The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1996, by Steve Passe
    5  * Copyright (c) 2003, by Peter Wemm
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. The name of the developer may NOT be used to endorse or promote products
   14  *    derived from this software without specific prior written permission.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include "opt_acpi.h"
   33 #include "opt_cpu.h"
   34 #include "opt_ddb.h"
   35 #include "opt_kstack_pages.h"
   36 #include "opt_sched.h"
   37 #include "opt_smp.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/bus.h>
   42 #include <sys/cpuset.h>
   43 #include <sys/domainset.h>
   44 #include <sys/kdb.h>
   45 #include <sys/kernel.h>
   46 #include <sys/ktr.h>
   47 #include <sys/lock.h>
   48 #include <sys/malloc.h>
   49 #include <sys/memrange.h>
   50 #include <sys/mutex.h>
   51 #include <sys/pcpu.h>
   52 #include <sys/proc.h>
   53 #include <sys/sched.h>
   54 #include <sys/smp.h>
   55 #include <sys/sysctl.h>
   56 
   57 #include <vm/vm.h>
   58 #include <vm/vm_param.h>
   59 #include <vm/pmap.h>
   60 #include <vm/vm_kern.h>
   61 #include <vm/vm_extern.h>
   62 #include <vm/vm_page.h>
   63 #include <vm/vm_phys.h>
   64 
   65 #include <x86/apicreg.h>
   66 #include <machine/clock.h>
   67 #include <machine/cputypes.h>
   68 #include <machine/cpufunc.h>
   69 #include <x86/mca.h>
   70 #include <machine/md_var.h>
   71 #include <machine/pcb.h>
   72 #include <machine/psl.h>
   73 #include <machine/smp.h>
   74 #include <machine/specialreg.h>
   75 #include <machine/tss.h>
   76 #include <x86/ucode.h>
   77 #include <machine/cpu.h>
   78 #include <x86/init.h>
   79 
   80 #ifdef DEV_ACPI
   81 #include <contrib/dev/acpica/include/acpi.h>
   82 #include <dev/acpica/acpivar.h>
   83 #endif
   84 
   85 #define WARMBOOT_TARGET         0
   86 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   87 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   88 
   89 #define CMOS_REG                (0x70)
   90 #define CMOS_DATA               (0x71)
   91 #define BIOS_RESET              (0x0f)
   92 #define BIOS_WARM               (0x0a)
   93 
   94 #define GiB(v)                  (v ## ULL << 30)
   95 
   96 #define AP_BOOTPT_SZ            (PAGE_SIZE * 4)
   97 
   98 /* Temporary variables for init_secondary()  */
   99 static char *doublefault_stack;
  100 static char *mce_stack;
  101 static char *nmi_stack;
  102 static char *dbg_stack;
  103 void *bootpcpu;
  104 
  105 extern u_int mptramp_la57;
  106 extern u_int mptramp_nx;
  107 
  108 /*
  109  * Local data and functions.
  110  */
  111 
  112 static int start_ap(int apic_id, vm_paddr_t boot_address);
  113 
  114 /*
  115  * Initialize the IPI handlers and start up the AP's.
  116  */
  117 void
  118 cpu_mp_start(void)
  119 {
  120         int i;
  121 
  122         /* Initialize the logical ID to APIC ID table. */
  123         for (i = 0; i < MAXCPU; i++) {
  124                 cpu_apic_ids[i] = -1;
  125         }
  126 
  127         /* Install an inter-CPU IPI for cache and TLB invalidations. */
  128         setidt(IPI_INVLOP, pti ? IDTVEC(invlop_pti) : IDTVEC(invlop),
  129             SDT_SYSIGT, SEL_KPL, 0);
  130 
  131         /* Install an inter-CPU IPI for all-CPU rendezvous */
  132         setidt(IPI_RENDEZVOUS, pti ? IDTVEC(rendezvous_pti) :
  133             IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
  134 
  135         /* Install generic inter-CPU IPI handler */
  136         setidt(IPI_BITMAP_VECTOR, pti ? IDTVEC(ipi_intr_bitmap_handler_pti) :
  137             IDTVEC(ipi_intr_bitmap_handler), SDT_SYSIGT, SEL_KPL, 0);
  138 
  139         /* Install an inter-CPU IPI for CPU stop/restart */
  140         setidt(IPI_STOP, pti ? IDTVEC(cpustop_pti) : IDTVEC(cpustop),
  141             SDT_SYSIGT, SEL_KPL, 0);
  142 
  143         /* Install an inter-CPU IPI for CPU suspend/resume */
  144         setidt(IPI_SUSPEND, pti ? IDTVEC(cpususpend_pti) : IDTVEC(cpususpend),
  145             SDT_SYSIGT, SEL_KPL, 0);
  146 
  147         /* Install an IPI for calling delayed SWI */
  148         setidt(IPI_SWI, pti ? IDTVEC(ipi_swi_pti) : IDTVEC(ipi_swi),
  149             SDT_SYSIGT, SEL_KPL, 0);
  150 
  151         /* Set boot_cpu_id if needed. */
  152         if (boot_cpu_id == -1) {
  153                 boot_cpu_id = PCPU_GET(apic_id);
  154                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  155         } else
  156                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  157                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  158 
  159         /* Probe logical/physical core configuration. */
  160         topo_probe();
  161 
  162         assign_cpu_ids();
  163 
  164         mptramp_la57 = la57;
  165         mptramp_nx = pg_nx != 0;
  166         MPASS(kernel_pmap->pm_cr3 < (1UL << 32));
  167         mptramp_pagetables = kernel_pmap->pm_cr3;
  168 
  169         /* Start each Application Processor */
  170         start_all_aps();
  171 
  172         set_interrupt_apic_ids();
  173 
  174 #if defined(DEV_ACPI) && MAXMEMDOM > 1
  175         acpi_pxm_set_cpu_locality();
  176 #endif
  177 }
  178 
  179 /*
  180  * AP CPU's call this to initialize themselves.
