The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * Copyright (c) 2003, by Peter Wemm
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the developer may NOT be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/10.4/sys/amd64/amd64/mp_machdep.c 333371 2018-05-08 17:12:10Z gordon $");
   29 
   30 #include "opt_cpu.h"
   31 #include "opt_ddb.h"
   32 #include "opt_kstack_pages.h"
   33 #include "opt_sched.h"
   34 #include "opt_smp.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/cpuset.h>
   40 #ifdef GPROF 
   41 #include <sys/gmon.h>
   42 #endif
   43 #include <sys/kernel.h>
   44 #include <sys/ktr.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/memrange.h>
   48 #include <sys/mutex.h>
   49 #include <sys/pcpu.h>
   50 #include <sys/proc.h>
   51 #include <sys/sched.h>
   52 #include <sys/smp.h>
   53 #include <sys/sysctl.h>
   54 
   55 #include <vm/vm.h>
   56 #include <vm/vm_param.h>
   57 #include <vm/pmap.h>
   58 #include <vm/vm_kern.h>
   59 #include <vm/vm_extern.h>
   60 
   61 #include <x86/apicreg.h>
   62 #include <machine/clock.h>
   63 #include <machine/cputypes.h>
   64 #include <machine/cpufunc.h>
   65 #include <x86/mca.h>
   66 #include <machine/md_var.h>
   67 #include <machine/pcb.h>
   68 #include <machine/psl.h>
   69 #include <machine/smp.h>
   70 #include <machine/specialreg.h>
   71 #include <machine/tss.h>
   72 #include <machine/cpu.h>
   73 
   74 #define WARMBOOT_TARGET         0
   75 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   76 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   77 
   78 #define CMOS_REG                (0x70)
   79 #define CMOS_DATA               (0x71)
   80 #define BIOS_RESET              (0x0f)
   81 #define BIOS_WARM               (0x0a)
   82 
   83 /* lock region used by kernel profiling */
   84 int     mcount_lock;
   85 
   86 int     mp_naps;                /* # of Applications processors */
   87 int     boot_cpu_id = -1;       /* designated BSP */
   88 
   89 extern  struct pcpu __pcpu[];
   90 
   91 /* AP uses this during bootstrap.  Do not staticize.  */
   92 char *bootSTK;
   93 static int bootAP;
   94 
   95 /* Free these after use */
   96 void *bootstacks[MAXCPU];
   97 
   98 /* Temporary variables for init_secondary()  */
   99 char *doublefault_stack;
  100 char *nmi_stack;
  101 char *dbg_stack;
  102 void *dpcpu;
  103 
  104 struct pcb stoppcbs[MAXCPU];
  105 struct susppcb **susppcbs;
  106 
  107 /* Variables needed for SMP tlb shootdown. */
  108 vm_offset_t smp_tlb_addr2;
  109 struct invpcid_descr smp_tlb_invpcid;
  110 volatile int smp_tlb_wait;
  111 uint64_t pcid_cr3;
  112 pmap_t smp_tlb_pmap;
  113 extern int invpcid_works;
  114 
  115 #ifdef COUNT_IPIS
  116 /* Interrupt counts. */
  117 static u_long *ipi_preempt_counts[MAXCPU];
  118 static u_long *ipi_ast_counts[MAXCPU];
  119 u_long *ipi_invltlb_counts[MAXCPU];
  120 u_long *ipi_invlrng_counts[MAXCPU];
  121 u_long *ipi_invlpg_counts[MAXCPU];
  122 u_long *ipi_invlcache_counts[MAXCPU];
  123 u_long *ipi_rendezvous_counts[MAXCPU];
  124 static u_long *ipi_hardclock_counts[MAXCPU];
  125 #endif
  126 
  127 /* Default cpu_ops implementation. */
  128 struct cpu_ops cpu_ops = {
  129         .ipi_vectored = lapic_ipi_vectored
  130 };
  131 
  132 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  133 
  134 extern int pmap_pcid_enabled;
  135 
  136 /*
  137  * Local data and functions.
  138  */
  139 
  140 static volatile cpuset_t ipi_nmi_pending;
  141 
  142 /* used to hold the AP's until we are ready to release them */
  143 static struct mtx ap_boot_mtx;
  144 
  145 /* Set to 1 once we're ready to let the APs out of the pen. */
  146 static volatile int aps_ready = 0;
  147 
  148 /*
  149  * Store data from cpu_add() until later in the boot when we actually setup
  150  * the APs.
  151  */
  152 struct cpu_info {
  153         int     cpu_present:1;
  154         int     cpu_bsp:1;
  155         int     cpu_disabled:1;
  156         int     cpu_hyperthread:1;
  157 } static cpu_info[MAX_APIC_ID + 1];
  158 int cpu_apic_ids[MAXCPU];
  159 int apic_cpuids[MAX_APIC_ID + 1];
  160 
  161 /* Holds pending bitmap based IPIs per CPU */
  162 volatile u_int cpu_ipi_pending[MAXCPU];
  163 
  164 static u_int boot_address;
  165 static int cpu_logical;                 /* logical cpus per core */
  166 static int cpu_cores;                   /* cores per package */
  167 
  168 static void     assign_cpu_ids(void);
  169 static void     set_interrupt_apic_ids(void);
  170 static int      start_all_aps(void);
  171 static int      start_ap(int apic_id);
  172 static void     release_aps(void *dummy);
  173 
  174 static u_int    hyperthreading_cpus;    /* logical cpus sharing L1 cache */
  175 static int      hyperthreading_allowed = 1;
  176 static u_int    bootMP_size;
  177 
  178 static void
  179 mem_range_AP_init(void)
  180 {
  181         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  182                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  183 }
  184 
  185 static void
  186 topo_probe_amd(void)
  187 {
  188         int core_id_bits;
  189         int id;
  190 
  191         /* AMD processors do not support HTT. */
  192         cpu_logical = 1;
  193 
  194         if ((amd_feature2 & AMDID2_CMP) == 0) {
  195                 cpu_cores = 1;
  196                 return;
  197         }
  198 
  199         core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
  200             AMDID_COREID_SIZE_SHIFT;
  201         if (core_id_bits == 0) {
  202                 cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
  203                 return;
  204         }
  205 
  206         /* Fam 10h and newer should get here. */
  207         for (id = 0; id <= MAX_APIC_ID; id++) {
  208                 /* Check logical CPU availability. */
  209                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  210                         continue;
  211                 /* Check if logical CPU has the same package ID. */
  212                 if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
  213                         continue;
  214                 cpu_cores++;
  215         }
  216 }
  217 
  218 /*
  219  * Round up to the next power of two, if necessary, and then
  220  * take log2.
  221  * Returns -1 if argument is zero.
  222  */
  223 static __inline int
  224 mask_width(u_int x)
  225 {
  226 
  227         return (fls(x << (1 - powerof2(x))) - 1);
  228 }
  229 
  230 static void
  231 topo_probe_0x4(void)
  232 {
  233         u_int p[4];
  234         int pkg_id_bits;
  235         int core_id_bits;
  236         int max_cores;
  237         int max_logical;
  238         int id;
  239 
  240         /* Both zero and one here mean one logical processor per package. */
  241         max_logical = (cpu_feature & CPUID_HTT) != 0 ?
