The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * Copyright (c) 2003, by Peter Wemm
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the developer may NOT be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/6.0/sys/amd64/amd64/mp_machdep.c 149624 2005-08-30 15:14:40Z pjd $");
   29 
   30 #include "opt_cpu.h"
   31 #include "opt_kdb.h"
   32 #include "opt_kstack_pages.h"
   33 #include "opt_mp_watchdog.h"
   34 #include "opt_sched.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #ifdef GPROF 
   40 #include <sys/gmon.h>
   41 #endif
   42 #include <sys/kernel.h>
   43 #include <sys/ktr.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/memrange.h>
   47 #include <sys/mutex.h>
   48 #include <sys/pcpu.h>
   49 #include <sys/proc.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 
   53 #include <vm/vm.h>
   54 #include <vm/vm_param.h>
   55 #include <vm/pmap.h>
   56 #include <vm/vm_kern.h>
   57 #include <vm/vm_extern.h>
   58 
   59 #include <machine/apicreg.h>
   60 #include <machine/clock.h>
   61 #include <machine/md_var.h>
   62 #include <machine/mp_watchdog.h>
   63 #include <machine/pcb.h>
   64 #include <machine/psl.h>
   65 #include <machine/smp.h>
   66 #include <machine/specialreg.h>
   67 #include <machine/tss.h>
   68 
   69 #define WARMBOOT_TARGET         0
   70 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   71 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   72 
   73 #define CMOS_REG                (0x70)
   74 #define CMOS_DATA               (0x71)
   75 #define BIOS_RESET              (0x0f)
   76 #define BIOS_WARM               (0x0a)
   77 
   78 /* lock region used by kernel profiling */
   79 int     mcount_lock;
   80 
   81 int     mp_naps;                /* # of Applications processors */
   82 int     boot_cpu_id = -1;       /* designated BSP */
   83 extern  int nkpt;
   84 
   85 /*
   86  * CPU topology map datastructures for HTT.
   87  */
   88 static struct cpu_group mp_groups[MAXCPU];
   89 static struct cpu_top mp_top;
   90 
   91 /* AP uses this during bootstrap.  Do not staticize.  */
   92 char *bootSTK;
   93 static int bootAP;
   94 
   95 /* Free these after use */
   96 void *bootstacks[MAXCPU];
   97 
   98 /* Hotwire a 0->4MB V==P mapping */
   99 extern pt_entry_t *KPTphys;
  100 
  101 /* SMP page table page */
  102 extern pt_entry_t *SMPpt;
  103 
  104 struct pcb stoppcbs[MAXCPU];
  105 
  106 /* Variables needed for SMP tlb shootdown. */
  107 vm_offset_t smp_tlb_addr1;
  108 vm_offset_t smp_tlb_addr2;
  109 volatile int smp_tlb_wait;
  110 
  111 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  112 
  113 /*
  114  * Local data and functions.
  115  */
  116 
  117 static u_int logical_cpus;
  118 
  119 /* used to hold the AP's until we are ready to release them */
  120 static struct mtx ap_boot_mtx;
  121 
  122 /* Set to 1 once we're ready to let the APs out of the pen. */
  123 static volatile int aps_ready = 0;
  124 
  125 /*
  126  * Store data from cpu_add() until later in the boot when we actually setup
  127  * the APs.
  128  */
  129 struct cpu_info {
  130         int     cpu_present:1;
  131         int     cpu_bsp:1;
  132         int     cpu_disabled:1;
  133 } static cpu_info[MAXCPU];
  134 static int cpu_apic_ids[MAXCPU];
  135 
  136 /* Holds pending bitmap based IPIs per CPU */
  137 static volatile u_int cpu_ipi_pending[MAXCPU];
  138 
  139 static u_int boot_address;
  140 
  141 static void     set_logical_apic_ids(void);
  142 static int      start_all_aps(void);
  143 static int      start_ap(int apic_id);
  144 static void     release_aps(void *dummy);
  145 
  146 static int      hlt_logical_cpus;
  147 static u_int    hyperthreading_cpus;
  148 static cpumask_t        hyperthreading_cpus_mask;
  149 static int      hyperthreading_allowed;
  150 static struct   sysctl_ctx_list logical_cpu_clist;
  151 static u_int    bootMP_size;
  152 
  153 static void
  154 mem_range_AP_init(void)
  155 {
  156         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  157                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  158 }
  159 
  160 void
  161 mp_topology(void)
  162 {
  163         struct cpu_group *group;
  164         int logical_cpus;
  165         int apic_id;
  166         int groups;
  167         int cpu;
  168 
  169         /* Build the smp_topology map. */
  170         /* Nothing to do if there is no HTT support. */
  171         if ((cpu_feature & CPUID_HTT) == 0)
  172                 return;
  173         logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  174         if (logical_cpus <= 1)
  175                 return;
  176         group = &mp_groups[0];
  177         groups = 1;
  178         for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
  179                 if (!cpu_info[apic_id].cpu_present)
  180                         continue;
  181                 /*
  182                  * If the current group has members and we're not a logical
  183                  * cpu, create a new group.