  181  */
  182 void
  183 init_secondary(void)
  184 {
  185         struct pcpu *pc;
  186         struct nmi_pcpu *np;
  187         struct user_segment_descriptor *gdt;
  188         struct region_descriptor ap_gdt;
  189         u_int64_t cr0;
  190         int cpu, gsel_tss, x;
  191 
  192         /* Set by the startup code for us to use */
  193         cpu = bootAP;
  194 
  195         /* Update microcode before doing anything else. */
  196         ucode_load_ap(cpu);
  197 
  198         /* Initialize the PCPU area. */
  199         pc = bootpcpu;
  200         pcpu_init(pc, cpu, sizeof(struct pcpu));
  201         dpcpu_init(dpcpu, cpu);
  202         pc->pc_apic_id = cpu_apic_ids[cpu];
  203         pc->pc_prvspace = pc;
  204         pc->pc_curthread = 0;
  205         pc->pc_tssp = &pc->pc_common_tss;
  206         pc->pc_rsp0 = 0;
  207         pc->pc_pti_rsp0 = (((vm_offset_t)&pc->pc_pti_stack +
  208             PC_PTI_STACK_SZ * sizeof(uint64_t)) & ~0xful);
  209         gdt = pc->pc_gdt;
  210         pc->pc_tss = (struct system_segment_descriptor *)&gdt[GPROC0_SEL];
  211         pc->pc_fs32p = &gdt[GUFS32_SEL];
  212         pc->pc_gs32p = &gdt[GUGS32_SEL];
  213         pc->pc_ldt = (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL];
  214         pc->pc_ucr3_load_mask = PMAP_UCR3_NOMASK;
  215         /* See comment in pmap_bootstrap(). */
  216         pc->pc_pcid_next = PMAP_PCID_KERN + 2;
  217         pc->pc_pcid_gen = 1;
  218 
  219         pc->pc_smp_tlb_gen = 1;
  220 
  221         /* Init tss */
  222         pc->pc_common_tss = __pcpu[0].pc_common_tss;
  223         pc->pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
  224             IOPERM_BITMAP_SIZE;
  225         pc->pc_common_tss.tss_rsp0 = 0;
  226 
  227         /* The doublefault stack runs on IST1. */
  228         np = ((struct nmi_pcpu *)&doublefault_stack[DBLFAULT_STACK_SIZE]) - 1;
  229         np->np_pcpu = (register_t)pc;
  230         pc->pc_common_tss.tss_ist1 = (long)np;
  231 
  232         /* The NMI stack runs on IST2. */
  233         np = ((struct nmi_pcpu *)&nmi_stack[NMI_STACK_SIZE]) - 1;
  234         np->np_pcpu = (register_t)pc;
  235         pc->pc_common_tss.tss_ist2 = (long)np;
  236 
  237         /* The MC# stack runs on IST3. */
  238         np = ((struct nmi_pcpu *)&mce_stack[MCE_STACK_SIZE]) - 1;
  239         np->np_pcpu = (register_t)pc;
  240         pc->pc_common_tss.tss_ist3 = (long)np;
  241 
  242         /* The DB# stack runs on IST4. */
  243         np = ((struct nmi_pcpu *)&dbg_stack[DBG_STACK_SIZE]) - 1;
  244         np->np_pcpu = (register_t)pc;
  245         pc->pc_common_tss.tss_ist4 = (long)np;
  246 
  247         /* Prepare private GDT */
  248         gdt_segs[GPROC0_SEL].ssd_base = (long)&pc->pc_common_tss;
  249         for (x = 0; x < NGDT; x++) {
  250                 if (x != GPROC0_SEL && x != GPROC0_SEL + 1 &&
  251                     x != GUSERLDT_SEL && x != GUSERLDT_SEL + 1)
  252                         ssdtosd(&gdt_segs[x], &gdt[x]);
  253         }
  254         ssdtosyssd(&gdt_segs[GPROC0_SEL],
  255             (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
  256         ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  257         ap_gdt.rd_base = (u_long)gdt;
  258         lgdt(&ap_gdt);                  /* does magic intra-segment return */
  259 
  260         wrmsr(MSR_FSBASE, 0);           /* User value */
  261         wrmsr(MSR_GSBASE, (uint64_t)pc);
  262         wrmsr(MSR_KGSBASE, 0);          /* User value */
  263         fix_cpuid();
  264 
  265         lidt(&r_idt);
  266 
  267         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  268         ltr(gsel_tss);
  269 
  270         /*
  271          * Set to a known state:
  272          * Set by mpboot.s: CR0_PG, CR0_PE
  273          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  274          */
  275         cr0 = rcr0();
  276         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  277         load_cr0(cr0);
  278 
  279         amd64_conf_fast_syscall();
  280 
  281         /* signal our startup to the BSP. */
  282         mp_naps++;
  283 
  284         /* Spin until the BSP releases the AP's. */
  285         while (atomic_load_acq_int(&aps_ready) == 0)
  286                 ia32_pause();
  287 
  288         init_secondary_tail();
  289 }
  290 
  291 /*******************************************************************
  292  * local functions and data
  293  */
  294 
  295 #ifdef NUMA
  296 static void
  297 mp_realloc_pcpu(int cpuid, int domain)
  298 {
  299         vm_page_t m;
  300         vm_offset_t oa, na;
  301 
  302         oa = (vm_offset_t)&__pcpu[cpuid];
  303         if (vm_phys_domain(pmap_kextract(oa)) == domain)
  304                 return;
  305         m = vm_page_alloc_noobj_domain(domain, 0);
  306         if (m == NULL)
  307                 return;
  308         na = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
  309         pagecopy((void *)oa, (void *)na);
  310         pmap_qenter((vm_offset_t)&__pcpu[cpuid], &m, 1);
  311         /* XXX old pcpu page leaked. */
