The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * Copyright (c) 2003, by Peter Wemm
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the developer may NOT be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include "opt_cpu.h"
   31 #include "opt_ddb.h"
   32 #include "opt_kstack_pages.h"
   33 #include "opt_sched.h"
   34 #include "opt_smp.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/cpuset.h>
   40 #ifdef GPROF 
   41 #include <sys/gmon.h>
   42 #endif
   43 #include <sys/kernel.h>
   44 #include <sys/ktr.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/memrange.h>
   48 #include <sys/mutex.h>
   49 #include <sys/pcpu.h>
   50 #include <sys/proc.h>
   51 #include <sys/sched.h>
   52 #include <sys/smp.h>
   53 #include <sys/sysctl.h>
   54 
   55 #include <vm/vm.h>
   56 #include <vm/vm_param.h>
   57 #include <vm/pmap.h>
   58 #include <vm/vm_kern.h>
   59 #include <vm/vm_extern.h>
   60 
   61 #include <x86/apicreg.h>
   62 #include <machine/clock.h>
   63 #include <machine/cputypes.h>
   64 #include <machine/cpufunc.h>
   65 #include <x86/mca.h>
   66 #include <machine/md_var.h>
   67 #include <machine/pcb.h>
   68 #include <machine/psl.h>
   69 #include <machine/smp.h>
   70 #include <machine/specialreg.h>
   71 #include <machine/tss.h>
   72 #include <machine/cpu.h>
   73 
   74 #define WARMBOOT_TARGET         0
   75 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   76 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   77 
   78 #define CMOS_REG                (0x70)
   79 #define CMOS_DATA               (0x71)
   80 #define BIOS_RESET              (0x0f)
   81 #define BIOS_WARM               (0x0a)
   82 
   83 /* lock region used by kernel profiling */
   84 int     mcount_lock;
   85 
   86 int     mp_naps;                /* # of Applications processors */
   87 int     boot_cpu_id = -1;       /* designated BSP */
   88 
   89 extern  struct pcpu __pcpu[];
   90 
   91 /* AP uses this during bootstrap.  Do not staticize.  */
   92 char *bootSTK;
   93 static int bootAP;
   94 
   95 /* Free these after use */
   96 void *bootstacks[MAXCPU];
   97 
   98 /* Temporary variables for init_secondary()  */
   99 char *doublefault_stack;
  100 char *nmi_stack;
  101 char *dbg_stack;
  102 void *dpcpu;
  103 
  104 struct pcb stoppcbs[MAXCPU];
  105 struct susppcb **susppcbs;
  106 
  107 /* Variables needed for SMP tlb shootdown. */
  108 vm_offset_t smp_tlb_addr2;
  109 struct invpcid_descr smp_tlb_invpcid;
  110 volatile int smp_tlb_wait;
  111 uint64_t pcid_cr3;
  112 pmap_t smp_tlb_pmap;
  113 extern int invpcid_works;
  114 
  115 #ifdef COUNT_IPIS
  116 /* Interrupt counts. */
  117 static u_long *ipi_preempt_counts[MAXCPU];
  118 static u_long *ipi_ast_counts[MAXCPU];
  119 u_long *ipi_invltlb_counts[MAXCPU];
  120 u_long *ipi_invlrng_counts[MAXCPU];
  121 u_long *ipi_invlpg_counts[MAXCPU];
  122 u_long *ipi_invlcache_counts[MAXCPU];
  123 u_long *ipi_rendezvous_counts[MAXCPU];
  124 static u_long *ipi_hardclock_counts[MAXCPU];
  125 #endif
  126 
  127 /* Default cpu_ops implementation. */
  128 struct cpu_ops cpu_ops = {
  129         .ipi_vectored = lapic_ipi_vectored
  130 };
  131 
  132 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  133 
  134 extern int pmap_pcid_enabled;
  135 
  136 /*
  137  * Local data and functions.
  138  */
  139 
  140 static volatile cpuset_t ipi_nmi_pending;
  141 
  142 volatile cpuset_t resuming_cpus;
  143 volatile cpuset_t toresume_cpus;
  144 
  145 /* used to hold the AP's until we are ready to release them */
  146 static struct mtx ap_boot_mtx;
  147 
  148 /* Set to 1 once we're ready to let the APs out of the pen. */
  149 static volatile int aps_ready = 0;
  150 
  151 /*
  152  * Store data from cpu_add() until later in the boot when we actually setup
  153  * the APs.
  154  */
  155 struct cpu_info {
  156         int     cpu_present:1;
  157         int     cpu_bsp:1;
  158         int     cpu_disabled:1;
  159         int     cpu_hyperthread:1;
  160 } static cpu_info[MAX_APIC_ID + 1];
  161 int cpu_apic_ids[MAXCPU];
  162 int apic_cpuids[MAX_APIC_ID + 1];
  163 
  164 /* Holds pending bitmap based IPIs per CPU */
  165 volatile u_int cpu_ipi_pending[MAXCPU];
  166 
  167 static u_int boot_address;
  168 static int cpu_logical;                 /* logical cpus per core */
  169 static int cpu_cores;                   /* cores per package */
  170 
  171 static void     assign_cpu_ids(void);
  172 static void     set_interrupt_apic_ids(void);
  173 static int      start_all_aps(void);
  174 static int      start_ap(int apic_id);
  175 static void     release_aps(void *dummy);
  176 
  177 static u_int    hyperthreading_cpus;    /* logical cpus sharing L1 cache */
  178 static int      hyperthreading_allowed = 1;
  179 static u_int    bootMP_size;
  180 
  181 static void
  182 mem_range_AP_init(void)
  183 {
  184         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  185                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  186 }
  187 
  188 static void
  189 topo_probe_amd(void)
  190 {
  191         int core_id_bits;
  192         int id;
  193 
  194         /* AMD processors do not support HTT. */
  195         cpu_logical = 1;
  196 
  197         if ((amd_feature2 & AMDID2_CMP) == 0) {
  198                 cpu_cores = 1;
  199                 return;
  200         }
  201 
  202         core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
  203             AMDID_COREID_SIZE_SHIFT;
  204         if (core_id_bits == 0) {
  205                 cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
  206                 return;
  207         }
  208 
  209         /* Fam 10h and newer should get here. */
  210         for (id = 0; id <= MAX_APIC_ID; id++) {
  211                 /* Check logical CPU availability. */
  212                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  213                         continue;
  214                 /* Check if logical CPU has the same package ID. */
  215                 if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
  216                         continue;
  217                 cpu_cores++;
  218         }
  219 }
  220 
  221 /*
  222  * Round up to the next power of two, if necessary, and then
  223  * take log2.
  224  * Returns -1 if argument is zero.
  225  */
  226 static __inline int
  227 mask_width(u_int x)
  228 {
  229 
  230         return (fls(x << (1 - powerof2(x))) - 1);
  231 }
  232 
  233 static void
  234 topo_probe_0x4(void)
  235 {
  236         u_int p[4];
  237         int pkg_id_bits;
  238         int core_id_bits;
  239         int max_cores;
  240         int max_logical;
  241         int id;
  242 
  243         /* Both zero and one here mean one logical processor per package. */
  244         max_logical = (cpu_feature & CPUID_HTT) != 0 ?
