The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD$");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_perfmon.h"
   55 #include "opt_sched.h"
   56 #include "opt_kdtrace.h"
   57 
   58 #include <sys/param.h>
   59 #include <sys/proc.h>
   60 #include <sys/systm.h>
   61 #include <sys/bio.h>
   62 #include <sys/buf.h>
   63 #include <sys/bus.h>
   64 #include <sys/callout.h>
   65 #include <sys/cons.h>
   66 #include <sys/cpu.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/exec.h>
   69 #include <sys/imgact.h>
   70 #include <sys/kdb.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/linker.h>
   74 #include <sys/lock.h>
   75 #include <sys/malloc.h>
   76 #include <sys/memrange.h>
   77 #include <sys/msgbuf.h>
   78 #include <sys/mutex.h>
   79 #include <sys/pcpu.h>
   80 #include <sys/ptrace.h>
   81 #include <sys/reboot.h>
   82 #include <sys/sched.h>
   83 #include <sys/signalvar.h>
   84 #include <sys/syscallsubr.h>
   85 #include <sys/sysctl.h>
   86 #include <sys/sysent.h>
   87 #include <sys/sysproto.h>
   88 #include <sys/ucontext.h>
   89 #include <sys/vmmeter.h>
   90 
   91 #include <vm/vm.h>
   92 #include <vm/vm_extern.h>
   93 #include <vm/vm_kern.h>
   94 #include <vm/vm_page.h>
   95 #include <vm/vm_map.h>
   96 #include <vm/vm_object.h>
   97 #include <vm/vm_pager.h>
   98 #include <vm/vm_param.h>
   99 
  100 #ifdef DDB
  101 #ifndef KDB
  102 #error KDB must be enabled in order for DDB to work!
  103 #endif
  104 #include <ddb/ddb.h>
  105 #include <ddb/db_sym.h>
  106 #endif
  107 
  108 #include <net/netisr.h>
  109 
  110 #include <machine/clock.h>
  111 #include <machine/cpu.h>
  112 #include <machine/cputypes.h>
  113 #include <machine/intr_machdep.h>
  114 #include <machine/mca.h>
  115 #include <machine/md_var.h>
  116 #include <machine/metadata.h>
  117 #include <machine/pc/bios.h>
  118 #include <machine/pcb.h>
  119 #include <machine/proc.h>
  120 #include <machine/reg.h>
  121 #include <machine/sigframe.h>
  122 #include <machine/specialreg.h>
  123 #ifdef PERFMON
  124 #include <machine/perfmon.h>
  125 #endif
  126 #include <machine/tss.h>
  127 #ifdef SMP
  128 #include <machine/smp.h>
  129 #endif
  130 
  131 #ifdef DEV_ATPIC
  132 #include <amd64/isa/icu.h>
  133 #else
  134 #include <machine/apicvar.h>
  135 #endif
  136 
  137 #include <isa/isareg.h>
  138 #include <isa/rtc.h>
  139 
  140 /* Sanity check for __curthread() */
  141 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  142 
  143 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  144 
  145 extern void printcpuinfo(void); /* XXX header file */
  146 extern void identify_cpu(void);
  147 extern void panicifcpuunsupported(void);
  148 
  149 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  150 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  151 
  152 static void cpu_startup(void *);
  153 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
  154     char *xfpusave, size_t xfpusave_len);
  155 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
  156     char *xfpustate, size_t xfpustate_len);
  157 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  158 
  159 #ifdef DDB
  160 extern vm_offset_t ksym_start, ksym_end;
  161 #endif
  162 
  163 struct msgbuf *msgbufp;
  164 
  165 /* Intel ICH registers */
  166 #define ICH_PMBASE      0x400
  167 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  168 
  169 int     _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
  170 
  171 int cold = 1;
  172 
  173 long Maxmem = 0;
  174 long realmem = 0;
  175 
  176 /*
  177  * The number of PHYSMAP entries must be one less than the number of
  178  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  179  * physical address that is accessible by ISA DMA is split into two
  180  * PHYSSEG entries.
  181  */
  182 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  183 
  184 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  185 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  186 
  187 /* must be 2 less so 0 0 can signal end of chunks */
  188 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  189 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  190 
  191 struct kva_md_info kmi;
  192 
  193 static struct trapframe proc0_tf;
  194 struct region_descriptor r_gdt, r_idt;
  195 
  196 struct pcpu __pcpu[MAXCPU];
  197 
  198 struct mtx icu_lock;
  199 
  200 struct mem_range_softc mem_range_softc;
  201 
  202 struct mtx dt_lock;     /* lock for GDT and LDT */
  203 
  204 static void
  205 cpu_startup(dummy)
  206         void *dummy;
  207 {
  208         uintmax_t memsize;
  209         char *sysenv;
  210 
  211         /*
  212          * On MacBooks, we need to disallow the legacy USB circuit to
  213          * generate an SMI# because this can cause several problems,
  214          * namely: incorrect CPU frequency detection and failure to
  215          * start the APs.
  216          * We do this by disabling a bit in the SMI_EN (SMI Control and
  217          * Enable register) of the Intel ICH LPC Interface Bridge. 
  218          */
  219         sysenv = getenv("smbios.system.product");
  220         if (sysenv != NULL) {
  221                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  222                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  223                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  224                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  225                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  226                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  227                         if (bootverbose)
  228                                 printf("Disabling LEGACY_USB_EN bit on "
  229                                     "Intel ICH.\n");
  230                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  231                 }
  232                 freeenv(sysenv);
  233         }
  234 
  235         /*
  236          * Good {morning,afternoon,evening,night}.
  237          */
  238         startrtclock();
  239         printcpuinfo();
  240         panicifcpuunsupported();
  241 #ifdef PERFMON
  242         perfmon_init();
  243 #endif
  244         realmem = Maxmem;
  245 
  246         /*
  247          * Display physical memory if SMBIOS reports reasonable amount.
  248          */
  249         memsize = 0;
  250         sysenv = getenv("smbios.memory.enabled");
  251         if (sysenv != NULL) {
  252                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  253                 freeenv(sysenv);
  254         }
  255         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  256                 memsize = ptoa((uintmax_t)Maxmem);
  257         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  258 
  259         /*
  260          * Display any holes after the first chunk of extended memory.
  261          */
  262         if (bootverbose) {
  263                 int indx;
  264 
  265                 printf("Physical memory chunk(s):\n");
  266                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  267                         vm_paddr_t size;
  268 
  269                         size = phys_avail[indx + 1] - phys_avail[indx];
  270                         printf(
  271                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  272                             (uintmax_t)phys_avail[indx],
  273                             (uintmax_t)phys_avail[indx + 1] - 1,
  274                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  275                 }
  276         }
  277 
  278         vm_ksubmap_init(&kmi);
  279 
  280         printf("avail memory = %ju (%ju MB)\n",
  281             ptoa((uintmax_t)cnt.v_free_count),
  282             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  283 
  284         /*
  285          * Set up buffers, so they can be used to read disk labels.
  286          */
  287         bufinit();
  288         vm_pager_bufferinit();
  289 
  290         cpu_setregs();
  291 }
  292 
  293 /*
  294  * Send an interrupt to process.
  295  *
  296  * Stack is set up to allow sigcode stored
  297  * at top to call routine, followed by call
  298  * to sigreturn routine below.  After sigreturn
  299  * resets the signal mask, the stack, and the
  300  * frame pointer, it returns to the user
  301  * specified pc, psl.
  302  */
  303 void
  304 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  305 {
  306         struct sigframe sf, *sfp;
  307         struct pcb *pcb;
  308         struct proc *p;
  309         struct thread *td;
  310         struct sigacts *psp;
  311         char *sp;
  312         struct trapframe *regs;
  313         char *xfpusave;
  314         size_t xfpusave_len;
  315         int sig;
  316         int oonstack;
  317 
  318         td = curthread;
  319         pcb = td->td_pcb;
  320         p = td->td_proc;
  321         PROC_LOCK_ASSERT(p, MA_OWNED);
  322         sig = ksi->ksi_signo;
  323         psp = p->p_sigacts;
  324         mtx_assert(&psp->ps_mtx, MA_OWNED);
  325         regs = td->td_frame;
  326         oonstack = sigonstack(regs->tf_rsp);
  327 
  328         if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
  329                 xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  330                 xfpusave = __builtin_alloca(xfpusave_len);
  331         } else {
  332                 xfpusave_len = 0;
  333                 xfpusave = NULL;
  334         }
  335 
  336         /* Save user context. */
  337         bzero(&sf, sizeof(sf));
  338         sf.sf_uc.uc_sigmask = *mask;
  339         sf.sf_uc.uc_stack = td->td_sigstk;
  340         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  341             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  342         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  343         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  344         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  345         get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
  346         fpstate_drop(td);
  347         sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
  348         sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
  349         bzero(sf.sf_uc.uc_mcontext.mc_spare,
  350             sizeof(sf.sf_uc.uc_mcontext.mc_spare));
  351         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  352 
  353         /* Allocate space for the signal handler context. */
  354         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  355             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  356                 sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
  357 #if defined(COMPAT_43)
  358                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  359 #endif
  360         } else
  361                 sp = (char *)regs->tf_rsp - 128;
  362         if (xfpusave != NULL) {
  363                 sp -= xfpusave_len;
  364                 sp = (char *)((unsigned long)sp & ~0x3Ful);
  365                 sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
  366         }
  367         sp -= sizeof(struct sigframe);
  368         /* Align to 16 bytes. */
  369         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  370 
  371         /* Translate the signal if appropriate. */
  372         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  373                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  374 
  375         /* Build the argument list for the signal handler. */
  376         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  377         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  378         bzero(&sf.sf_si, sizeof(sf.sf_si));
  379         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  380                 /* Signal handler installed with SA_SIGINFO. */
  381                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  382                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  383 
  384                 /* Fill in POSIX parts */
  385                 sf.sf_si = ksi->ksi_info;
  386                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  387                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  388         } else {
  389                 /* Old FreeBSD-style arguments. */
  390                 regs->tf_rsi = ksi->ksi_code;   /* arg 2 in %rsi */
  391                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  392                 sf.sf_ahu.sf_handler = catcher;
  393         }
  394         mtx_unlock(&psp->ps_mtx);
  395         PROC_UNLOCK(p);
  396 
  397         /*
  398          * Copy the sigframe out to the user's stack.
