp = (long)sfp;
388 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
389 regs->tf_rflags &= ~(PSL_T | PSL_D);
390 regs->tf_cs = _ucodesel;
391 regs->tf_ds = _udatasel;
392 regs->tf_es = _udatasel;
393 regs->tf_fs = _ufssel;
394 regs->tf_gs = _ugssel;
395 regs->tf_flags = TF_HASSEGS;
396 set_pcb_flags(pcb, PCB_FULL_IRET);
397 PROC_LOCK(p);
398 mtx_lock(&psp->ps_mtx);
399 }
400
401 /*
402 * System call to cleanup state after a signal
403 * has been taken. Reset signal mask and
404 * stack state from context left by sendsig (above).
405 * Return to previous pc and psl as specified by
406 * context left by sendsig. Check carefully to
407 * make sure that the user has not modified the
408 * state to gain improper privileges.
409 *
410 * MPSAFE
411 */
412 int
413 sigreturn(td, uap)
414 struct thread *td;
415 struct sigreturn_args /* {
416 const struct __ucontext *sigcntxp;
417 } */ *uap;
418 {
419 ucontext_t uc;
420 struct pcb *pcb;
421 struct proc *p;
422 struct trapframe *regs;
423 ucontext_t *ucp;
424 long rflags;
425 int cs, error, ret;
426 ksiginfo_t ksi;
427
428 pcb = td->td_pcb;
429 p = td->td_proc;
430
431 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
432 if (error != 0) {
433 uprintf("pid %d (%s): sigreturn copyin failed\n",
434 p->p_pid, td->td_name);
435 return (error);
436 }
437 ucp = &uc;
438 if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
439 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
440 td->td_name, ucp->uc_mcontext.mc_flags);
441 return (EINVAL);
442 }
443 regs = td->td_frame;
444 rflags = ucp->uc_mcontext.mc_rflags;
445 /*
446 * Don't allow users to change privileged or reserved flags.
447 */
448 /*
449 * XXX do allow users to change the privileged flag PSL_RF.
450 * The cpu sets PSL_RF in tf_rflags for faults. Debuggers
451 * should sometimes set it there too. tf_rflags is kept in
452 * the signal context during signal handling and there is no
453 * other place to remember it, so the PSL_RF bit may be
454 * corrupted by the signal handler without us knowing.
455 * Corruption of the PSL_RF bit at worst causes one more or
456 * one less debugger trap, so allowing it is fairly harmless.
457 */
458 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
459 uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
460 td->td_name, rflags);
461 return (EINVAL);
462 }
463
464 /*
465 * Don't allow users to load a valid privileged %cs. Let the
466 * hardware check for invalid selectors, excess privilege in
467 * other selectors, invalid %eip's and invalid %esp's.
468 */
469 cs = ucp->uc_mcontext.mc_cs;
470 if (!CS_SECURE(cs)) {
471 uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
472 td->td_name, cs);
473 ksiginfo_init_trap(&ksi);
474 ksi.ksi_signo = SIGBUS;
475 ksi.ksi_code = BUS_OBJERR;
476 ksi.ksi_trapno = T_PROTFLT;
477 ksi.ksi_addr = (void *)regs->tf_rip;
478 trapsignal(td, &ksi);
479 return (EINVAL);
480 }
481
482 ret = set_fpcontext(td, &ucp->uc_mcontext);
483 if (ret != 0) {
484 uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
485 p->p_pid, td->td_name, ret);
486 return (ret);
487 }
488 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
489 pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
490 pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
491
492 #if defined(COMPAT_43)
493 if (ucp->uc_mcontext.mc_onstack & 1)
494 td->td_sigstk.ss_flags |= SS_ONSTACK;
495 else
496 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
497 #endif
498
499 kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
500 set_pcb_flags(pcb, PCB_FULL_IRET);
501 return (EJUSTRETURN);
502 }
503
504 #ifdef COMPAT_FREEBSD4
505 int
506 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
507 {
508
509 return sigreturn(td, (struct sigreturn_args *)uap);
510 }
511 #endif
512
513
514 /*
515 * Machine dependent boot() routine
516 *
517 * I haven't seen anything to put here yet
518 * Possibly some stuff might be grafted back here from boot()
519 */
520 void
521 cpu_boot(int howto)
522 {
523 }
524
525 /*
526 * Flush the D-cache for non-DMA I/O so that the I-cache can
527 * be made coherent later.
528 */
529 void
530 cpu_flush_dcache(void *ptr, size_t len)
531 {
532 /* Not applicable */
533 }
534
535 /* Get current clock frequency for the given cpu id. */
536 int
537 cpu_est_clockrate(int cpu_id, uint64_t *rate)
538 {
539 register_t reg;
540 uint64_t tsc1, tsc2;
541
542 if (pcpu_find(cpu_id) == NULL || rate == NULL)
543 return (EINVAL);
544
545 /* If we're booting, trust the rate calibrated moments ago. */
546 if (cold) {
547 *rate = tsc_freq;
548 return (0);
549 }
550
551 #ifdef SMP
552 /* Schedule ourselves on the indicated cpu. */
553 thread_lock(curthread);
554 sched_bind(curthread, cpu_id);
555 thread_unlock(curthread);
556 #endif
557
558 /* Calibrate by measuring a short delay. */
559 reg = intr_disable();
560 tsc1 = rdtsc();
561 DELAY(1000);
562 tsc2 = rdtsc();
563 intr_restore(reg);
564
565 #ifdef SMP
566 thread_lock(curthread);
567 sched_unbind(curthread);
568 thread_unlock(curthread);
569 #endif
570
571 /*
572 * Calculate the difference in readings, convert to Mhz, and
573 * subtract 0.5% of the total. Empirical testing has shown that
574 * overhead in DELAY() works out to approximately this value.
575 */
576 tsc2 -= tsc1;
577 *rate = tsc2 * 1000 - tsc2 * 5;
578 return (0);
579 }
580
581 /*
582 * Shutdown the CPU as much as possible
583 */
584 void
585 cpu_halt(void)
586 {
587 for (;;)
588 __asm__ ("hlt");
589 }
590
591 void (*cpu_idle_hook)(void) = NULL; /* ACPI idle hook. */
592
593 static void
594 cpu_idle_hlt(int busy)
595 {
596 /*
597 * we must absolutely guarentee that hlt is the next instruction
598 * after sti or we introduce a timing window.
599 */
600 disable_intr();
601 if (sched_runnable())
602 enable_intr();
603 else
604 __asm __volatile("sti; hlt");
605 }
606
607 static void
608 cpu_idle_acpi(int busy)
609 {
610 disable_intr();
611 if (sched_runnable())
612 enable_intr();
613 else if (cpu_idle_hook)
614 cpu_idle_hook();
615 else
616 __asm __volatile("sti; hlt");
617 }
618
619 static int cpu_ident_amdc1e = 0;
620
621 static int
622 cpu_probe_amdc1e(void)
623 {
624 int i;
625
626 /*
627 * Forget it, if we're not using local APIC timer.
628 */
629 if (resource_disabled("apic", 0) ||
630 (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
631 return (0);
632
633 /*
634 * Detect the presence of C1E capability mostly on latest
635 * dual-cores (or future) k8 family.
636 */
637 if (cpu_vendor_id == CPU_VENDOR_AMD &&
638 (cpu_id & 0x00000f00) == 0x00000f00 &&
639 (cpu_id & 0x0fff0000) >= 0x00040000) {
640 cpu_ident_amdc1e = 1;
641 return (1);
642 }
643
644 return (0);
645 }
646
647 /*
648 * C1E renders the local APIC timer dead, so we disable it by
649 * reading the Interrupt Pending Message register and clearing
650 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
651 *
652 * Reference:
653 * "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
654 * #32559 revision 3.00+
655 */
656 #define MSR_AMDK8_IPM 0xc0010055
657 #define AMDK8_SMIONCMPHALT (1ULL << 27)
658 #define AMDK8_C1EONCMPHALT (1ULL << 28)
659 #define AMDK8_CMPHALT (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
660
661 static void
662 cpu_idle_amdc1e(int busy)
663 {
664
665 disable_intr();
666 if (sched_runnable())
667 enable_intr();
668 else {
669 uint64_t msr;
670
671 msr = rdmsr(MSR_AMDK8_IPM);
672 if (msr & AMDK8_CMPHALT)
673 wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
674
675 if (cpu_idle_hook)
676 cpu_idle_hook();
677 else
678 __asm __volatile("sti; hlt");
679 }
680 }
681
682 static void
683 cpu_idle_spin(int busy)
684 {
685 return;
686 }
687
688 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
689
690 void
691 cpu_idle(int busy)
692 {
693 #ifdef SMP
694 if (mp_grab_cpu_hlt())
695 return;
696 #endif
697 cpu_idle_fn(busy);
698 }
699
700 /*
701 * mwait cpu power states. Lower 4 bits are sub-states.
