The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1992 Terrence R. Lambert.
    4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * William Jolitz.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD$");
   43 
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_mp_watchdog.h"
   55 #include "opt_perfmon.h"
   56 #include "opt_sched.h"
   57 #include "opt_kdtrace.h"
   58 
   59 #include <sys/param.h>
   60 #include <sys/proc.h>
   61 #include <sys/systm.h>
   62 #include <sys/bio.h>
   63 #include <sys/buf.h>
   64 #include <sys/bus.h>
   65 #include <sys/callout.h>
   66 #include <sys/cons.h>
   67 #include <sys/cpu.h>
   68 #include <sys/eventhandler.h>
   69 #include <sys/exec.h>
   70 #include <sys/imgact.h>
   71 #include <sys/kdb.h>
   72 #include <sys/kernel.h>
   73 #include <sys/ktr.h>
   74 #include <sys/linker.h>
   75 #include <sys/lock.h>
   76 #include <sys/malloc.h>
   77 #include <sys/memrange.h>
   78 #include <sys/msgbuf.h>
   79 #include <sys/mutex.h>
   80 #include <sys/pcpu.h>
   81 #include <sys/ptrace.h>
   82 #include <sys/reboot.h>
   83 #include <sys/sched.h>
   84 #include <sys/signalvar.h>
   85 #ifdef SMP
   86 #include <sys/smp.h>
   87 #endif
   88 #include <sys/syscallsubr.h>
   89 #include <sys/sysctl.h>
   90 #include <sys/sysent.h>
   91 #include <sys/sysproto.h>
   92 #include <sys/ucontext.h>
   93 #include <sys/vmmeter.h>
   94 
   95 #include <vm/vm.h>
   96 #include <vm/vm_extern.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_page.h>
   99 #include <vm/vm_map.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_pager.h>
  102 #include <vm/vm_param.h>
  103 
  104 #ifdef DDB
  105 #ifndef KDB
  106 #error KDB must be enabled in order for DDB to work!
  107 #endif
  108 #include <ddb/ddb.h>
  109 #include <ddb/db_sym.h>
  110 #endif
  111 
  112 #include <net/netisr.h>
  113 
  114 #include <machine/clock.h>
  115 #include <machine/cpu.h>
  116 #include <machine/cputypes.h>
  117 #include <machine/intr_machdep.h>
  118 #include <x86/mca.h>
  119 #include <machine/md_var.h>
  120 #include <machine/metadata.h>
  121 #include <machine/mp_watchdog.h>
  122 #include <machine/pc/bios.h>
  123 #include <machine/pcb.h>
  124 #include <machine/proc.h>
  125 #include <machine/reg.h>
  126 #include <machine/sigframe.h>
  127 #include <machine/specialreg.h>
  128 #ifdef PERFMON
  129 #include <machine/perfmon.h>
  130 #endif
  131 #include <machine/tss.h>
  132 #ifdef SMP
  133 #include <machine/smp.h>
  134 #endif
  135 
  136 #ifdef DEV_ATPIC
  137 #include <x86/isa/icu.h>
  138 #else
  139 #include <machine/apicvar.h>
  140 #endif
  141 
  142 #include <isa/isareg.h>
  143 #include <isa/rtc.h>
  144 
  145 /* Sanity check for __curthread() */
  146 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  147 
  148 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
  149 
  150 extern void printcpuinfo(void); /* XXX header file */
  151 extern void identify_cpu(void);
  152 extern void panicifcpuunsupported(void);
  153 
  154 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  155 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  156 
  157 static void cpu_startup(void *);
  158 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
  159     char *xfpusave, size_t xfpusave_len);
  160 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
  161     char *xfpustate, size_t xfpustate_len);
  162 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  163 
  164 /*
  165  * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
  166  * the physical address at which the kernel is loaded.
  167  */
  168 extern char kernphys[];
  169 #ifdef DDB
  170 extern vm_offset_t ksym_start, ksym_end;
  171 #endif
  172 
  173 struct msgbuf *msgbufp;
  174 
  175 /* Intel ICH registers */
  176 #define ICH_PMBASE      0x400
  177 #define ICH_SMI_EN      ICH_PMBASE + 0x30
  178 
  179 int     _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
  180 
  181 int cold = 1;
  182 
  183 long Maxmem = 0;
  184 long realmem = 0;
  185 
  186 /*
  187  * The number of PHYSMAP entries must be one less than the number of
  188  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  189  * physical address that is accessible by ISA DMA is split into two
  190  * PHYSSEG entries.
  191  */
  192 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  193 
  194 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  195 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  196 
  197 /* must be 2 less so 0 0 can signal end of chunks */
  198 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  199 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  200 
  201 struct kva_md_info kmi;
  202 
  203 static struct trapframe proc0_tf;
  204 struct region_descriptor r_gdt, r_idt;
  205 
  206 struct pcpu __pcpu[MAXCPU];
  207 
  208 struct mtx icu_lock;
  209 
  210 struct mem_range_softc mem_range_softc;
  211 
  212 struct mtx dt_lock;     /* lock for GDT and LDT */
  213 
  214 static void
  215 cpu_startup(dummy)
  216         void *dummy;
  217 {
  218         uintmax_t memsize;
  219         char *sysenv;
  220 
  221         /*
  222          * On MacBooks, we need to disallow the legacy USB circuit to
  223          * generate an SMI# because this can cause several problems,
  224          * namely: incorrect CPU frequency detection and failure to
  225          * start the APs.
  226          * We do this by disabling a bit in the SMI_EN (SMI Control and
  227          * Enable register) of the Intel ICH LPC Interface Bridge. 
  228          */
  229         sysenv = getenv("smbios.system.product");
  230         if (sysenv != NULL) {
  231                 if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
  232                     strncmp(sysenv, "MacBook3,1", 10) == 0 ||
  233                     strncmp(sysenv, "MacBook4,1", 10) == 0 ||
  234                     strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
  235                     strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
  236                     strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
  237                     strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
  238                     strncmp(sysenv, "Macmini1,1", 10) == 0) {
  239                         if (bootverbose)
  240                                 printf("Disabling LEGACY_USB_EN bit on "
  241                                     "Intel ICH.\n");
  242                         outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
  243                 }
  244                 freeenv(sysenv);
  245         }
  246 
  247         /*
  248          * Good {morning,afternoon,evening,night}.
  249          */
  250         startrtclock();
  251         printcpuinfo();
  252         panicifcpuunsupported();
  253 #ifdef PERFMON
  254         perfmon_init();
  255 #endif
  256         realmem = Maxmem;
  257 
  258         /*
  259          * Display physical memory if SMBIOS reports reasonable amount.
  260          */
  261         memsize = 0;
  262         sysenv = getenv("smbios.memory.enabled");
  263         if (sysenv != NULL) {
  264                 memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
  265                 freeenv(sysenv);
  266         }
  267         if (memsize < ptoa((uintmax_t)cnt.v_free_count))
  268                 memsize = ptoa((uintmax_t)Maxmem);
  269         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  270 
  271         /*
  272          * Display any holes after the first chunk of extended memory.
  273          */
  274         if (bootverbose) {
  275                 int indx;
  276 
  277                 printf("Physical memory chunk(s):\n");
  278                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  279                         vm_paddr_t size;
  280 
  281                         size = phys_avail[indx + 1] - phys_avail[indx];
  282                         printf(
  283                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  284                             (uintmax_t)phys_avail[indx],
  285                             (uintmax_t)phys_avail[indx + 1] - 1,
  286                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  287                 }
  288         }
  289 
  290         vm_ksubmap_init(&kmi);
  291 
  292         printf("avail memory = %ju (%ju MB)\n",
  293             ptoa((uintmax_t)cnt.v_free_count),
  294             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  295 
  296         /*
  297          * Set up buffers, so they can be used to read disk labels.
  298          */
  299         bufinit();
  300         vm_pager_bufferinit();
  301 
  302         cpu_setregs();
  303 
  304         /*
  305          * Add BSP as an interrupt target.
  306          */
  307         intr_add_cpu(0);
  308 }
  309 
  310 /*
  311  * Send an interrupt to process.
  312  *
  313  * Stack is set up to allow sigcode stored
  314  * at top to call routine, followed by call
  315  * to sigreturn routine below.  After sigreturn
  316  * resets the signal mask, the stack, and the
  317  * frame pointer, it returns to the user
  318  * specified pc, psl.
  319  */
  320 void
  321 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  322 {
  323         struct sigframe sf, *sfp;
  324         struct pcb *pcb;
  325         struct proc *p;
  326         struct thread *td;
  327         struct sigacts *psp;
  328         char *sp;
  329         struct trapframe *regs;
  330         char *xfpusave;
  331         size_t xfpusave_len;
  332         int sig;
  333         int oonstack;
  334 
  335         td = curthread;
  336         pcb = td->td_pcb;
  337         p = td->td_proc;
  338         PROC_LOCK_ASSERT(p, MA_OWNED);
  339         sig = ksi->ksi_signo;
  340         psp = p->p_sigacts;
  341         mtx_assert(&psp->ps_mtx, MA_OWNED);
  342         regs = td->td_frame;
  343         oonstack = sigonstack(regs->tf_rsp);
  344 
  345         if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
  346                 xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
  347                 xfpusave = __builtin_alloca(xfpusave_len);
  348         } else {
  349                 xfpusave_len = 0;
  350                 xfpusave = NULL;
  351         }
  352 
  353         /* Save user context. */
  354         bzero(&sf, sizeof(sf));
  355         sf.sf_uc.uc_sigmask = *mask;
  356         sf.sf_uc.uc_stack = td->td_sigstk;
  357         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  358             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  359         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  360         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
  361         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  362         get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
  363         fpstate_drop(td);
  364         sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
  365         sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
  366         bzero(sf.sf_uc.uc_mcontext.mc_spare,
  367             sizeof(sf.sf_uc.uc_mcontext.mc_spare));
  368         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  369 
  370         /* Allocate space for the signal handler context. */
  371         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  372             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  373                 sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
  374 #if defined(COMPAT_43)
  375                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  376 #endif
  377         } else
  378                 sp = (char *)regs->tf_rsp - 128;
  379         if (xfpusave != NULL) {
  380                 sp -= xfpusave_len;
  381                 sp = (char *)((unsigned long)sp & ~0x3Ful);
  382                 sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
  383         }
  384         sp -= sizeof(struct sigframe);
  385         /* Align to 16 bytes. */
  386         sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
  387 
  388         /* Translate the signal if appropriate. */
  389         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  390                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  391 
  392         /* Build the argument list for the signal handler. */
  393         regs->tf_rdi = sig;                     /* arg 1 in %rdi */
  394         regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
  395         bzero(&sf.sf_si, sizeof(sf.sf_si));
  396         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  397                 /* Signal handler installed with SA_SIGINFO. */
  398                 regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
  399                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  400 
  401                 /* Fill in POSIX parts */
  402                 sf.sf_si = ksi->ksi_info;
  403                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  404                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  405         } else {
  406                 /* Old FreeBSD-style arguments. */
  407                 regs->tf_rsi = ksi->ksi_code;   /* arg 2 in %rsi */
  408                 regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
  409                 sf.sf_ahu.sf_handler = catcher;
  410         }
  411         mtx_unlock(&psp->ps_mtx);
  412         PROC_UNLOCK(p);
  413 
  414         /*
  415          * Copy the sigframe out to the user's stack.