  399          */
  400         if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  401             (xfpusave != NULL && copyout(xfpusave,
  402             (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
  403             != 0)) {
  404 #ifdef DEBUG
  405                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  406 #endif
  407                 PROC_LOCK(p);
  408                 sigexit(td, SIGILL);
  409         }
  410 
  411         regs->tf_rsp = (long)sfp;
  412         regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  413         regs->tf_rflags &= ~(PSL_T | PSL_D);
  414         regs->tf_cs = _ucodesel;
  415         regs->tf_ds = _udatasel;
  416         regs->tf_es = _udatasel;
  417         regs->tf_fs = _ufssel;
  418         regs->tf_gs = _ugssel;
  419         regs->tf_flags = TF_HASSEGS;
  420         set_pcb_flags(pcb, PCB_FULL_IRET);
  421         PROC_LOCK(p);
  422         mtx_lock(&psp->ps_mtx);
  423 }
  424 
  425 /*
  426  * System call to cleanup state after a signal
  427  * has been taken.  Reset signal mask and
  428  * stack state from context left by sendsig (above).
  429  * Return to previous pc and psl as specified by
  430  * context left by sendsig. Check carefully to
  431  * make sure that the user has not modified the
  432  * state to gain improper privileges.
  433  *
  434  * MPSAFE
  435  */
  436 int
  437 sigreturn(td, uap)
  438         struct thread *td;
  439         struct sigreturn_args /* {
  440                 const struct __ucontext *sigcntxp;
  441         } */ *uap;
  442 {
  443         ucontext_t uc;
  444         struct pcb *pcb;
  445         struct proc *p;
  446         struct trapframe *regs;
  447         ucontext_t *ucp;
  448         char *xfpustate;
  449         size_t xfpustate_len;
  450         long rflags;
  451         int cs, error, ret;
  452         ksiginfo_t ksi;
  453 
  454         pcb = td->td_pcb;
  455         p = td->td_proc;
  456 
  457         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  458         if (error != 0) {
  459                 uprintf("pid %d (%s): sigreturn copyin failed\n",
  460                     p->p_pid, td->td_name);
  461                 return (error);
  462         }
  463         ucp = &uc;
  464         if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
  465                 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
  466                     td->td_name, ucp->uc_mcontext.mc_flags);
  467                 return (EINVAL);
  468         }
  469         regs = td->td_frame;
  470         rflags = ucp->uc_mcontext.mc_rflags;
  471         /*
  472          * Don't allow users to change privileged or reserved flags.
  473          */
  474         /*
  475          * XXX do allow users to change the privileged flag PSL_RF.
  476          * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
  477          * should sometimes set it there too.  tf_rflags is kept in
  478          * the signal context during signal handling and there is no
  479          * other place to remember it, so the PSL_RF bit may be
  480          * corrupted by the signal handler without us knowing.
  481          * Corruption of the PSL_RF bit at worst causes one more or
  482          * one less debugger trap, so allowing it is fairly harmless.
  483          */
  484         if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
  485                 uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
  486                     td->td_name, rflags);
  487                 return (EINVAL);
  488         }
  489 
  490         /*
  491          * Don't allow users to load a valid privileged %cs.  Let the
  492          * hardware check for invalid selectors, excess privilege in
  493          * other selectors, invalid %eip's and invalid %esp's.
  494          */
  495         cs = ucp->uc_mcontext.mc_cs;
  496         if (!CS_SECURE(cs)) {
  497                 uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
  498                     td->td_name, cs);
  499                 ksiginfo_init_trap(&ksi);
  500                 ksi.ksi_signo = SIGBUS;
  501                 ksi.ksi_code = BUS_OBJERR;
  502                 ksi.ksi_trapno = T_PROTFLT;
  503                 ksi.ksi_addr = (void *)regs->tf_rip;
  504                 trapsignal(td, &ksi);
  505                 return (EINVAL);
  506         }
  507 
  508         if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
  509                 xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
  510                 if (xfpustate_len > cpu_max_ext_state_size -
  511                     sizeof(struct savefpu)) {
  512                         uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
  513                             p->p_pid, td->td_name, xfpustate_len);
  514                         return (EINVAL);
  515                 }
  516                 xfpustate = __builtin_alloca(xfpustate_len);
  517                 error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
  518                     xfpustate, xfpustate_len);
  519                 if (error != 0) {
  520                         uprintf(
  521         "pid %d (%s): sigreturn copying xfpustate failed\n",
  522                             p->p_pid, td->td_name);
  523                         return (error);
  524                 }
  525         } else {
  526                 xfpustate = NULL;
  527                 xfpustate_len = 0;
  528         }
  529         ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
  530         if (ret != 0) {
  531                 uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
  532                     p->p_pid, td->td_name, ret);
  533                 return (ret);
  534         }
  535         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  536         pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
  537         pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
  538 
  539 #if defined(COMPAT_43)
  540         if (ucp->uc_mcontext.mc_onstack & 1)
  541                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  542         else
  543                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  544 #endif
  545 
  546         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  547         set_pcb_flags(pcb, PCB_FULL_IRET);
  548         return (EJUSTRETURN);
  549 }
  550 
  551 #ifdef COMPAT_FREEBSD4
  552 int
  553 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  554 {
  555  
  556         return sigreturn(td, (struct sigreturn_args *)uap);
  557 }
  558 #endif
  559 
  560 
  561 /*
  562  * Machine dependent boot() routine
  563  *
  564  * I haven't seen anything to put here yet
  565  * Possibly some stuff might be grafted back here from boot()
  566  */
  567 void
  568 cpu_boot(int howto)
  569 {
  570 }
  571 
  572 /*
  573  * Flush the D-cache for non-DMA I/O so that the I-cache can
  574  * be made coherent later.
  575  */
  576 void
  577 cpu_flush_dcache(void *ptr, size_t len)
  578 {
  579         /* Not applicable */
  580 }
  581 
  582 /* Get current clock frequency for the given cpu id. */
  583 int
  584 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  585 {
  586         register_t reg;
  587         uint64_t tsc1, tsc2;
  588 
  589         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  590                 return (EINVAL);
  591 
  592         /* If we're booting, trust the rate calibrated moments ago. */
  593         if (cold) {
  594                 *rate = tsc_freq;
  595                 return (0);
  596         }
  597 
  598 #ifdef SMP
  599         /* Schedule ourselves on the indicated cpu. */
  600         thread_lock(curthread);
  601         sched_bind(curthread, cpu_id);
  602         thread_unlock(curthread);
  603 #endif
  604 
  605         /* Calibrate by measuring a short delay. */
  606         reg = intr_disable();
  607         tsc1 = rdtsc();
  608         DELAY(1000);
  609         tsc2 = rdtsc();
  610         intr_restore(reg);
  611 
  612 #ifdef SMP
  613         thread_lock(curthread);
  614         sched_unbind(curthread);
  615         thread_unlock(curthread);
  616 #endif
  617 
  618         /*
  619          * Calculate the difference in readings, convert to Mhz, and
  620          * subtract 0.5% of the total.  Empirical testing has shown that
  621          * overhead in DELAY() works out to approximately this value.
  622          */
  623         tsc2 -= tsc1;
  624         *rate = tsc2 * 1000 - tsc2 * 5;
  625         return (0);
  626 }
  627 
  628 /*
  629  * Shutdown the CPU as much as possible
  630  */
  631 void
  632 cpu_halt(void)
  633 {
  634         for (;;)
  635                 halt();
  636 }
  637 
  638 void (*cpu_idle_hook)(void) = NULL;     /* ACPI idle hook. */
  639 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
  640 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
  641 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
  642 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
  643     0, "Use MONITOR/MWAIT for short idle");
  644 
  645 #define STATE_RUNNING   0x0
  646 #define STATE_MWAIT     0x1
  647 #define STATE_SLEEPING  0x2
  648 
  649 static void
  650 cpu_idle_acpi(int busy)
  651 {
  652         int *state;
  653 
  654         state = (int *)PCPU_PTR(monitorbuf);
  655         *state = STATE_SLEEPING;
  656 
  657         /* See comments in cpu_idle_hlt(). */
  658         disable_intr();
  659         if (sched_runnable())
  660                 enable_intr();
  661         else if (cpu_idle_hook)
  662                 cpu_idle_hook();
  663         else
  664                 __asm __volatile("sti; hlt");
  665         *state = STATE_RUNNING;
  666 }
  667 
  668 static void
  669 cpu_idle_hlt(int busy)
  670 {
  671         int *state;
  672 
  673         state = (int *)PCPU_PTR(monitorbuf);
  674         *state = STATE_SLEEPING;
  675 
  676         /*
  677          * Since we may be in a critical section from cpu_idle(), if
  678          * an interrupt fires during that critical section we may have
  679          * a pending preemption.  If the CPU halts, then that thread
  680          * may not execute until a later interrupt awakens the CPU.
  681          * To handle this race, check for a runnable thread after
  682          * disabling interrupts and immediately return if one is
  683          * found.  Also, we must absolutely guarentee that hlt is
  684          * the next instruction after sti.  This ensures that any
  685          * interrupt that fires after the call to disable_intr() will
  686          * immediately awaken the CPU from hlt.  Finally, please note
  687          * that on x86 this works fine because of interrupts enabled only
  688          * after the instruction following sti takes place, while IF is set
  689          * to 1 immediately, allowing hlt instruction to acknowledge the
  690          * interrupt.
  691          */
  692         disable_intr();
  693         if (sched_runnable())
  694                 enable_intr();
  695         else
  696                 __asm __volatile("sti; hlt");
  697         *state = STATE_RUNNING;
  698 }
  699 
  700 /*
  701  * MWAIT cpu power states.  Lower 4 bits are sub-states.