  184                  */
  185                 if (group->cg_count != 0 && (apic_id % logical_cpus) == 0) {
  186                         group++;
  187                         groups++;
  188                 }
  189                 group->cg_count++;
  190                 group->cg_mask |= 1 << cpu;
  191                 cpu++;
  192         }
  193 
  194         mp_top.ct_count = groups;
  195         mp_top.ct_group = mp_groups;
  196         smp_topology = &mp_top;
  197 }
  198 
  199 
  200 #ifdef KDB_STOP_NMI
  201 volatile cpumask_t ipi_nmi_pending;
  202 #endif 
  203 
  204 /*
  205  * Calculate usable address in base memory for AP trampoline code.
  206  */
  207 u_int
  208 mp_bootaddress(u_int basemem)
  209 {
  210 
  211         bootMP_size = mptramp_end - mptramp_start;
  212         boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
  213         if (((basemem * 1024) - boot_address) < bootMP_size)
  214                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  215         /* 3 levels of page table pages */
  216         mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
  217 
  218         return mptramp_pagetables;
  219 }
  220 
  221 void
  222 cpu_add(u_int apic_id, char boot_cpu)
  223 {
  224 
  225         if (apic_id >= MAXCPU) {
  226                 printf("SMP: CPU %d exceeds maximum CPU %d, ignoring\n",
  227                     apic_id, MAXCPU - 1);
  228                 return;
  229         }
  230         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  231             apic_id));
  232         cpu_info[apic_id].cpu_present = 1;
  233         if (boot_cpu) {
  234                 KASSERT(boot_cpu_id == -1,
  235                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  236                     boot_cpu_id));
  237                 boot_cpu_id = apic_id;
  238                 cpu_info[apic_id].cpu_bsp = 1;
  239         }
  240         mp_ncpus++;
  241         if (apic_id > mp_maxid)
  242                 mp_maxid = apic_id;
  243         if (bootverbose)
  244                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  245                     "AP");
  246         
  247 }
  248 
  249 void
  250 cpu_mp_setmaxid(void)
  251 {
  252 
  253         /*
  254          * mp_maxid should be already set by calls to cpu_add().
  255          * Just sanity check its value here.
  256          */
  257         if (mp_ncpus == 0)
  258                 KASSERT(mp_maxid == 0,
  259                     ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
  260         else if (mp_ncpus == 1)
  261                 mp_maxid = 0;
  262         else
  263                 KASSERT(mp_maxid >= mp_ncpus - 1,
  264                     ("%s: counters out of sync: max %d, count %d", __func__,
  265                         mp_maxid, mp_ncpus));
  266                 
  267 }
  268 
  269 int
  270 cpu_mp_probe(void)
  271 {
  272 
  273         /*
  274          * Always record BSP in CPU map so that the mbuf init code works
  275          * correctly.
  276          */
  277         all_cpus = 1;
  278         if (mp_ncpus == 0) {
  279                 /*
  280                  * No CPUs were found, so this must be a UP system.  Setup
  281                  * the variables to represent a system with a single CPU
  282                  * with an id of 0.
  283                  */
  284                 mp_ncpus = 1;
  285                 return (0);
  286         }
  287 
  288         /* At least one CPU was found. */
  289         if (mp_ncpus == 1) {
  290                 /*
  291                  * One CPU was found, so this must be a UP system with
  292                  * an I/O APIC.
  293                  */
  294                 mp_maxid = 0;
  295                 return (0);
  296         }
  297 
  298         /* At least two CPUs were found. */
  299         return (1);
  300 }
  301 
  302 /*
  303  * Initialize the IPI handlers and start up the AP's.
  304  */
  305 void
  306 cpu_mp_start(void)
  307 {
  308         int i;
  309         u_int threads_per_cache, p[4];
  310 
  311         /* Initialize the logical ID to APIC ID table. */
  312         for (i = 0; i < MAXCPU; i++) {
  313                 cpu_apic_ids[i] = -1;
  314                 cpu_ipi_pending[i] = 0;
  315         }
  316 
  317         /* Install an inter-CPU IPI for TLB invalidation */
  318         setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
  319         setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
  320         setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
  321         
  322         /* Install an inter-CPU IPI for all-CPU rendezvous */
  323         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
  324 
  325         /* Install generic inter-CPU IPI handler */
  326         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  327                SDT_SYSIGT, SEL_KPL, 0);
  328 
  329         /* Install an inter-CPU IPI for CPU stop/restart */
  330         setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
  331 
  332         /* Set boot_cpu_id if needed. */
  333         if (boot_cpu_id == -1) {
  334                 boot_cpu_id = PCPU_GET(apic_id);
  335                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  336         } else
  337                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  338                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  339         cpu_apic_ids[0] = boot_cpu_id;
  340 
  341         /* Start each Application Processor */
  342         start_all_aps();
  343 
  344         /* Setup the initial logical CPUs info. */
  345         logical_cpus = logical_cpus_mask = 0;
  346         if (cpu_feature & CPUID_HTT)
  347                 logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  348 
  349         /*
  350          * Work out if hyperthreading is *really* enabled.  This
  351          * is made really ugly by the fact that processors lie: Dual
  352          * core processors claim to be hyperthreaded even when they're
  353          * not, presumably because they want to be treated the same
  354          * way as HTT with respect to per-cpu software licensing.