  312 }
  313 #endif
  314 
  315 /*
  316  * start each AP in our list
  317  */
  318 int
  319 start_all_aps(void)
  320 {
  321         vm_page_t m_boottramp, m_pml4, m_pdp, m_pd[4];
  322         pml5_entry_t old_pml45;
  323         pml4_entry_t *v_pml4;
  324         pdp_entry_t *v_pdp;
  325         pd_entry_t *v_pd;
  326         vm_paddr_t boot_address;
  327         u_int32_t mpbioswarmvec;
  328         int apic_id, cpu, domain, i;
  329         u_char mpbiosreason;
  330 
  331         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  332 
  333         MPASS(bootMP_size <= PAGE_SIZE);
  334         m_boottramp = vm_page_alloc_noobj_contig(0, 1, 0,
  335             (1ULL << 20), /* Trampoline should be below 1M for real mode */
  336             PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
  337         boot_address = VM_PAGE_TO_PHYS(m_boottramp);
  338 
  339         /* Create a transient 1:1 mapping of low 4G */
  340         if (la57) {
  341                 m_pml4 = pmap_page_alloc_below_4g(true);
  342                 v_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
  343         } else {
  344                 v_pml4 = &kernel_pmap->pm_pmltop[0];
  345         }
  346         m_pdp = pmap_page_alloc_below_4g(true);
  347         v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
  348         m_pd[0] = pmap_page_alloc_below_4g(false);
  349         v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[0]));
  350         for (i = 0; i < NPDEPG; i++)
  351                 v_pd[i] = (i << PDRSHIFT) | X86_PG_V | X86_PG_RW | X86_PG_A |
  352                     X86_PG_M | PG_PS;
  353         m_pd[1] = pmap_page_alloc_below_4g(false);
  354         v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[1]));
  355         for (i = 0; i < NPDEPG; i++)
  356                 v_pd[i] = (NBPDP + (i << PDRSHIFT)) | X86_PG_V | X86_PG_RW |
  357                     X86_PG_A | X86_PG_M | PG_PS;
  358         m_pd[2] = pmap_page_alloc_below_4g(false);
  359         v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[2]));
  360         for (i = 0; i < NPDEPG; i++)
  361                 v_pd[i] = (2UL * NBPDP + (i << PDRSHIFT)) | X86_PG_V |
  362                     X86_PG_RW | X86_PG_A | X86_PG_M | PG_PS;
  363         m_pd[3] = pmap_page_alloc_below_4g(false);
  364         v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[3]));
  365         for (i = 0; i < NPDEPG; i++)
  366                 v_pd[i] = (3UL * NBPDP + (i << PDRSHIFT)) | X86_PG_V |
  367                     X86_PG_RW | X86_PG_A | X86_PG_M | PG_PS;
  368         v_pdp[0] = VM_PAGE_TO_PHYS(m_pd[0]) | X86_PG_V |
  369             X86_PG_RW | X86_PG_A | X86_PG_M;
  370         v_pdp[1] = VM_PAGE_TO_PHYS(m_pd[1]) | X86_PG_V |
  371             X86_PG_RW | X86_PG_A | X86_PG_M;
  372         v_pdp[2] = VM_PAGE_TO_PHYS(m_pd[2]) | X86_PG_V |
  373             X86_PG_RW | X86_PG_A | X86_PG_M;
  374         v_pdp[3] = VM_PAGE_TO_PHYS(m_pd[3]) | X86_PG_V |
  375             X86_PG_RW | X86_PG_A | X86_PG_M;
  376         old_pml45 = kernel_pmap->pm_pmltop[0];
  377         if (la57) {
  378                 kernel_pmap->pm_pmltop[0] = VM_PAGE_TO_PHYS(m_pml4) |
  379                     X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
  380         }
  381         v_pml4[0] = VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V |
  382             X86_PG_RW | X86_PG_A | X86_PG_M;
  383         pmap_invalidate_all(kernel_pmap);
  384 
  385         /* copy the AP 1st level boot code */
  386         bcopy(mptramp_start, (void *)PHYS_TO_DMAP(boot_address), bootMP_size);
  387         if (bootverbose)
  388                 printf("AP boot address %#lx\n", boot_address);
  389 
  390         /* save the current value of the warm-start vector */
  391         if (!efi_boot)
  392                 mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  393         outb(CMOS_REG, BIOS_RESET);
  394         mpbiosreason = inb(CMOS_DATA);
  395 
  396         /* setup a vector to our boot code */
  397         if (!efi_boot) {
  398                 *((volatile u_short *)WARMBOOT_OFF) = WARMBOOT_TARGET;
  399                 *((volatile u_short *)WARMBOOT_SEG) = (boot_address >> 4);
  400         }
  401         outb(CMOS_REG, BIOS_RESET);
  402         outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  403 
  404         /* Relocate pcpu areas to the correct domain. */
  405 #ifdef NUMA
  406         if (vm_ndomains > 1)
  407                 for (cpu = 1; cpu < mp_ncpus; cpu++) {
  408                         apic_id = cpu_apic_ids[cpu];
  409                         domain = acpi_pxm_get_cpu_locality(apic_id);
  410                         mp_realloc_pcpu(cpu, domain);
  411                 }
  412 #endif
  413 
  414         /* start each AP */
  415         domain = 0;
  416         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  417                 apic_id = cpu_apic_ids[cpu];
  418 #ifdef NUMA
  419                 if (vm_ndomains > 1)
  420                         domain = acpi_pxm_get_cpu_locality(apic_id);
  421 #endif
  422                 /* allocate and set up an idle stack data page */