  702  */
  703 #define MWAIT_C0        0xf0
  704 #define MWAIT_C1        0x00
  705 #define MWAIT_C2        0x10
  706 #define MWAIT_C3        0x20
  707 #define MWAIT_C4        0x30
  708 
  709 static void
  710 cpu_idle_mwait(int busy)
  711 {
  712         int *state;
  713 
  714         state = (int *)PCPU_PTR(monitorbuf);
  715         *state = STATE_MWAIT;
  716 
  717         /* See comments in cpu_idle_hlt(). */
  718         disable_intr();
  719         if (sched_runnable()) {
  720                 enable_intr();
  721                 *state = STATE_RUNNING;
  722                 return;
  723         }
  724         cpu_monitor(state, 0, 0);
  725         if (*state == STATE_MWAIT)
  726                 __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
  727         else
  728                 enable_intr();
  729         *state = STATE_RUNNING;
  730 }
  731 
  732 static void
  733 cpu_idle_spin(int busy)
  734 {
  735         int *state;
  736         int i;
  737 
  738         state = (int *)PCPU_PTR(monitorbuf);
  739         *state = STATE_RUNNING;
  740 
  741         /*
  742          * The sched_runnable() call is racy but as long as there is
  743          * a loop missing it one time will have just a little impact if any
  744          * (and it is much better than missing the check at all).
  745          */
  746         for (i = 0; i < 1000; i++) {
  747                 if (sched_runnable())
  748                         return;
  749                 cpu_spinwait();
  750         }
  751 }
  752 
  753 /*
  754  * C1E renders the local APIC timer dead, so we disable it by
  755  * reading the Interrupt Pending Message register and clearing
  756  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
  757  * 
  758  * Reference:
  759  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
  760  *   #32559 revision 3.00+
  761  */
  762 #define MSR_AMDK8_IPM           0xc0010055
  763 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
  764 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
  765 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
  766 
  767 static void
  768 cpu_probe_amdc1e(void)
  769 {
  770 
  771         /*
  772          * Detect the presence of C1E capability mostly on latest
  773          * dual-cores (or future) k8 family.
  774          */
  775         if (cpu_vendor_id == CPU_VENDOR_AMD &&
  776             (cpu_id & 0x00000f00) == 0x00000f00 &&
  777             (cpu_id & 0x0fff0000) >=  0x00040000) {
  778                 cpu_ident_amdc1e = 1;
  779         }
  780 }
  781 
  782 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
  783 
  784 void
  785 cpu_idle(int busy)
  786 {
  787         uint64_t msr;
  788 
  789 #ifdef SMP
  790         if (mp_grab_cpu_hlt())
  791                 return;
  792 #endif
  793         /* If we are busy - try to use fast methods. */
  794         if (busy) {
  795                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
  796                         cpu_idle_mwait(busy);
  797                         return;
  798                 }
  799         }
  800 
  801         /* Apply AMD APIC timer C1E workaround. */
  802         if (cpu_ident_amdc1e) {
  803                 msr = rdmsr(MSR_AMDK8_IPM);
  804                 if (msr & AMDK8_CMPHALT)
  805                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
  806         }
  807 
  808         /* Call main idle method. */
  809         cpu_idle_fn(busy);
  810 }
  811 
  812 int
  813 cpu_idle_wakeup(int cpu)
  814 {
  815         struct pcpu *pcpu;
  816         int *state;
  817 
  818         pcpu = pcpu_find(cpu);
  819         state = (int *)pcpu->pc_monitorbuf;
  820         /*
  821          * This doesn't need to be atomic since missing the race will
  822          * simply result in unnecessary IPIs.
  823          */
  824         if (*state == STATE_SLEEPING)
  825                 return (0);
  826         if (*state == STATE_MWAIT)
  827                 *state = STATE_RUNNING;
  828         return (1);
  829 }
  830 
  831 /*
  832  * Ordered by speed/power consumption.
  833  */
  834 struct {
  835         void    *id_fn;
  836         char    *id_name;
  837 } idle_tbl[] = {
  838         { cpu_idle_spin, "spin" },
  839         { cpu_idle_mwait, "mwait" },
  840         { cpu_idle_hlt, "hlt" },
  841         { cpu_idle_acpi, "acpi" },
  842         { NULL, NULL }
  843 };
  844 
  845 static int
  846 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
  847 {
  848         char *avail, *p;
  849         int error;
  850         int i;
  851 
  852         avail = malloc(256, M_TEMP, M_WAITOK);
  853         p = avail;
  854         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  855                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  856                     (cpu_feature2 & CPUID2_MON) == 0)
  857                         continue;
  858                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
  859                     cpu_idle_hook == NULL)
  860                         continue;
  861                 p += sprintf(p, "%s, ", idle_tbl[i].id_name);
  862         }
  863         error = sysctl_handle_string(oidp, avail, 0, req);
  864         free(avail, M_TEMP);
  865         return (error);
  866 }
  867 
  868 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
  869     0, 0, idle_sysctl_available, "A", "list of available idle functions");
  870 
  871 static int
  872 idle_sysctl(SYSCTL_HANDLER_ARGS)
  873 {
  874         char buf[16];
  875         int error;
  876         char *p;
  877         int i;
  878 
  879         p = "unknown";
  880         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  881                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
  882                         p = idle_tbl[i].id_name;
  883                         break;
  884                 }
  885         }
  886         strncpy(buf, p, sizeof(buf));
  887         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  888         if (error != 0 || req->newptr == NULL)
  889                 return (error);
  890         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  891                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  892                     (cpu_feature2 & CPUID2_MON) == 0)
  893                         continue;
  894                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
  895                     cpu_idle_hook == NULL)
  896                         continue;
  897                 if (strcmp(idle_tbl[i].id_name, buf))
  898                         continue;
  899                 cpu_idle_fn = idle_tbl[i].id_fn;
  900                 return (0);
  901         }
  902         return (EINVAL);
  903 }
  904 
  905 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
  906     idle_sysctl, "A", "currently selected idle function");
  907 
  908 /*
  909  * Reset registers to default values on exec.
  910  */
  911 void
  912 exec_setregs(td, entry, stack, ps_strings)
  913         struct thread *td;
  914         u_long entry;
  915         u_long stack;
  916         u_long ps_strings;
  917 {
  918         struct trapframe *regs = td->td_frame;
  919         struct pcb *pcb = td->td_pcb;
  920 
  921         mtx_lock(&dt_lock);
  922         if (td->td_proc->p_md.md_ldt != NULL)
  923                 user_ldt_free(td);
  924         else
  925                 mtx_unlock(&dt_lock);
  926         
  927         pcb->pcb_fsbase = 0;
  928         pcb->pcb_gsbase = 0;
  929         clear_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
  930         pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
  931         set_pcb_flags(pcb, PCB_FULL_IRET);
  932 
  933         bzero((char *)regs, sizeof(struct trapframe));
  934         regs->tf_rip = entry;
  935         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  936         regs->tf_rdi = stack;           /* argv */
  937         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  938         regs->tf_ss = _udatasel;
  939         regs->tf_cs = _ucodesel;
  940         regs->tf_ds = _udatasel;
  941         regs->tf_es = _udatasel;
  942         regs->tf_fs = _ufssel;
  943         regs->tf_gs = _ugssel;
  944         regs->tf_flags = TF_HASSEGS;
  945         td->td_retval[1] = 0;
  946 
  947         /*
  948          * Reset the hardware debug registers if they were in use.
  949          * They won't have any meaning for the newly exec'd process.
  950          */
  951         if (pcb->pcb_flags & PCB_DBREGS) {
  952                 pcb->pcb_dr0 = 0;
  953                 pcb->pcb_dr1 = 0;
  954                 pcb->pcb_dr2 = 0;
  955                 pcb->pcb_dr3 = 0;
  956                 pcb->pcb_dr6 = 0;
  957                 pcb->pcb_dr7 = 0;
  958                 if (pcb == PCPU_GET(curpcb)) {
  959                         /*
  960                          * Clear the debug registers on the running
  961                          * CPU, otherwise they will end up affecting
  962                          * the next process we switch to.
  963                          */
  964                         reset_dbregs();
  965                 }
  966                 clear_pcb_flags(pcb, PCB_DBREGS);
  967         }
  968 
  969         /*
  970          * Drop the FP state if we hold it, so that the process gets a
  971          * clean FP state if it uses the FPU again.
  972          */
  973         fpstate_drop(td);
  974 }
  975 
  976 void
  977 cpu_setregs(void)
  978 {
  979         register_t cr0;
  980 
  981         cr0 = rcr0();
  982         /*
  983          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  984          * BSP.  See the comments there about why we set them.
  985          */
  986         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  987         load_cr0(cr0);
  988 }
  989 
  990 /*
  991  * Initialize amd64 and configure to run kernel
  992  */
  993 
  994 /*
  995  * Initialize segments & interrupt table
  996  */
  997 
  998 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
  999 static struct gate_descriptor idt0[NIDT];
 1000 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1001 
 1002 static char dblfault_stack[PAGE_SIZE] __aligned(16);
 1003 
 1004 static char nmi0_stack[PAGE_SIZE] __aligned(16);
 1005 CTASSERT(sizeof(struct nmi_pcpu) == 16);
 1006 
 1007 struct amd64tss common_tss[MAXCPU];
 1008 
 1009 /*
 1010  * Software prototypes -- in more palatable form.
 1011  *
 1012  * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
 1013  * slots as corresponding segments for i386 kernel.