  242             (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
  243         if (max_logical <= 1)
  244                 return;
  245 
  246         /*
  247          * Because of uniformity assumption we examine only
  248          * those logical processors that belong to the same
  249          * package as BSP.  Further, we count number of
  250          * logical processors that belong to the same core
  251          * as BSP thus deducing number of threads per core.
  252          */
  253         if (cpu_high >= 0x4) {
  254                 cpuid_count(0x04, 0, p);
  255                 max_cores = ((p[0] >> 26) & 0x3f) + 1;
  256         } else
  257                 max_cores = 1;
  258         core_id_bits = mask_width(max_logical/max_cores);
  259         if (core_id_bits < 0)
  260                 return;
  261         pkg_id_bits = core_id_bits + mask_width(max_cores);
  262 
  263         for (id = 0; id <= MAX_APIC_ID; id++) {
  264                 /* Check logical CPU availability. */
  265                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  266                         continue;
  267                 /* Check if logical CPU has the same package ID. */
  268                 if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
  269                         continue;
  270                 cpu_cores++;
  271                 /* Check if logical CPU has the same package and core IDs. */
  272                 if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
  273                         cpu_logical++;
  274         }
  275 
  276         KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
  277             ("topo_probe_0x4 couldn't find BSP"));
  278 
  279         cpu_cores /= cpu_logical;
  280         hyperthreading_cpus = cpu_logical;
  281 }
  282 
  283 static void
  284 topo_probe_0xb(void)
  285 {
  286         u_int p[4];
  287         int bits;
  288         int cnt;
  289         int i;
  290         int logical;
  291         int type;
  292         int x;
  293 
  294         /* We only support three levels for now. */
  295         for (i = 0; i < 3; i++) {
  296                 cpuid_count(0x0b, i, p);
  297 
  298                 /* Fall back if CPU leaf 11 doesn't really exist. */
  299                 if (i == 0 && p[1] == 0) {
  300                         topo_probe_0x4();
  301                         return;
  302                 }
  303 
  304                 bits = p[0] & 0x1f;
  305                 logical = p[1] &= 0xffff;
  306                 type = (p[2] >> 8) & 0xff;
  307                 if (type == 0 || logical == 0)
  308                         break;
  309                 /*
  310                  * Because of uniformity assumption we examine only
  311                  * those logical processors that belong to the same
  312                  * package as BSP.
  313                  */
  314                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  315                         if (!cpu_info[x].cpu_present ||
  316                             cpu_info[x].cpu_disabled)
  317                                 continue;
  318                         if (x >> bits == boot_cpu_id >> bits)
  319                                 cnt++;
  320                 }
  321                 if (type == CPUID_TYPE_SMT)
  322                         cpu_logical = cnt;
  323                 else if (type == CPUID_TYPE_CORE)
  324                         cpu_cores = cnt;
  325         }
  326         if (cpu_logical == 0)
  327                 cpu_logical = 1;
  328         cpu_cores /= cpu_logical;
  329 }
  330 
  331 /*
  332  * Both topology discovery code and code that consumes topology
  333  * information assume top-down uniformity of the topology.
  334  * That is, all physical packages must be identical and each
  335  * core in a package must have the same number of threads.
  336  * Topology information is queried only on BSP, on which this
  337  * code runs and for which it can query CPUID information.
  338  * Then topology is extrapolated on all packages using the
  339  * uniformity assumption.
  340  */
  341 static void
  342 topo_probe(void)
  343 {
  344         static int cpu_topo_probed = 0;
  345 
  346         if (cpu_topo_probed)
  347                 return;
  348 
  349         CPU_ZERO(&logical_cpus_mask);
  350         if (mp_ncpus <= 1)
  351                 cpu_cores = cpu_logical = 1;
  352         else if (cpu_vendor_id == CPU_VENDOR_AMD)
  353                 topo_probe_amd();
  354         else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
  355                 /*
  356                  * See Intel(R) 64 Architecture Processor
  357                  * Topology Enumeration article for details.
  358                  *
  359                  * Note that 0x1 <= cpu_high < 4 case should be
  360                  * compatible with topo_probe_0x4() logic when
  361                  * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
  362                  * or it should trigger the fallback otherwise.
  363                  */
  364                 if (cpu_high >= 0xb)
  365                         topo_probe_0xb();
  366                 else if (cpu_high >= 0x1)
  367                         topo_probe_0x4();
  368         }
  369 
  370         /*
  371          * Fallback: assume each logical CPU is in separate
  372          * physical package.  That is, no multi-core, no SMT.
  373          */
  374         if (cpu_cores == 0 || cpu_logical == 0)
  375                 cpu_cores = cpu_logical = 1;
  376         cpu_topo_probed = 1;
  377 }
  378 
  379 struct cpu_group *
  380 cpu_topo(void)
  381 {
  382         int cg_flags;
  383 
  384         /*
  385          * Determine whether any threading flags are
  386          * necessry.
  387          */
  388         topo_probe();
  389         if (cpu_logical > 1 && hyperthreading_cpus)
  390                 cg_flags = CG_FLAG_HTT;
  391         else if (cpu_logical > 1)
  392                 cg_flags = CG_FLAG_SMT;
  393         else
  394                 cg_flags = 0;
  395         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  396                 printf("WARNING: Non-uniform processors.\n");
  397                 printf("WARNING: Using suboptimal topology.\n");
  398                 return (smp_topo_none());
  399         }
  400         /*
  401          * No multi-core or hyper-threaded.
  402          */
  403         if (cpu_logical * cpu_cores == 1)
  404                 return (smp_topo_none());
  405         /*
  406          * Only HTT no multi-core.
  407          */
  408         if (cpu_logical > 1 && cpu_cores == 1)
  409                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  410         /*
  411          * Only multi-core no HTT.
  412          */
  413         if (cpu_cores > 1 && cpu_logical == 1)
  414                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  415         /*
  416          * Both HTT and multi-core.
  417          */
  418         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  419             CG_SHARE_L1, cpu_logical, cg_flags));
  420 }
  421 
  422 /*
  423  * Calculate usable address in base memory for AP trampoline code.
  424  */
  425 u_int
  426 mp_bootaddress(u_int basemem)
  427 {
  428 
  429         bootMP_size = mptramp_end - mptramp_start;
  430         boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
  431         if (((basemem * 1024) - boot_address) < bootMP_size)
  432                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  433         /* 3 levels of page table pages */
  434         mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
  435 
  436         return mptramp_pagetables;
  437 }
  438 
  439 void
  440 cpu_add(u_int apic_id, char boot_cpu)
  441 {
  442 
  443         if (apic_id > MAX_APIC_ID) {
  444                 panic("SMP: APIC ID %d too high", apic_id);
  445                 return;
  446         }
  447         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  448             apic_id));
  449         cpu_info[apic_id].cpu_present = 1;
  450         if (boot_cpu) {
  451                 KASSERT(boot_cpu_id == -1,
  452                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  453                     boot_cpu_id));
  454                 boot_cpu_id = apic_id;
  455                 cpu_info[apic_id].cpu_bsp = 1;
  456         }
  457         if (mp_ncpus < MAXCPU) {
  458                 mp_ncpus++;
  459                 mp_maxid = mp_ncpus - 1;
  460         }
  461         if (bootverbose)
  462                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  463                     "AP");
  464 }
  465 
  466 void
  467 cpu_mp_setmaxid(void)
  468 {
  469 
  470         /*
  471          * mp_maxid should be already set by calls to cpu_add().