  245             (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
  246         if (max_logical <= 1)
  247                 return;
  248 
  249         /*
  250          * Because of uniformity assumption we examine only
  251          * those logical processors that belong to the same
  252          * package as BSP.  Further, we count number of
  253          * logical processors that belong to the same core
  254          * as BSP thus deducing number of threads per core.
  255          */
  256         if (cpu_high >= 0x4) {
  257                 cpuid_count(0x04, 0, p);
  258                 max_cores = ((p[0] >> 26) & 0x3f) + 1;
  259         } else
  260                 max_cores = 1;
  261         core_id_bits = mask_width(max_logical/max_cores);
  262         if (core_id_bits < 0)
  263                 return;
  264         pkg_id_bits = core_id_bits + mask_width(max_cores);
  265 
  266         for (id = 0; id <= MAX_APIC_ID; id++) {
  267                 /* Check logical CPU availability. */
  268                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  269                         continue;
  270                 /* Check if logical CPU has the same package ID. */
  271                 if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
  272                         continue;
  273                 cpu_cores++;
  274                 /* Check if logical CPU has the same package and core IDs. */
  275                 if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
  276                         cpu_logical++;
  277         }
  278 
  279         KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
  280             ("topo_probe_0x4 couldn't find BSP"));
  281 
  282         cpu_cores /= cpu_logical;
  283         hyperthreading_cpus = cpu_logical;
  284 }
  285 
  286 static void
  287 topo_probe_0xb(void)
  288 {
  289         u_int p[4];
  290         int bits;
  291         int cnt;
  292         int i;
  293         int logical;
  294         int type;
  295         int x;
  296 
  297         /* We only support three levels for now. */
  298         for (i = 0; i < 3; i++) {
  299                 cpuid_count(0x0b, i, p);
  300 
  301                 /* Fall back if CPU leaf 11 doesn't really exist. */
  302                 if (i == 0 && p[1] == 0) {
  303                         topo_probe_0x4();
  304                         return;
  305                 }
  306 
  307                 bits = p[0] & 0x1f;
  308                 logical = p[1] &= 0xffff;
  309                 type = (p[2] >> 8) & 0xff;
  310                 if (type == 0 || logical == 0)
  311                         break;
  312                 /*
  313                  * Because of uniformity assumption we examine only
  314                  * those logical processors that belong to the same
  315                  * package as BSP.
  316                  */
  317                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  318                         if (!cpu_info[x].cpu_present ||
  319                             cpu_info[x].cpu_disabled)
  320                                 continue;
  321                         if (x >> bits == boot_cpu_id >> bits)
  322                                 cnt++;
  323                 }
  324                 if (type == CPUID_TYPE_SMT)
  325                         cpu_logical = cnt;
  326                 else if (type == CPUID_TYPE_CORE)
  327                         cpu_cores = cnt;
  328         }
  329         if (cpu_logical == 0)
  330                 cpu_logical = 1;
  331         cpu_cores /= cpu_logical;
  332 }
  333 
  334 /*
  335  * Both topology discovery code and code that consumes topology
  336  * information assume top-down uniformity of the topology.
  337  * That is, all physical packages must be identical and each
  338  * core in a package must have the same number of threads.
  339  * Topology information is queried only on BSP, on which this
  340  * code runs and for which it can query CPUID information.
  341  * Then topology is extrapolated on all packages using the
  342  * uniformity assumption.
  343  */
  344 static void
  345 topo_probe(void)
  346 {
  347         static int cpu_topo_probed = 0;
  348 
  349         if (cpu_topo_probed)
  350                 return;
  351 
  352         CPU_ZERO(&logical_cpus_mask);
  353         if (mp_ncpus <= 1)
  354                 cpu_cores = cpu_logical = 1;
  355         else if (cpu_vendor_id == CPU_VENDOR_AMD)
  356                 topo_probe_amd();
  357         else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
  358                 /*
  359                  * See Intel(R) 64 Architecture Processor
  360                  * Topology Enumeration article for details.
  361                  *
  362                  * Note that 0x1 <= cpu_high < 4 case should be
  363                  * compatible with topo_probe_0x4() logic when
  364                  * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
  365                  * or it should trigger the fallback otherwise.
  366                  */
  367                 if (cpu_high >= 0xb)
  368                         topo_probe_0xb();
  369                 else if (cpu_high >= 0x1)
  370                         topo_probe_0x4();
  371         }
  372 
  373         /*
  374          * Fallback: assume each logical CPU is in separate
  375          * physical package.  That is, no multi-core, no SMT.
  376          */
  377         if (cpu_cores == 0 || cpu_logical == 0)
  378                 cpu_cores = cpu_logical = 1;
  379         cpu_topo_probed = 1;
  380 }
  381 
  382 struct cpu_group *
  383 cpu_topo(void)
  384 {
  385         int cg_flags;
  386 
  387         /*
  388          * Determine whether any threading flags are
  389          * necessry.
  390          */
  391         topo_probe();
  392         if (cpu_logical > 1 && hyperthreading_cpus)
  393                 cg_flags = CG_FLAG_HTT;
  394         else if (cpu_logical > 1)
  395                 cg_flags = CG_FLAG_SMT;
  396         else
  397                 cg_flags = 0;
  398         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  399                 printf("WARNING: Non-uniform processors.\n");
  400                 printf("WARNING: Using suboptimal topology.\n");
  401                 return (smp_topo_none());
  402         }
  403         /*
  404          * No multi-core or hyper-threaded.
  405          */
  406         if (cpu_logical * cpu_cores == 1)
  407                 return (smp_topo_none());
  408         /*
  409          * Only HTT no multi-core.
  410          */
  411         if (cpu_logical > 1 && cpu_cores == 1)
  412                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  413         /*
  414          * Only multi-core no HTT.
  415          */
  416         if (cpu_cores > 1 && cpu_logical == 1)
  417                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  418         /*
  419          * Both HTT and multi-core.
  420          */
  421         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  422             CG_SHARE_L1, cpu_logical, cg_flags));
  423 }
  424 
  425 /*
  426  * Calculate usable address in base memory for AP trampoline code.
  427  */
  428 u_int
  429 mp_bootaddress(u_int basemem)
  430 {
  431 
  432         bootMP_size = mptramp_end - mptramp_start;
  433         boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
  434         if (((basemem * 1024) - boot_address) < bootMP_size)
  435                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  436         /* 3 levels of page table pages */
  437         mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
  438 
  439         return mptramp_pagetables;
  440 }
  441 
  442 void
  443 cpu_add(u_int apic_id, char boot_cpu)
  444 {
  445 
  446         if (apic_id > MAX_APIC_ID) {
  447                 panic("SMP: APIC ID %d too high", apic_id);
  448                 return;
  449         }
  450         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  451             apic_id));
  452         cpu_info[apic_id].cpu_present = 1;
  453         if (boot_cpu) {
  454                 KASSERT(boot_cpu_id == -1,
  455                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  456                     boot_cpu_id));
  457                 boot_cpu_id = apic_id;
  458                 cpu_info[apic_id].cpu_bsp = 1;
  459         }
  460         if (mp_ncpus < MAXCPU) {
  461                 mp_ncpus++;
  462                 mp_maxid = mp_ncpus - 1;
  463         }
  464         if (bootverbose)
  465                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  466                     "AP");
  467 }
  468 
  469 void
  470 cpu_mp_setmaxid(void)
  471 {
  472 
  473         /*
  474          * mp_maxid should be already set by calls to cpu_add().
  475          * Just sanity check its value here.