702 */
703 #define MWAIT_C0 0xf0
704 #define MWAIT_C1 0x00
705 #define MWAIT_C2 0x10
706 #define MWAIT_C3 0x20
707 #define MWAIT_C4 0x30
708
709 #define MWAIT_DISABLED 0x0
710 #define MWAIT_WOKEN 0x1
711 #define MWAIT_WAITING 0x2
712
713 static void
714 cpu_idle_mwait(int busy)
715 {
716 int *mwait;
717
718 mwait = (int *)PCPU_PTR(monitorbuf);
719 *mwait = MWAIT_WAITING;
720 if (sched_runnable())
721 return;
722 cpu_monitor(mwait, 0, 0);
723 if (*mwait == MWAIT_WAITING)
724 cpu_mwait(0, MWAIT_C1);
725 }
726
727 static void
728 cpu_idle_mwait_hlt(int busy)
729 {
730 int *mwait;
731
732 mwait = (int *)PCPU_PTR(monitorbuf);
733 if (busy == 0) {
734 *mwait = MWAIT_DISABLED;
735 cpu_idle_hlt(busy);
736 return;
737 }
738 *mwait = MWAIT_WAITING;
739 if (sched_runnable())
740 return;
741 cpu_monitor(mwait, 0, 0);
742 if (*mwait == MWAIT_WAITING)
743 cpu_mwait(0, MWAIT_C1);
744 }
745
746 int
747 cpu_idle_wakeup(int cpu)
748 {
749 struct pcpu *pcpu;
750 int *mwait;
751
752 if (cpu_idle_fn == cpu_idle_spin)
753 return (1);
754 if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
755 return (0);
756 pcpu = pcpu_find(cpu);
757 mwait = (int *)pcpu->pc_monitorbuf;
758 /*
759 * This doesn't need to be atomic since missing the race will
760 * simply result in unnecessary IPIs.
761 */
762 if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
763 return (0);
764 *mwait = MWAIT_WOKEN;
765
766 return (1);
767 }
768
769 /*
770 * Ordered by speed/power consumption.
771 */
772 struct {
773 void *id_fn;
774 char *id_name;
775 } idle_tbl[] = {
776 { cpu_idle_spin, "spin" },
777 { cpu_idle_mwait, "mwait" },
778 { cpu_idle_mwait_hlt, "mwait_hlt" },
779 { cpu_idle_amdc1e, "amdc1e" },
780 { cpu_idle_hlt, "hlt" },
781 { cpu_idle_acpi, "acpi" },
782 { NULL, NULL }
783 };
784
785 static int
786 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
787 {
788 char *avail, *p;
789 int error;
790 int i;
791
792 avail = malloc(256, M_TEMP, M_WAITOK);
793 p = avail;
794 for (i = 0; idle_tbl[i].id_name != NULL; i++) {
795 if (strstr(idle_tbl[i].id_name, "mwait") &&
796 (cpu_feature2 & CPUID2_MON) == 0)
797 continue;
798 if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
799 cpu_ident_amdc1e == 0)
800 continue;
801 p += sprintf(p, "%s, ", idle_tbl[i].id_name);
802 }
803 error = sysctl_handle_string(oidp, avail, 0, req);
804 free(avail, M_TEMP);
805 return (error);
806 }
807
808 static int
809 idle_sysctl(SYSCTL_HANDLER_ARGS)
810 {
811 char buf[16];
812 int error;
813 char *p;
814 int i;
815
816 p = "unknown";
817 for (i = 0; idle_tbl[i].id_name != NULL; i++) {
818 if (idle_tbl[i].id_fn == cpu_idle_fn) {
819 p = idle_tbl[i].id_name;
820 break;
821 }
822 }
823 strncpy(buf, p, sizeof(buf));
824 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
825 if (error != 0 || req->newptr == NULL)
826 return (error);
827 for (i = 0; idle_tbl[i].id_name != NULL; i++) {
828 if (strstr(idle_tbl[i].id_name, "mwait") &&
829 (cpu_feature2 & CPUID2_MON) == 0)
830 continue;
831 if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
832 cpu_ident_amdc1e == 0)
833 continue;
834 if (strcmp(idle_tbl[i].id_name, buf))
835 continue;
836 cpu_idle_fn = idle_tbl[i].id_fn;
837 return (0);
838 }
839 return (EINVAL);
840 }
841
842 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
843 0, 0, idle_sysctl_available, "A", "list of available idle functions");
844
845 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
846 idle_sysctl, "A", "currently selected idle function");
847
848 /*
849 * Reset registers to default values on exec.
850 */
851 void
852 exec_setregs(td, entry, stack, ps_strings)
853 struct thread *td;
854 u_long entry;
855 u_long stack;
856 u_long ps_strings;
857 {
858 struct trapframe *regs = td->td_frame;
859 struct pcb *pcb = td->td_pcb;
860
861 mtx_lock(&dt_lock);
862 if (td->td_proc->p_md.md_ldt != NULL)
863 user_ldt_free(td);
864 else
865 mtx_unlock(&dt_lock);
866
867 pcb->pcb_fsbase = 0;
868 pcb->pcb_gsbase = 0;
869 clear_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
870 pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
871 set_pcb_flags(pcb, PCB_FULL_IRET);
872
873 bzero((char *)regs, sizeof(struct trapframe));
874 regs->tf_rip = entry;
875 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
876 regs->tf_rdi = stack; /* argv */
877 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
878 regs->tf_ss = _udatasel;
879 regs->tf_cs = _ucodesel;
880 regs->tf_ds = _udatasel;
881 regs->tf_es = _udatasel;
882 regs->tf_fs = _ufssel;
883 regs->tf_gs = _ugssel;
884 regs->tf_flags = TF_HASSEGS;
885 td->td_retval[1] = 0;
886
887 /*
888 * Reset the hardware debug registers if they were in use.
889 * They won't have any meaning for the newly exec'd process.
890 */
891 if (pcb->pcb_flags & PCB_DBREGS) {
892 pcb->pcb_dr0 = 0;
893 pcb->pcb_dr1 = 0;
894 pcb->pcb_dr2 = 0;
895 pcb->pcb_dr3 = 0;
896 pcb->pcb_dr6 = 0;
897 pcb->pcb_dr7 = 0;
898 if (pcb == PCPU_GET(curpcb)) {
899 /*
900 * Clear the debug registers on the running
901 * CPU, otherwise they will end up affecting
902 * the next process we switch to.
903 */
904 reset_dbregs();
905 }
906 clear_pcb_flags(pcb, PCB_DBREGS);
907 }
908
909 /*
910 * Drop the FP state if we hold it, so that the process gets a
911 * clean FP state if it uses the FPU again.
912 */
913 fpstate_drop(td);
914 }
915
916 void
917 cpu_setregs(void)
918 {
919 register_t cr0;
920
921 cr0 = rcr0();
922 /*
923 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
924 * BSP. See the comments there about why we set them.
925 */
926 cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
927 load_cr0(cr0);
928 }
929
930 /*
931 * Initialize amd64 and configure to run kernel
932 */
933
934 /*
935 * Initialize segments & interrupt table
936 */
937
938 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
939 static struct gate_descriptor idt0[NIDT];
940 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
941
942 static char dblfault_stack[PAGE_SIZE] __aligned(16);
943
944 static char nmi0_stack[PAGE_SIZE] __aligned(16);
945 CTASSERT(sizeof(struct nmi_pcpu) == 16);
946
947 struct amd64tss common_tss[MAXCPU];
948
949 /*
950 * Software prototypes -- in more palatable form.