  472          * Just sanity check its value here.
  473          */
  474         if (mp_ncpus == 0)
  475                 KASSERT(mp_maxid == 0,
  476                     ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
  477         else if (mp_ncpus == 1)
  478                 mp_maxid = 0;
  479         else
  480                 KASSERT(mp_maxid >= mp_ncpus - 1,
  481                     ("%s: counters out of sync: max %d, count %d", __func__,
  482                         mp_maxid, mp_ncpus));
  483 }
  484 
  485 int
  486 cpu_mp_probe(void)
  487 {
  488 
  489         /*
  490          * Always record BSP in CPU map so that the mbuf init code works
  491          * correctly.
  492          */
  493         CPU_SETOF(0, &all_cpus);
  494         if (mp_ncpus == 0) {
  495                 /*
  496                  * No CPUs were found, so this must be a UP system.  Setup
  497                  * the variables to represent a system with a single CPU
  498                  * with an id of 0.
  499                  */
  500                 mp_ncpus = 1;
  501                 return (0);
  502         }
  503 
  504         /* At least one CPU was found. */
  505         if (mp_ncpus == 1) {
  506                 /*
  507                  * One CPU was found, so this must be a UP system with
  508                  * an I/O APIC.
  509                  */
  510                 mp_maxid = 0;
  511                 return (0);
  512         }
  513 
  514         /* At least two CPUs were found. */
  515         return (1);
  516 }
  517 
  518 /*
  519  * Initialize the IPI handlers and start up the AP's.
  520  */
  521 void
  522 cpu_mp_start(void)
  523 {
  524         int i;
  525 
  526         /* Initialize the logical ID to APIC ID table. */
  527         for (i = 0; i < MAXCPU; i++) {
  528                 cpu_apic_ids[i] = -1;
  529                 cpu_ipi_pending[i] = 0;
  530         }
  531 
  532         /* Install an inter-CPU IPI for TLB invalidation */
  533         if (pmap_pcid_enabled) {
  534                 setidt(IPI_INVLTLB, IDTVEC(invltlb_pcid), SDT_SYSIGT,
  535                     SEL_KPL, 0);
  536                 setidt(IPI_INVLPG, IDTVEC(invlpg_pcid), SDT_SYSIGT,
  537                     SEL_KPL, 0);
  538         } else {
  539                 setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
  540                 setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
  541         }
  542         setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
  543 
  544         /* Install an inter-CPU IPI for cache invalidation. */
  545         setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
  546 
  547         /* Install an inter-CPU IPI for all-CPU rendezvous */
  548         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
  549 
  550         /* Install generic inter-CPU IPI handler */
  551         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  552                SDT_SYSIGT, SEL_KPL, 0);
  553 
  554         /* Install an inter-CPU IPI for CPU stop/restart */
  555         setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
  556 
  557         /* Install an inter-CPU IPI for CPU suspend/resume */
  558         setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
  559 
  560         /* Set boot_cpu_id if needed. */
  561         if (boot_cpu_id == -1) {
  562                 boot_cpu_id = PCPU_GET(apic_id);
  563                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  564         } else
  565                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  566                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  567 
  568         /* Probe logical/physical core configuration. */
  569         topo_probe();
  570 
  571         assign_cpu_ids();
  572 
  573         /* Start each Application Processor */
  574         start_all_aps();
  575 
  576         set_interrupt_apic_ids();
  577 }
  578 
  579 
  580 /*
  581  * Print various information about the SMP system hardware and setup.
  582  */
  583 void
  584 cpu_mp_announce(void)
  585 {
  586         const char *hyperthread;
  587         int i;
  588 
  589         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  590             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  591         if (hyperthreading_cpus > 1)
  592             printf(" x %d HTT threads", cpu_logical);
  593         else if (cpu_logical > 1)
  594             printf(" x %d SMT threads", cpu_logical);
  595         printf("\n");
  596 
  597         /* List active CPUs first. */
  598         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  599         for (i = 1; i < mp_ncpus; i++) {
  600                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  601                         hyperthread = "/HT";
  602                 else
  603                         hyperthread = "";
  604                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  605                     cpu_apic_ids[i]);
  606         }
  607 
  608         /* List disabled CPUs last. */
  609         for (i = 0; i <= MAX_APIC_ID; i++) {
  610                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  611                         continue;
  612                 if (cpu_info[i].cpu_hyperthread)
  613                         hyperthread = "/HT";
  614                 else
  615                         hyperthread = "";
  616                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  617                     i);
  618         }
  619 }
  620 
  621 /*
  622  * AP CPU's call this to initialize themselves.
  623  */
  624 void
  625 init_secondary(void)
  626 {
  627         struct pcpu *pc;
  628         struct nmi_pcpu *np;
  629         u_int64_t msr, cr0;
  630         u_int cpuid;
  631         int cpu, gsel_tss, x;
  632         struct region_descriptor ap_gdt;
  633 
  634         /* Set by the startup code for us to use */
  635         cpu = bootAP;
  636 
  637         /* Init tss */
  638         common_tss[cpu] = common_tss[0];
  639         common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
  640         common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
  641             IOPAGES * PAGE_SIZE;
  642         common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
  643 
  644         /* The NMI stack runs on IST2. */
  645         np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
  646         common_tss[cpu].tss_ist2 = (long) np;
  647 
  648         /* The DB# stack runs on IST4. */
  649         np = ((struct nmi_pcpu *) &dbg_stack[PAGE_SIZE]) - 1;
  650         common_tss[cpu].tss_ist4 = (long) np;
  651 
  652         /* Prepare private GDT */
  653         gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
  654         for (x = 0; x < NGDT; x++) {
  655                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
  656                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
  657                         ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
  658         }
  659         ssdtosyssd(&gdt_segs[GPROC0_SEL],
  660             (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
  661         ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  662         ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
  663         lgdt(&ap_gdt);                  /* does magic intra-segment return */
  664 
  665         /* Get per-cpu data */
  666         pc = &__pcpu[cpu];
  667 
  668         /* prime data page for it to use */
  669         pcpu_init(pc, cpu, sizeof(struct pcpu));
  670         dpcpu_init(dpcpu, cpu);
  671         pc->pc_apic_id = cpu_apic_ids[cpu];
  672         pc->pc_prvspace = pc;
  673         pc->pc_curthread = 0;
  674         pc->pc_tssp = &common_tss[cpu];
  675         pc->pc_commontssp = &common_tss[cpu];
  676         pc->pc_rsp0 = 0;
  677         pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  678             GPROC0_SEL];
  679         pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