  476          */
  477         if (mp_ncpus == 0)
  478                 KASSERT(mp_maxid == 0,
  479                     ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
  480         else if (mp_ncpus == 1)
  481                 mp_maxid = 0;
  482         else
  483                 KASSERT(mp_maxid >= mp_ncpus - 1,
  484                     ("%s: counters out of sync: max %d, count %d", __func__,
  485                         mp_maxid, mp_ncpus));
  486 }
  487 
  488 int
  489 cpu_mp_probe(void)
  490 {
  491 
  492         /*
  493          * Always record BSP in CPU map so that the mbuf init code works
  494          * correctly.
  495          */
  496         CPU_SETOF(0, &all_cpus);
  497         if (mp_ncpus == 0) {
  498                 /*
  499                  * No CPUs were found, so this must be a UP system.  Setup
  500                  * the variables to represent a system with a single CPU
  501                  * with an id of 0.
  502                  */
  503                 mp_ncpus = 1;
  504                 return (0);
  505         }
  506 
  507         /* At least one CPU was found. */
  508         if (mp_ncpus == 1) {
  509                 /*
  510                  * One CPU was found, so this must be a UP system with
  511                  * an I/O APIC.
  512                  */
  513                 mp_maxid = 0;
  514                 return (0);
  515         }
  516 
  517         /* At least two CPUs were found. */
  518         return (1);
  519 }
  520 
  521 /*
  522  * Initialize the IPI handlers and start up the AP's.
  523  */
  524 void
  525 cpu_mp_start(void)
  526 {
  527         int i;
  528 
  529         /* Initialize the logical ID to APIC ID table. */
  530         for (i = 0; i < MAXCPU; i++) {
  531                 cpu_apic_ids[i] = -1;
  532                 cpu_ipi_pending[i] = 0;
  533         }
  534 
  535         /* Install an inter-CPU IPI for TLB invalidation */
  536         if (pmap_pcid_enabled) {
  537                 setidt(IPI_INVLTLB, IDTVEC(invltlb_pcid), SDT_SYSIGT,
  538                     SEL_KPL, 0);
  539                 setidt(IPI_INVLPG, IDTVEC(invlpg_pcid), SDT_SYSIGT,
  540                     SEL_KPL, 0);
  541         } else {
  542                 setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
  543                 setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
  544         }
  545         setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
  546 
  547         /* Install an inter-CPU IPI for cache invalidation. */
  548         setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
  549 
  550         /* Install an inter-CPU IPI for all-CPU rendezvous */
  551         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
  552 
  553         /* Install generic inter-CPU IPI handler */
  554         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  555                SDT_SYSIGT, SEL_KPL, 0);
  556 
  557         /* Install an inter-CPU IPI for CPU stop/restart */
  558         setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
  559 
  560         /* Install an inter-CPU IPI for CPU suspend/resume */
  561         setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
  562 
  563         /* Set boot_cpu_id if needed. */
  564         if (boot_cpu_id == -1) {
  565                 boot_cpu_id = PCPU_GET(apic_id);
  566                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  567         } else
  568                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  569                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  570 
  571         /* Probe logical/physical core configuration. */
  572         topo_probe();
  573 
  574         assign_cpu_ids();
  575 
  576         /* Start each Application Processor */
  577         start_all_aps();
  578 
  579         set_interrupt_apic_ids();
  580 }
  581 
  582 
  583 /*
  584  * Print various information about the SMP system hardware and setup.
  585  */
  586 void
  587 cpu_mp_announce(void)
  588 {
  589         const char *hyperthread;
  590         int i;
  591 
  592         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  593             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  594         if (hyperthreading_cpus > 1)
  595             printf(" x %d HTT threads", cpu_logical);
  596         else if (cpu_logical > 1)
  597             printf(" x %d SMT threads", cpu_logical);
  598         printf("\n");
  599 
  600         /* List active CPUs first. */
  601         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  602         for (i = 1; i < mp_ncpus; i++) {
  603                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  604                         hyperthread = "/HT";
  605                 else
  606                         hyperthread = "";
  607                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  608                     cpu_apic_ids[i]);
  609         }
  610 
  611         /* List disabled CPUs last. */
  612         for (i = 0; i <= MAX_APIC_ID; i++) {
  613                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  614                         continue;
  615                 if (cpu_info[i].cpu_hyperthread)
  616                         hyperthread = "/HT";
  617                 else
  618                         hyperthread = "";
  619                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  620                     i);
  621         }
  622 }
  623 
  624 /*
  625  * AP CPU's call this to initialize themselves.
  626  */
  627 void
  628 init_secondary(void)
  629 {
  630         struct pcpu *pc;
  631         struct nmi_pcpu *np;
  632         u_int64_t msr, cr0;
  633         u_int cpuid;
  634         int cpu, gsel_tss, x;
  635         struct region_descriptor ap_gdt;
  636 
  637         /* Set by the startup code for us to use */
  638         cpu = bootAP;
  639 
  640         /* Init tss */
  641         common_tss[cpu] = common_tss[0];
  642         common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
  643         common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
  644             IOPAGES * PAGE_SIZE;
  645         common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
  646 
  647         /* The NMI stack runs on IST2. */
  648         np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
  649         common_tss[cpu].tss_ist2 = (long) np;
  650 
  651         /* The DB# stack runs on IST4. */
  652         np = ((struct nmi_pcpu *) &dbg_stack[PAGE_SIZE]) - 1;
  653         common_tss[cpu].tss_ist4 = (long) np;
  654 
  655         /* Prepare private GDT */
  656         gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
  657         for (x = 0; x < NGDT; x++) {
  658                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
  659                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
  660                         ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
  661         }
  662         ssdtosyssd(&gdt_segs[GPROC0_SEL],
  663             (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
  664         ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  665         ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
  666         lgdt(&ap_gdt);                  /* does magic intra-segment return */
  667 
  668         /* Get per-cpu data */
  669         pc = &__pcpu[cpu];
  670 
  671         /* prime data page for it to use */
  672         pcpu_init(pc, cpu, sizeof(struct pcpu));
  673         dpcpu_init(dpcpu, cpu);
  674         pc->pc_apic_id = cpu_apic_ids[cpu];
  675         pc->pc_prvspace = pc;
  676         pc->pc_curthread = 0;
  677         pc->pc_tssp = &common_tss[cpu];
  678         pc->pc_commontssp = &common_tss[cpu];
  679         pc->pc_rsp0 = 0;
  680         pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  681             GPROC0_SEL];
  682         pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
  683         pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