  416          */
  417         if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
  418             (xfpusave != NULL && copyout(xfpusave,
  419             (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
  420             != 0)) {
  421 #ifdef DEBUG
  422                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  423 #endif
  424                 PROC_LOCK(p);
  425                 sigexit(td, SIGILL);
  426         }
  427 
  428         regs->tf_rsp = (long)sfp;
  429         regs->tf_rip = p->p_sysent->sv_sigcode_base;
  430         regs->tf_rflags &= ~(PSL_T | PSL_D);
  431         regs->tf_cs = _ucodesel;
  432         regs->tf_ds = _udatasel;
  433         regs->tf_ss = _udatasel;
  434         regs->tf_es = _udatasel;
  435         regs->tf_fs = _ufssel;
  436         regs->tf_gs = _ugssel;
  437         regs->tf_flags = TF_HASSEGS;
  438         set_pcb_flags(pcb, PCB_FULL_IRET);
  439         PROC_LOCK(p);
  440         mtx_lock(&psp->ps_mtx);
  441 }
  442 
  443 /*
  444  * System call to cleanup state after a signal
  445  * has been taken.  Reset signal mask and
  446  * stack state from context left by sendsig (above).
  447  * Return to previous pc and psl as specified by
  448  * context left by sendsig. Check carefully to
  449  * make sure that the user has not modified the
  450  * state to gain improper privileges.
  451  *
  452  * MPSAFE
  453  */
  454 int
  455 sys_sigreturn(td, uap)
  456         struct thread *td;
  457         struct sigreturn_args /* {
  458                 const struct __ucontext *sigcntxp;
  459         } */ *uap;
  460 {
  461         ucontext_t uc;
  462         struct pcb *pcb;
  463         struct proc *p;
  464         struct trapframe *regs;
  465         ucontext_t *ucp;
  466         char *xfpustate;
  467         size_t xfpustate_len;
  468         long rflags;
  469         int cs, error, ret;
  470         ksiginfo_t ksi;
  471 
  472         pcb = td->td_pcb;
  473         p = td->td_proc;
  474 
  475         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  476         if (error != 0) {
  477                 uprintf("pid %d (%s): sigreturn copyin failed\n",
  478                     p->p_pid, td->td_name);
  479                 return (error);
  480         }
  481         ucp = &uc;
  482         if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
  483                 uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
  484                     td->td_name, ucp->uc_mcontext.mc_flags);
  485                 return (EINVAL);
  486         }
  487         regs = td->td_frame;
  488         rflags = ucp->uc_mcontext.mc_rflags;
  489         /*
  490          * Don't allow users to change privileged or reserved flags.
  491          */
  492         if (!EFL_SECURE(rflags, regs->tf_rflags)) {
  493                 uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
  494                     td->td_name, rflags);
  495                 return (EINVAL);
  496         }
  497 
  498         /*
  499          * Don't allow users to load a valid privileged %cs.  Let the
  500          * hardware check for invalid selectors, excess privilege in
  501          * other selectors, invalid %eip's and invalid %esp's.
  502          */
  503         cs = ucp->uc_mcontext.mc_cs;
  504         if (!CS_SECURE(cs)) {
  505                 uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
  506                     td->td_name, cs);
  507                 ksiginfo_init_trap(&ksi);
  508                 ksi.ksi_signo = SIGBUS;
  509                 ksi.ksi_code = BUS_OBJERR;
  510                 ksi.ksi_trapno = T_PROTFLT;
  511                 ksi.ksi_addr = (void *)regs->tf_rip;
  512                 trapsignal(td, &ksi);
  513                 return (EINVAL);
  514         }
  515 
  516         if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
  517                 xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
  518                 if (xfpustate_len > cpu_max_ext_state_size -
  519                     sizeof(struct savefpu)) {
  520                         uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
  521                             p->p_pid, td->td_name, xfpustate_len);
  522                         return (EINVAL);
  523                 }
  524                 xfpustate = __builtin_alloca(xfpustate_len);
  525                 error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
  526                     xfpustate, xfpustate_len);
  527                 if (error != 0) {
  528                         uprintf(
  529         "pid %d (%s): sigreturn copying xfpustate failed\n",
  530                             p->p_pid, td->td_name);
  531                         return (error);
  532                 }
  533         } else {
  534                 xfpustate = NULL;
  535                 xfpustate_len = 0;
  536         }
  537         ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
  538         if (ret != 0) {
  539                 uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
  540                     p->p_pid, td->td_name, ret);
  541                 return (ret);
  542         }
  543         bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
  544         pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
  545         pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
  546 
  547 #if defined(COMPAT_43)
  548         if (ucp->uc_mcontext.mc_onstack & 1)
  549                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  550         else
  551                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  552 #endif
  553 
  554         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  555         set_pcb_flags(pcb, PCB_FULL_IRET);
  556         return (EJUSTRETURN);
  557 }
  558 
  559 #ifdef COMPAT_FREEBSD4
  560 int
  561 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
  562 {
  563  
  564         return sys_sigreturn(td, (struct sigreturn_args *)uap);
  565 }
  566 #endif
  567 
  568 
  569 /*
  570  * Machine dependent boot() routine
  571  *
  572  * I haven't seen anything to put here yet
  573  * Possibly some stuff might be grafted back here from boot()
  574  */
  575 void
  576 cpu_boot(int howto)
  577 {
  578 }
  579 
  580 /*
  581  * Flush the D-cache for non-DMA I/O so that the I-cache can
  582  * be made coherent later.
  583  */
  584 void
  585 cpu_flush_dcache(void *ptr, size_t len)
  586 {
  587         /* Not applicable */
  588 }
  589 
  590 /* Get current clock frequency for the given cpu id. */
  591 int
  592 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  593 {
  594         uint64_t tsc1, tsc2;
  595         uint64_t acnt, mcnt, perf;
  596         register_t reg;
  597 
  598         if (pcpu_find(cpu_id) == NULL || rate == NULL)
  599                 return (EINVAL);
  600 
  601         /*
  602          * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
  603          * DELAY(9) based logic fails.
  604          */
  605         if (tsc_is_invariant && !tsc_perf_stat)
  606                 return (EOPNOTSUPP);
  607 
  608 #ifdef SMP
  609         if (smp_cpus > 1) {
  610                 /* Schedule ourselves on the indicated cpu. */
  611                 thread_lock(curthread);
  612                 sched_bind(curthread, cpu_id);
  613                 thread_unlock(curthread);
  614         }
  615 #endif
  616 
  617         /* Calibrate by measuring a short delay. */
  618         reg = intr_disable();
  619         if (tsc_is_invariant) {
  620                 wrmsr(MSR_MPERF, 0);
  621                 wrmsr(MSR_APERF, 0);
  622                 tsc1 = rdtsc();
  623                 DELAY(1000);
  624                 mcnt = rdmsr(MSR_MPERF);
  625                 acnt = rdmsr(MSR_APERF);
  626                 tsc2 = rdtsc();
  627                 intr_restore(reg);
  628                 perf = 1000 * acnt / mcnt;
  629                 *rate = (tsc2 - tsc1) * perf;
  630         } else {
  631                 tsc1 = rdtsc();
  632                 DELAY(1000);
  633                 tsc2 = rdtsc();
  634                 intr_restore(reg);
  635                 *rate = (tsc2 - tsc1) * 1000;
  636         }
  637 
  638 #ifdef SMP
  639         if (smp_cpus > 1) {
  640                 thread_lock(curthread);
  641                 sched_unbind(curthread);
  642                 thread_unlock(curthread);
  643         }
  644 #endif
  645 
  646         return (0);
  647 }
  648 
  649 /*
  650  * Shutdown the CPU as much as possible
  651  */
  652 void
  653 cpu_halt(void)
  654 {
  655         for (;;)
  656                 __asm__ ("hlt");
  657 }
  658 
  659 void (*cpu_idle_hook)(void) = NULL;     /* ACPI idle hook. */
  660 static int      cpu_ident_amdc1e = 0;   /* AMD C1E supported. */
  661 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
  662 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
  663 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
  664     0, "Use MONITOR/MWAIT for short idle");
  665 
  666 #define STATE_RUNNING   0x0
  667 #define STATE_MWAIT     0x1
  668 #define STATE_SLEEPING  0x2
  669 
  670 static void
  671 cpu_idle_acpi(int busy)
  672 {
  673         int *state;
  674 
  675         state = (int *)PCPU_PTR(monitorbuf);
  676         *state = STATE_SLEEPING;
  677         disable_intr();
  678         if (sched_runnable())
  679                 enable_intr();
  680         else if (cpu_idle_hook)
  681                 cpu_idle_hook();
  682         else
  683                 __asm __volatile("sti; hlt");
  684         *state = STATE_RUNNING;
  685 }
  686 
  687 static void
  688 cpu_idle_hlt(int busy)
  689 {
  690         int *state;
  691 
  692         state = (int *)PCPU_PTR(monitorbuf);
  693         *state = STATE_SLEEPING;
  694         /*
  695          * We must absolutely guarentee that hlt is the next instruction
  696          * after sti or we introduce a timing window.
  697          */
  698         disable_intr();
  699         if (sched_runnable())
  700                 enable_intr();
  701         else
  702                 __asm __volatile("sti; hlt");
  703         *state = STATE_RUNNING;
  704 }
  705 
  706 /*
  707  * MWAIT cpu power states.  Lower 4 bits are sub-states.
  708  */
  709 #define MWAIT_C0        0xf0
  710 #define MWAIT_C1        0x00
  711 #define MWAIT_C2        0x10
  712 #define MWAIT_C3        0x20
  713 #define MWAIT_C4        0x30
  714 
  715 static void
  716 cpu_idle_mwait(int busy)
  717 {
  718         int *state;
  719 
  720         state = (int *)PCPU_PTR(monitorbuf);
  721         *state = STATE_MWAIT;
  722         if (!sched_runnable()) {
  723                 cpu_monitor(state, 0, 0);
  724                 if (*state == STATE_MWAIT)
  725                         cpu_mwait(0, MWAIT_C1);
  726         }
  727         *state = STATE_RUNNING;
  728 }
  729 
  730 static void
  731 cpu_idle_spin(int busy)
  732 {
  733         int *state;
  734         int i;
  735 
  736         state = (int *)PCPU_PTR(monitorbuf);
  737         *state = STATE_RUNNING;
  738         for (i = 0; i < 1000; i++) {
  739                 if (sched_runnable())
  740                         return;
  741                 cpu_spinwait();
  742         }
  743 }
  744 
  745 /*
  746  * C1E renders the local APIC timer dead, so we disable it by
  747  * reading the Interrupt Pending Message register and clearing
  748  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
  749  * 
  750  * Reference:
  751  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
  752  *   #32559 revision 3.00+
  753  */
  754 #define MSR_AMDK8_IPM           0xc0010055
  755 #define AMDK8_SMIONCMPHALT      (1ULL << 27)
  756 #define AMDK8_C1EONCMPHALT      (1ULL << 28)
  757 #define AMDK8_CMPHALT           (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
  758 
  759 static void
  760 cpu_probe_amdc1e(void)
  761 {
  762 
  763         /*
  764          * Detect the presence of C1E capability mostly on latest
  765          * dual-cores (or future) k8 family.
