The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/9.2/sys/amd64/amd64/machdep.c 251290 2013-06-03 04:57:15Z kib $");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_mp_watchdog.h"
   55 #include "opt_perfmon.h"
   56 #include "opt_sched.h"
   57 #include "opt_kdtrace.h"
   58 
   59 #include <sys/param.h>
   60 #include <sys/proc.h>
   61 #include <sys/systm.h>
   62 #include <sys/bio.h>
   63 #include <sys/buf.h>
   64 #include <sys/bus.h>
   65 #include <sys/callout.h>
   66 #include <sys/cons.h>
   67 #include <sys/cpu.h>
   68 #include <sys/eventhandler.h>
   69 #include <sys/exec.h>
   70 #include <sys/imgact.h>
   71 #include <sys/kdb.h>
   72 #include <sys/kernel.h>
   73 #include <sys/ktr.h>
   74 #include <sys/linker.h>
   75 #include <sys/lock.h>
   76 #include <sys/malloc.h>
   77 #include <sys/memrange.h>
   78 #include <sys/msgbuf.h>
   79 #include <sys/mutex.h>
   80 #include <sys/pcpu.h>
   81 #include <sys/ptrace.h>
   82 #include <sys/reboot.h>
   83 #include <sys/sched.h>
   84 #include <sys/signalvar.h>
   85 #ifdef SMP
   86 #include <sys/smp.h>
   87 #endif
   88 #include <sys/syscallsubr.h>
   89 #include <sys/sysctl.h>
   90 #include <sys/sysent.h>
   91 #include <sys/sysproto.h>
   92 #include <sys/ucontext.h>
   93 #include <sys/vmmeter.h>
   94 
   95 #include <vm/vm.h>
   96 #include <vm/vm_extern.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_page.h>
   99 #include <vm/vm_map.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_pager.h>
  102 #include <vm/vm_param.h>
  103 
  104 #ifdef DDB
  105 #ifndef KDB
  106 #error KDB must be enabled in order for DDB to work!
  107 #endif
  108 #include <ddb/ddb.h>
  109 #include <ddb/db_sym.h>
  110 #endif
  111 
  112 #include <net/netisr.h>
  113 
  114 #include <machine/clock.h>
  115 #include <machine/cpu.h>
  116 #include <machine/cputypes.h>
  117 #include <machine/intr_machdep.h>
  118 #include <x86/mca.h>
  119 #include <machine/md_var.h>
  120 #include <machine/metadata.h>
  121 #include <machine/mp_watchdog.h>
  122 #include <machine/pc/bios.h>
  123 #include <machine/pcb.h>
  124 #include <machine/proc.h>
  125 #include <machine/reg.h>
  126 #include <machine/sigframe.h>
  127 #include <machine/specialreg.h>
  128 #ifdef PERFMON
  129 #include <machine/perfmon.h>
  130 #endif
  131 #include <machine/tss.h>
  132 #ifdef SMP
  133 #include <machine/smp.h>
  134 #endif
  135 
  136 #ifdef DEV_ATPIC
  137 #include <x86/isa/icu.h>
  138 #else
  139 #include <machine/apicvar.h>
  140 #endif
  141 
  142 #include <isa/isareg.h>
  143 #include <isa/rtc.h>
  144 
  145 /* Sanity check for __curthread() */
  146 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  147 
  148 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  149 
  150 extern void printcpuinfo(void); /* XXX header file */
  151 extern void identify_cpu(void);
  152 extern void panicifcpuunsupported(void);
  153 
  154 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  155 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  156 
  157 static void cpu_startup(void *);
  158 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
  159     char *xfpusave, size_t xfpusave_len);
  160 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
  161     char *xfpustate, size_t xfpustate_len);
  162 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  163 
  164 /*
  165  * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
  166  * the physical address at which the kernel is loaded.
  167  */
  168 extern char kernphys[];
  169 #ifdef DDB
  170 extern vm_offset_t ksym_start, ksym_end;
  171 #endif
  172 
  173 struct msgbuf *msgbufp;
  174 
  175 /* Intel ICH registers */
  176 #define ICH_PMBASE      0x400
  177 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  178 
  179 int     _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
  180 
  181 int cold = 1;
  182 
  183 long Maxmem = 0;
  184 long realmem = 0;
  185 
  186 /*
  187  * The number of PHYSMAP entries must be one less than the number of
  188  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  189  * physical address that is accessible by ISA DMA is split into two
  190  * PHYSSEG entries.
  191  */
  192 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  193 
  194 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  195 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  196 
  197 /* must be 2 less so 0 0 can signal end of chunks */
  198 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  199 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  200 
  201 struct kva_md_info kmi;
  202 
  203 static struct trapframe proc0_tf;
  204 struct region_descriptor r_gdt, r_idt;
  205 
  206 struct pcpu __pcpu[MAXCPU];
  207 
  208 struct mtx icu_lock;
  209 
  210 struct mem_range_softc mem_range_softc;
  211 
  212 struct mtx dt_lock;     /* lock for GDT and LDT */
  213 
  214 static void
  215 cpu_startup(dummy)
  216         void *dummy;
  217 {
  218         uintmax_t memsize;
  219         char *sysenv;
  220 
  221         /*
  222          * On MacBooks, we need to disallow the legacy USB circuit to
  223          * generate an SMI# because this can cause several problems,
  224          * namely: incorrect CPU frequency detection and failure to
  225          * start the APs.
  226          * We do this by disabling a bit in the SMI_EN (SMI Control and
  227          * Enable register) of the Intel ICH LPC Interface Bridge. 
  228          */
  229         sysenv = getenv("smbios.system.product");
  230         if (sysenv != NULL) {
  231                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  232                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  233                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  234                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  235                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  236                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  237                         if (bootverbose)
  238                                 printf("Disabling LEGACY_USB_EN bit on "
  239                                     "Intel ICH.\n");
  240                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  241                 }
  242                 freeenv(sysenv);
  243         }
  244 
  245         /*
  246          * Good {morning,afternoon,evening,night}.
  247          */
  248         startrtclock();
  249         printcpuinfo();
  250         panicifcpuunsupported();
  251 #ifdef PERFMON
  252         perfmon_init();
  253 #endif
  254         realmem = Maxmem;
  255 
  256         /*
  257          * Display physical memory if SMBIOS reports reasonable amount.
  258          */
  259         memsize = 0;
  260         sysenv = getenv("smbios.memory.enabled");
  261         if (sysenv != NULL) {
  262                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  263                 freeenv(sysenv);
  264         }
  265         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  266                 memsize = ptoa((uintmax_t)Maxmem);
  267         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  268 
  269         /*
  270          * Display any holes after the first chunk of extended memory.
  271          */
  272         if (bootverbose) {
  273                 int indx;
  274 
  275                 printf("Physical memory chunk(s):\n");
  276                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  277                         vm_paddr_t size;
  278 
  279                         size = phys_avail[indx + 1] - phys_avail[indx];
  280                         printf(
  281                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  282                             (uintmax_t)phys_avail[indx],
  283                             (uintmax_t)phys_avail[indx + 1] - 1,
  284                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  285                 }
  286         }
  287 
  288         vm_ksubmap_init(&kmi);
  289 
  290         printf("avail memory = %ju (%ju MB)\n",
  291             ptoa((uintmax_t)cnt.v_free_count),
  292             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  293 
  294         /*
  295          * Set up buffers, so they can be used to read disk labels.
  296          */
  297         bufinit();
  298         vm_pager_bufferinit();
  299 
  300         cpu_setregs();
  301 
  302         /*
  303          * Add BSP as an interrupt target.
  304          */
  305         intr_add_cpu(0);
  306 }
  307 
  308 /*
  309  * Send an interrupt to process.
  310  *
  311  * Stack is set up to allow sigcode stored
  312  * at top to call routine, followed by call
  313  * to sigreturn routine below.  After sigreturn
  314  * resets the signal mask, the stack, and the
  315  * frame pointer, it returns to the user
  316  * specified pc, psl.
  317  */
  318 void
  319 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  320 {
  321         struct sigframe sf, *sfp;
  322         struct pcb *pcb;
  323         struct proc *p;
  324         struct thread *td;
  325         struct sigacts *psp;
  326         char *sp;
  327         struct trapframe *regs;
  328         char *xfpusave;
  329         size_t xfpusave_len;
  330         int sig;
  331         int oonstack;
  332 
  333         td = curthread;
  334         pcb = td->td_pcb;
  335         p = td->td_proc;
  336         PROC_LOCK_ASSERT(p, MA_OWNED);
  337         sig = ksi->ksi_signo;
  338         psp = p->p_sigacts;
  339         mtx_assert(&psp->ps_mtx, MA_OWNED);
  340         regs = td->td_frame;
  341         oonstack = sigonstack(regs->tf_rsp);
  342 
  343         if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
  344                 xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  345                 xfpusave = __builtin_alloca(xfpusave_len);
  346         } else {
  347                 xfpusave_len = 0;
  348                 xfpusave = NULL;
  349         }
  350 
  351         /* Save user context. */
  352         bzero(&sf, sizeof(sf));
  353         sf.sf_uc.uc_sigmask = *mask;
  354         sf.sf_uc.uc_stack = td->td_sigstk;
  355         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  356             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  357         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  358         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  359         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  360         get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
  361         fpstate_drop(td);
  362         sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
  363         sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
  364         bzero(sf.sf_uc.uc_mcontext.mc_spare,
  365             sizeof(sf.sf_uc.uc_mcontext.mc_spare));
  366         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  367 
  368         /* Allocate space for the signal handler context. */
  369         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  370             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  371                 sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
  372 #if defined(COMPAT_43)
  373                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  374 #endif
  375         } else
  376                 sp = (char *)regs->tf_rsp - 128;
  377         if (xfpusave != NULL) {
  378                 sp -= xfpusave_len;
  379                 sp = (char *)((unsigned long)sp & ~0x3Ful);
  380                 sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
  381         }
  382         sp -= sizeof(struct sigframe);
  383         /* Align to 16 bytes. */
  384         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  385 
  386         /* Translate the signal if appropriate. */
  387         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  388                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  389 
  390         /* Build the argument list for the signal handler. */
  391         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  392         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  393         bzero(&sf.sf_si, sizeof(sf.sf_si));
  394         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  395                 /* Signal handler installed with SA_SIGINFO. */
  396                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  397                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  398 
  399                 /* Fill in POSIX parts */
  400                 sf.sf_si = ksi->ksi_info;
  401                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  402                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  403         } else {
  404                 /* Old FreeBSD-style arguments. */
  405                 regs->tf_rsi = ksi->ksi_code;   /* arg 2 in %rsi */
  406                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  407                 sf.sf_ahu.sf_handler = catcher;
  408         }
  409         mtx_unlock(&psp->ps_mtx);
  410         PROC_UNLOCK(p);
  411 
  412         /*
  413          * Copy the sigframe out to the user's stack.