  684         pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  685             GUSERLDT_SEL];
  686 
  687         /* Save the per-cpu pointer for use by the NMI handler. */
  688         np->np_pcpu = (register_t) pc;
  689 
  690         /* Save the per-cpu pointer for use by the DB# handler. */
  691         np = ((struct nmi_pcpu *) &dbg_stack[PAGE_SIZE]) - 1;
  692         np->np_pcpu = (register_t) pc;
  693 
  694         wrmsr(MSR_FSBASE, 0);           /* User value */
  695         wrmsr(MSR_GSBASE, (u_int64_t)pc);
  696         wrmsr(MSR_KGSBASE, (u_int64_t)pc);      /* XXX User value while we're in the kernel */
  697         fix_cpuid();
  698 
  699         lidt(&r_idt);
  700 
  701         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  702         ltr(gsel_tss);
  703 
  704         /*
  705          * Set to a known state:
  706          * Set by mpboot.s: CR0_PG, CR0_PE
  707          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  708          */
  709         cr0 = rcr0();
  710         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  711         load_cr0(cr0);
  712 
  713         /* Set up the fast syscall stuff */
  714         msr = rdmsr(MSR_EFER) | EFER_SCE;
  715         wrmsr(MSR_EFER, msr);
  716         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
  717         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
  718         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
  719               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
  720         wrmsr(MSR_STAR, msr);
  721         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
  722 
  723         /* Disable local APIC just to be sure. */
  724         lapic_disable();
  725 
  726         /* signal our startup to the BSP. */
  727         mp_naps++;
  728 
  729         /* Spin until the BSP releases the AP's. */
  730         while (!aps_ready)
  731                 ia32_pause();
  732 
  733         /* Initialize the PAT MSR. */
  734         pmap_init_pat();
  735 
  736         /* set up CPU registers and state */
  737         cpu_setregs();
  738 
  739         /* set up SSE/NX */
  740         initializecpu();
  741 
  742         /* set up FPU state on the AP */
  743         fpuinit();
  744 
  745         if (cpu_ops.cpu_init)
  746                 cpu_ops.cpu_init();
  747 
  748         /* A quick check from sanity claus */
  749         cpuid = PCPU_GET(cpuid);
  750         if (PCPU_GET(apic_id) != lapic_id()) {
  751                 printf("SMP: cpuid = %d\n", cpuid);
  752                 printf("SMP: actual apic_id = %d\n", lapic_id());
  753                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  754                 panic("cpuid mismatch! boom!!");
  755         }
  756 
  757         /* Initialize curthread. */
  758         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  759         PCPU_SET(curthread, PCPU_GET(idlethread));
  760 
  761         mca_init();
  762 
  763         mtx_lock_spin(&ap_boot_mtx);
  764 
  765         /* Init local apic for irq's */
  766         lapic_setup(1);
  767 
  768         /* Set memory range attributes for this CPU to match the BSP */
  769         mem_range_AP_init();
  770 
  771         smp_cpus++;
  772 
  773         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
  774         printf("SMP: AP CPU #%d Launched!\n", cpuid);
  775 
  776         /* Determine if we are a logical CPU. */
  777         /* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
  778         if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
  779                 CPU_SET(cpuid, &logical_cpus_mask);
  780 
  781         if (bootverbose)
  782                 lapic_dump("AP");
  783 
  784         if (smp_cpus == mp_ncpus) {
  785                 /* enable IPI's, tlb shootdown, freezes etc */
  786                 atomic_store_rel_int(&smp_started, 1);
  787         }
  788 
  789         /*
  790          * Enable global pages TLB extension
  791          * This also implicitly flushes the TLB 
  792          */
  793 
  794         load_cr4(rcr4() | CR4_PGE);
  795         if (pmap_pcid_enabled)
  796                 load_cr4(rcr4() | CR4_PCIDE);
  797         load_ds(_udatasel);
  798         load_es(_udatasel);
  799         load_fs(_ufssel);
  800         mtx_unlock_spin(&ap_boot_mtx);
  801 
  802         /* Wait until all the AP's are up. */
  803         while (smp_started == 0)
  804                 ia32_pause();
  805 
  806         /* Start per-CPU event timers. */
  807         cpu_initclocks_ap();
  808 
  809         sched_throw(NULL);
  810 
  811         panic("scheduler returned us to %s", __func__);
  812         /* NOTREACHED */
  813 }
  814 
  815 /*******************************************************************
  816  * local functions and data
  817  */
  818 
  819 /*
  820  * We tell the I/O APIC code about all the CPUs we want to receive
  821  * interrupts.  If we don't want certain CPUs to receive IRQs we
  822  * can simply not tell the I/O APIC code about them in this function.
  823  * We also do not tell it about the BSP since it tells itself about
  824  * the BSP internally to work with UP kernels and on UP machines.
  825  */
  826 static void
  827 set_interrupt_apic_ids(void)
  828 {
  829         u_int i, apic_id;
  830 
  831         for (i = 0; i < MAXCPU; i++) {
  832                 apic_id = cpu_apic_ids[i];
  833                 if (apic_id == -1)
  834                         continue;
  835                 if (cpu_info[apic_id].cpu_bsp)
  836                         continue;
  837                 if (cpu_info[apic_id].cpu_disabled)
  838                         continue;
  839 
  840                 /* Don't let hyperthreads service interrupts. */
  841                 if (hyperthreading_cpus > 1 &&
  842                     apic_id % hyperthreading_cpus != 0)
  843                         continue;
  844 
  845                 intr_add_cpu(i);
  846         }
  847 }
  848 
  849 /*
  850  * Assign logical CPU IDs to local APICs.
  851  */
  852 static void
  853 assign_cpu_ids(void)
  854 {
  855         u_int i;
  856 
  857         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  858             &hyperthreading_allowed);
  859 
  860         /* Check for explicitly disabled CPUs. */
  861         for (i = 0; i <= MAX_APIC_ID; i++) {
  862                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  863                         continue;
  864 
  865                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  866                         cpu_info[i].cpu_hyperthread = 1;
  867 
  868                         /*
  869                          * Don't use HT CPU if it has been disabled by a
  870                          * tunable.
  871                          */
  872                         if (hyperthreading_allowed == 0) {
  873                                 cpu_info[i].cpu_disabled = 1;
  874                                 continue;
  875                         }
  876                 }
  877 
  878                 /* Don't use this CPU if it has been disabled by a tunable. */
  879                 if (resource_disabled("lapic", i)) {
  880                         cpu_info[i].cpu_disabled = 1;
  881                         continue;
  882                 }
  883         }
  884 
  885         if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
  886                 hyperthreading_cpus = 0;
  887                 cpu_logical = 1;
  888         }
  889 
  890         /*
  891          * Assign CPU IDs to local APIC IDs and disable any CPUs
  892          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  893          *
  894          * To minimize confusion for userland, we attempt to number
  895          * CPUs such that all threads and cores in a package are
  896          * grouped together.  For now we assume that the BSP is always
  897          * the first thread in a package and just start adding APs
  898          * starting with the BSP's APIC ID.