  766          */
  767         if (cpu_vendor_id == CPU_VENDOR_AMD &&
  768             (cpu_id & 0x00000f00) == 0x00000f00 &&
  769             (cpu_id & 0x0fff0000) >=  0x00040000) {
  770                 cpu_ident_amdc1e = 1;
  771         }
  772 }
  773 
  774 void (*cpu_idle_fn)(int) = cpu_idle_acpi;
  775 
  776 void
  777 cpu_idle(int busy)
  778 {
  779         uint64_t msr;
  780 
  781         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
  782             busy, curcpu);
  783 #ifdef MP_WATCHDOG
  784         ap_watchdog(PCPU_GET(cpuid));
  785 #endif
  786         /* If we are busy - try to use fast methods. */
  787         if (busy) {
  788                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
  789                         cpu_idle_mwait(busy);
  790                         goto out;
  791                 }
  792         }
  793 
  794         /* If we have time - switch timers into idle mode. */
  795         if (!busy) {
  796                 critical_enter();
  797                 cpu_idleclock();
  798         }
  799 
  800         /* Apply AMD APIC timer C1E workaround. */
  801         if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
  802                 msr = rdmsr(MSR_AMDK8_IPM);
  803                 if (msr & AMDK8_CMPHALT)
  804                         wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
  805         }
  806 
  807         /* Call main idle method. */
  808         cpu_idle_fn(busy);
  809 
  810         /* Switch timers mack into active mode. */
  811         if (!busy) {
  812                 cpu_activeclock();
  813                 critical_exit();
  814         }
  815 out:
  816         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
  817             busy, curcpu);
  818 }
  819 
  820 int
  821 cpu_idle_wakeup(int cpu)
  822 {
  823         struct pcpu *pcpu;
  824         int *state;
  825 
  826         pcpu = pcpu_find(cpu);
  827         state = (int *)pcpu->pc_monitorbuf;
  828         /*
  829          * This doesn't need to be atomic since missing the race will
  830          * simply result in unnecessary IPIs.
  831          */
  832         if (*state == STATE_SLEEPING)
  833                 return (0);
  834         if (*state == STATE_MWAIT)
  835                 *state = STATE_RUNNING;
  836         return (1);
  837 }
  838 
  839 /*
  840  * Ordered by speed/power consumption.
  841  */
  842 struct {
  843         void    *id_fn;
  844         char    *id_name;
  845 } idle_tbl[] = {
  846         { cpu_idle_spin, "spin" },
  847         { cpu_idle_mwait, "mwait" },
  848         { cpu_idle_hlt, "hlt" },
  849         { cpu_idle_acpi, "acpi" },
  850         { NULL, NULL }
  851 };
  852 
  853 static int
  854 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
  855 {
  856         char *avail, *p;
  857         int error;
  858         int i;
  859 
  860         avail = malloc(256, M_TEMP, M_WAITOK);
  861         p = avail;
  862         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  863                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  864                     (cpu_feature2 & CPUID2_MON) == 0)
  865                         continue;
  866                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
  867                     cpu_idle_hook == NULL)
  868                         continue;
  869                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
  870                     idle_tbl[i].id_name);
  871         }
  872         error = sysctl_handle_string(oidp, avail, 0, req);
  873         free(avail, M_TEMP);
  874         return (error);
  875 }
  876 
  877 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
  878     0, 0, idle_sysctl_available, "A", "list of available idle functions");
  879 
  880 static int
  881 idle_sysctl(SYSCTL_HANDLER_ARGS)
  882 {
  883         char buf[16];
  884         int error;
  885         char *p;
  886         int i;
  887 
  888         p = "unknown";
  889         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  890                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
  891                         p = idle_tbl[i].id_name;
  892                         break;
  893                 }
  894         }
  895         strncpy(buf, p, sizeof(buf));
  896         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  897         if (error != 0 || req->newptr == NULL)
  898                 return (error);
  899         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
  900                 if (strstr(idle_tbl[i].id_name, "mwait") &&
  901                     (cpu_feature2 & CPUID2_MON) == 0)
  902                         continue;
  903                 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
  904                     cpu_idle_hook == NULL)
  905                         continue;
  906                 if (strcmp(idle_tbl[i].id_name, buf))
  907                         continue;
  908                 cpu_idle_fn = idle_tbl[i].id_fn;
  909                 return (0);
  910         }
  911         return (EINVAL);
  912 }
  913 
  914 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
  915     idle_sysctl, "A", "currently selected idle function");
  916 
  917 /*
  918  * Reset registers to default values on exec.
  919  */
  920 void
  921 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  922 {
  923         struct trapframe *regs = td->td_frame;
  924         struct pcb *pcb = td->td_pcb;
  925 
  926         mtx_lock(&dt_lock);
  927         if (td->td_proc->p_md.md_ldt != NULL)
  928                 user_ldt_free(td);
  929         else
  930                 mtx_unlock(&dt_lock);
  931         
  932         pcb->pcb_fsbase = 0;
  933         pcb->pcb_gsbase = 0;
  934         clear_pcb_flags(pcb, PCB_32BIT);
  935         pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
  936         set_pcb_flags(pcb, PCB_FULL_IRET);
  937 
  938         bzero((char *)regs, sizeof(struct trapframe));
  939         regs->tf_rip = imgp->entry_addr;
  940         regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
  941         regs->tf_rdi = stack;           /* argv */
  942         regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
  943         regs->tf_ss = _udatasel;
  944         regs->tf_cs = _ucodesel;
  945         regs->tf_ds = _udatasel;
  946         regs->tf_es = _udatasel;
  947         regs->tf_fs = _ufssel;
  948         regs->tf_gs = _ugssel;
  949         regs->tf_flags = TF_HASSEGS;
  950         td->td_retval[1] = 0;
  951 
  952         /*
  953          * Reset the hardware debug registers if they were in use.
  954          * They won't have any meaning for the newly exec'd process.
  955          */
  956         if (pcb->pcb_flags & PCB_DBREGS) {
  957                 pcb->pcb_dr0 = 0;
  958                 pcb->pcb_dr1 = 0;
  959                 pcb->pcb_dr2 = 0;
  960                 pcb->pcb_dr3 = 0;
  961                 pcb->pcb_dr6 = 0;
  962                 pcb->pcb_dr7 = 0;
  963                 if (pcb == curpcb) {
  964                         /*
  965                          * Clear the debug registers on the running
  966                          * CPU, otherwise they will end up affecting
  967                          * the next process we switch to.
  968                          */
  969                         reset_dbregs();
  970                 }
  971                 clear_pcb_flags(pcb, PCB_DBREGS);
  972         }
  973 
  974         /*
  975          * Drop the FP state if we hold it, so that the process gets a
  976          * clean FP state if it uses the FPU again.
  977          */
  978         fpstate_drop(td);
  979 }
  980 
  981 void
  982 cpu_setregs(void)
  983 {
  984         register_t cr0;
  985 
  986         cr0 = rcr0();
  987         /*
  988          * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
  989          * BSP.  See the comments there about why we set them.
  990          */
  991         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
  992         load_cr0(cr0);
  993 }
  994 
  995 /*
  996  * Initialize amd64 and configure to run kernel
  997  */
  998 
  999 /*
 1000  * Initialize segments & interrupt table
 1001  */
 1002 
 1003 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
 1004 static struct gate_descriptor idt0[NIDT];
 1005 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1006 
 1007 static char dblfault_stack[PAGE_SIZE] __aligned(16);
 1008 
 1009 static char nmi0_stack[PAGE_SIZE] __aligned(16);
 1010 CTASSERT(sizeof(struct nmi_pcpu) == 16);
 1011 
 1012 struct amd64tss common_tss[MAXCPU];
 1013 
 1014 /*
 1015  * Software prototypes -- in more palatable form.
 1016  *
 1017  * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
 1018  * slots as corresponding segments for i386 kernel.