951 *
952 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
953 * slots as corresponding segments for i386 kernel.
954 */
955 struct soft_segment_descriptor gdt_segs[] = {
956 /* GNULL_SEL 0 Null Descriptor */
957 { .ssd_base = 0x0,
958 .ssd_limit = 0x0,
959 .ssd_type = 0,
960 .ssd_dpl = 0,
961 .ssd_p = 0,
962 .ssd_long = 0,
963 .ssd_def32 = 0,
964 .ssd_gran = 0 },
965 /* GNULL2_SEL 1 Null Descriptor */
966 { .ssd_base = 0x0,
967 .ssd_limit = 0x0,
968 .ssd_type = 0,
969 .ssd_dpl = 0,
970 .ssd_p = 0,
971 .ssd_long = 0,
972 .ssd_def32 = 0,
973 .ssd_gran = 0 },
974 /* GUFS32_SEL 2 32 bit %gs Descriptor for user */
975 { .ssd_base = 0x0,
976 .ssd_limit = 0xfffff,
977 .ssd_type = SDT_MEMRWA,
978 .ssd_dpl = SEL_UPL,
979 .ssd_p = 1,
980 .ssd_long = 0,
981 .ssd_def32 = 1,
982 .ssd_gran = 1 },
983 /* GUGS32_SEL 3 32 bit %fs Descriptor for user */
984 { .ssd_base = 0x0,
985 .ssd_limit = 0xfffff,
986 .ssd_type = SDT_MEMRWA,
987 .ssd_dpl = SEL_UPL,
988 .ssd_p = 1,
989 .ssd_long = 0,
990 .ssd_def32 = 1,
991 .ssd_gran = 1 },
992 /* GCODE_SEL 4 Code Descriptor for kernel */
993 { .ssd_base = 0x0,
994 .ssd_limit = 0xfffff,
995 .ssd_type = SDT_MEMERA,
996 .ssd_dpl = SEL_KPL,
997 .ssd_p = 1,
998 .ssd_long = 1,
999 .ssd_def32 = 0,
1000 .ssd_gran = 1 },
1001 /* GDATA_SEL 5 Data Descriptor for kernel */
1002 { .ssd_base = 0x0,
1003 .ssd_limit = 0xfffff,
1004 .ssd_type = SDT_MEMRWA,
1005 .ssd_dpl = SEL_KPL,
1006 .ssd_p = 1,
1007 .ssd_long = 1,
1008 .ssd_def32 = 0,
1009 .ssd_gran = 1 },
1010 /* GUCODE32_SEL 6 32 bit Code Descriptor for user */
1011 { .ssd_base = 0x0,
1012 .ssd_limit = 0xfffff,
1013 .ssd_type = SDT_MEMERA,
1014 .ssd_dpl = SEL_UPL,
1015 .ssd_p = 1,
1016 .ssd_long = 0,
1017 .ssd_def32 = 1,
1018 .ssd_gran = 1 },
1019 /* GUDATA_SEL 7 32/64 bit Data Descriptor for user */
1020 { .ssd_base = 0x0,
1021 .ssd_limit = 0xfffff,
1022 .ssd_type = SDT_MEMRWA,
1023 .ssd_dpl = SEL_UPL,
1024 .ssd_p = 1,
1025 .ssd_long = 0,
1026 .ssd_def32 = 1,
1027 .ssd_gran = 1 },
1028 /* GUCODE_SEL 8 64 bit Code Descriptor for user */
1029 { .ssd_base = 0x0,
1030 .ssd_limit = 0xfffff,
1031 .ssd_type = SDT_MEMERA,
1032 .ssd_dpl = SEL_UPL,
1033 .ssd_p = 1,
1034 .ssd_long = 1,
1035 .ssd_def32 = 0,
1036 .ssd_gran = 1 },
1037 /* GPROC0_SEL 9 Proc 0 Tss Descriptor */
1038 { .ssd_base = 0x0,
1039 .ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1040 .ssd_type = SDT_SYSTSS,
1041 .ssd_dpl = SEL_KPL,
1042 .ssd_p = 1,
1043 .ssd_long = 0,
1044 .ssd_def32 = 0,
1045 .ssd_gran = 0 },
1046 /* Actually, the TSS is a system descriptor which is double size */
1047 { .ssd_base = 0x0,
1048 .ssd_limit = 0x0,
1049 .ssd_type = 0,
1050 .ssd_dpl = 0,
1051 .ssd_p = 0,
1052 .ssd_long = 0,
1053 .ssd_def32 = 0,
1054 .ssd_gran = 0 },
1055 /* GUSERLDT_SEL 11 LDT Descriptor */
1056 { .ssd_base = 0x0,
1057 .ssd_limit = 0x0,
1058 .ssd_type = 0,
1059 .ssd_dpl = 0,
1060 .ssd_p = 0,
1061 .ssd_long = 0,
1062 .ssd_def32 = 0,
1063 .ssd_gran = 0 },
1064 /* GUSERLDT_SEL 12 LDT Descriptor, double size */
1065 { .ssd_base = 0x0,
1066 .ssd_limit = 0x0,
1067 .ssd_type = 0,
1068 .ssd_dpl = 0,
1069 .ssd_p = 0,
1070 .ssd_long = 0,
1071 .ssd_def32 = 0,
1072 .ssd_gran = 0 },
1073 };
1074
1075 void
1076 setidt(idx, func, typ, dpl, ist)
1077 int idx;
1078 inthand_t *func;
1079 int typ;
1080 int dpl;
1081 int ist;
1082 {
1083 struct gate_descriptor *ip;
1084
1085 ip = idt + idx;
1086 ip->gd_looffset = (uintptr_t)func;
1087 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1088 ip->gd_ist = ist;
1089 ip->gd_xx = 0;
1090 ip->gd_type = typ;
1091 ip->gd_dpl = dpl;
1092 ip->gd_p = 1;
1093 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1094 }
1095
1096 extern inthand_t
1097 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1098 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1099 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1100 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1101 IDTVEC(xmm), IDTVEC(dblfault),
1102 #ifdef KDTRACE_HOOKS
1103 IDTVEC(dtrace_ret),
1104 #endif
1105 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1106
1107 #ifdef DDB
1108 /*
1109 * Display the index and function name of any IDT entries that don't use
1110 * the default 'rsvd' entry point.
1111 */
1112 DB_SHOW_COMMAND(idt, db_show_idt)
1113 {
1114 struct gate_descriptor *ip;
1115 int idx;
1116 uintptr_t func;
1117
1118 ip = idt;
1119 for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1120 func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1121 if (func != (uintptr_t)&IDTVEC(rsvd)) {
1122 db_printf("%3d\t", idx);
1123 db_printsym(func, DB_STGY_PROC);
1124 db_printf("\n");
1125 }
1126 ip++;
1127 }
1128 }
1129 #endif
1130
1131 void
1132 sdtossd(sd, ssd)
1133 struct user_segment_descriptor *sd;
1134 struct soft_segment_descriptor *ssd;
1135 {
1136
1137 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1138 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1139 ssd->ssd_type = sd->sd_type;
1140 ssd->ssd_dpl = sd->sd_dpl;
1141 ssd->ssd_p = sd->sd_p;
1142 ssd->ssd_long = sd->sd_long;
1143 ssd->ssd_def32 = sd->sd_def32;
1144 ssd->ssd_gran = sd->sd_gran;
1145 }
1146
1147 void
1148 ssdtosd(ssd, sd)
1149 struct soft_segment_descriptor *ssd;
1150 struct user_segment_descriptor *sd;
1151 {
1152
1153 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1154 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1155 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1156 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1157 sd->sd_type = ssd->ssd_type;
1158 sd->sd_dpl = ssd->ssd_dpl;
1159 sd->sd_p = ssd->ssd_p;
1160 sd->sd_long = ssd->ssd_long;
1161 sd->sd_def32 = ssd->ssd_def32;
1162 sd->sd_gran = ssd->ssd_gran;
1163 }
1164
1165 void
1166 ssdtosyssd(ssd, sd)
1167 struct soft_segment_descriptor *ssd;
1168 struct system_segment_descriptor *sd;
1169 {
1170
1171 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1172 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1173 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1174 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1175 sd->sd_type = ssd->ssd_type;
1176 sd->sd_dpl = ssd->ssd_dpl;
1177 sd->sd_p = ssd->ssd_p;
1178 sd->sd_gran = ssd->ssd_gran;
1179 }
1180
1181 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
1182 #include <isa/isavar.h>
1183 #include <isa/isareg.h>
1184 /*
1185 * Return a bitmap of the current interrupt requests. This is 8259-specific
1186 * and is only suitable for use at probe time.