  414          */
  415         if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  416             (xfpusave != NULL && copyout(xfpusave,
  417             (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
  418             != 0)) {
  419 #ifdef DEBUG
  420                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  421 #endif
  422                 PROC_LOCK(p);
  423                 sigexit(td, SIGILL);
  424         }
  425 
  426         regs->tf_rsp = (long)sfp;
  427         regs->tf_rip = p->p_sysent->sv_sigcode_base;
  428         regs->tf_rflags &= ~(PSL_T | PSL_D);
  429         regs->tf_cs = _ucodesel;
  430         regs->tf_ds = _udatasel;
  431         regs->tf_es = _udatasel;
  432         regs->tf_fs = _ufssel;
  433         regs->tf_gs = _ugssel;
  434         regs->tf_flags = TF_HASSEGS;
  435         set_pcb_flags(pcb, PCB_FULL_IRET);
  436         PROC_LOCK(p);
  437         mtx_lock(&psp->ps_mtx);
  438 }
  439 
  440 /*
  441  * System call to cleanup state after a signal
  442  * has been taken.  Reset signal mask and
  443  * stack state from context left by sendsig (above).
  444  * Return to previous pc and psl as specified by
  445  * context left by sendsig. Check carefully to
  446  * make sure that the user has not modified the
  447  * state to gain improper privileges.
  448  *
  449  * MPSAFE
  450  */
  451 int
  452 sys_sigreturn(td, uap)
  453         struct thread *td;
  454         struct sigreturn_args /* {
  455                 const struct __ucontext *sigcntxp;
  456         } */ *uap;
  457 {
  458         ucontext_t uc;
  459         struct pcb *pcb;
  460         struct proc *p;
  461         struct trapframe *regs;
  462         ucontext_t *ucp;
  463         char *xfpustate;
  464         size_t xfpustate_len;
  465         long rflags;
  466         int cs, error, ret;
  467         ksiginfo_t ksi;
  468 
  469         pcb = td->td_pcb;
  470         p = td->td_proc;
  471 
  472         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  473         if (error != 0) {
  474                 uprintf("pid %d (%s): sigreturn copyin failed\n",
  475                     p->p_pid, td->td_name);
  476                 return (error);
  477         }
  478         ucp = &uc;
  479         if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
  480                 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
  481                     td->td_name, ucp->uc_mcontext.mc_flags);
  482                 return (EINVAL);
  483         }
  484         regs = td->td_frame;
  485         rflags = ucp->uc_mcontext.mc_rflags;
  486         /*
  487          * Don't allow users to change privileged or reserved flags.
  488          */
  489         /*
  490          * XXX do allow users to change the privileged flag PSL_RF.
  491          * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
  492          * should sometimes set it there too.  tf_rflags is kept in
  493          * the signal context during signal handling and there is no
  494          * other place to remember it, so the PSL_RF bit may be
  495          * corrupted by the signal handler without us knowing.
  496          * Corruption of the PSL_RF bit at worst causes one more or
  497          * one less debugger trap, so allowing it is fairly harmless.
  498          */
  499         if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
  500                 uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
  501                     td->td_name, rflags);
  502                 return (EINVAL);
  503         }
  504 
  505         /*
  506          * Don't allow users to load a valid privileged %cs.  Let the
  507          * hardware check for invalid selectors, excess privilege in
  508          * other selectors, invalid %eip's and invalid %esp's.
  509          */
  510         cs = ucp->uc_mcontext.mc_cs;
  511         if (!CS_SECURE(cs)) {
  512                 uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
  513                     td->td_name, cs);
  514                 ksiginfo_init_trap(&ksi);
  515                 ksi.ksi_signo = SIGBUS;
  516                 ksi.ksi_code = BUS_OBJERR;
  517                 ksi.ksi_trapno = T_PROTFLT;
  518                 ksi.ksi_addr = (void *)regs->tf_rip;
  519                 trapsignal(td, &ksi);
  520                 return (EINVAL);
  521         }
  522 
  523         if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
  524                 xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
  525                 if (xfpustate_len > cpu_max_ext_state_size -
  526                     sizeof(struct savefpu)) {
  527                         uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
  528                             p->p_pid, td->td_name, xfpustate_len);
  529                         return (EINVAL);
  530                 }
  531                 xfpustate = __builtin_alloca(xfpustate_len);
  532                 error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
  533                     xfpustate, xfpustate_len);
  534                 if (error != 0) {
  535                         uprintf(
  536         "pid %d (%s): sigreturn copying xfpustate failed\n",
  537                             p->p_pid, td->td_name);
  538                         return (error);
  539                 }
  540         } else {
  541                 xfpustate = NULL;
  542                 xfpustate_len = 0;
  543         }
  544         ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
  545         if (ret != 0) {
  546                 uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
  547                     p->p_pid, td->td_name, ret);
  548                 return (ret);
  549         }
  550         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  551         pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
  552         pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
  553 
  554 #if defined(COMPAT_43)
  555         if (ucp->uc_mcontext.mc_onstack & 1)
  556                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  557         else
  558                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  559 #endif
  560 
  561         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  562         set_pcb_flags(pcb, PCB_FULL_IRET);
  563         return (EJUSTRETURN);
  564 }
  565 
  566 #ifdef COMPAT_FREEBSD4
  567 int
  568 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  569 {
  570  
  571         return sys_sigreturn(td, (struct sigreturn_args *)uap);
  572 }
  573 #endif
  574 
  575 
  576 /*
  577  * Machine dependent boot() routine
  578  *
  579  * I haven't seen anything to put here yet
  580  * Possibly some stuff might be grafted back here from boot()
  581  */
  582 void
  583 cpu_boot(int howto)
  584 {
  585 }
  586 
  587 /*
  588  * Flush the D-cache for non-DMA I/O so that the I-cache can
  589  * be made coherent later.
  590  */
  591 void
  592 cpu_flush_dcache(void *ptr, size_t len)
  593 {
  594         /* Not applicable */
  595 }
  596 
  597 /* Get current clock frequency for the given cpu id. */
  598 int
  599 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  600 {
  601         uint64_t tsc1, tsc2;
  602         uint64_t acnt, mcnt, perf;
  603         register_t reg;
  604 
  605         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  606                 return (EINVAL);
  607 
  608         /*
  609          * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
  610          * DELAY(9) based logic fails.
  611          */
  612         if (tsc_is_invariant && !tsc_perf_stat)
  613                 return (EOPNOTSUPP);
  614 
  615 #ifdef SMP
  616         if (smp_cpus > 1) {
  617                 /* Schedule ourselves on the indicated cpu. */
  618                 thread_lock(curthread);
  619                 sched_bind(curthread, cpu_id);
  620                 thread_unlock(curthread);
  621         }
  622 #endif
  623 
  624         /* Calibrate by measuring a short delay. */
  625         reg = intr_disable();
  626         if (tsc_is_invariant) {
  627                 wrmsr(MSR_MPERF, 0);
  628                 wrmsr(MSR_APERF, 0);
  629                 tsc1 = rdtsc();
  630                 DELAY(1000);
  631                 mcnt = rdmsr(MSR_MPERF);
  632                 acnt = rdmsr(MSR_APERF);
  633                 tsc2 = rdtsc();
  634                 intr_restore(reg);
  635                 perf = 1000 * acnt / mcnt;
  636                 *rate = (tsc2 - tsc1) * perf;
  637         } else {
  638                 tsc1 = rdtsc();
  639                 DELAY(1000);
  640                 tsc2 = rdtsc();
  641                 intr_restore(reg);
  642                 *rate = (tsc2 - tsc1) * 1000;
  643         }
  644 
  645 #ifdef SMP
  646         if (smp_cpus > 1) {
  647                 thread_lock(curthread);
  648                 sched_unbind(curthread);
  649                 thread_unlock(curthread);
  650         }
  651 #endif
  652 
  653         return (0);
  654 }
  655 
  656 /*
  657  * Shutdown the CPU as much as possible
  658  */
  659 void
  660 cpu_halt(void)
  661 {
  662         for (;;)
  663                 __asm__ ("hlt");
  664 }
  665 
  666 void (*cpu_idle_hook)(void) = NULL;     /* ACPI idle hook. */
  667 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
  668 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
  669 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
  670 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
  671     0, "Use MONITOR/MWAIT for short idle");
  672 
  673 #define STATE_RUNNING   0x0
  674 #define STATE_MWAIT     0x1
  675 #define STATE_SLEEPING  0x2
  676 
  677 static void
  678 cpu_idle_acpi(int busy)
  679 {
  680         int *state;
  681 
  682         state = (int *)PCPU_PTR(monitorbuf);
  683         *state = STATE_SLEEPING;
  684         disable_intr();
  685         if (sched_runnable())
  686                 enable_intr();
  687         else if (cpu_idle_hook)
  688                 cpu_idle_hook();
  689         else
  690                 __asm __volatile("sti; hlt");
  691         *state = STATE_RUNNING;
  692 }
  693 
  694 static void
  695 cpu_idle_hlt(int busy)
  696 {
  697         int *state;
  698 
  699         state = (int *)PCPU_PTR(monitorbuf);
  700         *state = STATE_SLEEPING;
  701         /*
  702          * We must absolutely guarentee that hlt is the next instruction
  703          * after sti or we introduce a timing window.
  704          */
  705         disable_intr();
  706         if (sched_runnable())
  707                 enable_intr();
  708         else
  709                 __asm __volatile("sti; hlt");
  710         *state = STATE_RUNNING;
  711 }
  712 
  713 /*
  714  * MWAIT cpu power states.  Lower 4 bits are sub-states.