 1019  */
 1020 struct soft_segment_descriptor gdt_segs[] = {
 1021 /* GNULL_SEL    0 Null Descriptor */
 1022 {       .ssd_base = 0x0,
 1023         .ssd_limit = 0x0,
 1024         .ssd_type = 0,
 1025         .ssd_dpl = 0,
 1026         .ssd_p = 0,
 1027         .ssd_long = 0,
 1028         .ssd_def32 = 0,
 1029         .ssd_gran = 0           },
 1030 /* GNULL2_SEL   1 Null Descriptor */
 1031 {       .ssd_base = 0x0,
 1032         .ssd_limit = 0x0,
 1033         .ssd_type = 0,
 1034         .ssd_dpl = 0,
 1035         .ssd_p = 0,
 1036         .ssd_long = 0,
 1037         .ssd_def32 = 0,
 1038         .ssd_gran = 0           },
 1039 /* GUFS32_SEL   2 32 bit %gs Descriptor for user */
 1040 {       .ssd_base = 0x0,
 1041         .ssd_limit = 0xfffff,
 1042         .ssd_type = SDT_MEMRWA,
 1043         .ssd_dpl = SEL_UPL,
 1044         .ssd_p = 1,
 1045         .ssd_long = 0,
 1046         .ssd_def32 = 1,
 1047         .ssd_gran = 1           },
 1048 /* GUGS32_SEL   3 32 bit %fs Descriptor for user */
 1049 {       .ssd_base = 0x0,
 1050         .ssd_limit = 0xfffff,
 1051         .ssd_type = SDT_MEMRWA,
 1052         .ssd_dpl = SEL_UPL,
 1053         .ssd_p = 1,
 1054         .ssd_long = 0,
 1055         .ssd_def32 = 1,
 1056         .ssd_gran = 1           },
 1057 /* GCODE_SEL    4 Code Descriptor for kernel */
 1058 {       .ssd_base = 0x0,
 1059         .ssd_limit = 0xfffff,
 1060         .ssd_type = SDT_MEMERA,
 1061         .ssd_dpl = SEL_KPL,
 1062         .ssd_p = 1,
 1063         .ssd_long = 1,
 1064         .ssd_def32 = 0,
 1065         .ssd_gran = 1           },
 1066 /* GDATA_SEL    5 Data Descriptor for kernel */
 1067 {       .ssd_base = 0x0,
 1068         .ssd_limit = 0xfffff,
 1069         .ssd_type = SDT_MEMRWA,
 1070         .ssd_dpl = SEL_KPL,
 1071         .ssd_p = 1,
 1072         .ssd_long = 1,
 1073         .ssd_def32 = 0,
 1074         .ssd_gran = 1           },
 1075 /* GUCODE32_SEL 6 32 bit Code Descriptor for user */
 1076 {       .ssd_base = 0x0,
 1077         .ssd_limit = 0xfffff,
 1078         .ssd_type = SDT_MEMERA,
 1079         .ssd_dpl = SEL_UPL,
 1080         .ssd_p = 1,
 1081         .ssd_long = 0,
 1082         .ssd_def32 = 1,
 1083         .ssd_gran = 1           },
 1084 /* GUDATA_SEL   7 32/64 bit Data Descriptor for user */
 1085 {       .ssd_base = 0x0,
 1086         .ssd_limit = 0xfffff,
 1087         .ssd_type = SDT_MEMRWA,
 1088         .ssd_dpl = SEL_UPL,
 1089         .ssd_p = 1,
 1090         .ssd_long = 0,
 1091         .ssd_def32 = 1,
 1092         .ssd_gran = 1           },
 1093 /* GUCODE_SEL   8 64 bit Code Descriptor for user */
 1094 {       .ssd_base = 0x0,
 1095         .ssd_limit = 0xfffff,
 1096         .ssd_type = SDT_MEMERA,
 1097         .ssd_dpl = SEL_UPL,
 1098         .ssd_p = 1,
 1099         .ssd_long = 1,
 1100         .ssd_def32 = 0,
 1101         .ssd_gran = 1           },
 1102 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1103 {       .ssd_base = 0x0,
 1104         .ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
 1105         .ssd_type = SDT_SYSTSS,
 1106         .ssd_dpl = SEL_KPL,
 1107         .ssd_p = 1,
 1108         .ssd_long = 0,
 1109         .ssd_def32 = 0,
 1110         .ssd_gran = 0           },
 1111 /* Actually, the TSS is a system descriptor which is double size */
 1112 {       .ssd_base = 0x0,
 1113         .ssd_limit = 0x0,
 1114         .ssd_type = 0,
 1115         .ssd_dpl = 0,
 1116         .ssd_p = 0,
 1117         .ssd_long = 0,
 1118         .ssd_def32 = 0,
 1119         .ssd_gran = 0           },
 1120 /* GUSERLDT_SEL 11 LDT Descriptor */
 1121 {       .ssd_base = 0x0,
 1122         .ssd_limit = 0x0,
 1123         .ssd_type = 0,
 1124         .ssd_dpl = 0,
 1125         .ssd_p = 0,
 1126         .ssd_long = 0,
 1127         .ssd_def32 = 0,
 1128         .ssd_gran = 0           },
 1129 /* GUSERLDT_SEL 12 LDT Descriptor, double size */
 1130 {       .ssd_base = 0x0,
 1131         .ssd_limit = 0x0,
 1132         .ssd_type = 0,
 1133         .ssd_dpl = 0,
 1134         .ssd_p = 0,
 1135         .ssd_long = 0,
 1136         .ssd_def32 = 0,
 1137         .ssd_gran = 0           },
 1138 };
 1139 
 1140 void
 1141 setidt(idx, func, typ, dpl, ist)
 1142         int idx;
 1143         inthand_t *func;
 1144         int typ;
 1145         int dpl;
 1146         int ist;
 1147 {
 1148         struct gate_descriptor *ip;
 1149 
 1150         ip = idt + idx;
 1151         ip->gd_looffset = (uintptr_t)func;
 1152         ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
 1153         ip->gd_ist = ist;
 1154         ip->gd_xx = 0;
 1155         ip->gd_type = typ;
 1156         ip->gd_dpl = dpl;
 1157         ip->gd_p = 1;
 1158         ip->gd_hioffset = ((uintptr_t)func)>>16 ;
 1159 }
 1160 
 1161 extern inthand_t
 1162         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1163         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1164         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1165         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1166         IDTVEC(xmm), IDTVEC(dblfault),
 1167 #ifdef KDTRACE_HOOKS
 1168         IDTVEC(dtrace_ret),
 1169 #endif
 1170         IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
 1171 
 1172 #ifdef DDB
 1173 /*
 1174  * Display the index and function name of any IDT entries that don't use
 1175  * the default 'rsvd' entry point.
 1176  */
 1177 DB_SHOW_COMMAND(idt, db_show_idt)
 1178 {
 1179         struct gate_descriptor *ip;
 1180         int idx;
 1181         uintptr_t func;
 1182 
 1183         ip = idt;
 1184         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1185                 func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
 1186                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1187                         db_printf("%3d\t", idx);
 1188                         db_printsym(func, DB_STGY_PROC);
 1189                         db_printf("\n");
 1190                 }
 1191                 ip++;
 1192         }
 1193 }
 1194 
 1195 /* Show privileged registers. */
 1196 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1197 {
 1198         struct {
 1199                 uint16_t limit;
 1200                 uint64_t base;
 1201         } __packed idtr, gdtr;
 1202         uint16_t ldt, tr;
 1203 
 1204         __asm __volatile("sidt %0" : "=m" (idtr));
 1205         db_printf("idtr\t0x%016lx/%04x\n",
 1206             (u_long)idtr.base, (u_int)idtr.limit);
 1207         __asm __volatile("sgdt %0" : "=m" (gdtr));
 1208         db_printf("gdtr\t0x%016lx/%04x\n",
 1209             (u_long)gdtr.base, (u_int)gdtr.limit);
 1210         __asm __volatile("sldt %0" : "=r" (ldt));
 1211         db_printf("ldtr\t0x%04x\n", ldt);
 1212         __asm __volatile("str %0" : "=r" (tr));
 1213         db_printf("tr\t0x%04x\n", tr);
 1214         db_printf("cr0\t0x%016lx\n", rcr0());
 1215         db_printf("cr2\t0x%016lx\n", rcr2());
 1216         db_printf("cr3\t0x%016lx\n", rcr3());
 1217         db_printf("cr4\t0x%016lx\n", rcr4());
 1218         if (rcr4() & CR4_XSAVE)
 1219                 db_printf("xcr0\t0x%016lx\n", rxcr(0));
 1220         db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER));
 1221         if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
 1222                 db_printf("FEATURES_CTL\t%016lx\n",
 1223                     rdmsr(MSR_IA32_FEATURE_CONTROL));
 1224         db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
 1225         db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT));
 1226         db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE));
 1227 }
 1228 
 1229 DB_SHOW_COMMAND(dbregs, db_show_dbregs)
 1230 {
 1231 
 1232         db_printf("dr0\t0x%016lx\n", rdr0());
 1233         db_printf("dr1\t0x%016lx\n", rdr1());
 1234         db_printf("dr2\t0x%016lx\n", rdr2());
 1235         db_printf("dr3\t0x%016lx\n", rdr3());
 1236         db_printf("dr6\t0x%016lx\n", rdr6());
 1237         db_printf("dr7\t0x%016lx\n", rdr7());   
 1238 }
 1239 #endif
 1240 
 1241 void
 1242 sdtossd(sd, ssd)
 1243         struct user_segment_descriptor *sd;
 1244         struct soft_segment_descriptor *ssd;
 1245 {
 1246 
 1247         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1248         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1249         ssd->ssd_type  = sd->sd_type;
 1250         ssd->ssd_dpl   = sd->sd_dpl;
 1251         ssd->ssd_p     = sd->sd_p;
 1252         ssd->ssd_long  = sd->sd_long;
 1253         ssd->ssd_def32 = sd->sd_def32;
 1254         ssd->ssd_gran  = sd->sd_gran;
 1255 }
 1256 
 1257 void
 1258 ssdtosd(ssd, sd)
 1259         struct soft_segment_descriptor *ssd;
 1260         struct user_segment_descriptor *sd;
 1261 {
 1262 
 1263         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1264         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
 1265         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1266         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1267         sd->sd_type  = ssd->ssd_type;
 1268         sd->sd_dpl   = ssd->ssd_dpl;
 1269         sd->sd_p     = ssd->ssd_p;
 1270         sd->sd_long  = ssd->ssd_long;
 1271         sd->sd_def32 = ssd->ssd_def32;
 1272         sd->sd_gran  = ssd->ssd_gran;
 1273 }
 1274 
 1275 void
 1276 ssdtosyssd(ssd, sd)
 1277         struct soft_segment_descriptor *ssd;
 1278         struct system_segment_descriptor *sd;
 1279 {
 1280 
 1281         sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
 1282         sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
 1283         sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
 1284         sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
 1285         sd->sd_type  = ssd->ssd_type;
 1286         sd->sd_dpl   = ssd->ssd_dpl;
 1287         sd->sd_p     = ssd->ssd_p;
 1288         sd->sd_gran  = ssd->ssd_gran;
 1289 }
 1290 
 1291 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
 1292 #include <isa/isavar.h>
 1293 #include <isa/isareg.h>
 1294 /*
 1295  * Return a bitmap of the current interrupt requests.  This is 8259-specific
 1296  * and is only suitable for use at probe time.
 1297  * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
 1298  * It shouldn't be here.  There should probably be an APIC centric
 1299  * implementation in the apic driver code, if at all.
 1300  */
 1301 intrmask_t
 1302 isa_irq_pending(void)
 1303 {
 1304         u_char irr1;
 1305         u_char irr2;
 1306 
 1307         irr1 = inb(IO_ICU1);
 1308         irr2 = inb(IO_ICU2);
 1309         return ((irr2 << 8) | irr1);
 1310 }
 1311 #endif
 1312 
 1313 u_int basemem;
 1314 
 1315 static int
 1316 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
 1317 {
 1318         int i, insert_idx, physmap_idx;
 1319 
 1320         physmap_idx = *physmap_idxp;
 1321 
 1322         if (boothowto & RB_VERBOSE)
 1323                 printf("SMAP type=%02x base=%016lx len=%016lx\n",
 1324                     smap->type, smap->base, smap->length);
 1325 
 1326         if (smap->type != SMAP_TYPE_MEMORY)
 1327                 return (1);
 1328 
 1329         if (smap->length == 0)
 1330                 return (0);
 1331 
 1332         /*
 1333          * Find insertion point while checking for overlap.  Start off by
 1334          * assuming the new entry will be added to the end.
 1335          */
 1336         insert_idx = physmap_idx + 2;
 1337         for (i = 0; i <= physmap_idx; i += 2) {
 1338                 if (smap->base < physmap[i + 1]) {
 1339                         if (smap->base + smap->length <= physmap[i]) {
 1340                                 insert_idx = i;
 1341                                 break;
 1342                         }
 1343                         if (boothowto & RB_VERBOSE)
 1344                                 printf(
 1345                     "Overlapping memory regions, ignoring second region\n");
 1346                         return (1);
 1347                 }
 1348         }
 1349 
 1350         /* See if we can prepend to the next entry. */
 1351         if (insert_idx <= physmap_idx &&
 1352             smap->base + smap->length == physmap[insert_idx]) {
 1353                 physmap[insert_idx] = smap->base;
 1354                 return (1);
 1355         }
 1356 
 1357         /* See if we can append to the previous entry. */
 1358         if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
 1359                 physmap[insert_idx - 1] += smap->length;
 1360                 return (1);
 1361         }
 1362 
 1363         physmap_idx += 2;
 1364         *physmap_idxp = physmap_idx;
 1365         if (physmap_idx == PHYSMAP_SIZE) {
 1366                 printf(
 1367                 "Too many segments in the physical address map, giving up\n");
 1368                 return (0);
 1369         }
 1370 
 1371         /*
 1372          * Move the last 'N' entries down to make room for the new
 1373          * entry if needed.