  680         pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
  681         pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  682             GUSERLDT_SEL];
  683 
  684         /* Save the per-cpu pointer for use by the NMI handler. */
  685         np->np_pcpu = (register_t) pc;
  686 
  687         /* Save the per-cpu pointer for use by the DB# handler. */
  688         np = ((struct nmi_pcpu *) &dbg_stack[PAGE_SIZE]) - 1;
  689         np->np_pcpu = (register_t) pc;
  690 
  691         wrmsr(MSR_FSBASE, 0);           /* User value */
  692         wrmsr(MSR_GSBASE, (u_int64_t)pc);
  693         wrmsr(MSR_KGSBASE, (u_int64_t)pc);      /* XXX User value while we're in the kernel */
  694         fix_cpuid();
  695 
  696         lidt(&r_idt);
  697 
  698         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  699         ltr(gsel_tss);
  700 
  701         /*
  702          * Set to a known state:
  703          * Set by mpboot.s: CR0_PG, CR0_PE
  704          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  705          */
  706         cr0 = rcr0();
  707         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  708         load_cr0(cr0);
  709 
  710         /* Set up the fast syscall stuff */
  711         msr = rdmsr(MSR_EFER) | EFER_SCE;
  712         wrmsr(MSR_EFER, msr);
  713         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
  714         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
  715         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
  716               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
  717         wrmsr(MSR_STAR, msr);
  718         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
  719 
  720         /* Disable local APIC just to be sure. */
  721         lapic_disable();
  722 
  723         /* signal our startup to the BSP. */
  724         mp_naps++;
  725 
  726         /* Spin until the BSP releases the AP's. */
  727         while (!aps_ready)
  728                 ia32_pause();
  729 
  730         /* Initialize the PAT MSR. */
  731         pmap_init_pat();
  732 
  733         /* set up CPU registers and state */
  734         cpu_setregs();
  735 
  736         /* set up SSE/NX */
  737         initializecpu();
  738 
  739         /* set up FPU state on the AP */
  740         fpuinit();
  741 
  742         if (cpu_ops.cpu_init)
  743                 cpu_ops.cpu_init();
  744 
  745         /* A quick check from sanity claus */
  746         cpuid = PCPU_GET(cpuid);
  747         if (PCPU_GET(apic_id) != lapic_id()) {
  748                 printf("SMP: cpuid = %d\n", cpuid);
  749                 printf("SMP: actual apic_id = %d\n", lapic_id());
  750                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  751                 panic("cpuid mismatch! boom!!");
  752         }
  753 
  754         /* Initialize curthread. */
  755         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  756         PCPU_SET(curthread, PCPU_GET(idlethread));
  757 
  758         mca_init();
  759 
  760         mtx_lock_spin(&ap_boot_mtx);
  761 
  762         /* Init local apic for irq's */
  763         lapic_setup(1);
  764 
  765         /* Set memory range attributes for this CPU to match the BSP */
  766         mem_range_AP_init();
  767 
  768         smp_cpus++;
  769 
  770         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
  771         printf("SMP: AP CPU #%d Launched!\n", cpuid);
  772 
  773         /* Determine if we are a logical CPU. */
  774         /* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
  775         if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
  776                 CPU_SET(cpuid, &logical_cpus_mask);
  777 
  778         if (bootverbose)
  779                 lapic_dump("AP");
  780 
  781         if (smp_cpus == mp_ncpus) {
  782                 /* enable IPI's, tlb shootdown, freezes etc */
  783                 atomic_store_rel_int(&smp_started, 1);
  784         }
  785 
  786         /*
  787          * Enable global pages TLB extension
  788          * This also implicitly flushes the TLB 
  789          */
  790 
  791         load_cr4(rcr4() | CR4_PGE);
  792         if (pmap_pcid_enabled)
  793                 load_cr4(rcr4() | CR4_PCIDE);
  794         load_ds(_udatasel);
  795         load_es(_udatasel);
  796         load_fs(_ufssel);
  797         mtx_unlock_spin(&ap_boot_mtx);
  798 
  799         /* Wait until all the AP's are up. */
  800         while (smp_started == 0)
  801                 ia32_pause();
  802 
  803         /* Start per-CPU event timers. */
  804         cpu_initclocks_ap();
  805 
  806         sched_throw(NULL);
  807 
  808         panic("scheduler returned us to %s", __func__);
  809         /* NOTREACHED */
  810 }
  811 
  812 /*******************************************************************
  813  * local functions and data
  814  */
  815 
  816 /*
  817  * We tell the I/O APIC code about all the CPUs we want to receive
  818  * interrupts.  If we don't want certain CPUs to receive IRQs we
  819  * can simply not tell the I/O APIC code about them in this function.
  820  * We also do not tell it about the BSP since it tells itself about
  821  * the BSP internally to work with UP kernels and on UP machines.
  822  */
  823 static void
  824 set_interrupt_apic_ids(void)
  825 {
  826         u_int i, apic_id;
  827 
  828         for (i = 0; i < MAXCPU; i++) {
  829                 apic_id = cpu_apic_ids[i];
  830                 if (apic_id == -1)
  831                         continue;
  832                 if (cpu_info[apic_id].cpu_bsp)
  833                         continue;
  834                 if (cpu_info[apic_id].cpu_disabled)
  835                         continue;
  836 
  837                 /* Don't let hyperthreads service interrupts. */
  838                 if (hyperthreading_cpus > 1 &&
  839                     apic_id % hyperthreading_cpus != 0)
  840                         continue;
  841 
  842                 intr_add_cpu(i);
  843         }
  844 }
  845 
  846 /*
  847  * Assign logical CPU IDs to local APICs.
  848  */
  849 static void
  850 assign_cpu_ids(void)
  851 {
  852         u_int i;
  853 
  854         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  855             &hyperthreading_allowed);
  856 
  857         /* Check for explicitly disabled CPUs. */
  858         for (i = 0; i <= MAX_APIC_ID; i++) {
  859                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  860                         continue;
  861 
  862                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  863                         cpu_info[i].cpu_hyperthread = 1;
  864 
  865                         /*
  866                          * Don't use HT CPU if it has been disabled by a
  867                          * tunable.
  868                          */
  869                         if (hyperthreading_allowed == 0) {
  870                                 cpu_info[i].cpu_disabled = 1;
  871                                 continue;
  872                         }
  873                 }
  874 
  875                 /* Don't use this CPU if it has been disabled by a tunable. */
  876                 if (resource_disabled("lapic", i)) {
  877                         cpu_info[i].cpu_disabled = 1;
  878                         continue;
  879                 }
  880         }
  881 
  882         if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
  883                 hyperthreading_cpus = 0;
  884                 cpu_logical = 1;
  885         }
  886 
  887         /*
  888          * Assign CPU IDs to local APIC IDs and disable any CPUs
  889          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  890          *
  891          * To minimize confusion for userland, we attempt to number
  892          * CPUs such that all threads and cores in a package are
  893          * grouped together.  For now we assume that the BSP is always
  894          * the first thread in a package and just start adding APs
  895          * starting with the BSP's APIC ID.