  423                 bootstacks[cpu] = kmem_malloc(kstack_pages * PAGE_SIZE,
  424                     M_WAITOK | M_ZERO);
  425                 doublefault_stack = kmem_malloc(DBLFAULT_STACK_SIZE,
  426                     M_WAITOK | M_ZERO);
  427                 mce_stack = kmem_malloc(MCE_STACK_SIZE,
  428                     M_WAITOK | M_ZERO);
  429                 nmi_stack = kmem_malloc_domainset(
  430                     DOMAINSET_PREF(domain), NMI_STACK_SIZE, M_WAITOK | M_ZERO);
  431                 dbg_stack = kmem_malloc_domainset(
  432                     DOMAINSET_PREF(domain), DBG_STACK_SIZE, M_WAITOK | M_ZERO);
  433                 dpcpu = kmem_malloc_domainset(DOMAINSET_PREF(domain),
  434                     DPCPU_SIZE, M_WAITOK | M_ZERO);
  435 
  436                 bootpcpu = &__pcpu[cpu];
  437                 bootSTK = (char *)bootstacks[cpu] +
  438                     kstack_pages * PAGE_SIZE - 8;
  439                 bootAP = cpu;
  440 
  441                 /* attempt to start the Application Processor */
  442                 if (!start_ap(apic_id, boot_address)) {
  443                         /* restore the warmstart vector */
  444                         if (!efi_boot)
  445                                 *(u_int32_t *)WARMBOOT_OFF = mpbioswarmvec;
  446                         panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
  447                 }
  448 
  449                 CPU_SET(cpu, &all_cpus);        /* record AP in CPU map */
  450         }
  451 
  452         /* restore the warmstart vector */
  453         if (!efi_boot)
  454                 *(u_int32_t *)WARMBOOT_OFF = mpbioswarmvec;
  455 
  456         outb(CMOS_REG, BIOS_RESET);
  457         outb(CMOS_DATA, mpbiosreason);
  458 
  459         /* Destroy transient 1:1 mapping */
  460         kernel_pmap->pm_pmltop[0] = old_pml45;
  461         invlpg(0);
  462         if (la57)
  463                 vm_page_free(m_pml4);
  464         vm_page_free(m_pd[3]);
  465         vm_page_free(m_pd[2]);
  466         vm_page_free(m_pd[1]);
  467         vm_page_free(m_pd[0]);
  468         vm_page_free(m_pdp);
  469         vm_page_free(m_boottramp);
  470 
  471         /* number of APs actually started */
  472         return (mp_naps);
  473 }
  474 
  475 /*
  476  * This function starts the AP (application processor) identified
  477  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  478  * to accomplish this.  This is necessary because of the nuances
  479  * of the different hardware we might encounter.  It isn't pretty,
  480  * but it seems to work.
  481  */
  482 static int
  483 start_ap(int apic_id, vm_paddr_t boot_address)
  484 {
  485         int vector, ms;
  486         int cpus;
  487 
  488         /* calculate the vector */
  489         vector = (boot_address >> 12) & 0xff;
  490 
  491         /* used as a watchpoint to signal AP startup */
  492         cpus = mp_naps;
  493 
  494         ipi_startup(apic_id, vector);
  495 
  496         /* Wait up to 5 seconds for it to start. */
  497         for (ms = 0; ms < 5000; ms++) {
  498                 if (mp_naps > cpus)
  499                         return 1;       /* return SUCCESS */
  500                 DELAY(1000);
  501         }
  502         return 0;               /* return FAILURE */
  503 }
  504 
  505 /*
  506  * Flush the TLB on other CPU's
  507  */
  508 
  509 /*
  510  * Invalidation request.  PCPU pc_smp_tlb_op uses u_int instead of the
  511  * enum to avoid both namespace and ABI issues (with enums).
  512  */
  513 enum invl_op_codes {
  514       INVL_OP_TLB               = 1,
  515       INVL_OP_TLB_INVPCID       = 2,
  516       INVL_OP_TLB_INVPCID_PTI   = 3,
  517       INVL_OP_TLB_PCID          = 4,
  518       INVL_OP_PGRNG             = 5,
  519       INVL_OP_PGRNG_INVPCID     = 6,
  520       INVL_OP_PGRNG_PCID        = 7,
  521       INVL_OP_PG                = 8,
  522       INVL_OP_PG_INVPCID        = 9,
  523       INVL_OP_PG_PCID           = 10,
  524       INVL_OP_CACHE             = 11,
  525 };
  526 
  527 /*
  528  * These variables are initialized at startup to reflect how each of
  529  * the different kinds of invalidations should be performed on the
  530  * current machine and environment.
  531  */
  532 static enum invl_op_codes invl_op_tlb;
  533 static enum invl_op_codes invl_op_pgrng;
  534 static enum invl_op_codes invl_op_pg;
  535 
  536 /*
  537  * Scoreboard of IPI completion notifications from target to IPI initiator.
  538  *
  539  * Each CPU can initiate shootdown IPI independently from other CPUs.
  540  * Initiator enters critical section, then fills its local PCPU
  541  * shootdown info (pc_smp_tlb_ vars), then clears scoreboard generation
  542  * at location (cpu, my_cpuid) for each target cpu.  After that IPI is
  543  * sent to all targets which scan for zeroed scoreboard generation
  544  * words.  Upon finding such word the shootdown data is read from
  545  * corresponding cpu's pcpu, and generation is set.  Meantime initiator
  546  * loops waiting for all zeroed generations in scoreboard to update.