 1374          */
 1375         for (i = physmap_idx; i > insert_idx; i -= 2) {
 1376                 physmap[i] = physmap[i - 2];
 1377                 physmap[i + 1] = physmap[i - 1];
 1378         }
 1379 
 1380         /* Insert the new entry. */
 1381         physmap[insert_idx] = smap->base;
 1382         physmap[insert_idx + 1] = smap->base + smap->length;
 1383         return (1);
 1384 }
 1385 
 1386 #define PAGES_PER_GB    (1024 * 1024 * 1024 / PAGE_SIZE)
 1387 
 1388 /*
 1389  * Populate the (physmap) array with base/bound pairs describing the
 1390  * available physical memory in the system, then test this memory and
 1391  * build the phys_avail array describing the actually-available memory.
 1392  *
 1393  * Total memory size may be set by the kernel environment variable
 1394  * hw.physmem or the compile-time define MAXMEM.
 1395  *
 1396  * XXX first should be vm_paddr_t.
 1397  */
 1398 static void
 1399 getmemsize(caddr_t kmdp, u_int64_t first)
 1400 {
 1401         int i, physmap_idx, pa_indx, da_indx;
 1402         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1403         u_long physmem_start, physmem_tunable, memtest;
 1404         pt_entry_t *pte;
 1405         struct bios_smap *smapbase, *smap, *smapend;
 1406         u_int32_t smapsize;
 1407         quad_t dcons_addr, dcons_size;
 1408         int page_counter;
 1409 
 1410         bzero(physmap, sizeof(physmap));
 1411         basemem = 0;
 1412         physmap_idx = 0;
 1413 
 1414         /*
 1415          * get memory map from INT 15:E820, kindly supplied by the loader.
 1416          *
 1417          * subr_module.c says:
 1418          * "Consumer may safely assume that size value precedes data."
 1419          * ie: an int32_t immediately precedes smap.
 1420          */
 1421         smapbase = (struct bios_smap *)preload_search_info(kmdp,
 1422             MODINFO_METADATA | MODINFOMD_SMAP);
 1423         if (smapbase == NULL)
 1424                 panic("No BIOS smap info from loader!");
 1425 
 1426         smapsize = *((u_int32_t *)smapbase - 1);
 1427         smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
 1428 
 1429         for (smap = smapbase; smap < smapend; smap++)
 1430                 if (!add_smap_entry(smap, physmap, &physmap_idx))
 1431                         break;
 1432 
 1433         /*
 1434          * Find the 'base memory' segment for SMP
 1435          */
 1436         basemem = 0;
 1437         for (i = 0; i <= physmap_idx; i += 2) {
 1438                 if (physmap[i] == 0x00000000) {
 1439                         basemem = physmap[i + 1] / 1024;
 1440                         break;
 1441                 }
 1442         }
 1443         if (basemem == 0)
 1444                 panic("BIOS smap did not include a basemem segment!");
 1445 
 1446 #ifdef SMP
 1447         /* make hole for AP bootstrap code */
 1448         physmap[1] = mp_bootaddress(physmap[1] / 1024);
 1449 #endif
 1450 
 1451         /*
 1452          * Maxmem isn't the "maximum memory", it's one larger than the
 1453          * highest page of the physical address space.  It should be
 1454          * called something like "Maxphyspage".  We may adjust this
 1455          * based on ``hw.physmem'' and the results of the memory test.
 1456          */
 1457         Maxmem = atop(physmap[physmap_idx + 1]);
 1458 
 1459 #ifdef MAXMEM
 1460         Maxmem = MAXMEM / 4;
 1461 #endif
 1462 
 1463         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1464                 Maxmem = atop(physmem_tunable);
 1465 
 1466         /*
 1467          * By default enable the memory test on real hardware, and disable
 1468          * it if we appear to be running in a VM.  This avoids touching all
 1469          * pages unnecessarily, which doesn't matter on real hardware but is
 1470          * bad for shared VM hosts.  Use a general name so that
 1471          * one could eventually do more with the code than just disable it.
 1472          */
 1473         memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
 1474         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1475 
 1476         /*
 1477          * Don't allow MAXMEM or hw.physmem to extend the amount of memory
 1478          * in the system.
 1479          */
 1480         if (Maxmem > atop(physmap[physmap_idx + 1]))
 1481                 Maxmem = atop(physmap[physmap_idx + 1]);
 1482 
 1483         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1484             (boothowto & RB_VERBOSE))
 1485                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1486 
 1487         /* call pmap initialization to make new kernel address space */
 1488         pmap_bootstrap(&first);
 1489 
 1490         /*
 1491          * Size up each available chunk of physical memory.
 1492          *
 1493          * XXX Some BIOSes corrupt low 64KB between suspend and resume.
 1494          * By default, mask off the first 16 pages unless we appear to be
 1495          * running in a VM.
 1496          */
 1497         physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
 1498         TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
 1499         if (physmem_start < PAGE_SIZE)
 1500                 physmap[0] = PAGE_SIZE;
 1501         else if (physmem_start >= physmap[1])
 1502                 physmap[0] = round_page(physmap[1] - PAGE_SIZE);
 1503         else
 1504                 physmap[0] = round_page(physmem_start);
 1505         pa_indx = 0;
 1506         da_indx = 1;
 1507         phys_avail[pa_indx++] = physmap[0];
 1508         phys_avail[pa_indx] = physmap[0];
 1509         dump_avail[da_indx] = physmap[0];
 1510         pte = CMAP1;
 1511 
 1512         /*
 1513          * Get dcons buffer address
 1514          */
 1515         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1516             getenv_quad("dcons.size", &dcons_size) == 0)
 1517                 dcons_addr = 0;
 1518 
 1519         /*
 1520          * physmap is in bytes, so when converting to page boundaries,
 1521          * round up the start address and round down the end address.
 1522          */
 1523         page_counter = 0;
 1524         if (memtest != 0)
 1525                 printf("Testing system memory");
 1526         for (i = 0; i <= physmap_idx; i += 2) {
 1527                 vm_paddr_t end;
 1528 
 1529                 end = ptoa((vm_paddr_t)Maxmem);
 1530                 if (physmap[i + 1] < end)
 1531                         end = trunc_page(physmap[i + 1]);
 1532                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1533                         int tmp, page_bad, full;
 1534                         int *ptr = (int *)CADDR1;
 1535 
 1536                         full = FALSE;
 1537                         /*
 1538                          * block out kernel memory as not available.
 1539                          */
 1540                         if (pa >= (vm_paddr_t)kernphys && pa < first)
 1541                                 goto do_dump_avail;
 1542 
 1543                         /*
 1544                          * block out dcons buffer
 1545                          */
 1546                         if (dcons_addr > 0
 1547                             && pa >= trunc_page(dcons_addr)
 1548                             && pa < dcons_addr + dcons_size)
 1549                                 goto do_dump_avail;
 1550 
 1551                         page_bad = FALSE;
 1552                         if (memtest == 0)
 1553                                 goto skip_memtest;
 1554 
 1555                         /*
 1556                          * Print a "." every GB to show we're making
 1557                          * progress.
 1558                          */
 1559                         page_counter++;
 1560                         if ((page_counter % PAGES_PER_GB) == 0)
 1561                                 printf(".");
 1562 
 1563                         /*
 1564                          * map page into kernel: valid, read/write,non-cacheable
 1565                          */
 1566                         *pte = pa | PG_V | PG_RW | PG_N;
 1567                         invltlb();
 1568 
 1569                         tmp = *(int *)ptr;
 1570                         /*
 1571                          * Test for alternating 1's and 0's
 1572                          */
 1573                         *(volatile int *)ptr = 0xaaaaaaaa;
 1574                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1575                                 page_bad = TRUE;
 1576                         /*
 1577                          * Test for alternating 0's and 1's
 1578                          */
 1579                         *(volatile int *)ptr = 0x55555555;
 1580                         if (*(volatile int *)ptr != 0x55555555)
 1581                                 page_bad = TRUE;
 1582                         /*
 1583                          * Test for all 1's
 1584                          */
 1585                         *(volatile int *)ptr = 0xffffffff;
 1586                         if (*(volatile int *)ptr != 0xffffffff)
 1587                                 page_bad = TRUE;
 1588                         /*
 1589                          * Test for all 0's
 1590                          */
 1591                         *(volatile int *)ptr = 0x0;
 1592                         if (*(volatile int *)ptr != 0x0)
 1593                                 page_bad = TRUE;
 1594                         /*
 1595                          * Restore original value.
 1596                          */
 1597                         *(int *)ptr = tmp;
 1598 
 1599 skip_memtest:
 1600                         /*
 1601                          * Adjust array of valid/good pages.
 1602                          */
 1603                         if (page_bad == TRUE)
 1604                                 continue;
 1605                         /*
 1606                          * If this good page is a continuation of the
 1607                          * previous set of good pages, then just increase
 1608                          * the end pointer. Otherwise start a new chunk.
 1609                          * Note that "end" points one higher than end,
 1610                          * making the range >= start and < end.
 1611                          * If we're also doing a speculative memory
 1612                          * test and we at or past the end, bump up Maxmem
 1613                          * so that we keep going. The first bad page
 1614                          * will terminate the loop.
 1615                          */
 1616                         if (phys_avail[pa_indx] == pa) {
 1617                                 phys_avail[pa_indx] += PAGE_SIZE;
 1618                         } else {
 1619                                 pa_indx++;
 1620                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1621                                         printf(
 1622                 "Too many holes in the physical address space, giving up\n");
 1623                                         pa_indx--;
 1624                                         full = TRUE;
 1625                                         goto do_dump_avail;
 1626                                 }
 1627                                 phys_avail[pa_indx++] = pa;     /* start */
 1628                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1629                         }
 1630                         physmem++;
 1631 do_dump_avail:
 1632                         if (dump_avail[da_indx] == pa) {
 1633                                 dump_avail[da_indx] += PAGE_SIZE;
 1634                         } else {
 1635                                 da_indx++;
 1636                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1637                                         da_indx--;
 1638                                         goto do_next;
 1639                                 }
 1640                                 dump_avail[da_indx++] = pa; /* start */
 1641                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1642                         }
 1643 do_next:
 1644                         if (full)
 1645                                 break;
 1646                 }
 1647         }
 1648         *pte = 0;
 1649         invltlb();
 1650         if (memtest != 0)
 1651                 printf("\n");
 1652 
 1653         /*
 1654          * XXX
 1655          * The last chunk must contain at least one page plus the message
 1656          * buffer to avoid complicating other code (message buffer address
 1657          * calculation, etc.).