  715  */
  716 #define MWAIT_C0        0xf0
  717 #define MWAIT_C1        0x00
  718 #define MWAIT_C2        0x10
  719 #define MWAIT_C3        0x20
  720 #define MWAIT_C4        0x30
  721 
  722 static void
  723 cpu_idle_mwait(int busy)
  724 {
  725         int *state;
  726 
  727         state = (int *)PCPU_PTR(monitorbuf);
  728         *state = STATE_MWAIT;
  729         if (!sched_runnable()) {
  730                 cpu_monitor(state, 0, 0);
  731                 if (*state == STATE_MWAIT)
  732                         cpu_mwait(0, MWAIT_C1);
  733         }
  734         *state = STATE_RUNNING;
  735 }
  736 
  737 static void
  738 cpu_idle_spin(int busy)
  739 {
  740         int *state;
  741         int i;
  742 
  743         state = (int *)PCPU_PTR(monitorbuf);
  744         *state = STATE_RUNNING;
  745         for (i = 0; i < 1000; i++) {
  746                 if (sched_runnable())
  747                         return;
  748                 cpu_spinwait();
  749         }
  750 }
  751 
  752 /*
  753  * C1E renders the local APIC timer dead, so we disable it by
  754  * reading the Interrupt Pending Message register and clearing
  755  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
  756  * 
  757  * Reference:
  758  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
  759  *   #32559 revision 3.00+
  760  */
  761 #define MSR_AMDK8_IPM           0xc0010055
  762 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
  763 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
  764 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
  765 
  766 static void
  767 cpu_probe_amdc1e(void)
  768 {
  769 
  770         /*
  771          * Detect the presence of C1E capability mostly on latest
  772          * dual-cores (or future) k8 family.
  773          */
  774         if (cpu_vendor_id == CPU_VENDOR_AMD &&
  775             (cpu_id & 0x00000f00) == 0x00000f00 &&
  776             (cpu_id & 0x0fff0000) >=  0x00040000) {
  777                 cpu_ident_amdc1e = 1;
  778         }
  779 }
  780 
  781 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
  782 
  783 void
  784 cpu_idle(int busy)
  785 {
  786         uint64_t msr;
  787 
  788         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
  789             busy, curcpu);
  790 #ifdef MP_WATCHDOG
  791         ap_watchdog(PCPU_GET(cpuid));
  792 #endif
  793         /* If we are busy - try to use fast methods. */
  794         if (busy) {
  795                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
  796                         cpu_idle_mwait(busy);
  797                         goto out;
  798                 }
  799         }
  800 
  801         /* If we have time - switch timers into idle mode. */
  802         if (!busy) {
  803                 critical_enter();
  804                 cpu_idleclock();
  805         }
  806 
  807         /* Apply AMD APIC timer C1E workaround. */
  808         if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
  809                 msr = rdmsr(MSR_AMDK8_IPM);
  810                 if (msr & AMDK8_CMPHALT)
  811                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
  812         }
  813 
  814         /* Call main idle method. */
  815         cpu_idle_fn(busy);
  816 
  817         /* Switch timers mack into active mode. */
  818         if (!busy) {
  819                 cpu_activeclock();
  820                 critical_exit();
  821         }
  822 out:
  823         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
  824             busy, curcpu);
  825 }
  826 
  827 int
  828 cpu_idle_wakeup(int cpu)
  829 {
  830         struct pcpu *pcpu;
  831         int *state;
  832 
  833         pcpu = pcpu_find(cpu);
  834         state = (int *)pcpu->pc_monitorbuf;
  835         /*
  836          * This doesn't need to be atomic since missing the race will
  837          * simply result in unnecessary IPIs.
  838          */
  839         if (*state == STATE_SLEEPING)
  840                 return (0);
  841         if (*state == STATE_MWAIT)
  842                 *state = STATE_RUNNING;
  843         return (1);
  844 }
  845 
  846 /*
  847  * Ordered by speed/power consumption.
  848  */
  849 struct {
  850         void    *id_fn;
  851         char    *id_name;
  852 } idle_tbl[] = {
  853         { cpu_idle_spin, "spin" },
  854         { cpu_idle_mwait, "mwait" },
  855         { cpu_idle_hlt, "hlt" },
  856         { cpu_idle_acpi, "acpi" },
  857         { NULL, NULL }
  858 };
  859 
  860 static int
  861 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
  862 {
  863         char *avail, *p;
  864         int error;
  865         int i;
  866 
  867         avail = malloc(256, M_TEMP, M_WAITOK);
  868         p = avail;
  869         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  870                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  871                     (cpu_feature2 & CPUID2_MON) == 0)
  872                         continue;
  873                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
  874                     cpu_idle_hook == NULL)
  875                         continue;
  876                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
  877                     idle_tbl[i].id_name);
  878         }
  879         error = sysctl_handle_string(oidp, avail, 0, req);
  880         free(avail, M_TEMP);
  881         return (error);
  882 }
  883 
  884 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
  885     0, 0, idle_sysctl_available, "A", "list of available idle functions");
  886 
  887 static int
  888 idle_sysctl(SYSCTL_HANDLER_ARGS)
  889 {
  890         char buf[16];
  891         int error;
  892         char *p;
  893         int i;
  894 
  895         p = "unknown";
  896         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  897                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
  898                         p = idle_tbl[i].id_name;
  899                         break;
  900                 }
  901         }
  902         strncpy(buf, p, sizeof(buf));
  903         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  904         if (error != 0 || req->newptr == NULL)
  905                 return (error);
  906         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  907                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  908                     (cpu_feature2 & CPUID2_MON) == 0)
  909                         continue;
  910                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
  911                     cpu_idle_hook == NULL)
  912                         continue;
  913                 if (strcmp(idle_tbl[i].id_name, buf))
  914                         continue;
  915                 cpu_idle_fn = idle_tbl[i].id_fn;
  916                 return (0);
  917         }
  918         return (EINVAL);
  919 }
  920 
  921 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
  922     idle_sysctl, "A", "currently selected idle function");
  923 
  924 /*
  925  * Reset registers to default values on exec.
  926  */
  927 void
  928 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  929 {
  930         struct trapframe *regs = td->td_frame;
  931         struct pcb *pcb = td->td_pcb;
  932 
  933         mtx_lock(&dt_lock);
  934         if (td->td_proc->p_md.md_ldt != NULL)
  935                 user_ldt_free(td);
  936         else
  937                 mtx_unlock(&dt_lock);
  938         
  939         pcb->pcb_fsbase = 0;
  940         pcb->pcb_gsbase = 0;
  941         clear_pcb_flags(pcb, PCB_32BIT);
  942         pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
  943         set_pcb_flags(pcb, PCB_FULL_IRET);
  944 
  945         bzero((char *)regs, sizeof(struct trapframe));
  946         regs->tf_rip = imgp->entry_addr;
  947         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  948         regs->tf_rdi = stack;           /* argv */
  949         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  950         regs->tf_ss = _udatasel;
  951         regs->tf_cs = _ucodesel;
  952         regs->tf_ds = _udatasel;
  953         regs->tf_es = _udatasel;
  954         regs->tf_fs = _ufssel;
  955         regs->tf_gs = _ugssel;
  956         regs->tf_flags = TF_HASSEGS;
  957         td->td_retval[1] = 0;
  958 
  959         /*
  960          * Reset the hardware debug registers if they were in use.
  961          * They won't have any meaning for the newly exec'd process.
  962          */
  963         if (pcb->pcb_flags & PCB_DBREGS) {
  964                 pcb->pcb_dr0 = 0;
  965                 pcb->pcb_dr1 = 0;
  966                 pcb->pcb_dr2 = 0;
  967                 pcb->pcb_dr3 = 0;
  968                 pcb->pcb_dr6 = 0;
  969                 pcb->pcb_dr7 = 0;
  970                 if (pcb == curpcb) {
  971                         /*
  972                          * Clear the debug registers on the running
  973                          * CPU, otherwise they will end up affecting
  974                          * the next process we switch to.
  975                          */
  976                         reset_dbregs();
  977                 }
  978                 clear_pcb_flags(pcb, PCB_DBREGS);
  979         }
  980 
  981         /*
  982          * Drop the FP state if we hold it, so that the process gets a
  983          * clean FP state if it uses the FPU again.
  984          */
  985         fpstate_drop(td);
  986 }
  987 
  988 void
  989 cpu_setregs(void)
  990 {
  991         register_t cr0;
  992 
  993         cr0 = rcr0();
  994         /*
  995          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  996          * BSP.  See the comments there about why we set them.
  997          */
  998         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  999         load_cr0(cr0);
 1000 }
 1001 
 1002 /*
 1003  * Initialize amd64 and configure to run kernel
 1004  */
 1005 
 1006 /*
 1007  * Initialize segments & interrupt table
 1008  */
 1009 
 1010 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
 1011 static struct gate_descriptor idt0[NIDT];
 1012 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1013 
 1014 static char dblfault_stack[PAGE_SIZE] __aligned(16);
 1015 
 1016 static char nmi0_stack[PAGE_SIZE] __aligned(16);
 1017 CTASSERT(sizeof(struct nmi_pcpu) == 16);
 1018 
 1019 struct amd64tss common_tss[MAXCPU];
 1020 
 1021 /*
 1022  * Software prototypes -- in more palatable form.
 1023  *
 1024  * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
 1025  * slots as corresponding segments for i386 kernel.