 1014  */
 1015 struct soft_segment_descriptor gdt_segs[] = {
 1016 /* GNULL_SEL    0 Null Descriptor */
 1017 {       .ssd_base = 0x0,
 1018         .ssd_limit = 0x0,
 1019         .ssd_type = 0,
 1020         .ssd_dpl = 0,
 1021         .ssd_p = 0,
 1022         .ssd_long = 0,
 1023         .ssd_def32 = 0,
 1024         .ssd_gran = 0           },
 1025 /* GNULL2_SEL   1 Null Descriptor */
 1026 {       .ssd_base = 0x0,
 1027         .ssd_limit = 0x0,
 1028         .ssd_type = 0,
 1029         .ssd_dpl = 0,
 1030         .ssd_p = 0,
 1031         .ssd_long = 0,
 1032         .ssd_def32 = 0,
 1033         .ssd_gran = 0           },
 1034 /* GUFS32_SEL   2 32 bit %gs Descriptor for user */
 1035 {       .ssd_base = 0x0,
 1036         .ssd_limit = 0xfffff,
 1037         .ssd_type = SDT_MEMRWA,
 1038         .ssd_dpl = SEL_UPL,
 1039         .ssd_p = 1,
 1040         .ssd_long = 0,
 1041         .ssd_def32 = 1,
 1042         .ssd_gran = 1           },
 1043 /* GUGS32_SEL   3 32 bit %fs Descriptor for user */
 1044 {       .ssd_base = 0x0,
 1045         .ssd_limit = 0xfffff,
 1046         .ssd_type = SDT_MEMRWA,
 1047         .ssd_dpl = SEL_UPL,
 1048         .ssd_p = 1,
 1049         .ssd_long = 0,
 1050         .ssd_def32 = 1,
 1051         .ssd_gran = 1           },
 1052 /* GCODE_SEL    4 Code Descriptor for kernel */
 1053 {       .ssd_base = 0x0,
 1054         .ssd_limit = 0xfffff,
 1055         .ssd_type = SDT_MEMERA,
 1056         .ssd_dpl = SEL_KPL,
 1057         .ssd_p = 1,
 1058         .ssd_long = 1,
 1059         .ssd_def32 = 0,
 1060         .ssd_gran = 1           },
 1061 /* GDATA_SEL    5 Data Descriptor for kernel */
 1062 {       .ssd_base = 0x0,
 1063         .ssd_limit = 0xfffff,
 1064         .ssd_type = SDT_MEMRWA,
 1065         .ssd_dpl = SEL_KPL,
 1066         .ssd_p = 1,
 1067         .ssd_long = 1,
 1068         .ssd_def32 = 0,
 1069         .ssd_gran = 1           },
 1070 /* GUCODE32_SEL 6 32 bit Code Descriptor for user */
 1071 {       .ssd_base = 0x0,
 1072         .ssd_limit = 0xfffff,
 1073         .ssd_type = SDT_MEMERA,
 1074         .ssd_dpl = SEL_UPL,
 1075         .ssd_p = 1,
 1076         .ssd_long = 0,
 1077         .ssd_def32 = 1,
 1078         .ssd_gran = 1           },
 1079 /* GUDATA_SEL   7 32/64 bit Data Descriptor for user */
 1080 {       .ssd_base = 0x0,
 1081         .ssd_limit = 0xfffff,
 1082         .ssd_type = SDT_MEMRWA,
 1083         .ssd_dpl = SEL_UPL,
 1084         .ssd_p = 1,
 1085         .ssd_long = 0,
 1086         .ssd_def32 = 1,
 1087         .ssd_gran = 1           },
 1088 /* GUCODE_SEL   8 64 bit Code Descriptor for user */
 1089 {       .ssd_base = 0x0,
 1090         .ssd_limit = 0xfffff,
 1091         .ssd_type = SDT_MEMERA,
 1092         .ssd_dpl = SEL_UPL,
 1093         .ssd_p = 1,
 1094         .ssd_long = 1,
 1095         .ssd_def32 = 0,
 1096         .ssd_gran = 1           },
 1097 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1098 {       .ssd_base = 0x0,
 1099         .ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
 1100         .ssd_type = SDT_SYSTSS,
 1101         .ssd_dpl = SEL_KPL,
 1102         .ssd_p = 1,
 1103         .ssd_long = 0,
 1104         .ssd_def32 = 0,
 1105         .ssd_gran = 0           },
 1106 /* Actually, the TSS is a system descriptor which is double size */
 1107 {       .ssd_base = 0x0,
 1108         .ssd_limit = 0x0,
 1109         .ssd_type = 0,
 1110         .ssd_dpl = 0,
 1111         .ssd_p = 0,
 1112         .ssd_long = 0,
 1113         .ssd_def32 = 0,
 1114         .ssd_gran = 0           },
 1115 /* GUSERLDT_SEL 11 LDT Descriptor */
 1116 {       .ssd_base = 0x0,
 1117         .ssd_limit = 0x0,
 1118         .ssd_type = 0,
 1119         .ssd_dpl = 0,
 1120         .ssd_p = 0,
 1121         .ssd_long = 0,
 1122         .ssd_def32 = 0,
 1123         .ssd_gran = 0           },
 1124 /* GUSERLDT_SEL 12 LDT Descriptor, double size */
 1125 {       .ssd_base = 0x0,
 1126         .ssd_limit = 0x0,
 1127         .ssd_type = 0,
 1128         .ssd_dpl = 0,
 1129         .ssd_p = 0,
 1130         .ssd_long = 0,
 1131         .ssd_def32 = 0,
 1132         .ssd_gran = 0           },
 1133 };
 1134 
 1135 void
 1136 setidt(idx, func, typ, dpl, ist)
 1137         int idx;
 1138         inthand_t *func;
 1139         int typ;
 1140         int dpl;
 1141         int ist;
 1142 {
 1143         struct gate_descriptor *ip;
 1144 
 1145         ip = idt + idx;
 1146         ip->gd_looffset = (uintptr_t)func;
 1147         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
 1148         ip->gd_ist = ist;
 1149         ip->gd_xx = 0;
 1150         ip->gd_type = typ;
 1151         ip->gd_dpl = dpl;
 1152         ip->gd_p = 1;
 1153         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
 1154 }
 1155 
 1156 extern inthand_t
 1157         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1158         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1159         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1160         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1161         IDTVEC(xmm), IDTVEC(dblfault),
 1162 #ifdef KDTRACE_HOOKS
 1163         IDTVEC(dtrace_ret),
 1164 #endif
 1165         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
 1166 
 1167 #ifdef DDB
 1168 /*
 1169  * Display the index and function name of any IDT entries that don't use
 1170  * the default 'rsvd' entry point.
 1171  */
 1172 DB_SHOW_COMMAND(idt, db_show_idt)
 1173 {
 1174         struct gate_descriptor *ip;
 1175         int idx;
 1176         uintptr_t func;
 1177 
 1178         ip = idt;
 1179         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1180                 func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
 1181                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1182                         db_printf("%3d\t", idx);
 1183                         db_printsym(func, DB_STGY_PROC);
 1184                         db_printf("\n");
 1185                 }
 1186                 ip++;
 1187         }
 1188 }
 1189 #endif
 1190 
 1191 void
 1192 sdtossd(sd, ssd)
 1193         struct user_segment_descriptor *sd;
 1194         struct soft_segment_descriptor *ssd;
 1195 {
 1196 
 1197         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1198         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1199         ssd->ssd_type  = sd->sd_type;
 1200         ssd->ssd_dpl   = sd->sd_dpl;
 1201         ssd->ssd_p     = sd->sd_p;
 1202         ssd->ssd_long  = sd->sd_long;
 1203         ssd->ssd_def32 = sd->sd_def32;
 1204         ssd->ssd_gran  = sd->sd_gran;
 1205 }
 1206 
 1207 void
 1208 ssdtosd(ssd, sd)
 1209         struct soft_segment_descriptor *ssd;
 1210         struct user_segment_descriptor *sd;
 1211 {
 1212 
 1213         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1214         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
 1215         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1216         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1217         sd->sd_type  = ssd->ssd_type;
 1218         sd->sd_dpl   = ssd->ssd_dpl;
 1219         sd->sd_p     = ssd->ssd_p;
 1220         sd->sd_long  = ssd->ssd_long;
 1221         sd->sd_def32 = ssd->ssd_def32;
 1222         sd->sd_gran  = ssd->ssd_gran;
 1223 }
 1224 
 1225 void
 1226 ssdtosyssd(ssd, sd)
 1227         struct soft_segment_descriptor *ssd;
 1228         struct system_segment_descriptor *sd;
 1229 {
 1230 
 1231         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1232         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
 1233         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1234         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1235         sd->sd_type  = ssd->ssd_type;
 1236         sd->sd_dpl   = ssd->ssd_dpl;
 1237         sd->sd_p     = ssd->ssd_p;
 1238         sd->sd_gran  = ssd->ssd_gran;
 1239 }
 1240 
 1241 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
 1242 #include <isa/isavar.h>
 1243 #include <isa/isareg.h>
 1244 /*
 1245  * Return a bitmap of the current interrupt requests.  This is 8259-specific
 1246  * and is only suitable for use at probe time.
 1247  * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
 1248  * It shouldn't be here.  There should probably be an APIC centric
 1249  * implementation in the apic driver code, if at all.
 1250  */
 1251 intrmask_t
 1252 isa_irq_pending(void)
 1253 {
 1254         u_char irr1;
 1255         u_char irr2;
 1256 
 1257         irr1 = inb(IO_ICU1);
 1258         irr2 = inb(IO_ICU2);
 1259         return ((irr2 << 8) | irr1);
 1260 }
 1261 #endif
 1262 
 1263 u_int basemem;
 1264 
 1265 static int
 1266 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 1267 {
 1268         int i, insert_idx, physmap_idx;
 1269 
 1270         physmap_idx = *physmap_idxp;
 1271 
 1272         if (boothowto & RB_VERBOSE)
 1273                 printf("SMAP type=%02x base=%016lx len=%016lx\n",
 1274                     smap->type, smap->base, smap->length);
 1275 
 1276         if (smap->type != SMAP_TYPE_MEMORY)
 1277                 return (1);
 1278 
 1279         if (smap->length == 0)
 1280                 return (0);
 1281 
 1282         /*
 1283          * Find insertion point while checking for overlap.  Start off by
 1284          * assuming the new entry will be added to the end.
 1285          */
 1286         insert_idx = physmap_idx + 2;
 1287         for (i = 0; i <= physmap_idx; i += 2) {
 1288                 if (smap->base < physmap[i + 1]) {
 1289                         if (smap->base + smap->length <= physmap[i]) {
 1290                                 insert_idx = i;
 1291                                 break;
 1292                         }
 1293                         if (boothowto & RB_VERBOSE)
 1294                                 printf(
 1295                     "Overlapping memory regions, ignoring second region\n");
 1296                         return (1);
 1297                 }
 1298         }
 1299 
 1300         /* See if we can prepend to the next entry. */
 1301         if (insert_idx <= physmap_idx &&
 1302             smap->base + smap->length == physmap[insert_idx]) {
 1303                 physmap[insert_idx] = smap->base;
 1304                 return (1);
 1305         }
 1306 
 1307         /* See if we can append to the previous entry. */
 1308         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 1309                 physmap[insert_idx - 1] += smap->length;
 1310                 return (1);
 1311         }
 1312 
 1313         physmap_idx += 2;
 1314         *physmap_idxp = physmap_idx;
 1315         if (physmap_idx == PHYSMAP_SIZE) {
 1316                 printf(
 1317                 "Too many segments in the physical address map, giving up\n");
 1318                 return (0);
 1319         }
 1320 
 1321         /*
 1322          * Move the last 'N' entries down to make room for the new
 1323          * entry if needed.