1187 * This is only here to pacify sio. It is NOT FATAL if this doesn't work.
1188 * It shouldn't be here. There should probably be an APIC centric
1189 * implementation in the apic driver code, if at all.
1190 */
1191 intrmask_t
1192 isa_irq_pending(void)
1193 {
1194 u_char irr1;
1195 u_char irr2;
1196
1197 irr1 = inb(IO_ICU1);
1198 irr2 = inb(IO_ICU2);
1199 return ((irr2 << 8) | irr1);
1200 }
1201 #endif
1202
1203 u_int basemem;
1204
1205 static int
1206 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1207 {
1208 int i, insert_idx, physmap_idx;
1209
1210 physmap_idx = *physmap_idxp;
1211
1212 if (boothowto & RB_VERBOSE)
1213 printf("SMAP type=%02x base=%016lx len=%016lx\n",
1214 smap->type, smap->base, smap->length);
1215
1216 if (smap->type != SMAP_TYPE_MEMORY)
1217 return (1);
1218
1219 if (smap->length == 0)
1220 return (0);
1221
1222 /*
1223 * Find insertion point while checking for overlap. Start off by
1224 * assuming the new entry will be added to the end.
1225 */
1226 insert_idx = physmap_idx + 2;
1227 for (i = 0; i <= physmap_idx; i += 2) {
1228 if (smap->base < physmap[i + 1]) {
1229 if (smap->base + smap->length <= physmap[i]) {
1230 insert_idx = i;
1231 break;
1232 }
1233 if (boothowto & RB_VERBOSE)
1234 printf(
1235 "Overlapping memory regions, ignoring second region\n");
1236 return (1);
1237 }
1238 }
1239
1240 /* See if we can prepend to the next entry. */
1241 if (insert_idx <= physmap_idx &&
1242 smap->base + smap->length == physmap[insert_idx]) {
1243 physmap[insert_idx] = smap->base;
1244 return (1);
1245 }
1246
1247 /* See if we can append to the previous entry. */
1248 if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1249 physmap[insert_idx - 1] += smap->length;
1250 return (1);
1251 }
1252
1253 physmap_idx += 2;
1254 *physmap_idxp = physmap_idx;
1255 if (physmap_idx == PHYSMAP_SIZE) {
1256 printf(
1257 "Too many segments in the physical address map, giving up\n");
1258 return (0);
1259 }
1260
1261 /*
1262 * Move the last 'N' entries down to make room for the new
1263 * entry if needed.
1264 */
1265 for (i = physmap_idx; i > insert_idx; i -= 2) {
1266 physmap[i] = physmap[i - 2];
1267 physmap[i + 1] = physmap[i - 1];
1268 }
1269
1270 /* Insert the new entry. */
1271 physmap[insert_idx] = smap->base;
1272 physmap[insert_idx + 1] = smap->base + smap->length;
1273 return (1);
1274 }
1275
1276 /*
1277 * Populate the (physmap) array with base/bound pairs describing the
1278 * available physical memory in the system, then test this memory and
1279 * build the phys_avail array describing the actually-available memory.
1280 *
1281 * Total memory size may be set by the kernel environment variable
1282 * hw.physmem or the compile-time define MAXMEM.
1283 *
1284 * XXX first should be vm_paddr_t.
1285 */
1286 static void
1287 getmemsize(caddr_t kmdp, u_int64_t first)
1288 {
1289 int i, physmap_idx, pa_indx, da_indx;
1290 vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1291 u_long physmem_tunable, memtest;
1292 pt_entry_t *pte;
1293 struct bios_smap *smapbase, *smap, *smapend;
1294 u_int32_t smapsize;
1295 quad_t dcons_addr, dcons_size;
1296
1297 bzero(physmap, sizeof(physmap));
1298 basemem = 0;
1299 physmap_idx = 0;
1300
1301 /*
1302 * get memory map from INT 15:E820, kindly supplied by the loader.
1303 *
1304 * subr_module.c says:
1305 * "Consumer may safely assume that size value precedes data."
1306 * ie: an int32_t immediately precedes smap.
1307 */
1308 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1309 MODINFO_METADATA | MODINFOMD_SMAP);
1310 if (smapbase == NULL)
1311 panic("No BIOS smap info from loader!");
1312
1313 smapsize = *((u_int32_t *)smapbase - 1);
1314 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1315
1316 for (smap = smapbase; smap < smapend; smap++)
1317 if (!add_smap_entry(smap, physmap, &physmap_idx))
1318 break;
1319
1320 /*
1321 * Find the 'base memory' segment for SMP
1322 */
1323 basemem = 0;
1324 for (i = 0; i <= physmap_idx; i += 2) {
1325 if (physmap[i] == 0x00000000) {
1326 basemem = physmap[i + 1] / 1024;
1327 break;
1328 }
1329 }
1330 if (basemem == 0)
1331 panic("BIOS smap did not include a basemem segment!");
1332
1333 #ifdef SMP
1334 /* make hole for AP bootstrap code */
1335 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1336 #endif
1337
1338 /*
1339 * Maxmem isn't the "maximum memory", it's one larger than the
1340 * highest page of the physical address space. It should be
1341 * called something like "Maxphyspage". We may adjust this
1342 * based on ``hw.physmem'' and the results of the memory test.
1343 */
1344 Maxmem = atop(physmap[physmap_idx + 1]);
1345
1346 #ifdef MAXMEM
1347 Maxmem = MAXMEM / 4;
1348 #endif
1349
1350 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1351 Maxmem = atop(physmem_tunable);
1352
1353 /*
1354 * By default enable the memory test on real hardware, and disable
1355 * it if we appear to be running in a VM. This avoids touching all
1356 * pages unnecessarily, which doesn't matter on real hardware but is
1357 * bad for shared VM hosts. Use a general name so that
1358 * one could eventually do more with the code than just disable it.
1359 */
1360 memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1361 TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1362
1363 /*
1364 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1365 * in the system.
1366 */
1367 if (Maxmem > atop(physmap[physmap_idx + 1]))
1368 Maxmem = atop(physmap[physmap_idx + 1]);
1369
1370 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1371 (boothowto & RB_VERBOSE))
1372 printf("Physical memory use set to %ldK\n", Maxmem * 4);
1373
1374 /* call pmap initialization to make new kernel address space */
1375 pmap_bootstrap(&first);
1376
1377 /*
1378 * Size up each available chunk of physical memory.
1379 */
1380 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1381 pa_indx = 0;
1382 da_indx = 1;
1383 phys_avail[pa_indx++] = physmap[0];
1384 phys_avail[pa_indx] = physmap[0];
1385 dump_avail[da_indx] = physmap[0];
1386 pte = CMAP1;
1387
1388 /*
1389 * Get dcons buffer address
1390 */
1391 if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1392 getenv_quad("dcons.size", &dcons_size) == 0)
1393 dcons_addr = 0;
1394
1395 /*
1396 * physmap is in bytes, so when converting to page boundaries,
1397 * round up the start address and round down the end address.
1398 */
1399 for (i = 0; i <= physmap_idx; i += 2) {
1400 vm_paddr_t end;
1401
1402 end = ptoa((vm_paddr_t)Maxmem);
1403 if (physmap[i + 1] < end)
1404 end = trunc_page(physmap[i + 1]);
1405 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1406 int tmp, page_bad, full;
1407 int *ptr = (int *)CADDR1;
1408
1409 full = FALSE;
1410 /*
1411 * block out kernel memory as not available.