 1026  */
 1027 struct soft_segment_descriptor gdt_segs[] = {
 1028 /* GNULL_SEL    0 Null Descriptor */
 1029 {       .ssd_base = 0x0,
 1030         .ssd_limit = 0x0,
 1031         .ssd_type = 0,
 1032         .ssd_dpl = 0,
 1033         .ssd_p = 0,
 1034         .ssd_long = 0,
 1035         .ssd_def32 = 0,
 1036         .ssd_gran = 0           },
 1037 /* GNULL2_SEL   1 Null Descriptor */
 1038 {       .ssd_base = 0x0,
 1039         .ssd_limit = 0x0,
 1040         .ssd_type = 0,
 1041         .ssd_dpl = 0,
 1042         .ssd_p = 0,
 1043         .ssd_long = 0,
 1044         .ssd_def32 = 0,
 1045         .ssd_gran = 0           },
 1046 /* GUFS32_SEL   2 32 bit %gs Descriptor for user */
 1047 {       .ssd_base = 0x0,
 1048         .ssd_limit = 0xfffff,
 1049         .ssd_type = SDT_MEMRWA,
 1050         .ssd_dpl = SEL_UPL,
 1051         .ssd_p = 1,
 1052         .ssd_long = 0,
 1053         .ssd_def32 = 1,
 1054         .ssd_gran = 1           },
 1055 /* GUGS32_SEL   3 32 bit %fs Descriptor for user */
 1056 {       .ssd_base = 0x0,
 1057         .ssd_limit = 0xfffff,
 1058         .ssd_type = SDT_MEMRWA,
 1059         .ssd_dpl = SEL_UPL,
 1060         .ssd_p = 1,
 1061         .ssd_long = 0,
 1062         .ssd_def32 = 1,
 1063         .ssd_gran = 1           },
 1064 /* GCODE_SEL    4 Code Descriptor for kernel */
 1065 {       .ssd_base = 0x0,
 1066         .ssd_limit = 0xfffff,
 1067         .ssd_type = SDT_MEMERA,
 1068         .ssd_dpl = SEL_KPL,
 1069         .ssd_p = 1,
 1070         .ssd_long = 1,
 1071         .ssd_def32 = 0,
 1072         .ssd_gran = 1           },
 1073 /* GDATA_SEL    5 Data Descriptor for kernel */
 1074 {       .ssd_base = 0x0,
 1075         .ssd_limit = 0xfffff,
 1076         .ssd_type = SDT_MEMRWA,
 1077         .ssd_dpl = SEL_KPL,
 1078         .ssd_p = 1,
 1079         .ssd_long = 1,
 1080         .ssd_def32 = 0,
 1081         .ssd_gran = 1           },
 1082 /* GUCODE32_SEL 6 32 bit Code Descriptor for user */
 1083 {       .ssd_base = 0x0,
 1084         .ssd_limit = 0xfffff,
 1085         .ssd_type = SDT_MEMERA,
 1086         .ssd_dpl = SEL_UPL,
 1087         .ssd_p = 1,
 1088         .ssd_long = 0,
 1089         .ssd_def32 = 1,
 1090         .ssd_gran = 1           },
 1091 /* GUDATA_SEL   7 32/64 bit Data Descriptor for user */
 1092 {       .ssd_base = 0x0,
 1093         .ssd_limit = 0xfffff,
 1094         .ssd_type = SDT_MEMRWA,
 1095         .ssd_dpl = SEL_UPL,
 1096         .ssd_p = 1,
 1097         .ssd_long = 0,
 1098         .ssd_def32 = 1,
 1099         .ssd_gran = 1           },
 1100 /* GUCODE_SEL   8 64 bit Code Descriptor for user */
 1101 {       .ssd_base = 0x0,
 1102         .ssd_limit = 0xfffff,
 1103         .ssd_type = SDT_MEMERA,
 1104         .ssd_dpl = SEL_UPL,
 1105         .ssd_p = 1,
 1106         .ssd_long = 1,
 1107         .ssd_def32 = 0,
 1108         .ssd_gran = 1           },
 1109 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1110 {       .ssd_base = 0x0,
 1111         .ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
 1112         .ssd_type = SDT_SYSTSS,
 1113         .ssd_dpl = SEL_KPL,
 1114         .ssd_p = 1,
 1115         .ssd_long = 0,
 1116         .ssd_def32 = 0,
 1117         .ssd_gran = 0           },
 1118 /* Actually, the TSS is a system descriptor which is double size */
 1119 {       .ssd_base = 0x0,
 1120         .ssd_limit = 0x0,
 1121         .ssd_type = 0,
 1122         .ssd_dpl = 0,
 1123         .ssd_p = 0,
 1124         .ssd_long = 0,
 1125         .ssd_def32 = 0,
 1126         .ssd_gran = 0           },
 1127 /* GUSERLDT_SEL 11 LDT Descriptor */
 1128 {       .ssd_base = 0x0,
 1129         .ssd_limit = 0x0,
 1130         .ssd_type = 0,
 1131         .ssd_dpl = 0,
 1132         .ssd_p = 0,
 1133         .ssd_long = 0,
 1134         .ssd_def32 = 0,
 1135         .ssd_gran = 0           },
 1136 /* GUSERLDT_SEL 12 LDT Descriptor, double size */
 1137 {       .ssd_base = 0x0,
 1138         .ssd_limit = 0x0,
 1139         .ssd_type = 0,
 1140         .ssd_dpl = 0,
 1141         .ssd_p = 0,
 1142         .ssd_long = 0,
 1143         .ssd_def32 = 0,
 1144         .ssd_gran = 0           },
 1145 };
 1146 
 1147 void
 1148 setidt(idx, func, typ, dpl, ist)
 1149         int idx;
 1150         inthand_t *func;
 1151         int typ;
 1152         int dpl;
 1153         int ist;
 1154 {
 1155         struct gate_descriptor *ip;
 1156 
 1157         ip = idt + idx;
 1158         ip->gd_looffset = (uintptr_t)func;
 1159         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
 1160         ip->gd_ist = ist;
 1161         ip->gd_xx = 0;
 1162         ip->gd_type = typ;
 1163         ip->gd_dpl = dpl;
 1164         ip->gd_p = 1;
 1165         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
 1166 }
 1167 
 1168 extern inthand_t
 1169         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1170         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1171         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1172         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1173         IDTVEC(xmm), IDTVEC(dblfault),
 1174 #ifdef KDTRACE_HOOKS
 1175         IDTVEC(dtrace_ret),
 1176 #endif
 1177         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
 1178 
 1179 #ifdef DDB
 1180 /*
 1181  * Display the index and function name of any IDT entries that don't use
 1182  * the default 'rsvd' entry point.
 1183  */
 1184 DB_SHOW_COMMAND(idt, db_show_idt)
 1185 {
 1186         struct gate_descriptor *ip;
 1187         int idx;
 1188         uintptr_t func;
 1189 
 1190         ip = idt;
 1191         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1192                 func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
 1193                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1194                         db_printf("%3d\t", idx);
 1195                         db_printsym(func, DB_STGY_PROC);
 1196                         db_printf("\n");
 1197                 }
 1198                 ip++;
 1199         }
 1200 }
 1201 #endif
 1202 
 1203 void
 1204 sdtossd(sd, ssd)
 1205         struct user_segment_descriptor *sd;
 1206         struct soft_segment_descriptor *ssd;
 1207 {
 1208 
 1209         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1210         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1211         ssd->ssd_type  = sd->sd_type;
 1212         ssd->ssd_dpl   = sd->sd_dpl;
 1213         ssd->ssd_p     = sd->sd_p;
 1214         ssd->ssd_long  = sd->sd_long;
 1215         ssd->ssd_def32 = sd->sd_def32;
 1216         ssd->ssd_gran  = sd->sd_gran;
 1217 }
 1218 
 1219 void
 1220 ssdtosd(ssd, sd)
 1221         struct soft_segment_descriptor *ssd;
 1222         struct user_segment_descriptor *sd;
 1223 {
 1224 
 1225         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1226         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
 1227         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1228         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1229         sd->sd_type  = ssd->ssd_type;
 1230         sd->sd_dpl   = ssd->ssd_dpl;
 1231         sd->sd_p     = ssd->ssd_p;
 1232         sd->sd_long  = ssd->ssd_long;
 1233         sd->sd_def32 = ssd->ssd_def32;
 1234         sd->sd_gran  = ssd->ssd_gran;
 1235 }
 1236 
 1237 void
 1238 ssdtosyssd(ssd, sd)
 1239         struct soft_segment_descriptor *ssd;
 1240         struct system_segment_descriptor *sd;
 1241 {
 1242 
 1243         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1244         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
 1245         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1246         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1247         sd->sd_type  = ssd->ssd_type;
 1248         sd->sd_dpl   = ssd->ssd_dpl;
 1249         sd->sd_p     = ssd->ssd_p;
 1250         sd->sd_gran  = ssd->ssd_gran;
 1251 }
 1252 
 1253 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
 1254 #include <isa/isavar.h>
 1255 #include <isa/isareg.h>
 1256 /*
 1257  * Return a bitmap of the current interrupt requests.  This is 8259-specific
 1258  * and is only suitable for use at probe time.
 1259  * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
 1260  * It shouldn't be here.  There should probably be an APIC centric
 1261  * implementation in the apic driver code, if at all.
 1262  */
 1263 intrmask_t
 1264 isa_irq_pending(void)
 1265 {
 1266         u_char irr1;
 1267         u_char irr2;
 1268 
 1269         irr1 = inb(IO_ICU1);
 1270         irr2 = inb(IO_ICU2);
 1271         return ((irr2 << 8) | irr1);
 1272 }
 1273 #endif
 1274 
 1275 u_int basemem;
 1276 
 1277 static int
 1278 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 1279 {
 1280         int i, insert_idx, physmap_idx;
 1281 
 1282         physmap_idx = *physmap_idxp;
 1283 
 1284         if (boothowto & RB_VERBOSE)
 1285                 printf("SMAP type=%02x base=%016lx len=%016lx\n",
 1286                     smap->type, smap->base, smap->length);
 1287 
 1288         if (smap->type != SMAP_TYPE_MEMORY)
 1289                 return (1);
 1290 
 1291         if (smap->length == 0)
 1292                 return (0);
 1293 
 1294         /*
 1295          * Find insertion point while checking for overlap.  Start off by
 1296          * assuming the new entry will be added to the end.
 1297          */
 1298         insert_idx = physmap_idx + 2;
 1299         for (i = 0; i <= physmap_idx; i += 2) {
 1300                 if (smap->base < physmap[i + 1]) {
 1301                         if (smap->base + smap->length <= physmap[i]) {
 1302                                 insert_idx = i;
 1303                                 break;
 1304                         }
 1305                         if (boothowto & RB_VERBOSE)
 1306                                 printf(
 1307                     "Overlapping memory regions, ignoring second region\n");
 1308                         return (1);
 1309                 }
 1310         }
 1311 
 1312         /* See if we can prepend to the next entry. */
 1313         if (insert_idx <= physmap_idx &&
 1314             smap->base + smap->length == physmap[insert_idx]) {
 1315                 physmap[insert_idx] = smap->base;
 1316                 return (1);
 1317         }
 1318 
 1319         /* See if we can append to the previous entry. */
 1320         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 1321                 physmap[insert_idx - 1] += smap->length;
 1322                 return (1);
 1323         }
 1324 
 1325         physmap_idx += 2;
 1326         *physmap_idxp = physmap_idx;
 1327         if (physmap_idx == PHYSMAP_SIZE) {
 1328                 printf(
 1329                 "Too many segments in the physical address map, giving up\n");
 1330                 return (0);
 1331         }
 1332 
 1333         /*
 1334          * Move the last 'N' entries down to make room for the new
 1335          * entry if needed.