  896          */
  897         mp_ncpus = 1;
  898         cpu_apic_ids[0] = boot_cpu_id;
  899         apic_cpuids[boot_cpu_id] = 0;
  900         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  901              i == MAX_APIC_ID ? i = 0 : i++) {
  902                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  903                     cpu_info[i].cpu_disabled)
  904                         continue;
  905 
  906                 if (mp_ncpus < MAXCPU) {
  907                         cpu_apic_ids[mp_ncpus] = i;
  908                         apic_cpuids[i] = mp_ncpus;
  909                         mp_ncpus++;
  910                 } else
  911                         cpu_info[i].cpu_disabled = 1;
  912         }
  913         KASSERT(mp_maxid >= mp_ncpus - 1,
  914             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  915             mp_ncpus));         
  916 }
  917 
  918 /*
  919  * start each AP in our list
  920  */
  921 static int
  922 start_all_aps(void)
  923 {
  924         vm_offset_t va = boot_address + KERNBASE;
  925         u_int64_t *pt4, *pt3, *pt2;
  926         u_int32_t mpbioswarmvec;
  927         int apic_id, cpu, i;
  928         u_char mpbiosreason;
  929 
  930         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  931 
  932         /* install the AP 1st level boot code */
  933         pmap_kenter(va, boot_address);
  934         pmap_invalidate_page(kernel_pmap, va);
  935         bcopy(mptramp_start, (void *)va, bootMP_size);
  936 
  937         /* Locate the page tables, they'll be below the trampoline */
  938         pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
  939         pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
  940         pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
  941 
  942         /* Create the initial 1GB replicated page tables */
  943         for (i = 0; i < 512; i++) {
  944                 /* Each slot of the level 4 pages points to the same level 3 page */
  945                 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
  946                 pt4[i] |= PG_V | PG_RW | PG_U;
  947 
  948                 /* Each slot of the level 3 pages points to the same level 2 page */
  949                 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
  950                 pt3[i] |= PG_V | PG_RW | PG_U;
  951 
  952                 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
  953                 pt2[i] = i * (2 * 1024 * 1024);
  954                 pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
  955         }
  956 
  957         /* save the current value of the warm-start vector */
  958         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  959         outb(CMOS_REG, BIOS_RESET);
  960         mpbiosreason = inb(CMOS_DATA);
  961 
  962         /* setup a vector to our boot code */
  963         *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  964         *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  965         outb(CMOS_REG, BIOS_RESET);
  966         outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  967 
  968         /* start each AP */
  969         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  970                 apic_id = cpu_apic_ids[cpu];
  971 
  972                 /* allocate and set up an idle stack data page */
  973                 bootstacks[cpu] = (void *)kmem_malloc(kernel_arena,
  974                     KSTACK_PAGES * PAGE_SIZE, M_WAITOK | M_ZERO);
  975                 doublefault_stack = (char *)kmem_malloc(kernel_arena,
  976                     PAGE_SIZE, M_WAITOK | M_ZERO);
  977                 nmi_stack = (char *)kmem_malloc(kernel_arena, PAGE_SIZE,
  978                     M_WAITOK | M_ZERO);
  979                 dbg_stack = (char *)kmem_malloc(kernel_arena, PAGE_SIZE,
  980                     M_WAITOK | M_ZERO);
  981                 dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
  982                     M_WAITOK | M_ZERO);
  983 
  984                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
  985                 bootAP = cpu;
  986 
  987                 /* attempt to start the Application Processor */
  988                 if (!start_ap(apic_id)) {
  989                         /* restore the warmstart vector */
  990                         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  991                         panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
  992                 }
  993 
  994                 CPU_SET(cpu, &all_cpus);        /* record AP in CPU map */
  995         }
  996 
  997         /* restore the warmstart vector */
  998         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  999 
 1000         outb(CMOS_REG, BIOS_RESET);
 1001         outb(CMOS_DATA, mpbiosreason);
 1002 
 1003         /* number of APs actually started */
 1004         return mp_naps;
 1005 }
 1006 
 1007 
 1008 /*
 1009  * This function starts the AP (application processor) identified
 1010  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
 1011  * to accomplish this.  This is necessary because of the nuances
 1012  * of the different hardware we might encounter.  It isn't pretty,
 1013  * but it seems to work.
 1014  */
 1015 static int
 1016 start_ap(int apic_id)
 1017 {
 1018         int vector, ms;
 1019         int cpus;
 1020 
 1021         /* calculate the vector */
 1022         vector = (boot_address >> 12) & 0xff;
 1023 
 1024         /* used as a watchpoint to signal AP startup */
 1025         cpus = mp_naps;
 1026 
 1027         ipi_startup(apic_id, vector);
 1028 
 1029         /* Wait up to 5 seconds for it to start. */
 1030         for (ms = 0; ms < 5000; ms++) {
 1031                 if (mp_naps > cpus)
 1032                         return 1;       /* return SUCCESS */
 1033                 DELAY(1000);
 1034         }
 1035         return 0;               /* return FAILURE */
 1036 }
 1037 
 1038 #ifdef COUNT_XINVLTLB_HITS
 1039 u_int xhits_gbl[MAXCPU];
 1040 u_int xhits_pg[MAXCPU];
 1041 u_int xhits_rng[MAXCPU];
 1042 static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
 1043 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
 1044     sizeof(xhits_gbl), "IU", "");
 1045 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
 1046     sizeof(xhits_pg), "IU", "");
 1047 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
 1048     sizeof(xhits_rng), "IU", "");
 1049 
 1050 u_int ipi_global;
 1051 u_int ipi_page;
 1052 u_int ipi_range;
 1053 u_int ipi_range_size;
 1054 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
 1055 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
 1056 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
 1057 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
 1058     &ipi_range_size, 0, "");
 1059 
 1060 u_int ipi_masked_global;
 1061 u_int ipi_masked_page;
 1062 u_int ipi_masked_range;
 1063 u_int ipi_masked_range_size;
 1064 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
 1065     &ipi_masked_global, 0, "");
 1066 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
 1067     &ipi_masked_page, 0, "");
 1068 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
 1069     &ipi_masked_range, 0, "");
 1070 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
 1071     &ipi_masked_range_size, 0, "");
 1072 #endif /* COUNT_XINVLTLB_HITS */
 1073 
 1074 /*
 1075  * Init and startup IPI.
 1076  */
 1077 void
 1078 ipi_startup(int apic_id, int vector)
 1079 {
 1080 
 1081         /*
 1082          * This attempts to follow the algorithm described in the
 1083          * Intel Multiprocessor Specification v1.4 in section B.4.
 1084          * For each IPI, we allow the local APIC ~20us to deliver the
 1085          * IPI.  If that times out, we panic.
 1086          */
 1087 
 1088         /*
 1089          * first we do an INIT IPI: this INIT IPI might be run, resetting
 1090          * and running the target CPU. OR this INIT IPI might be latched (P5
 1091          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
 1092          * ignored.
 1093          */
 1094         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
 1095             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
 1096         lapic_ipi_wait(100);
 1097 
 1098         /* Explicitly deassert the INIT IPI. */
 1099         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
 1100             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT,
 1101             apic_id);
 1102 
 1103         DELAY(10000);           /* wait ~10mS */
 1104 
 1105         /*
 1106          * next we do a STARTUP IPI: the previous INIT IPI might still be
 1107          * latched, (P5 bug) this 1st STARTUP would then terminate
 1108          * immediately, and the previously started INIT IPI would continue. OR
 1109          * the previous INIT IPI has already run. and this STARTUP IPI will
 1110          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
 1111          * will run.
 1112          */
 1113         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1114             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1115             vector, apic_id);
 1116         if (!lapic_ipi_wait(100))
 1117                 panic("Failed to deliver first STARTUP IPI to APIC %d",
 1118                     apic_id);
 1119         DELAY(200);             /* wait ~200uS */
 1120 
 1121         /*
 1122          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 1123          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 1124          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 1125          * recognized after hardware RESET or INIT IPI.
 1126          */
 1127         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1128             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1129             vector, apic_id);
 1130         if (!lapic_ipi_wait(100))
 1131                 panic("Failed to deliver second STARTUP IPI to APIC %d",
 1132                     apic_id);
 1133 
 1134         DELAY(200);             /* wait ~200uS */
 1135 }
 1136 
 1137 /*
 1138  * Send an IPI to specified CPU handling the bitmap logic.