  547  */
  548 static uint32_t *invl_scoreboard;
  549 
  550 static void
  551 invl_scoreboard_init(void *arg __unused)
  552 {
  553         u_int i;
  554 
  555         invl_scoreboard = malloc(sizeof(uint32_t) * (mp_maxid + 1) *
  556             (mp_maxid + 1), M_DEVBUF, M_WAITOK);
  557         for (i = 0; i < (mp_maxid + 1) * (mp_maxid + 1); i++)
  558                 invl_scoreboard[i] = 1;
  559 
  560         if (pmap_pcid_enabled) {
  561                 if (invpcid_works) {
  562                         if (pti)
  563                                 invl_op_tlb = INVL_OP_TLB_INVPCID_PTI;
  564                         else
  565                                 invl_op_tlb = INVL_OP_TLB_INVPCID;
  566                         invl_op_pgrng = INVL_OP_PGRNG_INVPCID;
  567                         invl_op_pg = INVL_OP_PG_INVPCID;
  568                 } else {
  569                         invl_op_tlb = INVL_OP_TLB_PCID;
  570                         invl_op_pgrng = INVL_OP_PGRNG_PCID;
  571                         invl_op_pg = INVL_OP_PG_PCID;
  572                 }
  573         } else {
  574                 invl_op_tlb = INVL_OP_TLB;
  575                 invl_op_pgrng = INVL_OP_PGRNG;
  576                 invl_op_pg = INVL_OP_PG;
  577         }
  578 }
  579 SYSINIT(invl_ops, SI_SUB_SMP - 1, SI_ORDER_ANY, invl_scoreboard_init, NULL);
  580 
  581 static uint32_t *
  582 invl_scoreboard_getcpu(u_int cpu)
  583 {
  584         return (invl_scoreboard + cpu * (mp_maxid + 1));
  585 }
  586 
  587 static uint32_t *
  588 invl_scoreboard_slot(u_int cpu)
  589 {
  590         return (invl_scoreboard_getcpu(cpu) + PCPU_GET(cpuid));
  591 }
  592 
  593 /*
  594  * Used by the pmap to request cache or TLB invalidation on local and
  595  * remote processors.  Mask provides the set of remote CPUs that are
  596  * to be signalled with the invalidation IPI.  As an optimization, the
  597  * curcpu_cb callback is invoked on the calling CPU in a critical
  598  * section while waiting for the remote CPUs to complete the operation.
  599  *
  600  * The callback function is called unconditionally on the caller's
  601  * underlying processor, even when this processor is not set in the
  602  * mask.  So, the callback function must be prepared to handle such
  603  * spurious invocations.
  604  *
  605  * Interrupts must be enabled when calling the function with smp
  606  * started, to avoid deadlock with other IPIs that are protected with
  607  * smp_ipi_mtx spinlock at the initiator side.
  608  *
  609  * Function must be called with the thread pinned, and it unpins on
  610  * completion.
  611  */
  612 static void
  613 smp_targeted_tlb_shootdown(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2,
  614     smp_invl_cb_t curcpu_cb, enum invl_op_codes op)
  615 {
  616         cpuset_t mask;
  617         uint32_t generation, *p_cpudone;
  618         int cpu;
  619         bool is_all;
  620 
  621         /*
  622          * It is not necessary to signal other CPUs while booting or
  623          * when in the debugger.
  624          */
  625         if (__predict_false(kdb_active || KERNEL_PANICKED() || !smp_started))
  626                 goto local_cb;
  627 
  628         KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
  629 
  630         /*
  631          * Make a stable copy of the set of CPUs on which the pmap is active.
  632          * See if we have to interrupt other CPUs.
  633          */
  634         CPU_COPY(pmap_invalidate_cpu_mask(pmap), &mask);
  635         is_all = CPU_CMP(&mask, &all_cpus) == 0;
  636         CPU_CLR(curcpu, &mask);
  637         if (CPU_EMPTY(&mask))
  638                 goto local_cb;
  639 
  640         /*
  641          * Initiator must have interrupts enabled, which prevents
  642          * non-invalidation IPIs that take smp_ipi_mtx spinlock,
  643          * from deadlocking with us.  On the other hand, preemption
  644          * must be disabled to pin initiator to the instance of the
  645          * pcpu pc_smp_tlb data and scoreboard line.
  646          */
  647         KASSERT((read_rflags() & PSL_I) != 0,
  648             ("smp_targeted_tlb_shootdown: interrupts disabled"));
  649         critical_enter();
  650 
  651         PCPU_SET(smp_tlb_addr1, addr1);
  652         PCPU_SET(smp_tlb_addr2, addr2);
  653         PCPU_SET(smp_tlb_pmap, pmap);
  654         generation = PCPU_GET(smp_tlb_gen);
  655         if (++generation == 0)
  656                 generation = 1;
  657         PCPU_SET(smp_tlb_gen, generation);
  658         PCPU_SET(smp_tlb_op, op);
  659         /* Fence between filling smp_tlb fields and clearing scoreboard. */
  660         atomic_thread_fence_rel();
  661 
  662         CPU_FOREACH_ISSET(cpu, &mask) {
  663                 KASSERT(*invl_scoreboard_slot(cpu) != 0,
  664                     ("IPI scoreboard is zero, initiator %d target %d",
  665                     curcpu, cpu));
  666                 *invl_scoreboard_slot(cpu) = 0;
  667         }
  668 
  669         /*
  670          * IPI acts as a fence between writing to the scoreboard above
  671          * (zeroing slot) and reading from it below (wait for
  672          * acknowledgment).