 1336          */
 1337         for (i = physmap_idx; i > insert_idx; i -= 2) {
 1338                 physmap[i] = physmap[i - 2];
 1339                 physmap[i + 1] = physmap[i - 1];
 1340         }
 1341 
 1342         /* Insert the new entry. */
 1343         physmap[insert_idx] = smap->base;
 1344         physmap[insert_idx + 1] = smap->base + smap->length;
 1345         return (1);
 1346 }
 1347 
 1348 /*
 1349  * Populate the (physmap) array with base/bound pairs describing the
 1350  * available physical memory in the system, then test this memory and
 1351  * build the phys_avail array describing the actually-available memory.
 1352  *
 1353  * Total memory size may be set by the kernel environment variable
 1354  * hw.physmem or the compile-time define MAXMEM.
 1355  *
 1356  * XXX first should be vm_paddr_t.
 1357  */
 1358 static void
 1359 getmemsize(caddr_t kmdp, u_int64_t first)
 1360 {
 1361         int i, physmap_idx, pa_indx, da_indx;
 1362         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1363         u_long physmem_start, physmem_tunable, memtest;
 1364         pt_entry_t *pte;
 1365         struct bios_smap *smapbase, *smap, *smapend;
 1366         u_int32_t smapsize;
 1367         quad_t dcons_addr, dcons_size;
 1368 
 1369         bzero(physmap, sizeof(physmap));
 1370         basemem = 0;
 1371         physmap_idx = 0;
 1372 
 1373         /*
 1374          * get memory map from INT 15:E820, kindly supplied by the loader.
 1375          *
 1376          * subr_module.c says:
 1377          * "Consumer may safely assume that size value precedes data."
 1378          * ie: an int32_t immediately precedes smap.
 1379          */
 1380         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 1381             MODINFO_METADATA | MODINFOMD_SMAP);
 1382         if (smapbase == NULL)
 1383                 panic("No BIOS smap info from loader!");
 1384 
 1385         smapsize = *((u_int32_t *)smapbase - 1);
 1386         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 1387 
 1388         for (smap = smapbase; smap < smapend; smap++)
 1389                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 1390                         break;
 1391 
 1392         /*
 1393          * Find the 'base memory' segment for SMP
 1394          */
 1395         basemem = 0;
 1396         for (i = 0; i <= physmap_idx; i += 2) {
 1397                 if (physmap[i] == 0x00000000) {
 1398                         basemem = physmap[i + 1] / 1024;
 1399                         break;
 1400                 }
 1401         }
 1402         if (basemem == 0)
 1403                 panic("BIOS smap did not include a basemem segment!");
 1404 
 1405 #ifdef SMP
 1406         /* make hole for AP bootstrap code */
 1407         physmap[1] = mp_bootaddress(physmap[1] / 1024);
 1408 #endif
 1409 
 1410         /*
 1411          * Maxmem isn't the "maximum memory", it's one larger than the
 1412          * highest page of the physical address space.  It should be
 1413          * called something like "Maxphyspage".  We may adjust this
 1414          * based on ``hw.physmem'' and the results of the memory test.
 1415          */
 1416         Maxmem = atop(physmap[physmap_idx + 1]);
 1417 
 1418 #ifdef MAXMEM
 1419         Maxmem = MAXMEM / 4;
 1420 #endif
 1421 
 1422         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1423                 Maxmem = atop(physmem_tunable);
 1424 
 1425         /*
 1426          * By default enable the memory test on real hardware, and disable
 1427          * it if we appear to be running in a VM.  This avoids touching all
 1428          * pages unnecessarily, which doesn't matter on real hardware but is
 1429          * bad for shared VM hosts.  Use a general name so that
 1430          * one could eventually do more with the code than just disable it.
 1431          */
 1432         memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
 1433         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1434 
 1435         /*
 1436          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
 1437          * in the system.
 1438          */
 1439         if (Maxmem > atop(physmap[physmap_idx + 1]))
 1440                 Maxmem = atop(physmap[physmap_idx + 1]);
 1441 
 1442         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1443             (boothowto & RB_VERBOSE))
 1444                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1445 
 1446         /* call pmap initialization to make new kernel address space */
 1447         pmap_bootstrap(&first);
 1448 
 1449         /*
 1450          * Size up each available chunk of physical memory.
 1451          *
 1452          * XXX Some BIOSes corrupt low 64KB between suspend and resume.
 1453          * By default, mask off the first 16 pages unless we appear to be
 1454          * running in a VM.
 1455          */
 1456         physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
 1457         TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
 1458         if (physmem_start < PAGE_SIZE)
 1459                 physmap[0] = PAGE_SIZE;
 1460         else if (physmem_start >= physmap[1])
 1461                 physmap[0] = round_page(physmap[1] - PAGE_SIZE);
 1462         else
 1463                 physmap[0] = round_page(physmem_start);
 1464         pa_indx = 0;
 1465         da_indx = 1;
 1466         phys_avail[pa_indx++] = physmap[0];
 1467         phys_avail[pa_indx] = physmap[0];
 1468         dump_avail[da_indx] = physmap[0];
 1469         pte = CMAP1;
 1470 
 1471         /*
 1472          * Get dcons buffer address
 1473          */
 1474         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1475             getenv_quad("dcons.size", &dcons_size) == 0)
 1476                 dcons_addr = 0;
 1477 
 1478         /*
 1479          * physmap is in bytes, so when converting to page boundaries,
 1480          * round up the start address and round down the end address.
 1481          */
 1482         for (i = 0; i <= physmap_idx; i += 2) {
 1483                 vm_paddr_t end;
 1484 
 1485                 end = ptoa((vm_paddr_t)Maxmem);
 1486                 if (physmap[i + 1] < end)
 1487                         end = trunc_page(physmap[i + 1]);
 1488                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1489                         int tmp, page_bad, full;
 1490                         int *ptr = (int *)CADDR1;
 1491 
 1492                         full = FALSE;
 1493                         /*
 1494                          * block out kernel memory as not available.
 1495                          */
 1496                         if (pa >= (vm_paddr_t)kernphys && pa < first)
 1497                                 goto do_dump_avail;
 1498 
 1499                         /*
 1500                          * block out dcons buffer
 1501                          */
 1502                         if (dcons_addr > 0
 1503                             && pa >= trunc_page(dcons_addr)
 1504                             && pa < dcons_addr + dcons_size)
 1505                                 goto do_dump_avail;
 1506 
 1507                         page_bad = FALSE;
 1508                         if (memtest == 0)
 1509                                 goto skip_memtest;
 1510 
 1511                         /*
 1512                          * map page into kernel: valid, read/write,non-cacheable
 1513                          */
 1514                         *pte = pa | PG_V | PG_RW | PG_N;
 1515                         invltlb();
 1516 
 1517                         tmp = *(int *)ptr;
 1518                         /*
 1519                          * Test for alternating 1's and 0's
 1520                          */
 1521                         *(volatile int *)ptr = 0xaaaaaaaa;
 1522                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1523                                 page_bad = TRUE;
 1524                         /*
 1525                          * Test for alternating 0's and 1's
 1526                          */
 1527                         *(volatile int *)ptr = 0x55555555;
 1528                         if (*(volatile int *)ptr != 0x55555555)
 1529                                 page_bad = TRUE;
 1530                         /*
 1531                          * Test for all 1's
 1532                          */
 1533                         *(volatile int *)ptr = 0xffffffff;
 1534                         if (*(volatile int *)ptr != 0xffffffff)
 1535                                 page_bad = TRUE;
 1536                         /*
 1537                          * Test for all 0's
 1538                          */
 1539                         *(volatile int *)ptr = 0x0;
 1540                         if (*(volatile int *)ptr != 0x0)
 1541                                 page_bad = TRUE;
 1542                         /*
 1543                          * Restore original value.
 1544                          */
 1545                         *(int *)ptr = tmp;
 1546 
 1547 skip_memtest:
 1548                         /*
 1549                          * Adjust array of valid/good pages.
 1550                          */
 1551                         if (page_bad == TRUE)
 1552                                 continue;
 1553                         /*
 1554                          * If this good page is a continuation of the
 1555                          * previous set of good pages, then just increase
 1556                          * the end pointer. Otherwise start a new chunk.
 1557                          * Note that "end" points one higher than end,
 1558                          * making the range >= start and < end.
 1559                          * If we're also doing a speculative memory
 1560                          * test and we at or past the end, bump up Maxmem
 1561                          * so that we keep going. The first bad page
 1562                          * will terminate the loop.
 1563                          */
 1564                         if (phys_avail[pa_indx] == pa) {
 1565                                 phys_avail[pa_indx] += PAGE_SIZE;
 1566                         } else {
 1567                                 pa_indx++;
 1568                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1569                                         printf(
 1570                 "Too many holes in the physical address space, giving up\n");
 1571                                         pa_indx--;
 1572                                         full = TRUE;
 1573                                         goto do_dump_avail;
 1574                                 }
 1575                                 phys_avail[pa_indx++] = pa;     /* start */
 1576                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1577                         }
 1578                         physmem++;
 1579 do_dump_avail:
 1580                         if (dump_avail[da_indx] == pa) {
 1581                                 dump_avail[da_indx] += PAGE_SIZE;
 1582                         } else {
 1583                                 da_indx++;
 1584                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1585                                         da_indx--;
 1586                                         goto do_next;
 1587                                 }
 1588                                 dump_avail[da_indx++] = pa; /* start */
 1589                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1590                         }
 1591 do_next:
 1592                         if (full)
 1593                                 break;
 1594                 }
 1595         }
 1596         *pte = 0;
 1597         invltlb();
 1598 
 1599         /*
 1600          * XXX
 1601          * The last chunk must contain at least one page plus the message
 1602          * buffer to avoid complicating other code (message buffer address
 1603          * calculation, etc.).
 1604          */
 1605         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1606             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 1607                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1608                 phys_avail[pa_indx--] = 0;
 1609                 phys_avail[pa_indx--] = 0;
 1610         }
 1611 
 1612         Maxmem = atop(phys_avail[pa_indx]);
 1613 
 1614         /* Trim off space for the message buffer. */
 1615         phys_avail[pa_indx] -= round_page(msgbufsize);
 1616 
 1617         /* Map the message buffer. */
 1618         msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
 1619 }
 1620 
 1621 u_int64_t
 1622 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1623 {
 1624         caddr_t kmdp;
 1625         int gsel_tss, x;
 1626         struct pcpu *pc;
 1627         struct nmi_pcpu *np;
 1628         struct xstate_hdr *xhdr;
 1629         u_int64_t msr;
 1630         char *env;
 1631         size_t kstack0_sz;
 1632 
 1633         thread0.td_kstack = physfree + KERNBASE;
 1634         thread0.td_kstack_pages = KSTACK_PAGES;
 1635         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 1636         bzero((void *)thread0.td_kstack, kstack0_sz);
 1637         physfree += kstack0_sz;
 1638 
 1639         /*
 1640          * This may be done better later if it gets more high level
 1641          * components in it. If so just link td->td_proc here.