 1139  */
 1140 static void
 1141 ipi_send_cpu(int cpu, u_int ipi)
 1142 {
 1143         u_int bitmap, old_pending, new_pending;
 1144 
 1145         KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
 1146 
 1147         if (IPI_IS_BITMAPED(ipi)) {
 1148                 bitmap = 1 << ipi;
 1149                 ipi = IPI_BITMAP_VECTOR;
 1150                 do {
 1151                         old_pending = cpu_ipi_pending[cpu];
 1152                         new_pending = old_pending | bitmap;
 1153                 } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
 1154                     old_pending, new_pending)); 
 1155                 if (old_pending)
 1156                         return;
 1157         }
 1158         cpu_ops.ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1159 }
 1160 
 1161 /*
 1162  * Flush the TLB on all other CPU's
 1163  */
 1164 static void
 1165 smp_tlb_shootdown(u_int vector, pmap_t pmap, vm_offset_t addr1,
 1166     vm_offset_t addr2)
 1167 {
 1168         u_int ncpu;
 1169 
 1170         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1171         if (ncpu < 1)
 1172                 return;         /* no other cpus */
 1173         if (!(read_rflags() & PSL_I))
 1174                 panic("%s: interrupts disabled", __func__);
 1175         mtx_lock_spin(&smp_ipi_mtx);
 1176         smp_tlb_invpcid.addr = addr1;
 1177         if (pmap == NULL) {
 1178                 smp_tlb_invpcid.pcid = 0;
 1179         } else {
 1180                 smp_tlb_invpcid.pcid = pmap->pm_pcid;
 1181                 pcid_cr3 = pmap->pm_cr3;
 1182         }
 1183         smp_tlb_addr2 = addr2;
 1184         smp_tlb_pmap = pmap;
 1185         atomic_store_rel_int(&smp_tlb_wait, 0);
 1186         ipi_all_but_self(vector);
 1187         while (smp_tlb_wait < ncpu)
 1188                 ia32_pause();
 1189         mtx_unlock_spin(&smp_ipi_mtx);
 1190 }
 1191 
 1192 static void
 1193 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
 1194     vm_offset_t addr1, vm_offset_t addr2)
 1195 {
 1196         int cpu, ncpu, othercpus;
 1197 
 1198         othercpus = mp_ncpus - 1;
 1199         if (CPU_ISFULLSET(&mask)) {
 1200                 if (othercpus < 1)
 1201                         return;
 1202         } else {
 1203                 CPU_CLR(PCPU_GET(cpuid), &mask);
 1204                 if (CPU_EMPTY(&mask))
 1205                         return;
 1206         }
 1207         if (!(read_rflags() & PSL_I))
 1208                 panic("%s: interrupts disabled", __func__);
 1209         mtx_lock_spin(&smp_ipi_mtx);
 1210         smp_tlb_invpcid.addr = addr1;
 1211         if (pmap == NULL) {
 1212                 smp_tlb_invpcid.pcid = 0;
 1213         } else {
 1214                 smp_tlb_invpcid.pcid = pmap->pm_pcid;
 1215                 pcid_cr3 = pmap->pm_cr3;
 1216         }
 1217         smp_tlb_addr2 = addr2;
 1218         smp_tlb_pmap = pmap;
 1219         atomic_store_rel_int(&smp_tlb_wait, 0);
 1220         if (CPU_ISFULLSET(&mask)) {
 1221                 ncpu = othercpus;
 1222                 ipi_all_but_self(vector);
 1223         } else {
 1224                 ncpu = 0;
 1225                 while ((cpu = CPU_FFS(&mask)) != 0) {
 1226                         cpu--;
 1227                         CPU_CLR(cpu, &mask);
 1228                         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
 1229                             cpu, vector);
 1230                         ipi_send_cpu(cpu, vector);
 1231                         ncpu++;
 1232                 }
 1233         }
 1234         while (smp_tlb_wait < ncpu)
 1235                 ia32_pause();
 1236         mtx_unlock_spin(&smp_ipi_mtx);
 1237 }
 1238 
 1239 void
 1240 smp_cache_flush(void)
 1241 {
 1242 
 1243         if (smp_started)
 1244                 smp_tlb_shootdown(IPI_INVLCACHE, NULL, 0, 0);
 1245 }
 1246 
 1247 void
 1248 smp_invltlb(pmap_t pmap)
 1249 {
 1250 
 1251         if (smp_started) {
 1252                 smp_tlb_shootdown(IPI_INVLTLB, pmap, 0, 0);
 1253 #ifdef COUNT_XINVLTLB_HITS
 1254                 ipi_global++;
 1255 #endif
 1256         }
 1257 }
 1258 
 1259 void
 1260 smp_invlpg(pmap_t pmap, vm_offset_t addr)
 1261 {
 1262 
 1263         if (smp_started) {
 1264                 smp_tlb_shootdown(IPI_INVLPG, pmap, addr, 0);
 1265 #ifdef COUNT_XINVLTLB_HITS
 1266                 ipi_page++;
 1267 #endif
 1268         }
 1269 }
 1270 
 1271 void
 1272 smp_invlpg_range(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2)
 1273 {
 1274 
 1275         if (smp_started) {
 1276                 smp_tlb_shootdown(IPI_INVLRNG, pmap, addr1, addr2);
 1277 #ifdef COUNT_XINVLTLB_HITS
 1278                 ipi_range++;
 1279                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1280 #endif
 1281         }
 1282 }
 1283 
 1284 void
 1285 smp_masked_invltlb(cpuset_t mask, pmap_t pmap)
 1286 {
 1287 
 1288         if (smp_started) {
 1289                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0);
 1290 #ifdef COUNT_XINVLTLB_HITS
 1291                 ipi_masked_global++;
 1292 #endif
 1293         }
 1294 }
 1295 
 1296 void
 1297 smp_masked_invlpg(cpuset_t mask, pmap_t pmap, vm_offset_t addr)
 1298 {
 1299 
 1300         if (smp_started) {
 1301                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0);
 1302 #ifdef COUNT_XINVLTLB_HITS
 1303                 ipi_masked_page++;
 1304 #endif
 1305         }
 1306 }
 1307 
 1308 void
 1309 smp_masked_invlpg_range(cpuset_t mask, pmap_t pmap, vm_offset_t addr1,
 1310     vm_offset_t addr2)
 1311 {
 1312 
 1313         if (smp_started) {
 1314                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1,
 1315                     addr2);
 1316 #ifdef COUNT_XINVLTLB_HITS
 1317                 ipi_masked_range++;
 1318                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1319 #endif
 1320         }
 1321 }
 1322 
 1323 void
 1324 ipi_bitmap_handler(struct trapframe frame)
 1325 {
 1326         struct trapframe *oldframe;
 1327         struct thread *td;
 1328         int cpu = PCPU_GET(cpuid);
 1329         u_int ipi_bitmap;
 1330 
 1331         critical_enter();
 1332         td = curthread;
 1333         td->td_intr_nesting_level++;
 1334         oldframe = td->td_intr_frame;
 1335         td->td_intr_frame = &frame;
 1336         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1337         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1338 #ifdef COUNT_IPIS
 1339                 (*ipi_preempt_counts[cpu])++;
 1340 #endif
 1341                 sched_preempt(td);
 1342         }
 1343         if (ipi_bitmap & (1 << IPI_AST)) {
 1344 #ifdef COUNT_IPIS
 1345                 (*ipi_ast_counts[cpu])++;
 1346 #endif
 1347                 /* Nothing to do for AST */
 1348         }
 1349         if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
 1350 #ifdef COUNT_IPIS
 1351                 (*ipi_hardclock_counts[cpu])++;
 1352 #endif
 1353                 hardclockintr();
 1354         }
 1355         td->td_intr_frame = oldframe;
 1356         td->td_intr_nesting_level--;
 1357         critical_exit();
 1358 }
 1359 
 1360 /*
 1361  * send an IPI to a set of cpus.