1412 */
1413 if (pa >= 0x100000 && pa < first)
1414 goto do_dump_avail;
1415
1416 /*
1417 * block out dcons buffer
1418 */
1419 if (dcons_addr > 0
1420 && pa >= trunc_page(dcons_addr)
1421 && pa < dcons_addr + dcons_size)
1422 goto do_dump_avail;
1423
1424 page_bad = FALSE;
1425 if (memtest == 0)
1426 goto skip_memtest;
1427
1428 /*
1429 * map page into kernel: valid, read/write,non-cacheable
1430 */
1431 *pte = pa | PG_V | PG_RW | PG_N;
1432 invltlb();
1433
1434 tmp = *(int *)ptr;
1435 /*
1436 * Test for alternating 1's and 0's
1437 */
1438 *(volatile int *)ptr = 0xaaaaaaaa;
1439 if (*(volatile int *)ptr != 0xaaaaaaaa)
1440 page_bad = TRUE;
1441 /*
1442 * Test for alternating 0's and 1's
1443 */
1444 *(volatile int *)ptr = 0x55555555;
1445 if (*(volatile int *)ptr != 0x55555555)
1446 page_bad = TRUE;
1447 /*
1448 * Test for all 1's
1449 */
1450 *(volatile int *)ptr = 0xffffffff;
1451 if (*(volatile int *)ptr != 0xffffffff)
1452 page_bad = TRUE;
1453 /*
1454 * Test for all 0's
1455 */
1456 *(volatile int *)ptr = 0x0;
1457 if (*(volatile int *)ptr != 0x0)
1458 page_bad = TRUE;
1459 /*
1460 * Restore original value.
1461 */
1462 *(int *)ptr = tmp;
1463
1464 skip_memtest:
1465 /*
1466 * Adjust array of valid/good pages.
1467 */
1468 if (page_bad == TRUE)
1469 continue;
1470 /*
1471 * If this good page is a continuation of the
1472 * previous set of good pages, then just increase
1473 * the end pointer. Otherwise start a new chunk.
1474 * Note that "end" points one higher than end,
1475 * making the range >= start and < end.
1476 * If we're also doing a speculative memory
1477 * test and we at or past the end, bump up Maxmem
1478 * so that we keep going. The first bad page
1479 * will terminate the loop.
1480 */
1481 if (phys_avail[pa_indx] == pa) {
1482 phys_avail[pa_indx] += PAGE_SIZE;
1483 } else {
1484 pa_indx++;
1485 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1486 printf(
1487 "Too many holes in the physical address space, giving up\n");
1488 pa_indx--;
1489 full = TRUE;
1490 goto do_dump_avail;
1491 }
1492 phys_avail[pa_indx++] = pa; /* start */
1493 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1494 }
1495 physmem++;
1496 do_dump_avail:
1497 if (dump_avail[da_indx] == pa) {
1498 dump_avail[da_indx] += PAGE_SIZE;
1499 } else {
1500 da_indx++;
1501 if (da_indx == DUMP_AVAIL_ARRAY_END) {
1502 da_indx--;
1503 goto do_next;
1504 }
1505 dump_avail[da_indx++] = pa; /* start */
1506 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1507 }
1508 do_next:
1509 if (full)
1510 break;
1511 }
1512 }
1513 *pte = 0;
1514 invltlb();
1515
1516 /*
1517 * XXX
1518 * The last chunk must contain at least one page plus the message
1519 * buffer to avoid complicating other code (message buffer address
1520 * calculation, etc.).
1521 */
1522 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1523 round_page(msgbufsize) >= phys_avail[pa_indx]) {
1524 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1525 phys_avail[pa_indx--] = 0;
1526 phys_avail[pa_indx--] = 0;
1527 }
1528
1529 Maxmem = atop(phys_avail[pa_indx]);
1530
1531 /* Trim off space for the message buffer. */
1532 phys_avail[pa_indx] -= round_page(msgbufsize);
1533
1534 /* Map the message buffer. */
1535 msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1536 }
1537
1538 u_int64_t
1539 hammer_time(u_int64_t modulep, u_int64_t physfree)
1540 {
1541 caddr_t kmdp;
1542 int gsel_tss, x;
1543 struct pcpu *pc;
1544 struct nmi_pcpu *np;
1545 u_int64_t msr;
1546 char *env;
1547
1548 thread0.td_kstack = physfree + KERNBASE;
1549 bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1550 physfree += KSTACK_PAGES * PAGE_SIZE;
1551 thread0.td_pcb = (struct pcb *)
1552 (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1553
1554 /*
1555 * This may be done better later if it gets more high level
1556 * components in it. If so just link td->td_proc here.
1557 */
1558 proc_linkup0(&proc0, &thread0);
1559
1560 preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1561 preload_bootstrap_relocate(KERNBASE);
1562 kmdp = preload_search_by_type("elf kernel");
1563 if (kmdp == NULL)
1564 kmdp = preload_search_by_type("elf64 kernel");
1565 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1566 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1567 #ifdef DDB
1568 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1569 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1570 #endif
1571
1572 /* Init basic tunables, hz etc */
1573 init_param1();
1574
1575 /*
1576 * make gdt memory segments
1577 */
1578 for (x = 0; x < NGDT; x++) {
1579 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1580 x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1581 ssdtosd(&gdt_segs[x], &gdt[x]);
1582 }
1583 gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1584 ssdtosyssd(&gdt_segs[GPROC0_SEL],
1585 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1586
1587 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1588 r_gdt.rd_base = (long) gdt;
1589 lgdt(&r_gdt);
1590 pc = &__pcpu[0];
1591
1592 wrmsr(MSR_FSBASE, 0); /* User value */
1593 wrmsr(MSR_GSBASE, (u_int64_t)pc);
1594 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
1595
1596 pcpu_init(pc, 0, sizeof(struct pcpu));
1597 dpcpu_init((void *)(physfree + KERNBASE), 0);
1598 physfree += DPCPU_SIZE;
1599 PCPU_SET(prvspace, pc);
1600 PCPU_SET(curthread, &thread0);
1601 PCPU_SET(curpcb, thread0.td_pcb);
1602 PCPU_SET(tssp, &common_tss[0]);
1603 PCPU_SET(commontssp, &common_tss[0]);
1604 PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1605 PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1606 PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1607 PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1608
1609 /*
1610 * Initialize mutexes.
1611 *
1612 * icu_lock: in order to allow an interrupt to occur in a critical
1613 * section, to set pcpu->ipending (etc...) properly, we
1614 * must be able to get the icu lock, so it can't be
1615 * under witness.
1616 */
1617 mutex_init();
1618 mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1619 mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1620
1621 /* exceptions */
1622 for (x = 0; x < NIDT; x++)
1623 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1624 setidt(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
1625 setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
1626 setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 2);
1627 setidt(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
1628 setidt(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
1629 setidt(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
1630 setidt(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
1631 setidt(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
1632 setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1633 setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
1634 setidt(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
1635 setidt(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
1636 setidt(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
1637 setidt(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
1638 setidt(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
1639 setidt(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
1640 setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1641 setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
1642 setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1643 #ifdef KDTRACE_HOOKS
1644 setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1645 #endif
1646
1647 r_idt.rd_limit = sizeof(idt0) - 1;
1648 r_idt.rd_base = (long) idt;
1649 lidt(&r_idt);
1650
1651 /*
1652 * Initialize the i8254 before the console so that console
1653 * initialization can use DELAY().
1654 */
1655 i8254_init();
1656
1657 /*
1658 * Initialize the console before we print anything out.
1659 */
1660 cninit();
1661
1662 #ifdef DEV_ISA
1663 #ifdef DEV_ATPIC
1664 elcr_probe();
1665 atpic_startup();
1666 #else
1667 /* Reset and mask the atpics and leave them shut down. */
1668 atpic_reset();
1669
1670 /*
1671 * Point the ICU spurious interrupt vectors at the APIC spurious
1672 * interrupt handler.
1673 */
1674 setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1675 setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1676 #endif
1677 #else
1678 #error "have you forgotten the isa device?";
1679 #endif
1680
1681 kdb_init();
1682
1683 #ifdef KDB
1684 if (boothowto & RB_KDB)
1685 kdb_enter(KDB_WHY_BOOTFLAGS,
1686 "Boot flags requested debugger");
1687 #endif
1688
1689 identify_cpu(); /* Final stage of CPU initialization */
1690 initializecpu(); /* Initialize CPU registers */
1691 initializecpucache();
1692
1693 /* make an initial tss so cpu can get interrupt stack on syscall! */
1694 common_tss[0].tss_rsp0 = thread0.td_kstack + \
1695 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1696 /* Ensure the stack is aligned to 16 bytes */
1697 common_tss[0].tss_rsp0 &= ~0xFul;
1698 PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1699
1700 /* doublefault stack space, runs on ist1 */
1701 common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1702
1703 /*
1704 * NMI stack, runs on ist2. The pcpu pointer is stored just
1705 * above the start of the ist2 stack.