 1642          */
 1643         proc_linkup0(&proc0, &thread0);
 1644 
 1645         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1646         preload_bootstrap_relocate(KERNBASE);
 1647         kmdp = preload_search_by_type("elf kernel");
 1648         if (kmdp == NULL)
 1649                 kmdp = preload_search_by_type("elf64 kernel");
 1650         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1651         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1652 #ifdef DDB
 1653         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1654         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1655 #endif
 1656 
 1657         /* Init basic tunables, hz etc */
 1658         init_param1();
 1659 
 1660         /*
 1661          * make gdt memory segments
 1662          */
 1663         for (x = 0; x < NGDT; x++) {
 1664                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
 1665                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
 1666                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1667         }
 1668         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1669         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1670             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1671 
 1672         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1673         r_gdt.rd_base =  (long) gdt;
 1674         lgdt(&r_gdt);
 1675         pc = &__pcpu[0];
 1676 
 1677         wrmsr(MSR_FSBASE, 0);           /* User value */
 1678         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1679         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1680 
 1681         pcpu_init(pc, 0, sizeof(struct pcpu));
 1682         dpcpu_init((void *)(physfree + KERNBASE), 0);
 1683         physfree += DPCPU_SIZE;
 1684         PCPU_SET(prvspace, pc);
 1685         PCPU_SET(curthread, &thread0);
 1686         PCPU_SET(tssp, &common_tss[0]);
 1687         PCPU_SET(commontssp, &common_tss[0]);
 1688         PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1689         PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
 1690         PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
 1691         PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
 1692 
 1693         /*
 1694          * Initialize mutexes.
 1695          *
 1696          * icu_lock: in order to allow an interrupt to occur in a critical
 1697          *           section, to set pcpu->ipending (etc...) properly, we
 1698          *           must be able to get the icu lock, so it can't be
 1699          *           under witness.
 1700          */
 1701         mutex_init();
 1702         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1703         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
 1704 
 1705         /* exceptions */
 1706         for (x = 0; x < NIDT; x++)
 1707                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1708         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1709         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1710         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
 1711         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1712         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1713         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1714         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1715         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1716         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1717         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1718         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1719         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1720         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1721         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1722         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1723         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1724         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1725         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1726         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1727 #ifdef KDTRACE_HOOKS
 1728         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
 1729 #endif
 1730 
 1731         r_idt.rd_limit = sizeof(idt0) - 1;
 1732         r_idt.rd_base = (long) idt;
 1733         lidt(&r_idt);
 1734 
 1735         /*
 1736          * Initialize the i8254 before the console so that console
 1737          * initialization can use DELAY().
 1738          */
 1739         i8254_init();
 1740 
 1741         /*
 1742          * Initialize the console before we print anything out.
 1743          */
 1744         cninit();
 1745 
 1746 #ifdef DEV_ISA
 1747 #ifdef DEV_ATPIC
 1748         elcr_probe();
 1749         atpic_startup();
 1750 #else
 1751         /* Reset and mask the atpics and leave them shut down. */
 1752         atpic_reset();
 1753 
 1754         /*
 1755          * Point the ICU spurious interrupt vectors at the APIC spurious
 1756          * interrupt handler.
 1757          */
 1758         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1759         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1760 #endif
 1761 #else
 1762 #error "have you forgotten the isa device?";
 1763 #endif
 1764 
 1765         kdb_init();
 1766 
 1767 #ifdef KDB
 1768         if (boothowto & RB_KDB)
 1769                 kdb_enter(KDB_WHY_BOOTFLAGS,
 1770                     "Boot flags requested debugger");
 1771 #endif
 1772 
 1773         identify_cpu();         /* Final stage of CPU initialization */
 1774         initializecpu();        /* Initialize CPU registers */
 1775         initializecpucache();
 1776 
 1777         /* doublefault stack space, runs on ist1 */
 1778         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1779 
 1780         /*
 1781          * NMI stack, runs on ist2.  The pcpu pointer is stored just
 1782          * above the start of the ist2 stack.
 1783          */
 1784         np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
 1785         np->np_pcpu = (register_t) pc;
 1786         common_tss[0].tss_ist2 = (long) np;
 1787 
 1788         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1789         common_tss[0].tss_iobase = sizeof(struct amd64tss) +
 1790             IOPAGES * PAGE_SIZE;
 1791 
 1792         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1793         ltr(gsel_tss);
 1794 
 1795         /* Set up the fast syscall stuff */
 1796         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1797         wrmsr(MSR_EFER, msr);
 1798         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1799         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1800         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1801               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1802         wrmsr(MSR_STAR, msr);
 1803         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1804 
 1805         getmemsize(kmdp, physfree);
 1806         init_param2(physmem);
 1807 
 1808         /* now running on new page tables, configured,and u/iom is accessible */
 1809 
 1810         msgbufinit(msgbufp, msgbufsize);
 1811         fpuinit();
 1812 
 1813         /*
 1814          * Set up thread0 pcb after fpuinit calculated pcb + fpu save
 1815          * area size.  Zero out the extended state header in fpu save
 1816          * area.
 1817          */
 1818         thread0.td_pcb = get_pcb_td(&thread0);
 1819         bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
 1820         if (use_xsave) {
 1821                 xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
 1822                     1);
 1823                 xhdr->xstate_bv = xsave_mask;
 1824         }
 1825         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1826         common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
 1827         /* Ensure the stack is aligned to 16 bytes */
 1828         common_tss[0].tss_rsp0 &= ~0xFul;
 1829         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1830         PCPU_SET(curpcb, thread0.td_pcb);
 1831 
 1832         /* transfer to user mode */
 1833 
 1834         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1835         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1836         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1837         _ufssel = GSEL(GUFS32_SEL, SEL_UPL);
 1838         _ugssel = GSEL(GUGS32_SEL, SEL_UPL);
 1839 
 1840         load_ds(_udatasel);
 1841         load_es(_udatasel);
 1842         load_fs(_ufssel);
 1843 
 1844         /* setup proc 0's pcb */
 1845         thread0.td_pcb->pcb_flags = 0;
 1846         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1847         thread0.td_frame = &proc0_tf;
 1848 
 1849         env = getenv("kernelname");
 1850         if (env != NULL)
 1851                 strlcpy(kernelname, env, sizeof(kernelname));
 1852 
 1853 #ifdef XENHVM
 1854         if (inw(0x10) == 0x49d2) {
 1855                 if (bootverbose)
 1856                         printf("Xen detected: disabling emulated block and network devices\n");
 1857                 outw(0x10, 3);
 1858         }
 1859 #endif
 1860 
 1861         cpu_probe_amdc1e();
 1862 
 1863         /* Location of kernel stack for locore */
 1864         return ((u_int64_t)thread0.td_pcb);
 1865 }
 1866 
 1867 void
 1868 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1869 {
 1870 
 1871         pcpu->pc_acpi_id = 0xffffffff;
 1872 }
 1873 
 1874 void
 1875 spinlock_enter(void)
 1876 {
 1877         struct thread *td;
 1878         register_t flags;
 1879 
 1880         td = curthread;
 1881         if (td->td_md.md_spinlock_count == 0) {
 1882                 flags = intr_disable();
 1883                 td->td_md.md_spinlock_count = 1;
 1884                 td->td_md.md_saved_flags = flags;
 1885         } else
 1886                 td->td_md.md_spinlock_count++;
 1887         critical_enter();
 1888 }
 1889 
 1890 void
 1891 spinlock_exit(void)
 1892 {
 1893         struct thread *td;
 1894         register_t flags;
 1895 
 1896         td = curthread;
 1897         critical_exit();
 1898         flags = td->td_md.md_saved_flags;
 1899         td->td_md.md_spinlock_count--;
 1900         if (td->td_md.md_spinlock_count == 0)
 1901                 intr_restore(flags);
 1902 }
 1903 
 1904 /*
 1905  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1906  * we want to start a backtrace from the function that caused us to enter
 1907  * the debugger. We have the context in the trapframe, but base the trace
 1908  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1909  * enough for a backtrace.