 1658          */
 1659         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1660             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 1661                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1662                 phys_avail[pa_indx--] = 0;
 1663                 phys_avail[pa_indx--] = 0;
 1664         }
 1665 
 1666         Maxmem = atop(phys_avail[pa_indx]);
 1667 
 1668         /* Trim off space for the message buffer. */
 1669         phys_avail[pa_indx] -= round_page(msgbufsize);
 1670 
 1671         /* Map the message buffer. */
 1672         msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
 1673 }
 1674 
 1675 u_int64_t
 1676 hammer_time(u_int64_t modulep, u_int64_t physfree)
 1677 {
 1678         caddr_t kmdp;
 1679         int gsel_tss, x;
 1680         struct pcpu *pc;
 1681         struct nmi_pcpu *np;
 1682         struct xstate_hdr *xhdr;
 1683         u_int64_t msr;
 1684         char *env;
 1685         size_t kstack0_sz;
 1686 
 1687         thread0.td_kstack = physfree + KERNBASE;
 1688         thread0.td_kstack_pages = KSTACK_PAGES;
 1689         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 1690         bzero((void *)thread0.td_kstack, kstack0_sz);
 1691         physfree += kstack0_sz;
 1692 
 1693         /*
 1694          * This may be done better later if it gets more high level
 1695          * components in it. If so just link td->td_proc here.
 1696          */
 1697         proc_linkup0(&proc0, &thread0);
 1698 
 1699         preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
 1700         preload_bootstrap_relocate(KERNBASE);
 1701         kmdp = preload_search_by_type("elf kernel");
 1702         if (kmdp == NULL)
 1703                 kmdp = preload_search_by_type("elf64 kernel");
 1704         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
 1705         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
 1706 #ifdef DDB
 1707         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
 1708         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
 1709 #endif
 1710 
 1711         /* Init basic tunables, hz etc */
 1712         init_param1();
 1713 
 1714         /*
 1715          * make gdt memory segments
 1716          */
 1717         for (x = 0; x < NGDT; x++) {
 1718                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
 1719                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
 1720                         ssdtosd(&gdt_segs[x], &gdt[x]);
 1721         }
 1722         gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
 1723         ssdtosyssd(&gdt_segs[GPROC0_SEL],
 1724             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1725 
 1726         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1727         r_gdt.rd_base =  (long) gdt;
 1728         lgdt(&r_gdt);
 1729         pc = &__pcpu[0];
 1730 
 1731         wrmsr(MSR_FSBASE, 0);           /* User value */
 1732         wrmsr(MSR_GSBASE, (u_int64_t)pc);
 1733         wrmsr(MSR_KGSBASE, 0);          /* User value while in the kernel */
 1734 
 1735         pcpu_init(pc, 0, sizeof(struct pcpu));
 1736         dpcpu_init((void *)(physfree + KERNBASE), 0);
 1737         physfree += DPCPU_SIZE;
 1738         PCPU_SET(prvspace, pc);
 1739         PCPU_SET(curthread, &thread0);
 1740         PCPU_SET(tssp, &common_tss[0]);
 1741         PCPU_SET(commontssp, &common_tss[0]);
 1742         PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
 1743         PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
 1744         PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
 1745         PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
 1746 
 1747         /*
 1748          * Initialize mutexes.
 1749          *
 1750          * icu_lock: in order to allow an interrupt to occur in a critical
 1751          *           section, to set pcpu->ipending (etc...) properly, we
 1752          *           must be able to get the icu lock, so it can't be
 1753          *           under witness.
 1754          */
 1755         mutex_init();
 1756         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1757         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
 1758 
 1759         /* exceptions */
 1760         for (x = 0; x < NIDT; x++)
 1761                 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
 1762         setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
 1763         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
 1764         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
 1765         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
 1766         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
 1767         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
 1768         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
 1769         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
 1770         setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
 1771         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
 1772         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
 1773         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
 1774         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
 1775         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
 1776         setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
 1777         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
 1778         setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
 1779         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
 1780         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
 1781 #ifdef KDTRACE_HOOKS
 1782         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
 1783 #endif
 1784 
 1785         r_idt.rd_limit = sizeof(idt0) - 1;
 1786         r_idt.rd_base = (long) idt;
 1787         lidt(&r_idt);
 1788 
 1789         /*
 1790          * Initialize the i8254 before the console so that console
 1791          * initialization can use DELAY().
 1792          */
 1793         i8254_init();
 1794 
 1795         /*
 1796          * Initialize the console before we print anything out.
 1797          */
 1798         cninit();
 1799 
 1800 #ifdef DEV_ISA
 1801 #ifdef DEV_ATPIC
 1802         elcr_probe();
 1803         atpic_startup();
 1804 #else
 1805         /* Reset and mask the atpics and leave them shut down. */
 1806         atpic_reset();
 1807 
 1808         /*
 1809          * Point the ICU spurious interrupt vectors at the APIC spurious
 1810          * interrupt handler.
 1811          */
 1812         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1813         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
 1814 #endif
 1815 #else
 1816 #error "have you forgotten the isa device?";
 1817 #endif
 1818 
 1819         kdb_init();
 1820 
 1821 #ifdef KDB
 1822         if (boothowto & RB_KDB)
 1823                 kdb_enter(KDB_WHY_BOOTFLAGS,
 1824                     "Boot flags requested debugger");
 1825 #endif
 1826 
 1827         identify_cpu();         /* Final stage of CPU initialization */
 1828         initializecpu();        /* Initialize CPU registers */
 1829         initializecpucache();
 1830 
 1831         /* doublefault stack space, runs on ist1 */
 1832         common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
 1833 
 1834         /*
 1835          * NMI stack, runs on ist2.  The pcpu pointer is stored just
 1836          * above the start of the ist2 stack.
 1837          */
 1838         np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
 1839         np->np_pcpu = (register_t) pc;
 1840         common_tss[0].tss_ist2 = (long) np;
 1841 
 1842         /* Set the IO permission bitmap (empty due to tss seg limit) */
 1843         common_tss[0].tss_iobase = sizeof(struct amd64tss) +
 1844             IOPAGES * PAGE_SIZE;
 1845 
 1846         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 1847         ltr(gsel_tss);
 1848 
 1849         /* Set up the fast syscall stuff */
 1850         msr = rdmsr(MSR_EFER) | EFER_SCE;
 1851         wrmsr(MSR_EFER, msr);
 1852         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
 1853         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
 1854         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
 1855               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
 1856         wrmsr(MSR_STAR, msr);
 1857         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
 1858 
 1859         getmemsize(kmdp, physfree);
 1860         init_param2(physmem);
 1861 
 1862         /* now running on new page tables, configured,and u/iom is accessible */
 1863 
 1864         msgbufinit(msgbufp, msgbufsize);
 1865         fpuinit();
 1866 
 1867         /*
 1868          * Set up thread0 pcb after fpuinit calculated pcb + fpu save
 1869          * area size.  Zero out the extended state header in fpu save
 1870          * area.
 1871          */
 1872         thread0.td_pcb = get_pcb_td(&thread0);
 1873         bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
 1874         if (use_xsave) {
 1875                 xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
 1876                     1);
 1877                 xhdr->xstate_bv = xsave_mask;
 1878         }
 1879         /* make an initial tss so cpu can get interrupt stack on syscall! */
 1880         common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
 1881         /* Ensure the stack is aligned to 16 bytes */
 1882         common_tss[0].tss_rsp0 &= ~0xFul;
 1883         PCPU_SET(rsp0, common_tss[0].tss_rsp0);
 1884         PCPU_SET(curpcb, thread0.td_pcb);
 1885 
 1886         /* transfer to user mode */
 1887 
 1888         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 1889         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 1890         _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
 1891         _ufssel = GSEL(GUFS32_SEL, SEL_UPL);
 1892         _ugssel = GSEL(GUGS32_SEL, SEL_UPL);
 1893 
 1894         load_ds(_udatasel);
 1895         load_es(_udatasel);
 1896         load_fs(_ufssel);
 1897 
 1898         /* setup proc 0's pcb */
 1899         thread0.td_pcb->pcb_flags = 0;
 1900         thread0.td_pcb->pcb_cr3 = KPML4phys;
 1901         thread0.td_frame = &proc0_tf;
 1902 
 1903         env = getenv("kernelname");
 1904         if (env != NULL)
 1905                 strlcpy(kernelname, env, sizeof(kernelname));
 1906 
 1907 #ifdef XENHVM
 1908         if (inw(0x10) == 0x49d2) {
 1909                 if (bootverbose)
 1910                         printf("Xen detected: disabling emulated block and network devices\n");
 1911                 outw(0x10, 3);
 1912         }
 1913 #endif
 1914 
 1915         cpu_probe_amdc1e();
 1916 
 1917         /* Location of kernel stack for locore */
 1918         return ((u_int64_t)thread0.td_pcb);
 1919 }
 1920 
 1921 void
 1922 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 1923 {
 1924 
 1925         pcpu->pc_acpi_id = 0xffffffff;
 1926 }
 1927 
 1928 void
 1929 spinlock_enter(void)
 1930 {
 1931         struct thread *td;
 1932         register_t flags;
 1933 
 1934         td = curthread;
 1935         if (td->td_md.md_spinlock_count == 0) {
 1936                 flags = intr_disable();
 1937                 td->td_md.md_spinlock_count = 1;
 1938                 td->td_md.md_saved_flags = flags;
 1939         } else
 1940                 td->td_md.md_spinlock_count++;
 1941         critical_enter();
 1942 }
 1943 
 1944 void
 1945 spinlock_exit(void)
 1946 {
 1947         struct thread *td;
 1948         register_t flags;
 1949 
 1950         td = curthread;
 1951         critical_exit();
 1952         flags = td->td_md.md_saved_flags;
 1953         td->td_md.md_spinlock_count--;
 1954         if (td->td_md.md_spinlock_count == 0)
 1955                 intr_restore(flags);
 1956 }
 1957 
 1958 /*
 1959  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 1960  * we want to start a backtrace from the function that caused us to enter
 1961  * the debugger. We have the context in the trapframe, but base the trace
 1962  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 1963  * enough for a backtrace.