  673          */
  674         if (is_all) {
  675                 ipi_all_but_self(IPI_INVLOP);
  676         } else {
  677                 ipi_selected(mask, IPI_INVLOP);
  678         }
  679         curcpu_cb(pmap, addr1, addr2);
  680         CPU_FOREACH_ISSET(cpu, &mask) {
  681                 p_cpudone = invl_scoreboard_slot(cpu);
  682                 while (atomic_load_int(p_cpudone) != generation)
  683                         ia32_pause();
  684         }
  685 
  686         /*
  687          * Unpin before leaving critical section.  If the thread owes
  688          * preemption, this allows scheduler to select thread on any
  689          * CPU from its cpuset.
  690          */
  691         sched_unpin();
  692         critical_exit();
  693 
  694         return;
  695 
  696 local_cb:
  697         critical_enter();
  698         curcpu_cb(pmap, addr1, addr2);
  699         sched_unpin();
  700         critical_exit();
  701 }
  702 
  703 void
  704 smp_masked_invltlb(pmap_t pmap, smp_invl_cb_t curcpu_cb)
  705 {
  706         smp_targeted_tlb_shootdown(pmap, 0, 0, curcpu_cb, invl_op_tlb);
  707 #ifdef COUNT_XINVLTLB_HITS
  708         ipi_global++;
  709 #endif
  710 }
  711 
  712 void
  713 smp_masked_invlpg(vm_offset_t addr, pmap_t pmap, smp_invl_cb_t curcpu_cb)
  714 {
  715         smp_targeted_tlb_shootdown(pmap, addr, 0, curcpu_cb, invl_op_pg);
  716 #ifdef COUNT_XINVLTLB_HITS
  717         ipi_page++;
  718 #endif
  719 }
  720 
  721 void
  722 smp_masked_invlpg_range(vm_offset_t addr1, vm_offset_t addr2, pmap_t pmap,
  723     smp_invl_cb_t curcpu_cb)
  724 {
  725         smp_targeted_tlb_shootdown(pmap, addr1, addr2, curcpu_cb,
  726             invl_op_pgrng);
  727 #ifdef COUNT_XINVLTLB_HITS
  728         ipi_range++;
  729         ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
  730 #endif
  731 }
  732 
  733 void
  734 smp_cache_flush(smp_invl_cb_t curcpu_cb)
  735 {
  736         smp_targeted_tlb_shootdown(kernel_pmap, 0, 0, curcpu_cb, INVL_OP_CACHE);
  737 }
  738 
  739 /*
  740  * Handlers for TLB related IPIs
  741  */
  742 static void
  743 invltlb_handler(pmap_t smp_tlb_pmap)
  744 {
  745 #ifdef COUNT_XINVLTLB_HITS
  746         xhits_gbl[PCPU_GET(cpuid)]++;
  747 #endif /* COUNT_XINVLTLB_HITS */
  748 #ifdef COUNT_IPIS
  749         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
  750 #endif /* COUNT_IPIS */
  751 
  752         if (smp_tlb_pmap == kernel_pmap)
  753                 invltlb_glob();
  754         else
  755                 invltlb();
  756 }
  757 
  758 static void
  759 invltlb_invpcid_handler(pmap_t smp_tlb_pmap)
  760 {
  761         struct invpcid_descr d;
  762 
  763 #ifdef COUNT_XINVLTLB_HITS
  764         xhits_gbl[PCPU_GET(cpuid)]++;
  765 #endif /* COUNT_XINVLTLB_HITS */
  766 #ifdef COUNT_IPIS
  767         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
  768 #endif /* COUNT_IPIS */
  769 
  770         d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
  771         d.pad = 0;
  772         d.addr = 0;
  773         invpcid(&d, smp_tlb_pmap == kernel_pmap ? INVPCID_CTXGLOB :
  774             INVPCID_CTX);
  775 }
  776 
  777 static void
  778 invltlb_invpcid_pti_handler(pmap_t smp_tlb_pmap)
  779 {
  780         struct invpcid_descr d;
  781 
  782 #ifdef COUNT_XINVLTLB_HITS
  783         xhits_gbl[PCPU_GET(cpuid)]++;
  784 #endif /* COUNT_XINVLTLB_HITS */
  785 #ifdef COUNT_IPIS
  786         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
  787 #endif /* COUNT_IPIS */
  788 
  789         d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
  790         d.pad = 0;
  791         d.addr = 0;
  792         if (smp_tlb_pmap == kernel_pmap) {
  793                 /*
  794                  * This invalidation actually needs to clear kernel
  795                  * mappings from the TLB in the current pmap, but
  796                  * since we were asked for the flush in the kernel
  797                  * pmap, achieve it by performing global flush.
  798                  */
  799                 invpcid(&d, INVPCID_CTXGLOB);
  800         } else {
  801                 invpcid(&d, INVPCID_CTX);
  802                 if (smp_tlb_pmap == PCPU_GET(curpmap) &&
  803                     smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3)
  804                         PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
  805         }
  806 }
  807 
  808 static void
  809 invltlb_pcid_handler(pmap_t smp_tlb_pmap)
  810 {
  811         uint32_t pcid;
  812   
  813 #ifdef COUNT_XINVLTLB_HITS
  814         xhits_gbl[PCPU_GET(cpuid)]++;
  815 #endif /* COUNT_XINVLTLB_HITS */
  816 #ifdef COUNT_IPIS
  817         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
  818 #endif /* COUNT_IPIS */
  819 
  820         if (smp_tlb_pmap == kernel_pmap) {
  821                 invltlb_glob();
  822         } else {
  823                 /*
  824                  * The current pmap might not be equal to
  825                  * smp_tlb_pmap.  The clearing of the pm_gen in
  826                  * pmap_invalidate_all() takes care of TLB
  827                  * invalidation when switching to the pmap on this
  828                  * CPU.