 1910  */
 1911 void
 1912 makectx(struct trapframe *tf, struct pcb *pcb)
 1913 {
 1914 
 1915         pcb->pcb_r12 = tf->tf_r12;
 1916         pcb->pcb_r13 = tf->tf_r13;
 1917         pcb->pcb_r14 = tf->tf_r14;
 1918         pcb->pcb_r15 = tf->tf_r15;
 1919         pcb->pcb_rbp = tf->tf_rbp;
 1920         pcb->pcb_rbx = tf->tf_rbx;
 1921         pcb->pcb_rip = tf->tf_rip;
 1922         pcb->pcb_rsp = tf->tf_rsp;
 1923 }
 1924 
 1925 int
 1926 ptrace_set_pc(struct thread *td, unsigned long addr)
 1927 {
 1928         td->td_frame->tf_rip = addr;
 1929         return (0);
 1930 }
 1931 
 1932 int
 1933 ptrace_single_step(struct thread *td)
 1934 {
 1935         td->td_frame->tf_rflags |= PSL_T;
 1936         return (0);
 1937 }
 1938 
 1939 int
 1940 ptrace_clear_single_step(struct thread *td)
 1941 {
 1942         td->td_frame->tf_rflags &= ~PSL_T;
 1943         return (0);
 1944 }
 1945 
 1946 int
 1947 fill_regs(struct thread *td, struct reg *regs)
 1948 {
 1949         struct trapframe *tp;
 1950 
 1951         tp = td->td_frame;
 1952         return (fill_frame_regs(tp, regs));
 1953 }
 1954 
 1955 int
 1956 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 1957 {
 1958         regs->r_r15 = tp->tf_r15;
 1959         regs->r_r14 = tp->tf_r14;
 1960         regs->r_r13 = tp->tf_r13;
 1961         regs->r_r12 = tp->tf_r12;
 1962         regs->r_r11 = tp->tf_r11;
 1963         regs->r_r10 = tp->tf_r10;
 1964         regs->r_r9  = tp->tf_r9;
 1965         regs->r_r8  = tp->tf_r8;
 1966         regs->r_rdi = tp->tf_rdi;
 1967         regs->r_rsi = tp->tf_rsi;
 1968         regs->r_rbp = tp->tf_rbp;
 1969         regs->r_rbx = tp->tf_rbx;
 1970         regs->r_rdx = tp->tf_rdx;
 1971         regs->r_rcx = tp->tf_rcx;
 1972         regs->r_rax = tp->tf_rax;
 1973         regs->r_rip = tp->tf_rip;
 1974         regs->r_cs = tp->tf_cs;
 1975         regs->r_rflags = tp->tf_rflags;
 1976         regs->r_rsp = tp->tf_rsp;
 1977         regs->r_ss = tp->tf_ss;
 1978         if (tp->tf_flags & TF_HASSEGS) {
 1979                 regs->r_ds = tp->tf_ds;
 1980                 regs->r_es = tp->tf_es;
 1981                 regs->r_fs = tp->tf_fs;
 1982                 regs->r_gs = tp->tf_gs;
 1983         } else {
 1984                 regs->r_ds = 0;
 1985                 regs->r_es = 0;
 1986                 regs->r_fs = 0;
 1987                 regs->r_gs = 0;
 1988         }
 1989         return (0);
 1990 }
 1991 
 1992 int
 1993 set_regs(struct thread *td, struct reg *regs)
 1994 {
 1995         struct trapframe *tp;
 1996         register_t rflags;
 1997 
 1998         tp = td->td_frame;
 1999         rflags = regs->r_rflags & 0xffffffff;
 2000         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 2001                 return (EINVAL);
 2002         tp->tf_r15 = regs->r_r15;
 2003         tp->tf_r14 = regs->r_r14;
 2004         tp->tf_r13 = regs->r_r13;
 2005         tp->tf_r12 = regs->r_r12;
 2006         tp->tf_r11 = regs->r_r11;
 2007         tp->tf_r10 = regs->r_r10;
 2008         tp->tf_r9  = regs->r_r9;
 2009         tp->tf_r8  = regs->r_r8;
 2010         tp->tf_rdi = regs->r_rdi;
 2011         tp->tf_rsi = regs->r_rsi;
 2012         tp->tf_rbp = regs->r_rbp;
 2013         tp->tf_rbx = regs->r_rbx;
 2014         tp->tf_rdx = regs->r_rdx;
 2015         tp->tf_rcx = regs->r_rcx;
 2016         tp->tf_rax = regs->r_rax;
 2017         tp->tf_rip = regs->r_rip;
 2018         tp->tf_cs = regs->r_cs;
 2019         tp->tf_rflags = rflags;
 2020         tp->tf_rsp = regs->r_rsp;
 2021         tp->tf_ss = regs->r_ss;
 2022         if (0) {        /* XXXKIB */
 2023                 tp->tf_ds = regs->r_ds;
 2024                 tp->tf_es = regs->r_es;
 2025                 tp->tf_fs = regs->r_fs;
 2026                 tp->tf_gs = regs->r_gs;
 2027                 tp->tf_flags = TF_HASSEGS;
 2028                 set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 2029         }
 2030         return (0);
 2031 }
 2032 
 2033 /* XXX check all this stuff! */
 2034 /* externalize from sv_xmm */
 2035 static void
 2036 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 2037 {
 2038         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2039         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2040         int i;
 2041 
 2042         /* pcb -> fpregs */
 2043         bzero(fpregs, sizeof(*fpregs));
 2044 
 2045         /* FPU control/status */
 2046         penv_fpreg->en_cw = penv_xmm->en_cw;
 2047         penv_fpreg->en_sw = penv_xmm->en_sw;
 2048         penv_fpreg->en_tw = penv_xmm->en_tw;
 2049         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 2050         penv_fpreg->en_rip = penv_xmm->en_rip;
 2051         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 2052         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 2053         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 2054 
 2055         /* FPU registers */
 2056         for (i = 0; i < 8; ++i)
 2057                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 2058 
 2059         /* SSE registers */
 2060         for (i = 0; i < 16; ++i)
 2061                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 2062 }
 2063 
 2064 /* internalize from fpregs into sv_xmm */
 2065 static void
 2066 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 2067 {
 2068         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2069         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2070         int i;
 2071 
 2072         /* fpregs -> pcb */
 2073         /* FPU control/status */
 2074         penv_xmm->en_cw = penv_fpreg->en_cw;
 2075         penv_xmm->en_sw = penv_fpreg->en_sw;
 2076         penv_xmm->en_tw = penv_fpreg->en_tw;
 2077         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 2078         penv_xmm->en_rip = penv_fpreg->en_rip;
 2079         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 2080         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 2081         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 2082 
 2083         /* FPU registers */
 2084         for (i = 0; i < 8; ++i)
 2085                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 2086 
 2087         /* SSE registers */
 2088         for (i = 0; i < 16; ++i)
 2089                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 2090 }
 2091 
 2092 /* externalize from td->pcb */
 2093 int
 2094 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2095 {
 2096 
 2097         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 2098             P_SHOULDSTOP(td->td_proc),
 2099             ("not suspended thread %p", td));
 2100         fpugetregs(td);
 2101         fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
 2102         return (0);
 2103 }
 2104 
 2105 /* internalize to td->pcb */
 2106 int
 2107 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2108 {
 2109 
 2110         set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
 2111         fpuuserinited(td);
 2112         return (0);
 2113 }
 2114 
 2115 /*
 2116  * Get machine context.
 2117  */
 2118 int
 2119 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2120 {
 2121         struct pcb *pcb;
 2122         struct trapframe *tp;
 2123 
 2124         pcb = td->td_pcb;
 2125         tp = td->td_frame;
 2126         PROC_LOCK(curthread->td_proc);
 2127         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 2128         PROC_UNLOCK(curthread->td_proc);
 2129         mcp->mc_r15 = tp->tf_r15;
 2130         mcp->mc_r14 = tp->tf_r14;
 2131         mcp->mc_r13 = tp->tf_r13;
 2132         mcp->mc_r12 = tp->tf_r12;
 2133         mcp->mc_r11 = tp->tf_r11;
 2134         mcp->mc_r10 = tp->tf_r10;
 2135         mcp->mc_r9  = tp->tf_r9;
 2136         mcp->mc_r8  = tp->tf_r8;
 2137         mcp->mc_rdi = tp->tf_rdi;
 2138         mcp->mc_rsi = tp->tf_rsi;
 2139         mcp->mc_rbp = tp->tf_rbp;
 2140         mcp->mc_rbx = tp->tf_rbx;
 2141         mcp->mc_rcx = tp->tf_rcx;
 2142         mcp->mc_rflags = tp->tf_rflags;
 2143         if (flags & GET_MC_CLEAR_RET) {
 2144                 mcp->mc_rax = 0;
 2145                 mcp->mc_rdx = 0;
 2146                 mcp->mc_rflags &= ~PSL_C;
 2147         } else {
 2148                 mcp->mc_rax = tp->tf_rax;
 2149                 mcp->mc_rdx = tp->tf_rdx;
 2150         }
 2151         mcp->mc_rip = tp->tf_rip;
 2152         mcp->mc_cs = tp->tf_cs;
 2153         mcp->mc_rsp = tp->tf_rsp;
 2154         mcp->mc_ss = tp->tf_ss;
 2155         mcp->mc_ds = tp->tf_ds;
 2156         mcp->mc_es = tp->tf_es;
 2157         mcp->mc_fs = tp->tf_fs;
 2158         mcp->mc_gs = tp->tf_gs;
 2159         mcp->mc_flags = tp->tf_flags;
 2160         mcp->mc_len = sizeof(*mcp);
 2161         get_fpcontext(td, mcp, NULL, 0);
 2162         mcp->mc_fsbase = pcb->pcb_fsbase;
 2163         mcp->mc_gsbase = pcb->pcb_gsbase;
 2164         mcp->mc_xfpustate = 0;
 2165         mcp->mc_xfpustate_len = 0;
 2166         bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
 2167         return (0);
 2168 }
 2169 
 2170 /*
 2171  * Set machine context.
 2172  *
 2173  * However, we don't set any but the user modifiable flags, and we won't
 2174  * touch the cs selector.