 1964  */
 1965 void
 1966 makectx(struct trapframe *tf, struct pcb *pcb)
 1967 {
 1968 
 1969         pcb->pcb_r12 = tf->tf_r12;
 1970         pcb->pcb_r13 = tf->tf_r13;
 1971         pcb->pcb_r14 = tf->tf_r14;
 1972         pcb->pcb_r15 = tf->tf_r15;
 1973         pcb->pcb_rbp = tf->tf_rbp;
 1974         pcb->pcb_rbx = tf->tf_rbx;
 1975         pcb->pcb_rip = tf->tf_rip;
 1976         pcb->pcb_rsp = tf->tf_rsp;
 1977 }
 1978 
 1979 int
 1980 ptrace_set_pc(struct thread *td, unsigned long addr)
 1981 {
 1982 
 1983         td->td_frame->tf_rip = addr;
 1984         set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 1985         return (0);
 1986 }
 1987 
 1988 int
 1989 ptrace_single_step(struct thread *td)
 1990 {
 1991         td->td_frame->tf_rflags |= PSL_T;
 1992         return (0);
 1993 }
 1994 
 1995 int
 1996 ptrace_clear_single_step(struct thread *td)
 1997 {
 1998         td->td_frame->tf_rflags &= ~PSL_T;
 1999         return (0);
 2000 }
 2001 
 2002 int
 2003 fill_regs(struct thread *td, struct reg *regs)
 2004 {
 2005         struct trapframe *tp;
 2006 
 2007         tp = td->td_frame;
 2008         return (fill_frame_regs(tp, regs));
 2009 }
 2010 
 2011 int
 2012 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 2013 {
 2014         regs->r_r15 = tp->tf_r15;
 2015         regs->r_r14 = tp->tf_r14;
 2016         regs->r_r13 = tp->tf_r13;
 2017         regs->r_r12 = tp->tf_r12;
 2018         regs->r_r11 = tp->tf_r11;
 2019         regs->r_r10 = tp->tf_r10;
 2020         regs->r_r9  = tp->tf_r9;
 2021         regs->r_r8  = tp->tf_r8;
 2022         regs->r_rdi = tp->tf_rdi;
 2023         regs->r_rsi = tp->tf_rsi;
 2024         regs->r_rbp = tp->tf_rbp;
 2025         regs->r_rbx = tp->tf_rbx;
 2026         regs->r_rdx = tp->tf_rdx;
 2027         regs->r_rcx = tp->tf_rcx;
 2028         regs->r_rax = tp->tf_rax;
 2029         regs->r_rip = tp->tf_rip;
 2030         regs->r_cs = tp->tf_cs;
 2031         regs->r_rflags = tp->tf_rflags;
 2032         regs->r_rsp = tp->tf_rsp;
 2033         regs->r_ss = tp->tf_ss;
 2034         if (tp->tf_flags & TF_HASSEGS) {
 2035                 regs->r_ds = tp->tf_ds;
 2036                 regs->r_es = tp->tf_es;
 2037                 regs->r_fs = tp->tf_fs;
 2038                 regs->r_gs = tp->tf_gs;
 2039         } else {
 2040                 regs->r_ds = 0;
 2041                 regs->r_es = 0;
 2042                 regs->r_fs = 0;
 2043                 regs->r_gs = 0;
 2044         }
 2045         return (0);
 2046 }
 2047 
 2048 int
 2049 set_regs(struct thread *td, struct reg *regs)
 2050 {
 2051         struct trapframe *tp;
 2052         register_t rflags;
 2053 
 2054         tp = td->td_frame;
 2055         rflags = regs->r_rflags & 0xffffffff;
 2056         if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
 2057                 return (EINVAL);
 2058         tp->tf_r15 = regs->r_r15;
 2059         tp->tf_r14 = regs->r_r14;
 2060         tp->tf_r13 = regs->r_r13;
 2061         tp->tf_r12 = regs->r_r12;
 2062         tp->tf_r11 = regs->r_r11;
 2063         tp->tf_r10 = regs->r_r10;
 2064         tp->tf_r9  = regs->r_r9;
 2065         tp->tf_r8  = regs->r_r8;
 2066         tp->tf_rdi = regs->r_rdi;
 2067         tp->tf_rsi = regs->r_rsi;
 2068         tp->tf_rbp = regs->r_rbp;
 2069         tp->tf_rbx = regs->r_rbx;
 2070         tp->tf_rdx = regs->r_rdx;
 2071         tp->tf_rcx = regs->r_rcx;
 2072         tp->tf_rax = regs->r_rax;
 2073         tp->tf_rip = regs->r_rip;
 2074         tp->tf_cs = regs->r_cs;
 2075         tp->tf_rflags = rflags;
 2076         tp->tf_rsp = regs->r_rsp;
 2077         tp->tf_ss = regs->r_ss;
 2078         if (0) {        /* XXXKIB */
 2079                 tp->tf_ds = regs->r_ds;
 2080                 tp->tf_es = regs->r_es;
 2081                 tp->tf_fs = regs->r_fs;
 2082                 tp->tf_gs = regs->r_gs;
 2083                 tp->tf_flags = TF_HASSEGS;
 2084         }
 2085         set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
 2086         return (0);
 2087 }
 2088 
 2089 /* XXX check all this stuff! */
 2090 /* externalize from sv_xmm */
 2091 static void
 2092 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
 2093 {
 2094         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2095         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2096         int i;
 2097 
 2098         /* pcb -> fpregs */
 2099         bzero(fpregs, sizeof(*fpregs));
 2100 
 2101         /* FPU control/status */
 2102         penv_fpreg->en_cw = penv_xmm->en_cw;
 2103         penv_fpreg->en_sw = penv_xmm->en_sw;
 2104         penv_fpreg->en_tw = penv_xmm->en_tw;
 2105         penv_fpreg->en_opcode = penv_xmm->en_opcode;
 2106         penv_fpreg->en_rip = penv_xmm->en_rip;
 2107         penv_fpreg->en_rdp = penv_xmm->en_rdp;
 2108         penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
 2109         penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
 2110 
 2111         /* FPU registers */
 2112         for (i = 0; i < 8; ++i)
 2113                 bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
 2114 
 2115         /* SSE registers */
 2116         for (i = 0; i < 16; ++i)
 2117                 bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
 2118 }
 2119 
 2120 /* internalize from fpregs into sv_xmm */
 2121 static void
 2122 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
 2123 {
 2124         struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2125         struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
 2126         int i;
 2127 
 2128         /* fpregs -> pcb */
 2129         /* FPU control/status */
 2130         penv_xmm->en_cw = penv_fpreg->en_cw;
 2131         penv_xmm->en_sw = penv_fpreg->en_sw;
 2132         penv_xmm->en_tw = penv_fpreg->en_tw;
 2133         penv_xmm->en_opcode = penv_fpreg->en_opcode;
 2134         penv_xmm->en_rip = penv_fpreg->en_rip;
 2135         penv_xmm->en_rdp = penv_fpreg->en_rdp;
 2136         penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
 2137         penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
 2138 
 2139         /* FPU registers */
 2140         for (i = 0; i < 8; ++i)
 2141                 bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
 2142 
 2143         /* SSE registers */
 2144         for (i = 0; i < 16; ++i)
 2145                 bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
 2146 }
 2147 
 2148 /* externalize from td->pcb */
 2149 int
 2150 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2151 {
 2152 
 2153         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 2154             P_SHOULDSTOP(td->td_proc),
 2155             ("not suspended thread %p", td));
 2156         fpugetregs(td);
 2157         fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
 2158         return (0);
 2159 }
 2160 
 2161 /* internalize to td->pcb */
 2162 int
 2163 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2164 {
 2165 
 2166         set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
 2167         fpuuserinited(td);
 2168         return (0);
 2169 }
 2170 
 2171 /*
 2172  * Get machine context.
 2173  */
 2174 int
 2175 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2176 {
 2177         struct pcb *pcb;
 2178         struct trapframe *tp;
 2179 
 2180         pcb = td->td_pcb;
 2181         tp = td->td_frame;
 2182         PROC_LOCK(curthread->td_proc);
 2183         mcp->mc_onstack = sigonstack(tp->tf_rsp);
 2184         PROC_UNLOCK(curthread->td_proc);
 2185         mcp->mc_r15 = tp->tf_r15;
 2186         mcp->mc_r14 = tp->tf_r14;
 2187         mcp->mc_r13 = tp->tf_r13;
 2188         mcp->mc_r12 = tp->tf_r12;
 2189         mcp->mc_r11 = tp->tf_r11;
 2190         mcp->mc_r10 = tp->tf_r10;
 2191         mcp->mc_r9  = tp->tf_r9;
 2192         mcp->mc_r8  = tp->tf_r8;
 2193         mcp->mc_rdi = tp->tf_rdi;
 2194         mcp->mc_rsi = tp->tf_rsi;
 2195         mcp->mc_rbp = tp->tf_rbp;
 2196         mcp->mc_rbx = tp->tf_rbx;
 2197         mcp->mc_rcx = tp->tf_rcx;
 2198         mcp->mc_rflags = tp->tf_rflags;
 2199         if (flags & GET_MC_CLEAR_RET) {
 2200                 mcp->mc_rax = 0;
 2201                 mcp->mc_rdx = 0;
 2202                 mcp->mc_rflags &= ~PSL_C;
 2203         } else {
 2204                 mcp->mc_rax = tp->tf_rax;
 2205                 mcp->mc_rdx = tp->tf_rdx;
 2206         }
 2207         mcp->mc_rip = tp->tf_rip;
 2208         mcp->mc_cs = tp->tf_cs;
 2209         mcp->mc_rsp = tp->tf_rsp;
 2210         mcp->mc_ss = tp->tf_ss;
 2211         mcp->mc_ds = tp->tf_ds;
 2212         mcp->mc_es = tp->tf_es;
 2213         mcp->mc_fs = tp->tf_fs;
 2214         mcp->mc_gs = tp->tf_gs;
 2215         mcp->mc_flags = tp->tf_flags;
 2216         mcp->mc_len = sizeof(*mcp);
 2217         get_fpcontext(td, mcp, NULL, 0);
 2218         mcp->mc_fsbase = pcb->pcb_fsbase;
 2219         mcp->mc_gsbase = pcb->pcb_gsbase;
 2220         mcp->mc_xfpustate = 0;
 2221         mcp->mc_xfpustate_len = 0;
 2222         bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
 2223         return (0);
 2224 }
 2225 
 2226 /*
 2227  * Set machine context.
 2228  *
 2229  * However, we don't set any but the user modifiable flags, and we won't
 2230  * touch the cs selector.