  899          */
  900         mp_ncpus = 1;
  901         cpu_apic_ids[0] = boot_cpu_id;
  902         apic_cpuids[boot_cpu_id] = 0;
  903         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  904              i == MAX_APIC_ID ? i = 0 : i++) {
  905                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  906                     cpu_info[i].cpu_disabled)
  907                         continue;
  908 
  909                 if (mp_ncpus < MAXCPU) {
  910                         cpu_apic_ids[mp_ncpus] = i;
  911                         apic_cpuids[i] = mp_ncpus;
  912                         mp_ncpus++;
  913                 } else
  914                         cpu_info[i].cpu_disabled = 1;
  915         }
  916         KASSERT(mp_maxid >= mp_ncpus - 1,
  917             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  918             mp_ncpus));         
  919 }
  920 
  921 /*
  922  * start each AP in our list
  923  */
  924 static int
  925 start_all_aps(void)
  926 {
  927         vm_offset_t va = boot_address + KERNBASE;
  928         u_int64_t *pt4, *pt3, *pt2;
  929         u_int32_t mpbioswarmvec;
  930         int apic_id, cpu, i;
  931         u_char mpbiosreason;
  932 
  933         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  934 
  935         /* install the AP 1st level boot code */
  936         pmap_kenter(va, boot_address);
  937         pmap_invalidate_page(kernel_pmap, va);
  938         bcopy(mptramp_start, (void *)va, bootMP_size);
  939 
  940         /* Locate the page tables, they'll be below the trampoline */
  941         pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
  942         pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
  943         pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
  944 
  945         /* Create the initial 1GB replicated page tables */
  946         for (i = 0; i < 512; i++) {
  947                 /* Each slot of the level 4 pages points to the same level 3 page */
  948                 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
  949                 pt4[i] |= PG_V | PG_RW | PG_U;
  950 
  951                 /* Each slot of the level 3 pages points to the same level 2 page */
  952                 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
  953                 pt3[i] |= PG_V | PG_RW | PG_U;
  954 
  955                 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
  956                 pt2[i] = i * (2 * 1024 * 1024);
  957                 pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
  958         }
  959 
  960         /* save the current value of the warm-start vector */
  961         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  962         outb(CMOS_REG, BIOS_RESET);
  963         mpbiosreason = inb(CMOS_DATA);
  964 
  965         /* setup a vector to our boot code */
  966         *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  967         *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  968         outb(CMOS_REG, BIOS_RESET);
  969         outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  970 
  971         /* start each AP */
  972         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  973                 apic_id = cpu_apic_ids[cpu];
  974 
  975                 /* allocate and set up an idle stack data page */
  976                 bootstacks[cpu] = (void *)kmem_malloc(kernel_arena,
  977                     KSTACK_PAGES * PAGE_SIZE, M_WAITOK | M_ZERO);
  978                 doublefault_stack = (char *)kmem_malloc(kernel_arena,
  979                     PAGE_SIZE, M_WAITOK | M_ZERO);
  980                 nmi_stack = (char *)kmem_malloc(kernel_arena, PAGE_SIZE,
  981                     M_WAITOK | M_ZERO);
  982                 dbg_stack = (char *)kmem_malloc(kernel_arena, PAGE_SIZE,
  983                     M_WAITOK | M_ZERO);
  984                 dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
  985                     M_WAITOK | M_ZERO);
  986 
  987                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
  988                 bootAP = cpu;
  989 
  990                 /* attempt to start the Application Processor */
  991                 if (!start_ap(apic_id)) {
  992                         /* restore the warmstart vector */
  993                         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  994                         panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
  995                 }
  996 
  997                 CPU_SET(cpu, &all_cpus);        /* record AP in CPU map */
  998         }
  999 
 1000         /* restore the warmstart vector */
 1001         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
 1002 
 1003         outb(CMOS_REG, BIOS_RESET);
 1004         outb(CMOS_DATA, mpbiosreason);
 1005 
 1006         /* number of APs actually started */
 1007         return mp_naps;
 1008 }
 1009 
 1010 
 1011 /*
 1012  * This function starts the AP (application processor) identified
 1013  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
 1014  * to accomplish this.  This is necessary because of the nuances
 1015  * of the different hardware we might encounter.  It isn't pretty,
 1016  * but it seems to work.
 1017  */
 1018 static int
 1019 start_ap(int apic_id)
 1020 {
 1021         int vector, ms;
 1022         int cpus;
 1023 
 1024         /* calculate the vector */
 1025         vector = (boot_address >> 12) & 0xff;
 1026 
 1027         /* used as a watchpoint to signal AP startup */
 1028         cpus = mp_naps;
 1029 
 1030         ipi_startup(apic_id, vector);
 1031 
 1032         /* Wait up to 5 seconds for it to start. */
 1033         for (ms = 0; ms < 5000; ms++) {
 1034                 if (mp_naps > cpus)
 1035                         return 1;       /* return SUCCESS */
 1036                 DELAY(1000);
 1037         }
 1038         return 0;               /* return FAILURE */
 1039 }
 1040 
 1041 #ifdef COUNT_XINVLTLB_HITS
 1042 u_int xhits_gbl[MAXCPU];
 1043 u_int xhits_pg[MAXCPU];
 1044 u_int xhits_rng[MAXCPU];
 1045 static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
 1046 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
 1047     sizeof(xhits_gbl), "IU", "");
 1048 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
 1049     sizeof(xhits_pg), "IU", "");
 1050 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
 1051     sizeof(xhits_rng), "IU", "");
 1052 
 1053 u_int ipi_global;
 1054 u_int ipi_page;
 1055 u_int ipi_range;
 1056 u_int ipi_range_size;
 1057 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
 1058 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
 1059 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
 1060 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
 1061     &ipi_range_size, 0, "");
 1062 
 1063 u_int ipi_masked_global;
 1064 u_int ipi_masked_page;
 1065 u_int ipi_masked_range;
 1066 u_int ipi_masked_range_size;
 1067 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
 1068     &ipi_masked_global, 0, "");
 1069 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
 1070     &ipi_masked_page, 0, "");
 1071 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
 1072     &ipi_masked_range, 0, "");
 1073 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
 1074     &ipi_masked_range_size, 0, "");
 1075 #endif /* COUNT_XINVLTLB_HITS */
 1076 
 1077 /*
 1078  * Init and startup IPI.
 1079  */
 1080 void
 1081 ipi_startup(int apic_id, int vector)
 1082 {
 1083 
 1084         /*
 1085          * This attempts to follow the algorithm described in the
 1086          * Intel Multiprocessor Specification v1.4 in section B.4.
 1087          * For each IPI, we allow the local APIC ~20us to deliver the
 1088          * IPI.  If that times out, we panic.
 1089          */
 1090 
 1091         /*
 1092          * first we do an INIT IPI: this INIT IPI might be run, resetting
 1093          * and running the target CPU. OR this INIT IPI might be latched (P5
 1094          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
 1095          * ignored.
 1096          */
 1097         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
 1098             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
 1099         lapic_ipi_wait(100);
 1100 
 1101         /* Explicitly deassert the INIT IPI. */
 1102         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
 1103             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT,
 1104             apic_id);
 1105 
 1106         DELAY(10000);           /* wait ~10mS */
 1107 
 1108         /*
 1109          * next we do a STARTUP IPI: the previous INIT IPI might still be
 1110          * latched, (P5 bug) this 1st STARTUP would then terminate
 1111          * immediately, and the previously started INIT IPI would continue. OR
 1112          * the previous INIT IPI has already run. and this STARTUP IPI will
 1113          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
 1114          * will run.
 1115          */
 1116         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1117             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1118             vector, apic_id);
 1119         if (!lapic_ipi_wait(100))
 1120                 panic("Failed to deliver first STARTUP IPI to APIC %d",
 1121                     apic_id);
 1122         DELAY(200);             /* wait ~200uS */
 1123 
 1124         /*
 1125          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 1126          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 1127          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 1128          * recognized after hardware RESET or INIT IPI.
 1129          */
 1130         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1131             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1132             vector, apic_id);
 1133         if (!lapic_ipi_wait(100))
 1134                 panic("Failed to deliver second STARTUP IPI to APIC %d",
 1135                     apic_id);
 1136 
 1137         DELAY(200);             /* wait ~200uS */
 1138 }
 1139 
 1140 /*
 1141  * Send an IPI to specified CPU handling the bitmap logic.