 2175  */
 2176 int
 2177 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2178 {
 2179         struct pcb *pcb;
 2180         struct trapframe *tp;
 2181         char *xfpustate;
 2182         long rflags;
 2183         int ret;
 2184 
 2185         pcb = td->td_pcb;
 2186         tp = td->td_frame;
 2187         if (mcp->mc_len != sizeof(*mcp) ||
 2188             (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
 2189                 return (EINVAL);
 2190         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 2191             (tp->tf_rflags & ~PSL_USERCHANGE);
 2192         if (mcp->mc_flags & _MC_HASFPXSTATE) {
 2193                 if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
 2194                     sizeof(struct savefpu))
 2195                         return (EINVAL);
 2196                 xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
 2197                 ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
 2198                     mcp->mc_xfpustate_len);
 2199                 if (ret != 0)
 2200                         return (ret);
 2201         } else
 2202                 xfpustate = NULL;
 2203         ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
 2204         if (ret != 0)
 2205                 return (ret);
 2206         tp->tf_r15 = mcp->mc_r15;
 2207         tp->tf_r14 = mcp->mc_r14;
 2208         tp->tf_r13 = mcp->mc_r13;
 2209         tp->tf_r12 = mcp->mc_r12;
 2210         tp->tf_r11 = mcp->mc_r11;
 2211         tp->tf_r10 = mcp->mc_r10;
 2212         tp->tf_r9  = mcp->mc_r9;
 2213         tp->tf_r8  = mcp->mc_r8;
 2214         tp->tf_rdi = mcp->mc_rdi;
 2215         tp->tf_rsi = mcp->mc_rsi;
 2216         tp->tf_rbp = mcp->mc_rbp;
 2217         tp->tf_rbx = mcp->mc_rbx;
 2218         tp->tf_rdx = mcp->mc_rdx;
 2219         tp->tf_rcx = mcp->mc_rcx;
 2220         tp->tf_rax = mcp->mc_rax;
 2221         tp->tf_rip = mcp->mc_rip;
 2222         tp->tf_rflags = rflags;
 2223         tp->tf_rsp = mcp->mc_rsp;
 2224         tp->tf_ss = mcp->mc_ss;
 2225         tp->tf_flags = mcp->mc_flags;
 2226         if (tp->tf_flags & TF_HASSEGS) {
 2227                 tp->tf_ds = mcp->mc_ds;
 2228                 tp->tf_es = mcp->mc_es;
 2229                 tp->tf_fs = mcp->mc_fs;
 2230                 tp->tf_gs = mcp->mc_gs;
 2231         }
 2232         if (mcp->mc_flags & _MC_HASBASES) {
 2233                 pcb->pcb_fsbase = mcp->mc_fsbase;
 2234                 pcb->pcb_gsbase = mcp->mc_gsbase;
 2235         }
 2236         set_pcb_flags(pcb, PCB_FULL_IRET);
 2237         return (0);
 2238 }
 2239 
 2240 static void
 2241 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
 2242     size_t xfpusave_len)
 2243 {
 2244         size_t max_len, len;
 2245 
 2246         mcp->mc_ownedfp = fpugetregs(td);
 2247         bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
 2248             sizeof(mcp->mc_fpstate));
 2249         mcp->mc_fpformat = fpuformat();
 2250         if (!use_xsave || xfpusave_len == 0)
 2251                 return;
 2252         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
 2253         len = xfpusave_len;
 2254         if (len > max_len) {
 2255                 len = max_len;
 2256                 bzero(xfpusave + max_len, len - max_len);
 2257         }
 2258         mcp->mc_flags |= _MC_HASFPXSTATE;
 2259         mcp->mc_xfpustate_len = len;
 2260         bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
 2261 }
 2262 
 2263 static int
 2264 set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
 2265     size_t xfpustate_len)
 2266 {
 2267         struct savefpu *fpstate;
 2268         int error;
 2269 
 2270         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2271                 return (0);
 2272         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 2273                 return (EINVAL);
 2274         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
 2275                 /* We don't care what state is left in the FPU or PCB. */
 2276                 fpstate_drop(td);
 2277                 error = 0;
 2278         } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2279             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2280                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 2281                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 2282                 error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
 2283         } else
 2284                 return (EINVAL);
 2285         return (error);
 2286 }
 2287 
 2288 void
 2289 fpstate_drop(struct thread *td)
 2290 {
 2291 
 2292         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 2293         critical_enter();
 2294         if (PCPU_GET(fpcurthread) == td)
 2295                 fpudrop();
 2296         /*
 2297          * XXX force a full drop of the fpu.  The above only drops it if we
 2298          * owned it.
 2299          *
 2300          * XXX I don't much like fpugetuserregs()'s semantics of doing a full
 2301          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2302          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2303          * sendsig() is the only caller of fpugetuserregs()... perhaps we just
 2304          * have too many layers.
 2305          */
 2306         clear_pcb_flags(curthread->td_pcb,
 2307             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
 2308         critical_exit();
 2309 }
 2310 
 2311 int
 2312 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2313 {
 2314         struct pcb *pcb;
 2315 
 2316         if (td == NULL) {
 2317                 dbregs->dr[0] = rdr0();
 2318                 dbregs->dr[1] = rdr1();
 2319                 dbregs->dr[2] = rdr2();
 2320                 dbregs->dr[3] = rdr3();
 2321                 dbregs->dr[6] = rdr6();
 2322                 dbregs->dr[7] = rdr7();
 2323         } else {
 2324                 pcb = td->td_pcb;
 2325                 dbregs->dr[0] = pcb->pcb_dr0;
 2326                 dbregs->dr[1] = pcb->pcb_dr1;
 2327                 dbregs->dr[2] = pcb->pcb_dr2;
 2328                 dbregs->dr[3] = pcb->pcb_dr3;
 2329                 dbregs->dr[6] = pcb->pcb_dr6;
 2330                 dbregs->dr[7] = pcb->pcb_dr7;
 2331         }
 2332         dbregs->dr[4] = 0;
 2333         dbregs->dr[5] = 0;
 2334         dbregs->dr[8] = 0;
 2335         dbregs->dr[9] = 0;
 2336         dbregs->dr[10] = 0;
 2337         dbregs->dr[11] = 0;
 2338         dbregs->dr[12] = 0;
 2339         dbregs->dr[13] = 0;
 2340         dbregs->dr[14] = 0;
 2341         dbregs->dr[15] = 0;
 2342         return (0);
 2343 }
 2344 
 2345 int
 2346 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2347 {
 2348         struct pcb *pcb;
 2349         int i;
 2350 
 2351         if (td == NULL) {
 2352                 load_dr0(dbregs->dr[0]);
 2353                 load_dr1(dbregs->dr[1]);
 2354                 load_dr2(dbregs->dr[2]);
 2355                 load_dr3(dbregs->dr[3]);
 2356                 load_dr6(dbregs->dr[6]);
 2357                 load_dr7(dbregs->dr[7]);
 2358         } else {
 2359                 /*
 2360                  * Don't let an illegal value for dr7 get set.  Specifically,
 2361                  * check for undefined settings.  Setting these bit patterns
 2362                  * result in undefined behaviour and can lead to an unexpected
 2363                  * TRCTRAP or a general protection fault right here.
 2364                  * Upper bits of dr6 and dr7 must not be set
 2365                  */
 2366                 for (i = 0; i < 4; i++) {
 2367                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2368                                 return (EINVAL);
 2369                         if (td->td_frame->tf_cs == _ucode32sel &&
 2370                             DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
 2371                                 return (EINVAL);
 2372                 }
 2373                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 2374                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 2375                         return (EINVAL);
 2376 
 2377                 pcb = td->td_pcb;
 2378 
 2379                 /*
 2380                  * Don't let a process set a breakpoint that is not within the
 2381                  * process's address space.  If a process could do this, it
 2382                  * could halt the system by setting a breakpoint in the kernel
 2383                  * (if ddb was enabled).  Thus, we need to check to make sure
 2384                  * that no breakpoints are being enabled for addresses outside
 2385                  * process's address space.
 2386                  *
 2387                  * XXX - what about when the watched area of the user's
 2388                  * address space is written into from within the kernel
 2389                  * ... wouldn't that still cause a breakpoint to be generated
 2390                  * from within kernel mode?
 2391                  */
 2392 
 2393                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2394                         /* dr0 is enabled */
 2395                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2396                                 return (EINVAL);
 2397                 }
 2398                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2399                         /* dr1 is enabled */
 2400                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2401                                 return (EINVAL);
 2402                 }
 2403                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2404                         /* dr2 is enabled */
 2405                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2406                                 return (EINVAL);
 2407                 }
 2408                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2409                         /* dr3 is enabled */
 2410                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2411                                 return (EINVAL);
 2412                 }
 2413 
 2414                 pcb->pcb_dr0 = dbregs->dr[0];
 2415                 pcb->pcb_dr1 = dbregs->dr[1];
 2416                 pcb->pcb_dr2 = dbregs->dr[2];
 2417                 pcb->pcb_dr3 = dbregs->dr[3];
 2418                 pcb->pcb_dr6 = dbregs->dr[6];
 2419                 pcb->pcb_dr7 = dbregs->dr[7];
 2420 
 2421                 set_pcb_flags(pcb, PCB_DBREGS);
 2422         }
 2423 
 2424         return (0);
 2425 }
 2426 
 2427 void
 2428 reset_dbregs(void)
 2429 {
 2430 
 2431         load_dr7(0);    /* Turn off the control bits first */
 2432         load_dr0(0);
 2433         load_dr1(0);
 2434         load_dr2(0);
 2435         load_dr3(0);
 2436         load_dr6(0);
 2437 }
 2438 
 2439 /*
 2440  * Return > 0 if a hardware breakpoint has been hit, and the
 2441  * breakpoint was in user space.  Return 0, otherwise.
 2442  */
 2443 int
 2444 user_dbreg_trap(void)
 2445 {
 2446         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 2447         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 2448         int nbp;            /* number of breakpoints that triggered */
 2449         caddr_t addr[4];    /* breakpoint addresses */
 2450         int i;
 2451         
 2452         dr7 = rdr7();
 2453         if ((dr7 & 0x000000ff) == 0) {
 2454                 /*
 2455                  * all GE and LE bits in the dr7 register are zero,
 2456                  * thus the trap couldn't have been caused by the
 2457                  * hardware debug registers
 2458                  */
 2459                 return 0;
 2460         }
 2461 
 2462         nbp = 0;
 2463         dr6 = rdr6();
 2464         bp = dr6 & 0x0000000f;
 2465 
 2466         if (!bp) {
 2467                 /*
 2468                  * None of the breakpoint bits are set meaning this
 2469                  * trap was not caused by any of the debug registers
 2470                  */
 2471                 return 0;
 2472         }
 2473 
 2474         /*
 2475          * at least one of the breakpoints were hit, check to see
 2476          * which ones and if any of them are user space addresses
 2477          */
 2478 
 2479         if (bp & 0x01) {
 2480                 addr[nbp++] = (caddr_t)rdr0();
 2481         }
 2482         if (bp & 0x02) {
 2483                 addr[nbp++] = (caddr_t)rdr1();
 2484         }
 2485         if (bp & 0x04) {
 2486                 addr[nbp++] = (caddr_t)rdr2();
 2487         }
 2488         if (bp & 0x08) {
 2489                 addr[nbp++] = (caddr_t)rdr3();
 2490         }
 2491 
 2492         for (i = 0; i < nbp; i++) {
 2493                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2494                         /*
 2495                          * addr[i] is in user space
 2496                          */
 2497                         return nbp;
 2498                 }
 2499         }
 2500 
 2501         /*
 2502          * None of the breakpoints are in user space.
 2503          */
 2504         return 0;
 2505 }
 2506 
 2507 #ifdef KDB
 2508 
 2509 /*
 2510  * Provide inb() and outb() as functions.  They are normally only available as
 2511  * inline functions, thus cannot be called from the debugger.
 2512  */
 2513 
 2514 /* silence compiler warnings */
 2515 u_char inb_(u_short);
 2516 void outb_(u_short, u_char);
 2517 
 2518 u_char
 2519 inb_(u_short port)
 2520 {
 2521         return inb(port);
 2522 }
 2523 
 2524 void
 2525 outb_(u_short port, u_char data)
 2526 {
 2527         outb(port, data);
 2528 }
 2529 
 2530 #endif /* KDB */

Cache object: e975051d6a5c36ab2ac68284e1206ea5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.