1706 */
1707 np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1708 np->np_pcpu = (register_t) pc;
1709 common_tss[0].tss_ist2 = (long) np;
1710
1711 /* Set the IO permission bitmap (empty due to tss seg limit) */
1712 common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1713 IOPAGES * PAGE_SIZE;
1714
1715 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1716 ltr(gsel_tss);
1717
1718 /* Set up the fast syscall stuff */
1719 msr = rdmsr(MSR_EFER) | EFER_SCE;
1720 wrmsr(MSR_EFER, msr);
1721 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1722 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1723 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1724 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1725 wrmsr(MSR_STAR, msr);
1726 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1727
1728 getmemsize(kmdp, physfree);
1729 init_param2(physmem);
1730
1731 /* now running on new page tables, configured,and u/iom is accessible */
1732
1733 msgbufinit(msgbufp, msgbufsize);
1734 fpuinit();
1735
1736 /* transfer to user mode */
1737
1738 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1739 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1740 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1741 _ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1742 _ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1743
1744 load_ds(_udatasel);
1745 load_es(_udatasel);
1746 load_fs(_ufssel);
1747
1748 /* setup proc 0's pcb */
1749 thread0.td_pcb->pcb_flags = 0;
1750 thread0.td_pcb->pcb_cr3 = KPML4phys;
1751 thread0.td_frame = &proc0_tf;
1752
1753 env = getenv("kernelname");
1754 if (env != NULL)
1755 strlcpy(kernelname, env, sizeof(kernelname));
1756
1757 #ifdef XENHVM
1758 if (inw(0x10) == 0x49d2) {
1759 if (bootverbose)
1760 printf("Xen detected: disabling emulated block and network devices\n");
1761 outw(0x10, 3);
1762 }
1763 #endif
1764
1765 if (cpu_probe_amdc1e())
1766 cpu_idle_fn = cpu_idle_amdc1e;
1767
1768 /* Location of kernel stack for locore */
1769 return ((u_int64_t)thread0.td_pcb);
1770 }
1771
1772 void
1773 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1774 {
1775
1776 pcpu->pc_acpi_id = 0xffffffff;
1777 }
1778
1779 void
1780 spinlock_enter(void)
1781 {
1782 struct thread *td;
1783 register_t flags;
1784
1785 td = curthread;
1786 if (td->td_md.md_spinlock_count == 0) {
1787 flags = intr_disable();
1788 td->td_md.md_spinlock_count = 1;
1789 td->td_md.md_saved_flags = flags;
1790 } else
1791 td->td_md.md_spinlock_count++;
1792 critical_enter();
1793 }
1794
1795 void
1796 spinlock_exit(void)
1797 {
1798 struct thread *td;
1799 register_t flags;
1800
1801 td = curthread;
1802 critical_exit();
1803 flags = td->td_md.md_saved_flags;
1804 td->td_md.md_spinlock_count--;
1805 if (td->td_md.md_spinlock_count == 0)
1806 intr_restore(flags);
1807 }
1808
1809 /*
1810 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1811 * we want to start a backtrace from the function that caused us to enter
1812 * the debugger. We have the context in the trapframe, but base the trace
1813 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1814 * enough for a backtrace.
1815 */
1816 void
1817 makectx(struct trapframe *tf, struct pcb *pcb)
1818 {
1819
1820 pcb->pcb_r12 = tf->tf_r12;
1821 pcb->pcb_r13 = tf->tf_r13;
1822 pcb->pcb_r14 = tf->tf_r14;
1823 pcb->pcb_r15 = tf->tf_r15;
1824 pcb->pcb_rbp = tf->tf_rbp;
1825 pcb->pcb_rbx = tf->tf_rbx;
1826 pcb->pcb_rip = tf->tf_rip;
1827 pcb->pcb_rsp = tf->tf_rsp;
1828 }
1829
1830 int
1831 ptrace_set_pc(struct thread *td, unsigned long addr)
1832 {
1833 td->td_frame->tf_rip = addr;
1834 return (0);
1835 }
1836
1837 int
1838 ptrace_single_step(struct thread *td)
1839 {
1840 td->td_frame->tf_rflags |= PSL_T;
1841 return (0);
1842 }
1843
1844 int
1845 ptrace_clear_single_step(struct thread *td)
1846 {
1847 td->td_frame->tf_rflags &= ~PSL_T;
1848 return (0);
1849 }
1850
1851 int
1852 fill_regs(struct thread *td, struct reg *regs)
1853 {
1854 struct trapframe *tp;
1855
1856 tp = td->td_frame;
1857 return (fill_frame_regs(tp, regs));
1858 }
1859
1860 int
1861 fill_frame_regs(struct trapframe *tp, struct reg *regs)
1862 {
1863 regs->r_r15 = tp->tf_r15;
1864 regs->r_r14 = tp->tf_r14;
1865 regs->r_r13 = tp->tf_r13;
1866 regs->r_r12 = tp->tf_r12;
1867 regs->r_r11 = tp->tf_r11;
1868 regs->r_r10 = tp->tf_r10;
1869 regs->r_r9 = tp->tf_r9;
1870 regs->r_r8 = tp->tf_r8;
1871 regs->r_rdi = tp->tf_rdi;
1872 regs->r_rsi = tp->tf_rsi;
1873 regs->r_rbp = tp->tf_rbp;
1874 regs->r_rbx = tp->tf_rbx;
1875 regs->r_rdx = tp->tf_rdx;
1876 regs->r_rcx = tp->tf_rcx;
1877 regs->r_rax = tp->tf_rax;
1878 regs->r_rip = tp->tf_rip;
1879 regs->r_cs = tp->tf_cs;
1880 regs->r_rflags = tp->tf_rflags;
1881 regs->r_rsp = tp->tf_rsp;
1882 regs->r_ss = tp->tf_ss;
1883 if (tp->tf_flags & TF_HASSEGS) {
1884 regs->r_ds = tp->tf_ds;
1885 regs->r_es = tp->tf_es;
1886 regs->r_fs = tp->tf_fs;
1887 regs->r_gs = tp->tf_gs;
1888 } else {
1889 regs->r_ds = 0;
1890 regs->r_es = 0;
1891 regs->r_fs = 0;
1892 regs->r_gs = 0;
1893 }
1894 return (0);
1895 }
1896
1897 int
1898 set_regs(struct thread *td, struct reg *regs)
1899 {
1900 struct trapframe *tp;
1901 register_t rflags;
1902
1903 tp = td->td_frame;
1904 rflags = regs->r_rflags & 0xffffffff;
1905 if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1906 return (EINVAL);
1907 tp->tf_r15 = regs->r_r15;
1908 tp->tf_r14 = regs->r_r14;
1909 tp->tf_r13 = regs->r_r13;
1910 tp->tf_r12 = regs->r_r12;
1911 tp->tf_r11 = regs->r_r11;
1912 tp->tf_r10 = regs->r_r10;
1913 tp->tf_r9 = regs->r_r9;
1914 tp->tf_r8 = regs->r_r8;
1915 tp->tf_rdi = regs->r_rdi;
1916 tp->tf_rsi = regs->r_rsi;
1917 tp->tf_rbp = regs->r_rbp;
1918 tp->tf_rbx = regs->r_rbx;
1919 tp->tf_rdx = regs->r_rdx;
1920 tp->tf_rcx = regs->r_rcx;
1921 tp->tf_rax = regs->r_rax;
1922 tp->tf_rip = regs->r_rip;
1923 tp->tf_cs = regs->r_cs;
1924 tp->tf_rflags = rflags;
1925 tp->tf_rsp = regs->r_rsp;
1926 tp->tf_ss = regs->r_ss;
1927 if (0) { /* XXXKIB */
1928 tp->tf_ds = regs->r_ds;
1929 tp->tf_es = regs->r_es;
1930 tp->tf_fs = regs->r_fs;
1931 tp->tf_gs = regs->r_gs;
1932 tp->tf_flags = TF_HASSEGS;
1933 set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1934 }
1935 return (0);
1936 }
1937
1938 /* XXX check all this stuff! */
1939 /* externalize from sv_xmm */
1940 static void
1941 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1942 {
1943 struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1944 struct envxmm *penv_xmm = &sv_xmm->sv_env;
1945 int i;
1946
1947 /* pcb -> fpregs */
1948 bzero(fpregs, sizeof(*fpregs));
1949
1950 /* FPU control/status */