 1324          */
 1325         for (i = physmap_idx; i > insert_idx; i -= 2) {
 1326                 physmap[i] = physmap[i - 2];
 1327                 physmap[i + 1] = physmap[i - 1];
 1328         }
 1329 
 1330         /* Insert the new entry. */
 1331         physmap[insert_idx] = smap->base;
 1332         physmap[insert_idx + 1] = smap->base + smap->length;
 1333         return (1);
 1334 }
 1335 
 1336 /*
 1337  * Populate the (physmap) array with base/bound pairs describing the
 1338  * available physical memory in the system, then test this memory and
 1339  * build the phys_avail array describing the actually-available memory.
 1340  *
 1341  * Total memory size may be set by the kernel environment variable
 1342  * hw.physmem or the compile-time define MAXMEM.
 1343  *
 1344  * XXX first should be vm_paddr_t.
 1345  */
 1346 static void
 1347 getmemsize(caddr_t kmdp, u_int64_t first)
 1348 {
 1349         int i, physmap_idx, pa_indx, da_indx;
 1350         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1351         u_long physmem_tunable, memtest;
 1352         pt_entry_t *pte;
 1353         struct bios_smap *smapbase, *smap, *smapend;
 1354         u_int32_t smapsize;
 1355         quad_t dcons_addr, dcons_size;
 1356 
 1357         bzero(physmap, sizeof(physmap));
 1358         basemem = 0;
 1359         physmap_idx = 0;
 1360 
 1361         /*
 1362          * get memory map from INT 15:E820, kindly supplied by the loader.
 1363          *
 1364          * subr_module.c says:
 1365          * "Consumer may safely assume that size value precedes data."
 1366          * ie: an int32_t immediately precedes smap.
 1367          */
 1368         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 1369             MODINFO_METADATA | MODINFOMD_SMAP);
 1370         if (smapbase == NULL)
 1371                 panic("No BIOS smap info from loader!");
 1372 
 1373         smapsize = *((u_int32_t *)smapbase - 1);
 1374         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 1375 
 1376         for (smap = smapbase; smap < smapend; smap++)
 1377                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 1378                         break;
 1379 
 1380         /*
 1381          * Find the 'base memory' segment for SMP
 1382          */
 1383         basemem = 0;
 1384         for (i = 0; i <= physmap_idx; i += 2) {
 1385                 if (physmap[i] == 0x00000000) {
 1386                         basemem = physmap[i + 1] / 1024;
 1387                         break;
 1388                 }
 1389         }
 1390         if (basemem == 0)
 1391                 panic("BIOS smap did not include a basemem segment!");
 1392 
 1393 #ifdef SMP
 1394         /* make hole for AP bootstrap code */
 1395         physmap[1] = mp_bootaddress(physmap[1] / 1024);
 1396 #endif
 1397 
 1398         /*
 1399          * Maxmem isn't the "maximum memory", it's one larger than the
 1400          * highest page of the physical address space.  It should be
 1401          * called something like "Maxphyspage".  We may adjust this
 1402          * based on ``hw.physmem'' and the results of the memory test.
 1403          */
 1404         Maxmem = atop(physmap[physmap_idx + 1]);
 1405 
 1406 #ifdef MAXMEM
 1407         Maxmem = MAXMEM / 4;
 1408 #endif
 1409 
 1410         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1411                 Maxmem = atop(physmem_tunable);
 1412 
 1413         /*
 1414          * By default enable the memory test on real hardware, and disable
 1415          * it if we appear to be running in a VM.  This avoids touching all
 1416          * pages unnecessarily, which doesn't matter on real hardware but is
 1417          * bad for shared VM hosts.  Use a general name so that
 1418          * one could eventually do more with the code than just disable it.
 1419          */
 1420         memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
 1421         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1422 
 1423         /*
 1424          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
 1425          * in the system.
 1426          */
 1427         if (Maxmem > atop(physmap[physmap_idx + 1]))
 1428                 Maxmem = atop(physmap[physmap_idx + 1]);
 1429 
 1430         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1431             (boothowto & RB_VERBOSE))
 1432                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1433 
 1434         /* call pmap initialization to make new kernel address space */
 1435         pmap_bootstrap(&first);
 1436 
 1437         /*
 1438          * Size up each available chunk of physical memory.
 1439          */
 1440         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1441         pa_indx = 0;
 1442         da_indx = 1;
 1443         phys_avail[pa_indx++] = physmap[0];
 1444         phys_avail[pa_indx] = physmap[0];
 1445         dump_avail[da_indx] = physmap[0];
 1446         pte = CMAP1;
 1447 
 1448         /*
 1449          * Get dcons buffer address
 1450          */
 1451         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1452             getenv_quad("dcons.size", &dcons_size) == 0)
 1453                 dcons_addr = 0;
 1454 
 1455         /*
 1456          * physmap is in bytes, so when converting to page boundaries,
 1457          * round up the start address and round down the end address.
 1458          */
 1459         for (i = 0; i <= physmap_idx; i += 2) {
 1460                 vm_paddr_t end;
 1461 
 1462                 end = ptoa((vm_paddr_t)Maxmem);
 1463                 if (physmap[i + 1] < end)
 1464                         end = trunc_page(physmap[i + 1]);
 1465                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1466                         int tmp, page_bad, full;
 1467                         int *ptr = (int *)CADDR1;
 1468 
 1469                         full = FALSE;
 1470                         /*
 1471                          * block out kernel memory as not available.
 1472                          */
 1473                         if (pa >= 0x100000 && pa < first)
 1474                                 goto do_dump_avail;
 1475 
 1476                         /*
 1477                          * block out dcons buffer
 1478                          */
 1479                         if (dcons_addr > 0
 1480                             && pa >= trunc_page(dcons_addr)
 1481                             && pa < dcons_addr + dcons_size)
 1482                                 goto do_dump_avail;
 1483 
 1484                         page_bad = FALSE;
 1485                         if (memtest == 0)
 1486                                 goto skip_memtest;
 1487 
 1488                         /*
 1489                          * map page into kernel: valid, read/write,non-cacheable
 1490                          */
 1491                         *pte = pa | PG_V | PG_RW | PG_N;
 1492                         invltlb();
 1493 
 1494                         tmp = *(int *)ptr;
 1495                         /*
 1496                          * Test for alternating 1's and 0's
 1497                          */
 1498                         *(volatile int *)ptr = 0xaaaaaaaa;
 1499                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1500                                 page_bad = TRUE;
 1501                         /*
 1502                          * Test for alternating 0's and 1's
 1503                          */
 1504                         *(volatile int *)ptr = 0x55555555;
 1505                         if (*(volatile int *)ptr != 0x55555555)
 1506                                 page_bad = TRUE;
 1507                         /*
 1508                          * Test for all 1's
 1509                          */
 1510                         *(volatile int *)ptr = 0xffffffff;
 1511                         if (*(volatile int *)ptr != 0xffffffff)
 1512                                 page_bad = TRUE;
 1513                         /*
 1514                          * Test for all 0's
 1515                          */
 1516                         *(volatile int *)ptr = 0x0;
 1517                         if (*(volatile int *)ptr != 0x0)
 1518                                 page_bad = TRUE;
 1519                         /*
 1520                          * Restore original value.
 1521                          */
 1522                         *(int *)ptr = tmp;
 1523 
 1524 skip_memtest:
 1525                         /*
 1526                          * Adjust array of valid/good pages.
 1527                          */
 1528                         if (page_bad == TRUE)
 1529                                 continue;
 1530                         /*
 1531                          * If this good page is a continuation of the
 1532                          * previous set of good pages, then just increase
 1533                          * the end pointer. Otherwise start a new chunk.
 1534                          * Note that "end" points one higher than end,
 1535                          * making the range >= start and < end.
 1536                          * If we're also doing a speculative memory
 1537                          * test and we at or past the end, bump up Maxmem
 1538                          * so that we keep going. The first bad page
 1539                          * will terminate the loop.
 1540                          */
 1541                         if (phys_avail[pa_indx] == pa) {
 1542                                 phys_avail[pa_indx] += PAGE_SIZE;
 1543                         } else {
 1544                                 pa_indx++;
 1545                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1546                                         printf(
 1547                 "Too many holes in the physical address space, giving up\n");
 1548                                         pa_indx--;
 1549                                         full = TRUE;
 1550                                         goto do_dump_avail;
 1551                                 }
 1552                                 phys_avail[pa_indx++] = pa;     /* start */
 1553                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1554                         }
 1555                         physmem++;
 1556 do_dump_avail:
 1557                         if (dump_avail[da_indx] == pa) {
 1558                                 dump_avail[da_indx] += PAGE_SIZE;
 1559                         } else {
 1560                                 da_indx++;
 1561                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1562                                         da_indx--;
 1563                                         goto do_next;
 1564                                 }
 1565                                 dump_avail[da_indx++] = pa; /* start */
 1566                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1567                         }
 1568 do_next:
 1569                         if (full)
 1570                                 break;
 1571                 }
 1572         }
 1573         *pte = 0;
 1574         invltlb();
 1575 
 1576         /*
 1577          * XXX
 1578          * The last chunk must contain at least one page plus the message
 1579          * buffer to avoid complicating other code (message buffer address
 1580          * calculation, etc.).
 1581          */
 1582         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1583             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 1584                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1585                 phys_avail[pa_indx--] = 0;
 1586                 phys_avail[pa_indx--] = 0;
 1587         }
 1588 
 1589         Maxmem = atop(phys_avail[pa_indx]);
 1590 
 1591         /* Trim off space for the message buffer. */
 1592         phys_avail[pa_indx] -= round_page(msgbufsize);
 1593 
 1594         /* Map the message buffer. */
 1595         msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
 1596 }
 1597 
 1598 u_int64_t
 1599 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1600 {
 1601         caddr_t kmdp;
 1602         int gsel_tss, x;
 1603         struct pcpu *pc;
 1604         struct nmi_pcpu *np;
 1605         struct xstate_hdr *xhdr;
 1606         u_int64_t msr;
 1607         char *env;
 1608         size_t kstack0_sz;
 1609 
 1610         thread0.td_kstack = physfree + KERNBASE;
 1611         thread0.td_kstack_pages = KSTACK_PAGES;
 1612         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 1613         bzero((void *)thread0.td_kstack, kstack0_sz);
 1614         physfree += kstack0_sz;
 1615 
 1616         /*
 1617          * This may be done better later if it gets more high level
 1618          * components in it. If so just link td->td_proc here.