 1142  */
 1143 static void
 1144 ipi_send_cpu(int cpu, u_int ipi)
 1145 {
 1146         u_int bitmap, old_pending, new_pending;
 1147 
 1148         KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
 1149 
 1150         if (IPI_IS_BITMAPED(ipi)) {
 1151                 bitmap = 1 << ipi;
 1152                 ipi = IPI_BITMAP_VECTOR;
 1153                 do {
 1154                         old_pending = cpu_ipi_pending[cpu];
 1155                         new_pending = old_pending | bitmap;
 1156                 } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
 1157                     old_pending, new_pending)); 
 1158                 if (old_pending)
 1159                         return;
 1160         }
 1161         cpu_ops.ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1162 }
 1163 
 1164 /*
 1165  * Flush the TLB on all other CPU's
 1166  */
 1167 static void
 1168 smp_tlb_shootdown(u_int vector, pmap_t pmap, vm_offset_t addr1,
 1169     vm_offset_t addr2)
 1170 {
 1171         u_int ncpu;
 1172 
 1173         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1174         if (ncpu < 1)
 1175                 return;         /* no other cpus */
 1176         if (!(read_rflags() & PSL_I))
 1177                 panic("%s: interrupts disabled", __func__);
 1178         mtx_lock_spin(&smp_ipi_mtx);
 1179         smp_tlb_invpcid.addr = addr1;
 1180         if (pmap == NULL) {
 1181                 smp_tlb_invpcid.pcid = 0;
 1182         } else {
 1183                 smp_tlb_invpcid.pcid = pmap->pm_pcid;
 1184                 pcid_cr3 = pmap->pm_cr3;
 1185         }
 1186         smp_tlb_addr2 = addr2;
 1187         smp_tlb_pmap = pmap;
 1188         atomic_store_rel_int(&smp_tlb_wait, 0);
 1189         ipi_all_but_self(vector);
 1190         while (smp_tlb_wait < ncpu)
 1191                 ia32_pause();
 1192         mtx_unlock_spin(&smp_ipi_mtx);
 1193 }
 1194 
 1195 static void
 1196 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
 1197     vm_offset_t addr1, vm_offset_t addr2)
 1198 {
 1199         int cpu, ncpu, othercpus;
 1200 
 1201         othercpus = mp_ncpus - 1;
 1202         if (CPU_ISFULLSET(&mask)) {
 1203                 if (othercpus < 1)
 1204                         return;
 1205         } else {
 1206                 CPU_CLR(PCPU_GET(cpuid), &mask);
 1207                 if (CPU_EMPTY(&mask))
 1208                         return;
 1209         }
 1210         if (!(read_rflags() & PSL_I))
 1211                 panic("%s: interrupts disabled", __func__);
 1212         mtx_lock_spin(&smp_ipi_mtx);
 1213         smp_tlb_invpcid.addr = addr1;
 1214         if (pmap == NULL) {
 1215                 smp_tlb_invpcid.pcid = 0;
 1216         } else {
 1217                 smp_tlb_invpcid.pcid = pmap->pm_pcid;
 1218                 pcid_cr3 = pmap->pm_cr3;
 1219         }
 1220         smp_tlb_addr2 = addr2;
 1221         smp_tlb_pmap = pmap;
 1222         atomic_store_rel_int(&smp_tlb_wait, 0);
 1223         if (CPU_ISFULLSET(&mask)) {
 1224                 ncpu = othercpus;
 1225                 ipi_all_but_self(vector);
 1226         } else {
 1227                 ncpu = 0;
 1228                 while ((cpu = CPU_FFS(&mask)) != 0) {
 1229                         cpu--;
 1230                         CPU_CLR(cpu, &mask);
 1231                         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
 1232                             cpu, vector);
 1233                         ipi_send_cpu(cpu, vector);
 1234                         ncpu++;
 1235                 }
 1236         }
 1237         while (smp_tlb_wait < ncpu)
 1238                 ia32_pause();
 1239         mtx_unlock_spin(&smp_ipi_mtx);
 1240 }
 1241 
 1242 void
 1243 smp_cache_flush(void)
 1244 {
 1245 
 1246         if (smp_started)
 1247                 smp_tlb_shootdown(IPI_INVLCACHE, NULL, 0, 0);
 1248 }
 1249 
 1250 void
 1251 smp_invltlb(pmap_t pmap)
 1252 {
 1253 
 1254         if (smp_started) {
 1255                 smp_tlb_shootdown(IPI_INVLTLB, pmap, 0, 0);
 1256 #ifdef COUNT_XINVLTLB_HITS
 1257                 ipi_global++;
 1258 #endif
 1259         }
 1260 }
 1261 
 1262 void
 1263 smp_invlpg(pmap_t pmap, vm_offset_t addr)
 1264 {
 1265 
 1266         if (smp_started) {
 1267                 smp_tlb_shootdown(IPI_INVLPG, pmap, addr, 0);
 1268 #ifdef COUNT_XINVLTLB_HITS
 1269                 ipi_page++;
 1270 #endif
 1271         }
 1272 }
 1273 
 1274 void
 1275 smp_invlpg_range(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2)
 1276 {
 1277 
 1278         if (smp_started) {
 1279                 smp_tlb_shootdown(IPI_INVLRNG, pmap, addr1, addr2);
 1280 #ifdef COUNT_XINVLTLB_HITS
 1281                 ipi_range++;
 1282                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1283 #endif
 1284         }
 1285 }
 1286 
 1287 void
 1288 smp_masked_invltlb(cpuset_t mask, pmap_t pmap)
 1289 {
 1290 
 1291         if (smp_started) {
 1292                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0);
 1293 #ifdef COUNT_XINVLTLB_HITS
 1294                 ipi_masked_global++;
 1295 #endif
 1296         }
 1297 }
 1298 
 1299 void
 1300 smp_masked_invlpg(cpuset_t mask, pmap_t pmap, vm_offset_t addr)
 1301 {
 1302 
 1303         if (smp_started) {
 1304                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0);
 1305 #ifdef COUNT_XINVLTLB_HITS
 1306                 ipi_masked_page++;
 1307 #endif
 1308         }
 1309 }
 1310 
 1311 void
 1312 smp_masked_invlpg_range(cpuset_t mask, pmap_t pmap, vm_offset_t addr1,
 1313     vm_offset_t addr2)
 1314 {
 1315 
 1316         if (smp_started) {
 1317                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1,
 1318                     addr2);
 1319 #ifdef COUNT_XINVLTLB_HITS
 1320                 ipi_masked_range++;
 1321                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1322 #endif
 1323         }
 1324 }
 1325 
 1326 void
 1327 ipi_bitmap_handler(struct trapframe frame)
 1328 {
 1329         struct trapframe *oldframe;
 1330         struct thread *td;
 1331         int cpu = PCPU_GET(cpuid);
 1332         u_int ipi_bitmap;
 1333 
 1334         critical_enter();
 1335         td = curthread;
 1336         td->td_intr_nesting_level++;
 1337         oldframe = td->td_intr_frame;
 1338         td->td_intr_frame = &frame;
 1339         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1340         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1341 #ifdef COUNT_IPIS
 1342                 (*ipi_preempt_counts[cpu])++;
 1343 #endif
 1344                 sched_preempt(td);
 1345         }
 1346         if (ipi_bitmap & (1 << IPI_AST)) {
 1347 #ifdef COUNT_IPIS
 1348                 (*ipi_ast_counts[cpu])++;
 1349 #endif
 1350                 /* Nothing to do for AST */
 1351         }
 1352         if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
 1353 #ifdef COUNT_IPIS
 1354                 (*ipi_hardclock_counts[cpu])++;
 1355 #endif
 1356                 hardclockintr();
 1357         }
 1358         td->td_intr_frame = oldframe;
 1359         td->td_intr_nesting_level--;
 1360         critical_exit();
 1361 }
 1362 
 1363 /*
 1364  * send an IPI to a set of cpus.