1951 penv_fpreg->en_cw = penv_xmm->en_cw;
1952 penv_fpreg->en_sw = penv_xmm->en_sw;
1953 penv_fpreg->en_tw = penv_xmm->en_tw;
1954 penv_fpreg->en_opcode = penv_xmm->en_opcode;
1955 penv_fpreg->en_rip = penv_xmm->en_rip;
1956 penv_fpreg->en_rdp = penv_xmm->en_rdp;
1957 penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1958 penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1959
1960 /* FPU registers */
1961 for (i = 0; i < 8; ++i)
1962 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1963
1964 /* SSE registers */
1965 for (i = 0; i < 16; ++i)
1966 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1967 }
1968
1969 /* internalize from fpregs into sv_xmm */
1970 static void
1971 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1972 {
1973 struct envxmm *penv_xmm = &sv_xmm->sv_env;
1974 struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1975 int i;
1976
1977 /* fpregs -> pcb */
1978 /* FPU control/status */
1979 penv_xmm->en_cw = penv_fpreg->en_cw;
1980 penv_xmm->en_sw = penv_fpreg->en_sw;
1981 penv_xmm->en_tw = penv_fpreg->en_tw;
1982 penv_xmm->en_opcode = penv_fpreg->en_opcode;
1983 penv_xmm->en_rip = penv_fpreg->en_rip;
1984 penv_xmm->en_rdp = penv_fpreg->en_rdp;
1985 penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1986 penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1987
1988 /* FPU registers */
1989 for (i = 0; i < 8; ++i)
1990 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1991
1992 /* SSE registers */
1993 for (i = 0; i < 16; ++i)
1994 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1995 }
1996
1997 /* externalize from td->pcb */
1998 int
1999 fill_fpregs(struct thread *td, struct fpreg *fpregs)
2000 {
2001
2002 KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2003 P_SHOULDSTOP(td->td_proc),
2004 ("not suspended thread %p", td));
2005 fpugetregs(td);
2006 fill_fpregs_xmm(&td->td_pcb->pcb_user_save, fpregs);
2007 return (0);
2008 }
2009
2010 /* internalize to td->pcb */
2011 int
2012 set_fpregs(struct thread *td, struct fpreg *fpregs)
2013 {
2014
2015 set_fpregs_xmm(fpregs, &td->td_pcb->pcb_user_save);
2016 fpuuserinited(td);
2017 return (0);
2018 }
2019
2020 /*
2021 * Get machine context.
2022 */
2023 int
2024 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2025 {
2026 struct pcb *pcb;
2027 struct trapframe *tp;
2028
2029 pcb = td->td_pcb;
2030 tp = td->td_frame;
2031 PROC_LOCK(curthread->td_proc);
2032 mcp->mc_onstack = sigonstack(tp->tf_rsp);
2033 PROC_UNLOCK(curthread->td_proc);
2034 mcp->mc_r15 = tp->tf_r15;
2035 mcp->mc_r14 = tp->tf_r14;
2036 mcp->mc_r13 = tp->tf_r13;
2037 mcp->mc_r12 = tp->tf_r12;
2038 mcp->mc_r11 = tp->tf_r11;
2039 mcp->mc_r10 = tp->tf_r10;
2040 mcp->mc_r9 = tp->tf_r9;
2041 mcp->mc_r8 = tp->tf_r8;
2042 mcp->mc_rdi = tp->tf_rdi;
2043 mcp->mc_rsi = tp->tf_rsi;
2044 mcp->mc_rbp = tp->tf_rbp;
2045 mcp->mc_rbx = tp->tf_rbx;
2046 mcp->mc_rcx = tp->tf_rcx;
2047 mcp->mc_rflags = tp->tf_rflags;
2048 if (flags & GET_MC_CLEAR_RET) {
2049 mcp->mc_rax = 0;
2050 mcp->mc_rdx = 0;
2051 mcp->mc_rflags &= ~PSL_C;
2052 } else {
2053 mcp->mc_rax = tp->tf_rax;
2054 mcp->mc_rdx = tp->tf_rdx;
2055 }
2056 mcp->mc_rip = tp->tf_rip;
2057 mcp->mc_cs = tp->tf_cs;
2058 mcp->mc_rsp = tp->tf_rsp;
2059 mcp->mc_ss = tp->tf_ss;
2060 mcp->mc_ds = tp->tf_ds;
2061 mcp->mc_es = tp->tf_es;
2062 mcp->mc_fs = tp->tf_fs;
2063 mcp->mc_gs = tp->tf_gs;
2064 mcp->mc_flags = tp->tf_flags;
2065 mcp->mc_len = sizeof(*mcp);
2066 get_fpcontext(td, mcp);
2067 mcp->mc_fsbase = pcb->pcb_fsbase;
2068 mcp->mc_gsbase = pcb->pcb_gsbase;
2069 bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2070 return (0);
2071 }
2072
2073 /*
2074 * Set machine context.
2075 *
2076 * However, we don't set any but the user modifiable flags, and we won't
2077 * touch the cs selector.
2078 */
2079 int
2080 set_mcontext(struct thread *td, const mcontext_t *mcp)
2081 {
2082 struct pcb *pcb;
2083 struct trapframe *tp;
2084 long rflags;
2085 int ret;
2086
2087 pcb = td->td_pcb;
2088 tp = td->td_frame;
2089 if (mcp->mc_len != sizeof(*mcp) ||
2090 (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2091 return (EINVAL);
2092 rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2093 (tp->tf_rflags & ~PSL_USERCHANGE);
2094 ret = set_fpcontext(td, mcp);
2095 if (ret != 0)
2096 return (ret);
2097 tp->tf_r15 = mcp->mc_r15;
2098 tp->tf_r14 = mcp->mc_r14;
2099 tp->tf_r13 = mcp->mc_r13;
2100 tp->tf_r12 = mcp->mc_r12;
2101 tp->tf_r11 = mcp->mc_r11;
2102 tp->tf_r10 = mcp->mc_r10;
2103 tp->tf_r9 = mcp->mc_r9;
2104 tp->tf_r8 = mcp->mc_r8;
2105 tp->tf_rdi = mcp->mc_rdi;
2106 tp->tf_rsi = mcp->mc_rsi;
2107 tp->tf_rbp = mcp->mc_rbp;
2108 tp->tf_rbx = mcp->mc_rbx;
2109 tp->tf_rdx = mcp->mc_rdx;
2110 tp->tf_rcx = mcp->mc_rcx;
2111 tp->tf_rax = mcp->mc_rax;
2112 tp->tf_rip = mcp->mc_rip;
2113 tp->tf_rflags = rflags;
2114 tp->tf_rsp = mcp->mc_rsp;
2115 tp->tf_ss = mcp->mc_ss;
2116 tp->tf_flags = mcp->mc_flags;
2117 if (tp->tf_flags & TF_HASSEGS) {
2118 tp->tf_ds = mcp->mc_ds;
2119 tp->tf_es = mcp->mc_es;
2120 tp->tf_fs = mcp->mc_fs;
2121 tp->tf_gs = mcp->mc_gs;
2122 }
2123 if (mcp->mc_flags & _MC_HASBASES) {
2124 pcb->pcb_fsbase = mcp->mc_fsbase;
2125 pcb->pcb_gsbase = mcp->mc_gsbase;
2126 }
2127 set_pcb_flags(pcb, PCB_FULL_IRET);
2128 return (0);
2129 }
2130
2131 static void
2132 get_fpcontext(struct thread *td, mcontext_t *mcp)
2133 {
2134
2135 mcp->mc_ownedfp = fpugetregs(td);
2136 bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate,
2137 sizeof(mcp->mc_fpstate));
2138 mcp->mc_fpformat = fpuformat();
2139 }
2140
2141 static int
2142 set_fpcontext(struct thread *td, const mcontext_t *mcp)
2143 {
2144 struct savefpu *fpstate;
2145
2146 if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2147 return (0);
2148 else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2149 return (EINVAL);
2150 else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2151 /* We don't care what state is left in the FPU or PCB. */
2152 fpstate_drop(td);
2153 else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2154 mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2155 fpstate = (struct savefpu *)&mcp->mc_fpstate;
2156 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2157 fpusetregs(td, fpstate);
2158 } else
2159 return (EINVAL);
2160 return (0);
2161 }
2162
2163 void
2164 fpstate_drop(struct thread *td)
2165 {
2166
2167 KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2168 critical_enter();
2169 if (PCPU_GET(fpcurthread) == td)
2170 fpudrop();
2171 /*
2172 * XXX force a full drop of the fpu. The above only drops it if we
2173 * owned it.