 1619          */
 1620         proc_linkup0(&proc0, &thread0);
 1621 
 1622         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1623         preload_bootstrap_relocate(KERNBASE);
 1624         kmdp = preload_search_by_type("elf kernel");
 1625         if (kmdp == NULL)
 1626                 kmdp = preload_search_by_type("elf64 kernel");
 1627         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1628         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1629 #ifdef DDB
 1630         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1631         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1632 #endif
 1633 
 1634         /* Init basic tunables, hz etc */
 1635         init_param1();
 1636 
 1637         /*
 1638          * make gdt memory segments
 1639          */
 1640         for (x = 0; x < NGDT; x++) {
 1641                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
 1642                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
 1643                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1644         }
 1645         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1646         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1647             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1648 
 1649         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1650         r_gdt.rd_base =  (long) gdt;
 1651         lgdt(&r_gdt);
 1652         pc = &__pcpu[0];
 1653 
 1654         wrmsr(MSR_FSBASE, 0);           /* User value */
 1655         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1656         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1657 
 1658         pcpu_init(pc, 0, sizeof(struct pcpu));
 1659         dpcpu_init((void *)(physfree + KERNBASE), 0);
 1660         physfree += DPCPU_SIZE;
 1661         PCPU_SET(prvspace, pc);
 1662         PCPU_SET(curthread, &thread0);
 1663         PCPU_SET(tssp, &common_tss[0]);
 1664         PCPU_SET(commontssp, &common_tss[0]);
 1665         PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1666         PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
 1667         PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
 1668         PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
 1669 
 1670         /*
 1671          * Initialize mutexes.
 1672          *
 1673          * icu_lock: in order to allow an interrupt to occur in a critical
 1674          *           section, to set pcpu->ipending (etc...) properly, we
 1675          *           must be able to get the icu lock, so it can't be
 1676          *           under witness.
 1677          */
 1678         mutex_init();
 1679         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1680         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
 1681 
 1682         /* exceptions */
 1683         for (x = 0; x < NIDT; x++)
 1684                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1685         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1686         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1687         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
 1688         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1689         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1690         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1691         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1692         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1693         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1694         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1695         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1696         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1697         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1698         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1699         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1700         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1701         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1702         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1703         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1704 #ifdef KDTRACE_HOOKS
 1705         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
 1706 #endif
 1707 
 1708         r_idt.rd_limit = sizeof(idt0) - 1;
 1709         r_idt.rd_base = (long) idt;
 1710         lidt(&r_idt);
 1711 
 1712         /*
 1713          * Initialize the i8254 before the console so that console
 1714          * initialization can use DELAY().
 1715          */
 1716         i8254_init();
 1717 
 1718         /*
 1719          * Initialize the console before we print anything out.
 1720          */
 1721         cninit();
 1722 
 1723 #ifdef DEV_ISA
 1724 #ifdef DEV_ATPIC
 1725         elcr_probe();
 1726         atpic_startup();
 1727 #else
 1728         /* Reset and mask the atpics and leave them shut down. */
 1729         atpic_reset();
 1730 
 1731         /*
 1732          * Point the ICU spurious interrupt vectors at the APIC spurious
 1733          * interrupt handler.
 1734          */
 1735         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1736         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1737 #endif
 1738 #else
 1739 #error "have you forgotten the isa device?";
 1740 #endif
 1741 
 1742         kdb_init();
 1743 
 1744 #ifdef KDB
 1745         if (boothowto & RB_KDB)
 1746                 kdb_enter(KDB_WHY_BOOTFLAGS,
 1747                     "Boot flags requested debugger");
 1748 #endif
 1749 
 1750         identify_cpu();         /* Final stage of CPU initialization */
 1751         initializecpu();        /* Initialize CPU registers */
 1752         initializecpucache();
 1753 
 1754         /* doublefault stack space, runs on ist1 */
 1755         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1756 
 1757         /*
 1758          * NMI stack, runs on ist2.  The pcpu pointer is stored just
 1759          * above the start of the ist2 stack.
 1760          */
 1761         np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
 1762         np->np_pcpu = (register_t) pc;
 1763         common_tss[0].tss_ist2 = (long) np;
 1764 
 1765         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1766         common_tss[0].tss_iobase = sizeof(struct amd64tss) +
 1767             IOPAGES * PAGE_SIZE;
 1768 
 1769         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1770         ltr(gsel_tss);
 1771 
 1772         /* Set up the fast syscall stuff */
 1773         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1774         wrmsr(MSR_EFER, msr);
 1775         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1776         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1777         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1778               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1779         wrmsr(MSR_STAR, msr);
 1780         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1781 
 1782         getmemsize(kmdp, physfree);
 1783         init_param2(physmem);
 1784 
 1785         /* now running on new page tables, configured,and u/iom is accessible */
 1786 
 1787         msgbufinit(msgbufp, msgbufsize);
 1788         fpuinit();
 1789 
 1790         /*
 1791          * Set up thread0 pcb after fpuinit calculated pcb + fpu save
 1792          * area size.  Zero out the extended state header in fpu save
 1793          * area.
 1794          */
 1795         thread0.td_pcb = get_pcb_td(&thread0);
 1796         bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
 1797         if (use_xsave) {
 1798                 xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
 1799                     1);
 1800                 xhdr->xstate_bv = xsave_mask;
 1801         }
 1802         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1803         common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
 1804         /* Ensure the stack is aligned to 16 bytes */
 1805         common_tss[0].tss_rsp0 &= ~0xFul;
 1806         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1807         PCPU_SET(curpcb, thread0.td_pcb);
 1808 
 1809         /* transfer to user mode */
 1810 
 1811         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1812         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1813         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1814         _ufssel = GSEL(GUFS32_SEL, SEL_UPL);
 1815         _ugssel = GSEL(GUGS32_SEL, SEL_UPL);
 1816 
 1817         load_ds(_udatasel);
 1818         load_es(_udatasel);
 1819         load_fs(_ufssel);
 1820 
 1821         /* setup proc 0's pcb */
 1822         thread0.td_pcb->pcb_flags = 0;
 1823         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1824         thread0.td_frame = &proc0_tf;
 1825 
 1826         env = getenv("kernelname");
 1827         if (env != NULL)
 1828                 strlcpy(kernelname, env, sizeof(kernelname));
 1829 
 1830 #ifdef XENHVM
 1831         if (inw(0x10) == 0x49d2) {
 1832                 if (bootverbose)
 1833                         printf("Xen detected: disabling emulated block and network devices\n");
 1834                 outw(0x10, 3);
 1835         }
 1836 #endif
 1837 
 1838         cpu_probe_amdc1e();
 1839 
 1840         /* Location of kernel stack for locore */
 1841         return ((u_int64_t)thread0.td_pcb);
 1842 }
 1843 
 1844 void
 1845 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1846 {
 1847 
 1848         pcpu->pc_acpi_id = 0xffffffff;
 1849 }
 1850 
 1851 void
 1852 spinlock_enter(void)
 1853 {
 1854         struct thread *td;
 1855         register_t flags;
 1856 
 1857         td = curthread;
 1858         if (td->td_md.md_spinlock_count == 0) {
 1859                 flags = intr_disable();
 1860                 td->td_md.md_spinlock_count = 1;
 1861                 td->td_md.md_saved_flags = flags;
 1862         } else
 1863                 td->td_md.md_spinlock_count++;
 1864         critical_enter();
 1865 }
 1866 
 1867 void
 1868 spinlock_exit(void)
 1869 {
 1870         struct thread *td;
 1871         register_t flags;
 1872 
 1873         td = curthread;
 1874         critical_exit();
 1875         flags = td->td_md.md_saved_flags;
 1876         td->td_md.md_spinlock_count--;
 1877         if (td->td_md.md_spinlock_count == 0)
 1878                 intr_restore(flags);
 1879 }
 1880 
 1881 /*
 1882  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1883  * we want to start a backtrace from the function that caused us to enter
 1884  * the debugger. We have the context in the trapframe, but base the trace
 1885  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1886  * enough for a backtrace.