  829                  */
  830                 if (smp_tlb_pmap == PCPU_GET(curpmap)) {
  831                         pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
  832                         load_cr3(smp_tlb_pmap->pm_cr3 | pcid);
  833                         if (smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3)
  834                                 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
  835                 }
  836         }
  837 }
  838 
  839 static void
  840 invlpg_handler(vm_offset_t smp_tlb_addr1)
  841 {
  842 #ifdef COUNT_XINVLTLB_HITS
  843         xhits_pg[PCPU_GET(cpuid)]++;
  844 #endif /* COUNT_XINVLTLB_HITS */
  845 #ifdef COUNT_IPIS
  846         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
  847 #endif /* COUNT_IPIS */
  848 
  849         invlpg(smp_tlb_addr1);
  850 }
  851 
  852 static void
  853 invlpg_invpcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1)
  854 {
  855         struct invpcid_descr d;
  856 
  857 #ifdef COUNT_XINVLTLB_HITS
  858         xhits_pg[PCPU_GET(cpuid)]++;
  859 #endif /* COUNT_XINVLTLB_HITS */
  860 #ifdef COUNT_IPIS
  861         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
  862 #endif /* COUNT_IPIS */
  863 
  864         pmap_invlpg(smp_tlb_pmap, smp_tlb_addr1);
  865         if (smp_tlb_pmap == PCPU_GET(curpmap) &&
  866             smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3 &&
  867             PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
  868                 d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid |
  869                     PMAP_PCID_USER_PT;
  870                 d.pad = 0;
  871                 d.addr = smp_tlb_addr1;
  872                 invpcid(&d, INVPCID_ADDR);
  873         }
  874 }
  875 
  876 static void
  877 invlpg_pcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1)
  878 {
  879         uint64_t kcr3, ucr3;
  880         uint32_t pcid;
  881 
  882 #ifdef COUNT_XINVLTLB_HITS
  883         xhits_pg[PCPU_GET(cpuid)]++;
  884 #endif /* COUNT_XINVLTLB_HITS */
  885 #ifdef COUNT_IPIS
  886         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
  887 #endif /* COUNT_IPIS */
  888 
  889         invlpg(smp_tlb_addr1);
  890         if (smp_tlb_pmap == PCPU_GET(curpmap) &&
  891             (ucr3 = smp_tlb_pmap->pm_ucr3) != PMAP_NO_CR3 &&
  892             PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
  893                 pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
  894                 kcr3 = smp_tlb_pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
  895                 ucr3 |= pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
  896                 pmap_pti_pcid_invlpg(ucr3, kcr3, smp_tlb_addr1);
  897         }
  898 }
  899 
  900 static void
  901 invlrng_handler(vm_offset_t smp_tlb_addr1, vm_offset_t smp_tlb_addr2)
  902 {
  903         vm_offset_t addr;
  904 
  905 #ifdef COUNT_XINVLTLB_HITS
  906         xhits_rng[PCPU_GET(cpuid)]++;
  907 #endif /* COUNT_XINVLTLB_HITS */
  908 #ifdef COUNT_IPIS
  909         (*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
  910 #endif /* COUNT_IPIS */
  911 
  912         addr = smp_tlb_addr1;
  913         do {
  914                 invlpg(addr);
  915                 addr += PAGE_SIZE;
  916         } while (addr < smp_tlb_addr2);
  917 }
  918 
  919 static void
  920 invlrng_invpcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1,
  921     vm_offset_t smp_tlb_addr2)
  922 {
  923         struct invpcid_descr d;
  924         vm_offset_t addr;
  925 
  926 #ifdef COUNT_XINVLTLB_HITS
  927         xhits_rng[PCPU_GET(cpuid)]++;
  928 #endif /* COUNT_XINVLTLB_HITS */
  929 #ifdef COUNT_IPIS
  930         (*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
  931 #endif /* COUNT_IPIS */
  932 
  933         addr = smp_tlb_addr1;
  934         if (smp_tlb_pmap == kernel_pmap && PCPU_GET(pcid_invlpg_workaround)) {
  935                 struct invpcid_descr d = { 0 };
  936 
  937                 invpcid(&d, INVPCID_CTXGLOB);
  938         } else {
  939                 do {
  940                         invlpg(addr);
  941                         addr += PAGE_SIZE;
  942                 } while (addr < smp_tlb_addr2);
  943         }
  944         if (smp_tlb_pmap == PCPU_GET(curpmap) &&
  945             smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3 &&
  946             PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
  947                 d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid |
  948                     PMAP_PCID_USER_PT;
  949                 d.pad = 0;
  950                 d.addr = smp_tlb_addr1;
  951                 do {
  952                         invpcid(&d, INVPCID_ADDR);
  953                         d.addr += PAGE_SIZE;
  954                 } while (d.addr < smp_tlb_addr2);
  955         }
  956 }
  957 
  958 static void
  959 invlrng_pcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1,
  960     vm_offset_t smp_tlb_addr2)
  961 {
  962         vm_offset_t addr;
  963         uint64_t kcr3, ucr3;
  964         uint32_t pcid;
  965 
  966 #ifdef COUNT_XINVLTLB_HITS
  967         xhits_rng[PCPU_GET(cpuid)]++;
  968 #endif /* COUNT_XINVLTLB_HITS */
  969 #ifdef COUNT_IPIS
  970         (*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
  971 #endif /* COUNT_IPIS */
  972 
  973         addr = smp_tlb_addr1;
  974         do {
  975                 invlpg(addr);
  976                 addr += PAGE_SIZE;
  977         } while (addr < smp_tlb_addr2);