2174 *
2175 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2176 * drop. Dropping only to the pcb matches fnsave's behaviour.
2177 * We only need to drop to !PCB_INITDONE in sendsig(). But
2178 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2179 * have too many layers.
2180 */
2181 clear_pcb_flags(curthread->td_pcb,
2182 PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2183 critical_exit();
2184 }
2185
2186 int
2187 fill_dbregs(struct thread *td, struct dbreg *dbregs)
2188 {
2189 struct pcb *pcb;
2190
2191 if (td == NULL) {
2192 dbregs->dr[0] = rdr0();
2193 dbregs->dr[1] = rdr1();
2194 dbregs->dr[2] = rdr2();
2195 dbregs->dr[3] = rdr3();
2196 dbregs->dr[6] = rdr6();
2197 dbregs->dr[7] = rdr7();
2198 } else {
2199 pcb = td->td_pcb;
2200 dbregs->dr[0] = pcb->pcb_dr0;
2201 dbregs->dr[1] = pcb->pcb_dr1;
2202 dbregs->dr[2] = pcb->pcb_dr2;
2203 dbregs->dr[3] = pcb->pcb_dr3;
2204 dbregs->dr[6] = pcb->pcb_dr6;
2205 dbregs->dr[7] = pcb->pcb_dr7;
2206 }
2207 dbregs->dr[4] = 0;
2208 dbregs->dr[5] = 0;
2209 dbregs->dr[8] = 0;
2210 dbregs->dr[9] = 0;
2211 dbregs->dr[10] = 0;
2212 dbregs->dr[11] = 0;
2213 dbregs->dr[12] = 0;
2214 dbregs->dr[13] = 0;
2215 dbregs->dr[14] = 0;
2216 dbregs->dr[15] = 0;
2217 return (0);
2218 }
2219
2220 int
2221 set_dbregs(struct thread *td, struct dbreg *dbregs)
2222 {
2223 struct pcb *pcb;
2224 int i;
2225
2226 if (td == NULL) {
2227 load_dr0(dbregs->dr[0]);
2228 load_dr1(dbregs->dr[1]);
2229 load_dr2(dbregs->dr[2]);
2230 load_dr3(dbregs->dr[3]);
2231 load_dr6(dbregs->dr[6]);
2232 load_dr7(dbregs->dr[7]);
2233 } else {
2234 /*
2235 * Don't let an illegal value for dr7 get set. Specifically,
2236 * check for undefined settings. Setting these bit patterns
2237 * result in undefined behaviour and can lead to an unexpected
2238 * TRCTRAP or a general protection fault right here.
2239 * Upper bits of dr6 and dr7 must not be set
2240 */
2241 for (i = 0; i < 4; i++) {
2242 if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2243 return (EINVAL);
2244 if (td->td_frame->tf_cs == _ucode32sel &&
2245 DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2246 return (EINVAL);
2247 }
2248 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2249 (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2250 return (EINVAL);
2251
2252 pcb = td->td_pcb;
2253
2254 /*
2255 * Don't let a process set a breakpoint that is not within the
2256 * process's address space. If a process could do this, it
2257 * could halt the system by setting a breakpoint in the kernel
2258 * (if ddb was enabled). Thus, we need to check to make sure
2259 * that no breakpoints are being enabled for addresses outside
2260 * process's address space.
2261 *
2262 * XXX - what about when the watched area of the user's
2263 * address space is written into from within the kernel
2264 * ... wouldn't that still cause a breakpoint to be generated
2265 * from within kernel mode?
2266 */
2267
2268 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2269 /* dr0 is enabled */
2270 if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2271 return (EINVAL);
2272 }
2273 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2274 /* dr1 is enabled */
2275 if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2276 return (EINVAL);
2277 }
2278 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2279 /* dr2 is enabled */
2280 if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2281 return (EINVAL);
2282 }
2283 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2284 /* dr3 is enabled */
2285 if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2286 return (EINVAL);
2287 }
2288
2289 pcb->pcb_dr0 = dbregs->dr[0];
2290 pcb->pcb_dr1 = dbregs->dr[1];
2291 pcb->pcb_dr2 = dbregs->dr[2];
2292 pcb->pcb_dr3 = dbregs->dr[3];
2293 pcb->pcb_dr6 = dbregs->dr[6];
2294 pcb->pcb_dr7 = dbregs->dr[7];
2295
2296 set_pcb_flags(pcb, PCB_DBREGS);
2297 }
2298
2299 return (0);
2300 }
2301
2302 void
2303 reset_dbregs(void)
2304 {
2305
2306 load_dr7(0); /* Turn off the control bits first */
2307 load_dr0(0);
2308 load_dr1(0);
2309 load_dr2(0);
2310 load_dr3(0);
2311 load_dr6(0);
2312 }
2313
2314 /*
2315 * Return > 0 if a hardware breakpoint has been hit, and the
2316 * breakpoint was in user space. Return 0, otherwise.
2317 */
2318 int
2319 user_dbreg_trap(void)
2320 {
2321 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2322 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2323 int nbp; /* number of breakpoints that triggered */
2324 caddr_t addr[4]; /* breakpoint addresses */
2325 int i;
2326
2327 dr7 = rdr7();
2328 if ((dr7 & 0x000000ff) == 0) {
2329 /*
2330 * all GE and LE bits in the dr7 register are zero,
2331 * thus the trap couldn't have been caused by the
2332 * hardware debug registers
2333 */
2334 return 0;
2335 }
2336
2337 nbp = 0;
2338 dr6 = rdr6();
2339 bp = dr6 & 0x0000000f;
2340
2341 if (!bp) {
2342 /*
2343 * None of the breakpoint bits are set meaning this
2344 * trap was not caused by any of the debug registers
2345 */
2346 return 0;
2347 }
2348
2349 /*
2350 * at least one of the breakpoints were hit, check to see
2351 * which ones and if any of them are user space addresses
2352 */
2353
2354 if (bp & 0x01) {
2355 addr[nbp++] = (caddr_t)rdr0();
2356 }
2357 if (bp & 0x02) {
2358 addr[nbp++] = (caddr_t)rdr1();
2359 }
2360 if (bp & 0x04) {
2361 addr[nbp++] = (caddr_t)rdr2();
2362 }
2363 if (bp & 0x08) {
2364 addr[nbp++] = (caddr_t)rdr3();
2365 }
2366
2367 for (i = 0; i < nbp; i++) {
2368 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2369 /*
2370 * addr[i] is in user space
2371 */
2372 return nbp;
2373 }
2374 }
2375
2376 /*
2377 * None of the breakpoints are in user space.
2378 */
2379 return 0;
2380 }
2381
2382 #ifdef KDB
2383
2384 /*
2385 * Provide inb() and outb() as functions. They are normally only available as
2386 * inline functions, thus cannot be called from the debugger.
2387 */
2388
2389 /* silence compiler warnings */
2390 u_char inb_(u_short);
2391 void outb_(u_short, u_char);
2392
2393 u_char
2394 inb_(u_short port)
2395 {
2396 return inb(port);
2397 }
2398
2399 void
2400 outb_(u_short port, u_char data)
2401 {
2402 outb(port, data);
2403 }
2404
2405 #endif /* KDB */
Cache object: 37eaa0ff9af1556e6288171ff03ac5f4
|