 1887  */
 1888 void
 1889 makectx(struct trapframe *tf, struct pcb *pcb)
 1890 {
 1891 
 1892         pcb->pcb_r12 = tf->tf_r12;
 1893         pcb->pcb_r13 = tf->tf_r13;
 1894         pcb->pcb_r14 = tf->tf_r14;
 1895         pcb->pcb_r15 = tf->tf_r15;
 1896         pcb->pcb_rbp = tf->tf_rbp;
 1897         pcb->pcb_rbx = tf->tf_rbx;
 1898         pcb->pcb_rip = tf->tf_rip;
 1899         pcb->pcb_rsp = tf->tf_rsp;
 1900 }
 1901 
 1902 int
 1903 ptrace_set_pc(struct thread *td, unsigned long addr)
 1904 {
 1905         td->td_frame->tf_rip = addr;
 1906         return (0);
 1907 }
 1908 
 1909 int
 1910 ptrace_single_step(struct thread *td)
 1911 {
 1912         td->td_frame->tf_rflags |= PSL_T;
 1913         return (0);
 1914 }
 1915 
 1916 int
 1917 ptrace_clear_single_step(struct thread *td)
 1918 {
 1919         td->td_frame->tf_rflags &= ~PSL_T;
 1920         return (0);
 1921 }
 1922 
 1923 int
 1924 fill_regs(struct thread *td, struct reg *regs)
 1925 {
 1926         struct trapframe *tp;
 1927 
 1928         tp = td->td_frame;
 1929         return (fill_frame_regs(tp, regs));
 1930 }
 1931 
 1932 int
 1933 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 1934 {
 1935         regs->r_r15 = tp->tf_r15;
 1936         regs->r_r14 = tp->tf_r14;
 1937         regs->r_r13 = tp->tf_r13;
 1938         regs->r_r12 = tp->tf_r12;
 1939         regs->r_r11 = tp->tf_r11;
 1940         regs->r_r10 = tp->tf_r10;
 1941         regs->r_r9  = tp->tf_r9;
 1942         regs->r_r8  = tp->tf_r8;
 1943         regs->r_rdi = tp->tf_rdi;
 1944         regs->r_rsi = tp->tf_rsi;
 1945         regs->r_rbp = tp->tf_rbp;
 1946         regs->r_rbx = tp->tf_rbx;
 1947         regs->r_rdx = tp->tf_rdx;
 1948         regs->r_rcx = tp->tf_rcx;
 1949         regs->r_rax = tp->tf_rax;
 1950         regs->r_rip = tp->tf_rip;
 1951         regs->r_cs = tp->tf_cs;
 1952         regs->r_rflags = tp->tf_rflags;
 1953         regs->r_rsp = tp->tf_rsp;
 1954         regs->r_ss = tp->tf_ss;
 1955         if (tp->tf_flags & TF_HASSEGS) {
 1956                 regs->r_ds = tp->tf_ds;
 1957                 regs->r_es = tp->tf_es;
 1958                 regs->r_fs = tp->tf_fs;
 1959                 regs->r_gs = tp->tf_gs;
 1960         } else {
 1961                 regs->r_ds = 0;
 1962                 regs->r_es = 0;
 1963                 regs->r_fs = 0;
 1964                 regs->r_gs = 0;
 1965         }
 1966         return (0);
 1967 }
 1968 
 1969 int
 1970 set_regs(struct thread *td, struct reg *regs)
 1971 {
 1972         struct trapframe *tp;
 1973         register_t rflags;
 1974 
 1975         tp = td->td_frame;
 1976         rflags = regs->r_rflags & 0xffffffff;
 1977         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 1978                 return (EINVAL);
 1979         tp->tf_r15 = regs->r_r15;
 1980         tp->tf_r14 = regs->r_r14;
 1981         tp->tf_r13 = regs->r_r13;
 1982         tp->tf_r12 = regs->r_r12;
 1983         tp->tf_r11 = regs->r_r11;
 1984         tp->tf_r10 = regs->r_r10;
 1985         tp->tf_r9  = regs->r_r9;
 1986         tp->tf_r8  = regs->r_r8;
 1987         tp->tf_rdi = regs->r_rdi;
 1988         tp->tf_rsi = regs->r_rsi;
 1989         tp->tf_rbp = regs->r_rbp;
 1990         tp->tf_rbx = regs->r_rbx;
 1991         tp->tf_rdx = regs->r_rdx;
 1992         tp->tf_rcx = regs->r_rcx;
 1993         tp->tf_rax = regs->r_rax;
 1994         tp->tf_rip = regs->r_rip;
 1995         tp->tf_cs = regs->r_cs;
 1996         tp->tf_rflags = rflags;
 1997         tp->tf_rsp = regs->r_rsp;
 1998         tp->tf_ss = regs->r_ss;
 1999         if (0) {        /* XXXKIB */
 2000                 tp->tf_ds = regs->r_ds;
 2001                 tp->tf_es = regs->r_es;
 2002                 tp->tf_fs = regs->r_fs;
 2003                 tp->tf_gs = regs->r_gs;
 2004                 tp->tf_flags = TF_HASSEGS;
 2005                 set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 2006         }
 2007         return (0);
 2008 }
 2009 
 2010 /* XXX check all this stuff! */
 2011 /* externalize from sv_xmm */
 2012 static void
 2013 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 2014 {
 2015         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2016         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2017         int i;
 2018 
 2019         /* pcb -> fpregs */
 2020         bzero(fpregs, sizeof(*fpregs));
 2021 
 2022         /* FPU control/status */
 2023         penv_fpreg->en_cw = penv_xmm->en_cw;
 2024         penv_fpreg->en_sw = penv_xmm->en_sw;
 2025         penv_fpreg->en_tw = penv_xmm->en_tw;
 2026         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 2027         penv_fpreg->en_rip = penv_xmm->en_rip;
 2028         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 2029         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 2030         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 2031 
 2032         /* FPU registers */
 2033         for (i = 0; i < 8; ++i)
 2034                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 2035 
 2036         /* SSE registers */
 2037         for (i = 0; i < 16; ++i)
 2038                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 2039 }
 2040 
 2041 /* internalize from fpregs into sv_xmm */
 2042 static void
 2043 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 2044 {
 2045         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2046         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2047         int i;
 2048 
 2049         /* fpregs -> pcb */
 2050         /* FPU control/status */
 2051         penv_xmm->en_cw = penv_fpreg->en_cw;
 2052         penv_xmm->en_sw = penv_fpreg->en_sw;
 2053         penv_xmm->en_tw = penv_fpreg->en_tw;
 2054         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 2055         penv_xmm->en_rip = penv_fpreg->en_rip;
 2056         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 2057         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 2058         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 2059 
 2060         /* FPU registers */
 2061         for (i = 0; i < 8; ++i)
 2062                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 2063 
 2064         /* SSE registers */
 2065         for (i = 0; i < 16; ++i)
 2066                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 2067 }
 2068 
 2069 /* externalize from td->pcb */
 2070 int
 2071 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2072 {
 2073 
 2074         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 2075             P_SHOULDSTOP(td->td_proc),
 2076             ("not suspended thread %p", td));
 2077         fpugetregs(td);
 2078         fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
 2079         return (0);
 2080 }
 2081 
 2082 /* internalize to td->pcb */
 2083 int
 2084 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2085 {
 2086 
 2087         set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
 2088         fpuuserinited(td);
 2089         return (0);
 2090 }
 2091 
 2092 /*
 2093  * Get machine context.
 2094  */
 2095 int
 2096 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2097 {
 2098         struct pcb *pcb;
 2099         struct trapframe *tp;
 2100 
 2101         pcb = td->td_pcb;
 2102         tp = td->td_frame;
 2103         PROC_LOCK(curthread->td_proc);
 2104         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 2105         PROC_UNLOCK(curthread->td_proc);
 2106         mcp->mc_r15 = tp->tf_r15;
 2107         mcp->mc_r14 = tp->tf_r14;
 2108         mcp->mc_r13 = tp->tf_r13;
 2109         mcp->mc_r12 = tp->tf_r12;
 2110         mcp->mc_r11 = tp->tf_r11;
 2111         mcp->mc_r10 = tp->tf_r10;
 2112         mcp->mc_r9  = tp->tf_r9;
 2113         mcp->mc_r8  = tp->tf_r8;
 2114         mcp->mc_rdi = tp->tf_rdi;
 2115         mcp->mc_rsi = tp->tf_rsi;
 2116         mcp->mc_rbp = tp->tf_rbp;
 2117         mcp->mc_rbx = tp->tf_rbx;
 2118         mcp->mc_rcx = tp->tf_rcx;
 2119         mcp->mc_rflags = tp->tf_rflags;
 2120         if (flags & GET_MC_CLEAR_RET) {
 2121                 mcp->mc_rax = 0;
 2122                 mcp->mc_rdx = 0;
 2123                 mcp->mc_rflags &= ~PSL_C;
 2124         } else {
 2125                 mcp->mc_rax = tp->tf_rax;
 2126                 mcp->mc_rdx = tp->tf_rdx;
 2127         }
 2128         mcp->mc_rip = tp->tf_rip;
 2129         mcp->mc_cs = tp->tf_cs;
 2130         mcp->mc_rsp = tp->tf_rsp;
 2131         mcp->mc_ss = tp->tf_ss;
 2132         mcp->mc_ds = tp->tf_ds;
 2133         mcp->mc_es = tp->tf_es;
 2134         mcp->mc_fs = tp->tf_fs;
 2135         mcp->mc_gs = tp->tf_gs;
 2136         mcp->mc_flags = tp->tf_flags;
 2137         mcp->mc_len = sizeof(*mcp);
 2138         get_fpcontext(td, mcp, NULL, 0);
 2139         mcp->mc_fsbase = pcb->pcb_fsbase;
 2140         mcp->mc_gsbase = pcb->pcb_gsbase;
 2141         mcp->mc_xfpustate = 0;
 2142         mcp->mc_xfpustate_len = 0;
 2143         bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
 2144         return (0);
 2145 }
 2146 
 2147 /*
 2148  * Set machine context.
 2149  *
 2150  * However, we don't set any but the user modifiable flags, and we won't
 2151  * touch the cs selector.