  978         if (smp_tlb_pmap == PCPU_GET(curpmap) &&
  979             (ucr3 = smp_tlb_pmap->pm_ucr3) != PMAP_NO_CR3 &&
  980             PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
  981                 pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
  982                 kcr3 = smp_tlb_pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
  983                 ucr3 |= pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
  984                 pmap_pti_pcid_invlrng(ucr3, kcr3, smp_tlb_addr1, smp_tlb_addr2);
  985         }
  986 }
  987 
  988 static void
  989 invlcache_handler(void)
  990 {
  991 #ifdef COUNT_IPIS
  992         (*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
  993 #endif /* COUNT_IPIS */
  994         wbinvd();
  995 }
  996 
  997 static void
  998 invlop_handler_one_req(enum invl_op_codes smp_tlb_op, pmap_t smp_tlb_pmap,
  999     vm_offset_t smp_tlb_addr1, vm_offset_t smp_tlb_addr2)
 1000 {
 1001         switch (smp_tlb_op) {
 1002         case INVL_OP_TLB:
 1003                 invltlb_handler(smp_tlb_pmap);
 1004                 break;
 1005         case INVL_OP_TLB_INVPCID:
 1006                 invltlb_invpcid_handler(smp_tlb_pmap);
 1007                 break;
 1008         case INVL_OP_TLB_INVPCID_PTI:
 1009                 invltlb_invpcid_pti_handler(smp_tlb_pmap);
 1010                 break;
 1011         case INVL_OP_TLB_PCID:
 1012                 invltlb_pcid_handler(smp_tlb_pmap);
 1013                 break;
 1014         case INVL_OP_PGRNG:
 1015                 invlrng_handler(smp_tlb_addr1, smp_tlb_addr2);
 1016                 break;
 1017         case INVL_OP_PGRNG_INVPCID:
 1018                 invlrng_invpcid_handler(smp_tlb_pmap, smp_tlb_addr1,
 1019                     smp_tlb_addr2);
 1020                 break;
 1021         case INVL_OP_PGRNG_PCID:
 1022                 invlrng_pcid_handler(smp_tlb_pmap, smp_tlb_addr1,
 1023                     smp_tlb_addr2);
 1024                 break;
 1025         case INVL_OP_PG:
 1026                 invlpg_handler(smp_tlb_addr1);
 1027                 break;
 1028         case INVL_OP_PG_INVPCID:
 1029                 invlpg_invpcid_handler(smp_tlb_pmap, smp_tlb_addr1);
 1030                 break;
 1031         case INVL_OP_PG_PCID:
 1032                 invlpg_pcid_handler(smp_tlb_pmap, smp_tlb_addr1);
 1033                 break;
 1034         case INVL_OP_CACHE:
 1035                 invlcache_handler();
 1036                 break;
 1037         default:
 1038                 __assert_unreachable();
 1039                 break;
 1040         }
 1041 }
 1042 
 1043 void
 1044 invlop_handler(void)
 1045 {
 1046         struct pcpu *initiator_pc;
 1047         pmap_t smp_tlb_pmap;
 1048         vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
 1049         u_int initiator_cpu_id;
 1050         enum invl_op_codes smp_tlb_op;
 1051         uint32_t *scoreboard, smp_tlb_gen;
 1052 
 1053         scoreboard = invl_scoreboard_getcpu(PCPU_GET(cpuid));
 1054         for (;;) {
 1055                 for (initiator_cpu_id = 0; initiator_cpu_id <= mp_maxid;
 1056                     initiator_cpu_id++) {
 1057                         if (atomic_load_int(&scoreboard[initiator_cpu_id]) == 0)
 1058                                 break;
 1059                 }
 1060                 if (initiator_cpu_id > mp_maxid)
 1061                         break;
 1062                 initiator_pc = cpuid_to_pcpu[initiator_cpu_id];
 1063 
 1064                 /*
 1065                  * This acquire fence and its corresponding release
 1066                  * fence in smp_targeted_tlb_shootdown() is between
 1067                  * reading zero scoreboard slot and accessing PCPU of
 1068                  * initiator for pc_smp_tlb values.
 1069                  */
 1070                 atomic_thread_fence_acq();
 1071                 smp_tlb_pmap = initiator_pc->pc_smp_tlb_pmap;
 1072                 smp_tlb_addr1 = initiator_pc->pc_smp_tlb_addr1;
 1073                 smp_tlb_addr2 = initiator_pc->pc_smp_tlb_addr2;
 1074                 smp_tlb_op = initiator_pc->pc_smp_tlb_op;
 1075                 smp_tlb_gen = initiator_pc->pc_smp_tlb_gen;
 1076 
 1077                 /*
 1078                  * Ensure that we do not make our scoreboard
 1079                  * notification visible to the initiator until the
 1080                  * pc_smp_tlb values are read.  The corresponding
 1081                  * fence is implicitly provided by the barrier in the
 1082                  * IPI send operation before the APIC ICR register
 1083                  * write.
 1084                  *
 1085                  * As an optimization, the request is acknowledged
 1086                  * before the actual invalidation is performed.  It is
 1087                  * safe because target CPU cannot return to userspace
 1088                  * before handler finishes. Only NMI can preempt the
 1089                  * handler, but NMI would see the kernel handler frame
 1090                  * and not touch not-invalidated user page table.
 1091                  */
 1092                 atomic_thread_fence_acq();
 1093                 atomic_store_int(&scoreboard[initiator_cpu_id], smp_tlb_gen);
 1094 
 1095                 invlop_handler_one_req(smp_tlb_op, smp_tlb_pmap, smp_tlb_addr1,
 1096                     smp_tlb_addr2);
 1097         }
 1098 }

Cache object: f4c9cca0893c0081b07b086b0214922d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.