 1365  */
 1366 void
 1367 ipi_selected(cpuset_t cpus, u_int ipi)
 1368 {
 1369         int cpu;
 1370 
 1371         /*
 1372          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1373          * of help in order to understand what is the source.
 1374          * Set the mask of receiving CPUs for this purpose.
 1375          */
 1376         if (ipi == IPI_STOP_HARD)
 1377                 CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
 1378 
 1379         while ((cpu = CPU_FFS(&cpus)) != 0) {
 1380                 cpu--;
 1381                 CPU_CLR(cpu, &cpus);
 1382                 CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1383                 ipi_send_cpu(cpu, ipi);
 1384         }
 1385 }
 1386 
 1387 /*
 1388  * send an IPI to a specific CPU.
 1389  */
 1390 void
 1391 ipi_cpu(int cpu, u_int ipi)
 1392 {
 1393 
 1394         /*
 1395          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1396          * of help in order to understand what is the source.
 1397          * Set the mask of receiving CPUs for this purpose.
 1398          */
 1399         if (ipi == IPI_STOP_HARD)
 1400                 CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
 1401 
 1402         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1403         ipi_send_cpu(cpu, ipi);
 1404 }
 1405 
 1406 /*
 1407  * send an IPI to all CPUs EXCEPT myself
 1408  */
 1409 void
 1410 ipi_all_but_self(u_int ipi)
 1411 {
 1412         cpuset_t other_cpus;
 1413 
 1414         other_cpus = all_cpus;
 1415         CPU_CLR(PCPU_GET(cpuid), &other_cpus);
 1416 
 1417         if (IPI_IS_BITMAPED(ipi)) {
 1418                 ipi_selected(other_cpus, ipi);
 1419                 return;
 1420         }
 1421 
 1422         /*
 1423          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1424          * of help in order to understand what is the source.
 1425          * Set the mask of receiving CPUs for this purpose.
 1426          */
 1427         if (ipi == IPI_STOP_HARD)
 1428                 CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
 1429 
 1430         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1431         cpu_ops.ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1432 }
 1433 
 1434 int
 1435 ipi_nmi_handler()
 1436 {
 1437         u_int cpuid;
 1438 
 1439         /*
 1440          * As long as there is not a simple way to know about a NMI's
 1441          * source, if the bitmask for the current CPU is present in
 1442          * the global pending bitword an IPI_STOP_HARD has been issued
 1443          * and should be handled.
 1444          */
 1445         cpuid = PCPU_GET(cpuid);
 1446         if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
 1447                 return (1);
 1448 
 1449         CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
 1450         cpustop_handler();
 1451         return (0);
 1452 }
 1453      
 1454 /*
 1455  * Handle an IPI_STOP by saving our current context and spinning until we
 1456  * are resumed.
 1457  */
 1458 void
 1459 cpustop_handler(void)
 1460 {
 1461         u_int cpu;
 1462 
 1463         cpu = PCPU_GET(cpuid);
 1464 
 1465         savectx(&stoppcbs[cpu]);
 1466 
 1467         /* Indicate that we are stopped */
 1468         CPU_SET_ATOMIC(cpu, &stopped_cpus);
 1469 
 1470         /* Wait for restart */
 1471         while (!CPU_ISSET(cpu, &started_cpus))
 1472             ia32_pause();
 1473 
 1474         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1475         CPU_CLR_ATOMIC(cpu, &stopped_cpus);
 1476 
 1477 #ifdef DDB
 1478         amd64_db_resume_dbreg();
 1479 #endif
 1480 
 1481         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1482                 cpustop_restartfunc();
 1483                 cpustop_restartfunc = NULL;
 1484         }
 1485 }
 1486 
 1487 /*
 1488  * Handle an IPI_SUSPEND by saving our current context and spinning until we
 1489  * are resumed.
 1490  */
 1491 void
 1492 cpususpend_handler(void)
 1493 {
 1494         u_int cpu;
 1495 
 1496         mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
 1497 
 1498         cpu = PCPU_GET(cpuid);
 1499         if (savectx(&susppcbs[cpu]->sp_pcb)) {
 1500                 fpususpend(susppcbs[cpu]->sp_fpususpend);
 1501                 wbinvd();
 1502                 CPU_SET_ATOMIC(cpu, &suspended_cpus);
 1503                 /*
 1504                  * Hack for xen, which does not use resumectx() so never
 1505                  * uses the next clause: set resuming_cpus early so that
 1506                  * resume_cpus() can wait on the same bitmap for acpi and
 1507                  * xen.  resuming_cpus now means eventually_resumable_cpus.
 1508                  */
 1509                 CPU_SET_ATOMIC(cpu, &resuming_cpus);
 1510         } else {
 1511                 fpuresume(susppcbs[cpu]->sp_fpususpend);
 1512                 pmap_init_pat();
 1513                 initializecpu();
 1514                 PCPU_SET(switchtime, 0);
 1515                 PCPU_SET(switchticks, ticks);
 1516 
 1517                 /* Indicate that we are resuming */
 1518                 CPU_CLR_ATOMIC(cpu, &suspended_cpus);
 1519         }
 1520 
 1521         /* Wait for resume directive */
 1522         while (!CPU_ISSET(cpu, &toresume_cpus))
 1523                 ia32_pause();
 1524 
 1525         if (cpu_ops.cpu_resume)
 1526                 cpu_ops.cpu_resume();
 1527         if (vmm_resume_p)
 1528                 vmm_resume_p();
 1529 
 1530         /* Resume MCA and local APIC */
 1531         mca_resume();
 1532         lapic_setup(0);
 1533 
 1534         /* Indicate that we are resumed */
 1535         CPU_CLR_ATOMIC(cpu, &resuming_cpus);
 1536         CPU_CLR_ATOMIC(cpu, &suspended_cpus);
 1537         CPU_CLR_ATOMIC(cpu, &toresume_cpus);
 1538 }
 1539 
 1540 /*
 1541  * Handlers for TLB related IPIs
 1542  */
 1543 void
 1544 invltlb_handler(void)
 1545 {
 1546 #ifdef COUNT_XINVLTLB_HITS
 1547         xhits_gbl[PCPU_GET(cpuid)]++;
 1548 #endif /* COUNT_XINVLTLB_HITS */
 1549 #ifdef COUNT_IPIS
 1550         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 1551 #endif /* COUNT_IPIS */
 1552 
 1553         invltlb();
 1554         atomic_add_int(&smp_tlb_wait, 1);
 1555 }
 1556 
 1557 void
 1558 invltlb_pcid_handler(void)
 1559 {
 1560         uint64_t cr3;
 1561         u_int cpuid;
 1562 #ifdef COUNT_XINVLTLB_HITS
 1563         xhits_gbl[PCPU_GET(cpuid)]++;
 1564 #endif /* COUNT_XINVLTLB_HITS */
 1565 #ifdef COUNT_IPIS
 1566         (*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
 1567 #endif /* COUNT_IPIS */
 1568 
 1569         if (smp_tlb_invpcid.pcid != (uint64_t)-1 &&
 1570             smp_tlb_invpcid.pcid != 0) {
 1571                 if (invpcid_works) {
 1572                         invpcid(&smp_tlb_invpcid, INVPCID_CTX);
 1573                 } else {
 1574                         /* Otherwise reload %cr3 twice. */
 1575                         cr3 = rcr3();
 1576                         if (cr3 != pcid_cr3) {