 2152  */
 2153 int
 2154 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2155 {
 2156         struct pcb *pcb;
 2157         struct trapframe *tp;
 2158         char *xfpustate;
 2159         long rflags;
 2160         int ret;
 2161 
 2162         pcb = td->td_pcb;
 2163         tp = td->td_frame;
 2164         if (mcp->mc_len != sizeof(*mcp) ||
 2165             (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
 2166                 return (EINVAL);
 2167         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 2168             (tp->tf_rflags & ~PSL_USERCHANGE);
 2169         if (mcp->mc_flags & _MC_HASFPXSTATE) {
 2170                 if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
 2171                     sizeof(struct savefpu))
 2172                         return (EINVAL);
 2173                 xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
 2174                 ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
 2175                     mcp->mc_xfpustate_len);
 2176                 if (ret != 0)
 2177                         return (ret);
 2178         } else
 2179                 xfpustate = NULL;
 2180         ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
 2181         if (ret != 0)
 2182                 return (ret);
 2183         tp->tf_r15 = mcp->mc_r15;
 2184         tp->tf_r14 = mcp->mc_r14;
 2185         tp->tf_r13 = mcp->mc_r13;
 2186         tp->tf_r12 = mcp->mc_r12;
 2187         tp->tf_r11 = mcp->mc_r11;
 2188         tp->tf_r10 = mcp->mc_r10;
 2189         tp->tf_r9  = mcp->mc_r9;
 2190         tp->tf_r8  = mcp->mc_r8;
 2191         tp->tf_rdi = mcp->mc_rdi;
 2192         tp->tf_rsi = mcp->mc_rsi;
 2193         tp->tf_rbp = mcp->mc_rbp;
 2194         tp->tf_rbx = mcp->mc_rbx;
 2195         tp->tf_rdx = mcp->mc_rdx;
 2196         tp->tf_rcx = mcp->mc_rcx;
 2197         tp->tf_rax = mcp->mc_rax;
 2198         tp->tf_rip = mcp->mc_rip;
 2199         tp->tf_rflags = rflags;
 2200         tp->tf_rsp = mcp->mc_rsp;
 2201         tp->tf_ss = mcp->mc_ss;
 2202         tp->tf_flags = mcp->mc_flags;
 2203         if (tp->tf_flags & TF_HASSEGS) {
 2204                 tp->tf_ds = mcp->mc_ds;
 2205                 tp->tf_es = mcp->mc_es;
 2206                 tp->tf_fs = mcp->mc_fs;
 2207                 tp->tf_gs = mcp->mc_gs;
 2208         }
 2209         if (mcp->mc_flags & _MC_HASBASES) {
 2210                 pcb->pcb_fsbase = mcp->mc_fsbase;
 2211                 pcb->pcb_gsbase = mcp->mc_gsbase;
 2212         }
 2213         set_pcb_flags(pcb, PCB_FULL_IRET);
 2214         return (0);
 2215 }
 2216 
 2217 static void
 2218 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
 2219     size_t xfpusave_len)
 2220 {
 2221         size_t max_len, len;
 2222 
 2223         mcp->mc_ownedfp = fpugetregs(td);
 2224         bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
 2225             sizeof(mcp->mc_fpstate));
 2226         mcp->mc_fpformat = fpuformat();
 2227         if (!use_xsave || xfpusave_len == 0)
 2228                 return;
 2229         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
 2230         len = xfpusave_len;
 2231         if (len > max_len) {
 2232                 len = max_len;
 2233                 bzero(xfpusave + max_len, len - max_len);
 2234         }
 2235         mcp->mc_flags |= _MC_HASFPXSTATE;
 2236         mcp->mc_xfpustate_len = len;
 2237         bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
 2238 }
 2239 
 2240 static int
 2241 set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
 2242     size_t xfpustate_len)
 2243 {
 2244         struct savefpu *fpstate;
 2245         int error;
 2246 
 2247         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2248                 return (0);
 2249         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 2250                 return (EINVAL);
 2251         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
 2252                 /* We don't care what state is left in the FPU or PCB. */
 2253                 fpstate_drop(td);
 2254                 error = 0;
 2255         } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2256             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2257                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 2258                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 2259                 error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
 2260         } else
 2261                 return (EINVAL);
 2262         return (error);
 2263 }
 2264 
 2265 void
 2266 fpstate_drop(struct thread *td)
 2267 {
 2268 
 2269         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 2270         critical_enter();
 2271         if (PCPU_GET(fpcurthread) == td)
 2272                 fpudrop();
 2273         /*
 2274          * XXX force a full drop of the fpu.  The above only drops it if we
 2275          * owned it.
 2276          *
 2277          * XXX I don't much like fpugetuserregs()'s semantics of doing a full
 2278          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2279          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2280          * sendsig() is the only caller of fpugetuserregs()... perhaps we just
 2281          * have too many layers.
 2282          */
 2283         clear_pcb_flags(curthread->td_pcb,
 2284             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
 2285         critical_exit();
 2286 }
 2287 
 2288 int
 2289 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2290 {
 2291         struct pcb *pcb;
 2292 
 2293         if (td == NULL) {
 2294                 dbregs->dr[0] = rdr0();
 2295                 dbregs->dr[1] = rdr1();
 2296                 dbregs->dr[2] = rdr2();
 2297                 dbregs->dr[3] = rdr3();
 2298                 dbregs->dr[6] = rdr6();
 2299                 dbregs->dr[7] = rdr7();
 2300         } else {
 2301                 pcb = td->td_pcb;
 2302                 dbregs->dr[0] = pcb->pcb_dr0;
 2303                 dbregs->dr[1] = pcb->pcb_dr1;
 2304                 dbregs->dr[2] = pcb->pcb_dr2;
 2305                 dbregs->dr[3] = pcb->pcb_dr3;
 2306                 dbregs->dr[6] = pcb->pcb_dr6;
 2307                 dbregs->dr[7] = pcb->pcb_dr7;
 2308         }
 2309         dbregs->dr[4] = 0;
 2310         dbregs->dr[5] = 0;
 2311         dbregs->dr[8] = 0;
 2312         dbregs->dr[9] = 0;
 2313         dbregs->dr[10] = 0;
 2314         dbregs->dr[11] = 0;
 2315         dbregs->dr[12] = 0;
 2316         dbregs->dr[13] = 0;
 2317         dbregs->dr[14] = 0;
 2318         dbregs->dr[15] = 0;
 2319         return (0);
 2320 }
 2321 
 2322 int
 2323 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2324 {
 2325         struct pcb *pcb;
 2326         int i;
 2327 
 2328         if (td == NULL) {
 2329                 load_dr0(dbregs->dr[0]);
 2330                 load_dr1(dbregs->dr[1]);
 2331                 load_dr2(dbregs->dr[2]);
 2332                 load_dr3(dbregs->dr[3]);
 2333                 load_dr6(dbregs->dr[6]);
 2334                 load_dr7(dbregs->dr[7]);
 2335         } else {
 2336                 /*
 2337                  * Don't let an illegal value for dr7 get set.  Specifically,
 2338                  * check for undefined settings.  Setting these bit patterns
 2339                  * result in undefined behaviour and can lead to an unexpected
 2340                  * TRCTRAP or a general protection fault right here.
 2341                  * Upper bits of dr6 and dr7 must not be set
 2342                  */
 2343                 for (i = 0; i < 4; i++) {
 2344                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2345                                 return (EINVAL);
 2346                         if (td->td_frame->tf_cs == _ucode32sel &&
 2347                             DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
 2348                                 return (EINVAL);
 2349                 }
 2350                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 2351                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 2352                         return (EINVAL);
 2353 
 2354                 pcb = td->td_pcb;
 2355 
 2356                 /*
 2357                  * Don't let a process set a breakpoint that is not within the
 2358                  * process's address space.  If a process could do this, it
 2359                  * could halt the system by setting a breakpoint in the kernel
 2360                  * (if ddb was enabled).  Thus, we need to check to make sure
 2361                  * that no breakpoints are being enabled for addresses outside
 2362                  * process's address space.
 2363                  *
 2364                  * XXX - what about when the watched area of the user's
 2365                  * address space is written into from within the kernel
 2366                  * ... wouldn't that still cause a breakpoint to be generated
 2367                  * from within kernel mode?
 2368                  */
 2369 
 2370                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2371                         /* dr0 is enabled */
 2372                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2373                                 return (EINVAL);
 2374                 }
 2375                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2376                         /* dr1 is enabled */
 2377                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2378                                 return (EINVAL);
 2379                 }
 2380                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2381                         /* dr2 is enabled */
 2382                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2383                                 return (EINVAL);
 2384                 }
 2385                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2386                         /* dr3 is enabled */
 2387                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2388                                 return (EINVAL);
 2389                 }
 2390 
 2391                 pcb->pcb_dr0 = dbregs->dr[0];
 2392                 pcb->pcb_dr1 = dbregs->dr[1];
 2393                 pcb->pcb_dr2 = dbregs->dr[2];
 2394                 pcb->pcb_dr3 = dbregs->dr[3];
 2395                 pcb->pcb_dr6 = dbregs->dr[6];
 2396                 pcb->pcb_dr7 = dbregs->dr[7];
 2397 
 2398                 set_pcb_flags(pcb, PCB_DBREGS);
 2399         }
 2400 
 2401         return (0);
 2402 }
 2403 
 2404 void
 2405 reset_dbregs(void)
 2406 {
 2407 
 2408         load_dr7(0);    /* Turn off the control bits first */
 2409         load_dr0(0);
 2410         load_dr1(0);
 2411         load_dr2(0);
 2412         load_dr3(0);
 2413         load_dr6(0);
 2414 }
 2415 
 2416 /*
 2417  * Return > 0 if a hardware breakpoint has been hit, and the
 2418  * breakpoint was in user space.  Return 0, otherwise.
 2419  */
 2420 int
 2421 user_dbreg_trap(void)
 2422 {
 2423         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 2424         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 2425         int nbp;            /* number of breakpoints that triggered */
 2426         caddr_t addr[4];    /* breakpoint addresses */
 2427         int i;
 2428         
 2429         dr7 = rdr7();
 2430         if ((dr7 & 0x000000ff) == 0) {
 2431                 /*
 2432                  * all GE and LE bits in the dr7 register are zero,
 2433                  * thus the trap couldn't have been caused by the
 2434                  * hardware debug registers
 2435                  */
 2436                 return 0;
 2437         }
 2438 
 2439         nbp = 0;
 2440         dr6 = rdr6();
 2441         bp = dr6 & 0x0000000f;
 2442 
 2443         if (!bp) {
 2444                 /*
 2445                  * None of the breakpoint bits are set meaning this
 2446                  * trap was not caused by any of the debug registers
 2447                  */
 2448                 return 0;
 2449         }
 2450 
 2451         /*
 2452          * at least one of the breakpoints were hit, check to see
 2453          * which ones and if any of them are user space addresses
 2454          */
 2455 
 2456         if (bp & 0x01) {
 2457                 addr[nbp++] = (caddr_t)rdr0();
 2458         }
 2459         if (bp & 0x02) {
 2460                 addr[nbp++] = (caddr_t)rdr1();
 2461         }
 2462         if (bp & 0x04) {
 2463                 addr[nbp++] = (caddr_t)rdr2();
 2464         }
 2465         if (bp & 0x08) {
 2466                 addr[nbp++] = (caddr_t)rdr3();
 2467         }
 2468 
 2469         for (i = 0; i < nbp; i++) {
 2470                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2471                         /*
 2472                          * addr[i] is in user space
 2473                          */
 2474                         return nbp;
 2475                 }
 2476         }
 2477 
 2478         /*
 2479          * None of the breakpoints are in user space.
 2480          */
 2481         return 0;
 2482 }
 2483 
 2484 #ifdef KDB
 2485 
 2486 /*
 2487  * Provide inb() and outb() as functions.  They are normally only available as
 2488  * inline functions, thus cannot be called from the debugger.
 2489  */
 2490 
 2491 /* silence compiler warnings */
 2492 u_char inb_(u_short);
 2493 void outb_(u_short, u_char);
 2494 
 2495 u_char
 2496 inb_(u_short port)
 2497 {
 2498         return inb(port);
 2499 }
 2500 
 2501 void
 2502 outb_(u_short port, u_char data)
 2503 {
 2504         outb(port, data);
 2505 }
 2506 
 2507 #endif /* KDB */

Cache object: f89e2f6b01cdf3996d8d42c1f8da8a2d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.