 1362  */
 1363 void
 1364 ipi_selected(cpuset_t cpus, u_int ipi)
 1365 {
 1366         int cpu;
 1367 
 1368         /*
 1369          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1370          * of help in order to understand what is the source.
 1371          * Set the mask of receiving CPUs for this purpose.
 1372          */
 1373         if (ipi == IPI_STOP_HARD)
 1374                 CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
 1375 
 1376         while ((cpu = CPU_FFS(&cpus)) != 0) {
 1377                 cpu--;
 1378                 CPU_CLR(cpu, &cpus);
 1379                 CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1380                 ipi_send_cpu(cpu, ipi);
 1381         }
 1382 }
 1383 
 1384 /*
 1385  * send an IPI to a specific CPU.
 1386  */
 1387 void
 1388 ipi_cpu(int cpu, u_int ipi)
 1389 {
 1390 
 1391         /*
 1392          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1393          * of help in order to understand what is the source.
 1394          * Set the mask of receiving CPUs for this purpose.
 1395          */
 1396         if (ipi == IPI_STOP_HARD)
 1397                 CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
 1398 
 1399         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1400         ipi_send_cpu(cpu, ipi);
 1401 }
 1402 
 1403 /*
 1404  * send an IPI to all CPUs EXCEPT myself
 1405  */
 1406 void
 1407 ipi_all_but_self(u_int ipi)
 1408 {
 1409         cpuset_t other_cpus;
 1410 
 1411         other_cpus = all_cpus;
 1412         CPU_CLR(PCPU_GET(cpuid), &other_cpus);
 1413 
 1414         if (IPI_IS_BITMAPED(ipi)) {
 1415                 ipi_selected(other_cpus, ipi);
 1416                 return;
 1417         }
 1418 
 1419         /*
 1420          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1421          * of help in order to understand what is the source.
 1422          * Set the mask of receiving CPUs for this purpose.
 1423          */
 1424         if (ipi == IPI_STOP_HARD)
 1425                 CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
 1426 
 1427         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1428         cpu_ops.ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1429 }
 1430 
 1431 int
 1432 ipi_nmi_handler()
 1433 {
 1434         u_int cpuid;
 1435 
 1436         /*
 1437          * As long as there is not a simple way to know about a NMI's
 1438          * source, if the bitmask for the current CPU is present in
 1439          * the global pending bitword an IPI_STOP_HARD has been issued
 1440          * and should be handled.
 1441          */
 1442         cpuid = PCPU_GET(cpuid);
 1443         if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
 1444                 return (1);
 1445 
 1446         CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
 1447         cpustop_handler();
 1448         return (0);
 1449 }
 1450      
 1451 /*
 1452  * Handle an IPI_STOP by saving our current context and spinning until we
 1453  * are resumed.
 1454  */
 1455 void
 1456 cpustop_handler(void)
 1457 {
 1458         u_int cpu;
 1459 
 1460         cpu = PCPU_GET(cpuid);
 1461 
 1462         savectx(&stoppcbs[cpu]);
 1463 
 1464         /* Indicate that we are stopped */
 1465         CPU_SET_ATOMIC(cpu, &stopped_cpus);
 1466 
 1467         /* Wait for restart */
 1468         while (!CPU_ISSET(cpu, &started_cpus))
 1469             ia32_pause();
 1470 
 1471         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1472         CPU_CLR_ATOMIC(cpu, &stopped_cpus);
 1473 
 1474 #ifdef DDB
 1475         amd64_db_resume_dbreg();
 1476 #endif
 1477 
 1478         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1479                 cpustop_restartfunc();
 1480                 cpustop_restartfunc = NULL;
 1481         }
 1482 }
 1483 
 1484 /*
 1485  * Handle an IPI_SUSPEND by saving our current context and spinning until we
 1486  * are resumed.
 1487  */
 1488 void
 1489 cpususpend_handler(void)
 1490 {
 1491         u_int cpu;
 1492 
 1493         mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
 1494 
 1495         cpu = PCPU_GET(cpuid);
 1496         if (savectx(&susppcbs[cpu]->sp_pcb)) {
 1497                 fpususpend(susppcbs[cpu]->sp_fpususpend);
 1498                 wbinvd();
 1499                 CPU_SET_ATOMIC(cpu, &suspended_cpus);
 1500         } else {
 1501                 fpuresume(susppcbs[cpu]->sp_fpususpend);
 1502                 pmap_init_pat();
 1503                 initializecpu();
 1504                 PCPU_SET(switchtime, 0);
 1505                 PCPU_SET(switchticks, ticks);
 1506 
 1507                 /* Indicate that we are resumed */
 1508                 CPU_CLR_ATOMIC(cpu, &suspended_cpus);
 1509         }
 1510 
 1511         /* Wait for resume */
 1512         while (!CPU_ISSET(cpu, &started_cpus))
 1513                 ia32_pause();
 1514 
 1515         if (cpu_ops.cpu_resume)
 1516                 cpu_ops.cpu_resume();
 1517         if (vmm_resume_p)
 1518                 vmm_resume_p();
 1519 
 1520         /* Resume MCA and local APIC */
 1521         mca_resume();
 1522         lapic_setup(0);
 1523 
 1524         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1525         /* Indicate that we are resumed */
 1526         CPU_CLR_ATOMIC(cpu, &suspended_cpus);
 1527 }
 1528 
 1529 /*
 1530  * Handlers for TLB related IPIs
 1531  */
 1532 void
 1533 invltlb_handler(void)
 1534 {
 1535 #ifdef COUNT_XINVLTLB_HITS
 1536         xhits_gbl[PCPU_GET(cpuid)]++;
 1537 #endif /* COUNT_XINVLTLB_HITS */
 1538 #ifdef COUNT_IPIS
 1539         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 1540 #endif /* COUNT_IPIS */
 1541 
 1542         invltlb();
 1543         atomic_add_int(&smp_tlb_wait, 1);
 1544 }
 1545 
 1546 void
 1547 invltlb_pcid_handler(void)
 1548 {
 1549         uint64_t cr3;
 1550         u_int cpuid;
 1551 #ifdef COUNT_XINVLTLB_HITS
 1552         xhits_gbl[PCPU_GET(cpuid)]++;
 1553 #endif /* COUNT_XINVLTLB_HITS */
 1554 #ifdef COUNT_IPIS
 1555         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 1556 #endif /* COUNT_IPIS */
 1557 
 1558         if (smp_tlb_invpcid.pcid != (uint64_t)-1 &&
 1559             smp_tlb_invpcid.pcid != 0) {
 1560                 if (invpcid_works) {
 1561                         invpcid(&smp_tlb_invpcid, INVPCID_CTX);
 1562                 } else {
 1563                         /* Otherwise reload %cr3 twice. */
 1564                         cr3 = rcr3();
 1565                         if (cr3 != pcid_cr3) {
 1566                                 load_cr3(pcid_cr3);
 1567                                 cr3 |= CR3_PCID_SAVE;
 1568                         }
 1569                         load_cr3(cr3);
 1570                 }