 2231  */
 2232 int
 2233 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2234 {
 2235         struct pcb *pcb;
 2236         struct trapframe *tp;
 2237         char *xfpustate;
 2238         long rflags;
 2239         int ret;
 2240 
 2241         pcb = td->td_pcb;
 2242         tp = td->td_frame;
 2243         if (mcp->mc_len != sizeof(*mcp) ||
 2244             (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
 2245                 return (EINVAL);
 2246         rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
 2247             (tp->tf_rflags & ~PSL_USERCHANGE);
 2248         if (mcp->mc_flags & _MC_HASFPXSTATE) {
 2249                 if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
 2250                     sizeof(struct savefpu))
 2251                         return (EINVAL);
 2252                 xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
 2253                 ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
 2254                     mcp->mc_xfpustate_len);
 2255                 if (ret != 0)
 2256                         return (ret);
 2257         } else
 2258                 xfpustate = NULL;
 2259         ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
 2260         if (ret != 0)
 2261                 return (ret);
 2262         tp->tf_r15 = mcp->mc_r15;
 2263         tp->tf_r14 = mcp->mc_r14;
 2264         tp->tf_r13 = mcp->mc_r13;
 2265         tp->tf_r12 = mcp->mc_r12;
 2266         tp->tf_r11 = mcp->mc_r11;
 2267         tp->tf_r10 = mcp->mc_r10;
 2268         tp->tf_r9  = mcp->mc_r9;
 2269         tp->tf_r8  = mcp->mc_r8;
 2270         tp->tf_rdi = mcp->mc_rdi;
 2271         tp->tf_rsi = mcp->mc_rsi;
 2272         tp->tf_rbp = mcp->mc_rbp;
 2273         tp->tf_rbx = mcp->mc_rbx;
 2274         tp->tf_rdx = mcp->mc_rdx;
 2275         tp->tf_rcx = mcp->mc_rcx;
 2276         tp->tf_rax = mcp->mc_rax;
 2277         tp->tf_rip = mcp->mc_rip;
 2278         tp->tf_rflags = rflags;
 2279         tp->tf_rsp = mcp->mc_rsp;
 2280         tp->tf_ss = mcp->mc_ss;
 2281         tp->tf_flags = mcp->mc_flags;
 2282         if (tp->tf_flags & TF_HASSEGS) {
 2283                 tp->tf_ds = mcp->mc_ds;
 2284                 tp->tf_es = mcp->mc_es;
 2285                 tp->tf_fs = mcp->mc_fs;
 2286                 tp->tf_gs = mcp->mc_gs;
 2287         }
 2288         if (mcp->mc_flags & _MC_HASBASES) {
 2289                 pcb->pcb_fsbase = mcp->mc_fsbase;
 2290                 pcb->pcb_gsbase = mcp->mc_gsbase;
 2291         }
 2292         set_pcb_flags(pcb, PCB_FULL_IRET);
 2293         return (0);
 2294 }
 2295 
 2296 static void
 2297 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
 2298     size_t xfpusave_len)
 2299 {
 2300         size_t max_len, len;
 2301 
 2302         mcp->mc_ownedfp = fpugetregs(td);
 2303         bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
 2304             sizeof(mcp->mc_fpstate));
 2305         mcp->mc_fpformat = fpuformat();
 2306         if (!use_xsave || xfpusave_len == 0)
 2307                 return;
 2308         max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
 2309         len = xfpusave_len;
 2310         if (len > max_len) {
 2311                 len = max_len;
 2312                 bzero(xfpusave + max_len, len - max_len);
 2313         }
 2314         mcp->mc_flags |= _MC_HASFPXSTATE;
 2315         mcp->mc_xfpustate_len = len;
 2316         bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
 2317 }
 2318 
 2319 static int
 2320 set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
 2321     size_t xfpustate_len)
 2322 {
 2323         struct savefpu *fpstate;
 2324         int error;
 2325 
 2326         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2327                 return (0);
 2328         else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
 2329                 return (EINVAL);
 2330         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
 2331                 /* We don't care what state is left in the FPU or PCB. */
 2332                 fpstate_drop(td);
 2333                 error = 0;
 2334         } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2335             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2336                 fpstate = (struct savefpu *)&mcp->mc_fpstate;
 2337                 fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
 2338                 error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
 2339         } else
 2340                 return (EINVAL);
 2341         return (error);
 2342 }
 2343 
 2344 void
 2345 fpstate_drop(struct thread *td)
 2346 {
 2347 
 2348         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 2349         critical_enter();
 2350         if (PCPU_GET(fpcurthread) == td)
 2351                 fpudrop();
 2352         /*
 2353          * XXX force a full drop of the fpu.  The above only drops it if we
 2354          * owned it.
 2355          *
 2356          * XXX I don't much like fpugetuserregs()'s semantics of doing a full
 2357          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2358          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2359          * sendsig() is the only caller of fpugetuserregs()... perhaps we just
 2360          * have too many layers.
 2361          */
 2362         clear_pcb_flags(curthread->td_pcb,
 2363             PCB_FPUINITDONE | PCB_USERFPUINITDONE);
 2364         critical_exit();
 2365 }
 2366 
 2367 int
 2368 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2369 {
 2370         struct pcb *pcb;
 2371 
 2372         if (td == NULL) {
 2373                 dbregs->dr[0] = rdr0();
 2374                 dbregs->dr[1] = rdr1();
 2375                 dbregs->dr[2] = rdr2();
 2376                 dbregs->dr[3] = rdr3();
 2377                 dbregs->dr[6] = rdr6();
 2378                 dbregs->dr[7] = rdr7();
 2379         } else {
 2380                 pcb = td->td_pcb;
 2381                 dbregs->dr[0] = pcb->pcb_dr0;
 2382                 dbregs->dr[1] = pcb->pcb_dr1;
 2383                 dbregs->dr[2] = pcb->pcb_dr2;
 2384                 dbregs->dr[3] = pcb->pcb_dr3;
 2385                 dbregs->dr[6] = pcb->pcb_dr6;
 2386                 dbregs->dr[7] = pcb->pcb_dr7;
 2387         }
 2388         dbregs->dr[4] = 0;
 2389         dbregs->dr[5] = 0;
 2390         dbregs->dr[8] = 0;
 2391         dbregs->dr[9] = 0;
 2392         dbregs->dr[10] = 0;
 2393         dbregs->dr[11] = 0;
 2394         dbregs->dr[12] = 0;
 2395         dbregs->dr[13] = 0;
 2396         dbregs->dr[14] = 0;
 2397         dbregs->dr[15] = 0;
 2398         return (0);
 2399 }
 2400 
 2401 int
 2402 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2403 {
 2404         struct pcb *pcb;
 2405         int i;
 2406 
 2407         if (td == NULL) {
 2408                 load_dr0(dbregs->dr[0]);
 2409                 load_dr1(dbregs->dr[1]);
 2410                 load_dr2(dbregs->dr[2]);
 2411                 load_dr3(dbregs->dr[3]);
 2412                 load_dr6(dbregs->dr[6]);
 2413                 load_dr7(dbregs->dr[7]);
 2414         } else {
 2415                 /*
 2416                  * Don't let an illegal value for dr7 get set.  Specifically,
 2417                  * check for undefined settings.  Setting these bit patterns
 2418                  * result in undefined behaviour and can lead to an unexpected
 2419                  * TRCTRAP or a general protection fault right here.
 2420                  * Upper bits of dr6 and dr7 must not be set
 2421                  */
 2422                 for (i = 0; i < 4; i++) {
 2423                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2424                                 return (EINVAL);
 2425                         if (td->td_frame->tf_cs == _ucode32sel &&
 2426                             DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
 2427                                 return (EINVAL);
 2428                 }
 2429                 if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
 2430                     (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
 2431                         return (EINVAL);
 2432 
 2433                 pcb = td->td_pcb;
 2434 
 2435                 /*
 2436                  * Don't let a process set a breakpoint that is not within the
 2437                  * process's address space.  If a process could do this, it
 2438                  * could halt the system by setting a breakpoint in the kernel
 2439                  * (if ddb was enabled).  Thus, we need to check to make sure
 2440                  * that no breakpoints are being enabled for addresses outside
 2441                  * process's address space.
 2442                  *
 2443                  * XXX - what about when the watched area of the user's
 2444                  * address space is written into from within the kernel
 2445                  * ... wouldn't that still cause a breakpoint to be generated
 2446                  * from within kernel mode?
 2447                  */
 2448 
 2449                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2450                         /* dr0 is enabled */
 2451                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2452                                 return (EINVAL);
 2453                 }
 2454                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2455                         /* dr1 is enabled */
 2456                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2457                                 return (EINVAL);
 2458                 }
 2459                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2460                         /* dr2 is enabled */
 2461                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2462                                 return (EINVAL);
 2463                 }
 2464                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2465                         /* dr3 is enabled */
 2466                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2467                                 return (EINVAL);
 2468                 }
 2469 
 2470                 pcb->pcb_dr0 = dbregs->dr[0];
 2471                 pcb->pcb_dr1 = dbregs->dr[1];
 2472                 pcb->pcb_dr2 = dbregs->dr[2];
 2473                 pcb->pcb_dr3 = dbregs->dr[3];
 2474                 pcb->pcb_dr6 = dbregs->dr[6];
 2475                 pcb->pcb_dr7 = dbregs->dr[7];
 2476 
 2477                 set_pcb_flags(pcb, PCB_DBREGS);
 2478         }
 2479 
 2480         return (0);
 2481 }
 2482 
 2483 void
 2484 reset_dbregs(void)
 2485 {
 2486 
 2487         load_dr7(0);    /* Turn off the control bits first */
 2488         load_dr0(0);
 2489         load_dr1(0);
 2490         load_dr2(0);
 2491         load_dr3(0);
 2492         load_dr6(0);
 2493 }
 2494 
 2495 /*
 2496  * Return > 0 if a hardware breakpoint has been hit, and the
 2497  * breakpoint was in user space.  Return 0, otherwise.
 2498  */
 2499 int
 2500 user_dbreg_trap(void)
 2501 {
 2502         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
 2503         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
 2504         int nbp;            /* number of breakpoints that triggered */
 2505         caddr_t addr[4];    /* breakpoint addresses */
 2506         int i;
 2507         
 2508         dr7 = rdr7();
 2509         if ((dr7 & 0x000000ff) == 0) {
 2510                 /*
 2511                  * all GE and LE bits in the dr7 register are zero,
 2512                  * thus the trap couldn't have been caused by the
 2513                  * hardware debug registers
 2514                  */
 2515                 return 0;
 2516         }
 2517 
 2518         nbp = 0;
 2519         dr6 = rdr6();
 2520         bp = dr6 & 0x0000000f;
 2521 
 2522         if (!bp) {
 2523                 /*
 2524                  * None of the breakpoint bits are set meaning this
 2525                  * trap was not caused by any of the debug registers
 2526                  */
 2527                 return 0;
 2528         }
 2529 
 2530         /*
 2531          * at least one of the breakpoints were hit, check to see
 2532          * which ones and if any of them are user space addresses
 2533          */
 2534 
 2535         if (bp & 0x01) {
 2536                 addr[nbp++] = (caddr_t)rdr0();
 2537         }
 2538         if (bp & 0x02) {
 2539                 addr[nbp++] = (caddr_t)rdr1();
 2540         }
 2541         if (bp & 0x04) {
 2542                 addr[nbp++] = (caddr_t)rdr2();
 2543         }
 2544         if (bp & 0x08) {
 2545                 addr[nbp++] = (caddr_t)rdr3();
 2546         }
 2547 
 2548         for (i = 0; i < nbp; i++) {
 2549                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2550                         /*
 2551                          * addr[i] is in user space
 2552                          */
 2553                         return nbp;
 2554                 }
 2555         }
 2556 
 2557         /*
 2558          * None of the breakpoints are in user space.
 2559          */
 2560         return 0;
 2561 }
 2562 
 2563 #ifdef KDB
 2564 
 2565 /*
 2566  * Provide inb() and outb() as functions.  They are normally only available as
 2567  * inline functions, thus cannot be called from the debugger.
 2568  */
 2569 
 2570 /* silence compiler warnings */
 2571 u_char inb_(u_short);
 2572 void outb_(u_short, u_char);
 2573 
 2574 u_char
 2575 inb_(u_short port)
 2576 {
 2577         return inb(port);
 2578 }
 2579 
 2580 void
 2581 outb_(u_short port, u_char data)
 2582 {
 2583         outb(port, data);
 2584 }
 2585 
 2586 #endif /* KDB */

Cache object: 2f915ef0f4dbc0b16f6c683ab4e25cf3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.