 1577                                 load_cr3(pcid_cr3);
 1578                                 cr3 |= CR3_PCID_SAVE;
 1579                         }
 1580                         load_cr3(cr3);
 1581                 }
 1582         } else {
 1583                 invltlb_globpcid();
 1584         }
 1585         if (smp_tlb_pmap != NULL) {
 1586                 cpuid = PCPU_GET(cpuid);
 1587                 if (!CPU_ISSET(cpuid, &smp_tlb_pmap->pm_active))
 1588                         CPU_CLR_ATOMIC(cpuid, &smp_tlb_pmap->pm_save);
 1589         }
 1590 
 1591         atomic_add_int(&smp_tlb_wait, 1);
 1592 }
 1593 
 1594 void
 1595 invlpg_handler(void)
 1596 {
 1597 #ifdef COUNT_XINVLTLB_HITS
 1598         xhits_pg[PCPU_GET(cpuid)]++;
 1599 #endif /* COUNT_XINVLTLB_HITS */
 1600 #ifdef COUNT_IPIS
 1601         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
 1602 #endif /* COUNT_IPIS */
 1603 
 1604         invlpg(smp_tlb_invpcid.addr);
 1605         atomic_add_int(&smp_tlb_wait, 1);
 1606 }
 1607 
 1608 void
 1609 invlpg_pcid_handler(void)
 1610 {
 1611         uint64_t cr3;
 1612 #ifdef COUNT_XINVLTLB_HITS
 1613         xhits_pg[PCPU_GET(cpuid)]++;
 1614 #endif /* COUNT_XINVLTLB_HITS */
 1615 #ifdef COUNT_IPIS
 1616         (*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
 1617 #endif /* COUNT_IPIS */
 1618 
 1619         if (smp_tlb_invpcid.pcid == (uint64_t)-1) {
 1620                 invltlb_globpcid();
 1621         } else if (smp_tlb_invpcid.pcid == 0) {
 1622                 invlpg(smp_tlb_invpcid.addr);
 1623         } else if (invpcid_works) {
 1624                 invpcid(&smp_tlb_invpcid, INVPCID_ADDR);
 1625         } else {
 1626                 /*
 1627                  * PCID supported, but INVPCID is not.
 1628                  * Temporarily switch to the target address
 1629                  * space and do INVLPG.
 1630                  */
 1631                 cr3 = rcr3();
 1632                 if (cr3 != pcid_cr3)
 1633                         load_cr3(pcid_cr3 | CR3_PCID_SAVE);
 1634                 invlpg(smp_tlb_invpcid.addr);
 1635                 load_cr3(cr3 | CR3_PCID_SAVE);
 1636         }
 1637 
 1638         atomic_add_int(&smp_tlb_wait, 1);
 1639 }
 1640 
 1641 static inline void
 1642 invlpg_range(vm_offset_t start, vm_offset_t end)
 1643 {
 1644 
 1645         do {
 1646                 invlpg(start);
 1647                 start += PAGE_SIZE;
 1648         } while (start < end);
 1649 }
 1650 
 1651 void
 1652 invlrng_handler(void)
 1653 {
 1654         struct invpcid_descr d;
 1655         vm_offset_t addr;
 1656         uint64_t cr3;
 1657         u_int cpuid;
 1658 #ifdef COUNT_XINVLTLB_HITS
 1659         xhits_rng[PCPU_GET(cpuid)]++;
 1660 #endif /* COUNT_XINVLTLB_HITS */
 1661 #ifdef COUNT_IPIS
 1662         (*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
 1663 #endif /* COUNT_IPIS */
 1664 
 1665         addr = smp_tlb_invpcid.addr;
 1666         if (pmap_pcid_enabled) {
 1667                 if (smp_tlb_invpcid.pcid == 0) {
 1668                         /*
 1669                          * kernel pmap - use invlpg to invalidate
 1670                          * global mapping.
 1671                          */
 1672                         invlpg_range(addr, smp_tlb_addr2);
 1673                 } else if (smp_tlb_invpcid.pcid == (uint64_t)-1) {
 1674                         invltlb_globpcid();
 1675                         if (smp_tlb_pmap != NULL) {
 1676                                 cpuid = PCPU_GET(cpuid);
 1677                                 if (!CPU_ISSET(cpuid, &smp_tlb_pmap->pm_active))
 1678                                         CPU_CLR_ATOMIC(cpuid,
 1679                                             &smp_tlb_pmap->pm_save);
 1680                         }
 1681                 } else if (invpcid_works) {
 1682                         d = smp_tlb_invpcid;
 1683                         do {
 1684                                 invpcid(&d, INVPCID_ADDR);
 1685                                 d.addr += PAGE_SIZE;
 1686                         } while (d.addr <= smp_tlb_addr2);
 1687                 } else {
 1688                         cr3 = rcr3();
 1689                         if (cr3 != pcid_cr3)
 1690                                 load_cr3(pcid_cr3 | CR3_PCID_SAVE);
 1691                         invlpg_range(addr, smp_tlb_addr2);
 1692                         load_cr3(cr3 | CR3_PCID_SAVE);
 1693                 }
 1694         } else {
 1695                 invlpg_range(addr, smp_tlb_addr2);
 1696         }
 1697 
 1698         atomic_add_int(&smp_tlb_wait, 1);
 1699 }
 1700 
 1701 void
 1702 invlcache_handler(void)
 1703 {
 1704 #ifdef COUNT_IPIS
 1705         (*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
 1706 #endif /* COUNT_IPIS */
 1707 
 1708         wbinvd();
 1709         atomic_add_int(&smp_tlb_wait, 1);
 1710 }
 1711 
 1712 /*
 1713  * This is called once the rest of the system is up and running and we're
 1714  * ready to let the AP's out of the pen.
 1715  */
 1716 static void
 1717 release_aps(void *dummy __unused)
 1718 {
 1719 
 1720         if (mp_ncpus == 1) 
 1721                 return;
 1722         atomic_store_rel_int(&aps_ready, 1);
 1723         while (smp_started == 0)
 1724                 ia32_pause();
 1725 }
 1726 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1727 
 1728 #ifdef COUNT_IPIS
 1729 /*
 1730  * Setup interrupt counters for IPI handlers.
 1731  */
 1732 static void
 1733 mp_ipi_intrcnt(void *dummy)
 1734 {
 1735         char buf[64];
 1736         int i;
 1737 
 1738         CPU_FOREACH(i) {
 1739                 snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
 1740                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1741                 snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
 1742                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1743                 snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
 1744                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1745                 snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
 1746                 intrcnt_add(buf, &ipi_invlcache_counts[i]);
 1747                 snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
 1748                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1749                 snprintf(buf, sizeof(buf), "cpu%d:ast", i);
 1750                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1751                 snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
 1752                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1753                 snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
 1754                 intrcnt_add(buf, &ipi_hardclock_counts[i]);
 1755         }
 1756 }
 1757 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
 1758 #endif
 1759 

Cache object: 10f365571ff5c80d053dccc2dcf49ea3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.