 1571         } else {
 1572                 invltlb_globpcid();
 1573         }
 1574         if (smp_tlb_pmap != NULL) {
 1575                 cpuid = PCPU_GET(cpuid);
 1576                 if (!CPU_ISSET(cpuid, &smp_tlb_pmap->pm_active))
 1577                         CPU_CLR_ATOMIC(cpuid, &smp_tlb_pmap->pm_save);
 1578         }
 1579 
 1580         atomic_add_int(&smp_tlb_wait, 1);
 1581 }
 1582 
 1583 void
 1584 invlpg_handler(void)
 1585 {
 1586 #ifdef COUNT_XINVLTLB_HITS
 1587         xhits_pg[PCPU_GET(cpuid)]++;
 1588 #endif /* COUNT_XINVLTLB_HITS */
 1589 #ifdef COUNT_IPIS
 1590         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
 1591 #endif /* COUNT_IPIS */
 1592 
 1593         invlpg(smp_tlb_invpcid.addr);
 1594         atomic_add_int(&smp_tlb_wait, 1);
 1595 }
 1596 
 1597 void
 1598 invlpg_pcid_handler(void)
 1599 {
 1600         uint64_t cr3;
 1601 #ifdef COUNT_XINVLTLB_HITS
 1602         xhits_pg[PCPU_GET(cpuid)]++;
 1603 #endif /* COUNT_XINVLTLB_HITS */
 1604 #ifdef COUNT_IPIS
 1605         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
 1606 #endif /* COUNT_IPIS */
 1607 
 1608         if (smp_tlb_invpcid.pcid == (uint64_t)-1) {
 1609                 invltlb_globpcid();
 1610         } else if (smp_tlb_invpcid.pcid == 0) {
 1611                 invlpg(smp_tlb_invpcid.addr);
 1612         } else if (invpcid_works) {
 1613                 invpcid(&smp_tlb_invpcid, INVPCID_ADDR);
 1614         } else {
 1615                 /*
 1616                  * PCID supported, but INVPCID is not.
 1617                  * Temporarily switch to the target address
 1618                  * space and do INVLPG.
 1619                  */
 1620                 cr3 = rcr3();
 1621                 if (cr3 != pcid_cr3)
 1622                         load_cr3(pcid_cr3 | CR3_PCID_SAVE);
 1623                 invlpg(smp_tlb_invpcid.addr);
 1624                 load_cr3(cr3 | CR3_PCID_SAVE);
 1625         }
 1626 
 1627         atomic_add_int(&smp_tlb_wait, 1);
 1628 }
 1629 
 1630 static inline void
 1631 invlpg_range(vm_offset_t start, vm_offset_t end)
 1632 {
 1633 
 1634         do {
 1635                 invlpg(start);
 1636                 start += PAGE_SIZE;
 1637         } while (start < end);
 1638 }
 1639 
 1640 void
 1641 invlrng_handler(void)
 1642 {
 1643         struct invpcid_descr d;
 1644         vm_offset_t addr;
 1645         uint64_t cr3;
 1646         u_int cpuid;
 1647 #ifdef COUNT_XINVLTLB_HITS
 1648         xhits_rng[PCPU_GET(cpuid)]++;
 1649 #endif /* COUNT_XINVLTLB_HITS */
 1650 #ifdef COUNT_IPIS
 1651         (*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
 1652 #endif /* COUNT_IPIS */
 1653 
 1654         addr = smp_tlb_invpcid.addr;
 1655         if (pmap_pcid_enabled) {
 1656                 if (smp_tlb_invpcid.pcid == 0) {
 1657                         /*
 1658                          * kernel pmap - use invlpg to invalidate
 1659                          * global mapping.
 1660                          */
 1661                         invlpg_range(addr, smp_tlb_addr2);
 1662                 } else if (smp_tlb_invpcid.pcid == (uint64_t)-1) {
 1663                         invltlb_globpcid();
 1664                         if (smp_tlb_pmap != NULL) {
 1665                                 cpuid = PCPU_GET(cpuid);
 1666                                 if (!CPU_ISSET(cpuid, &smp_tlb_pmap->pm_active))
 1667                                         CPU_CLR_ATOMIC(cpuid,
 1668                                             &smp_tlb_pmap->pm_save);
 1669                         }
 1670                 } else if (invpcid_works) {
 1671                         d = smp_tlb_invpcid;
 1672                         do {
 1673                                 invpcid(&d, INVPCID_ADDR);
 1674                                 d.addr += PAGE_SIZE;
 1675                         } while (d.addr <= smp_tlb_addr2);
 1676                 } else {
 1677                         cr3 = rcr3();
 1678                         if (cr3 != pcid_cr3)
 1679                                 load_cr3(pcid_cr3 | CR3_PCID_SAVE);
 1680                         invlpg_range(addr, smp_tlb_addr2);
 1681                         load_cr3(cr3 | CR3_PCID_SAVE);
 1682                 }
 1683         } else {
 1684                 invlpg_range(addr, smp_tlb_addr2);
 1685         }
 1686 
 1687         atomic_add_int(&smp_tlb_wait, 1);
 1688 }
 1689 
 1690 void
 1691 invlcache_handler(void)
 1692 {
 1693 #ifdef COUNT_IPIS
 1694         (*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
 1695 #endif /* COUNT_IPIS */
 1696 
 1697         wbinvd();
 1698         atomic_add_int(&smp_tlb_wait, 1);
 1699 }
 1700 
 1701 /*
 1702  * This is called once the rest of the system is up and running and we're
 1703  * ready to let the AP's out of the pen.
 1704  */
 1705 static void
 1706 release_aps(void *dummy __unused)
 1707 {
 1708 
 1709         if (mp_ncpus == 1) 
 1710                 return;
 1711         atomic_store_rel_int(&aps_ready, 1);
 1712         while (smp_started == 0)
 1713                 ia32_pause();
 1714 }
 1715 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1716 
 1717 #ifdef COUNT_IPIS
 1718 /*
 1719  * Setup interrupt counters for IPI handlers.
 1720  */
 1721 static void
 1722 mp_ipi_intrcnt(void *dummy)
 1723 {
 1724         char buf[64];
 1725         int i;
 1726 
 1727         CPU_FOREACH(i) {
 1728                 snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
 1729                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1730                 snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
 1731                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1732                 snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
 1733                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1734                 snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
 1735                 intrcnt_add(buf, &ipi_invlcache_counts[i]);
 1736                 snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
 1737                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1738                 snprintf(buf, sizeof(buf), "cpu%d:ast", i);
 1739                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1740                 snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
 1741                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1742                 snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
 1743                 intrcnt_add(buf, &ipi_hardclock_counts[i]);
 1744         }
 1745 }
 1746 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
 1747 #endif
 1748 

Cache object: 4cba082ecdc4ebe9ab1ad96200ff5e6b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.