  355          * At the time of writing (May 12, 2005) the only hyperthreaded
  356          * cpus are from Intel, and Intel's dual-core processors can be
  357          * identified via the "deterministic cache parameters" cpuid
  358          * calls.
  359          */
  360         /*
  361          * First determine if this is an Intel processor which claims
  362          * to have hyperthreading support.
  363          */
  364         if ((cpu_feature & CPUID_HTT) &&
  365             (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
  366                 /*
  367                  * If the "deterministic cache parameters" cpuid calls
  368                  * are available, use them.
  369                  */
  370                 if (cpu_high >= 4) {
  371                         /* Ask the processor about up to 32 caches. */
  372                         for (i = 0; i < 32; i++) {
  373                                 cpuid_count(4, i, p);
  374                                 threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
  375                                 if (hyperthreading_cpus < threads_per_cache)
  376                                         hyperthreading_cpus = threads_per_cache;
  377                                 if ((p[0] & 0x1f) == 0)
  378                                         break;
  379                         }
  380                 }
  381 
  382                 /*
  383                  * If the deterministic cache parameters are not
  384                  * available, or if no caches were reported to exist,
  385                  * just accept what the HTT flag indicated.
  386                  */
  387                 if (hyperthreading_cpus == 0)
  388                         hyperthreading_cpus = logical_cpus;
  389         }
  390 
  391         set_logical_apic_ids();
  392 }
  393 
  394 
  395 /*
  396  * Print various information about the SMP system hardware and setup.
  397  */
  398 void
  399 cpu_mp_announce(void)
  400 {
  401         int i, x;
  402 
  403         /* List CPUs */
  404         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  405         for (i = 1, x = 0; x < MAXCPU; x++) {
  406                 if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
  407                         continue;
  408                 if (cpu_info[x].cpu_disabled)
  409                         printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
  410                 else {
  411                         KASSERT(i < mp_ncpus,
  412                             ("mp_ncpus and actual cpus are out of whack"));
  413                         printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
  414                 }
  415         }
  416 }
  417 
  418 /*
  419  * AP CPU's call this to initialize themselves.
  420  */
  421 void
  422 init_secondary(void)
  423 {
  424         struct pcpu *pc;
  425         u_int64_t msr, cr0;
  426         int cpu, gsel_tss;
  427 
  428         /* Set by the startup code for us to use */
  429         cpu = bootAP;
  430 
  431         /* Init tss */
  432         common_tss[cpu] = common_tss[0];
  433         common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
  434         common_tss[cpu].tss_iobase = sizeof(struct amd64tss);
  435 
  436         gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
  437         ssdtosyssd(&gdt_segs[GPROC0_SEL],
  438            (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
  439 
  440         lgdt(&r_gdt);                   /* does magic intra-segment return */
  441 
  442         /* Get per-cpu data */
  443         pc = &__pcpu[cpu];
  444 
  445         /* prime data page for it to use */
  446         pcpu_init(pc, cpu, sizeof(struct pcpu));
  447         pc->pc_apic_id = cpu_apic_ids[cpu];
  448         pc->pc_prvspace = pc;
  449         pc->pc_curthread = 0;
  450         pc->pc_tssp = &common_tss[cpu];
  451         pc->pc_rsp0 = 0;
  452 
  453         wrmsr(MSR_FSBASE, 0);           /* User value */
  454         wrmsr(MSR_GSBASE, (u_int64_t)pc);
  455         wrmsr(MSR_KGSBASE, (u_int64_t)pc);      /* XXX User value while we're in the kernel */
  456 
  457         lidt(&r_idt);
  458 
  459         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  460         ltr(gsel_tss);
  461 
  462         /*
  463          * Set to a known state:
  464          * Set by mpboot.s: CR0_PG, CR0_PE
  465          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  466          */
  467         cr0 = rcr0();
  468         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  469         load_cr0(cr0);
  470 
  471         /* Set up the fast syscall stuff */
  472         msr = rdmsr(MSR_EFER) | EFER_SCE;
  473         wrmsr(MSR_EFER, msr);
  474         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
  475         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
  476         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
  477               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
  478         wrmsr(MSR_STAR, msr);
  479         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
  480 
  481         /* Disable local APIC just to be sure. */
  482         lapic_disable();
  483 
  484         /* signal our startup to the BSP. */
  485         mp_naps++;
  486 
  487         /* Spin until the BSP releases the AP's. */
  488         while (!aps_ready)
  489                 ia32_pause();
  490 
  491         /* set up CPU registers and state */
  492         cpu_setregs();
  493 
  494         /* set up SSE/NX registers */
  495         initializecpu();
  496 
  497         /* set up FPU state on the AP */
  498         fpuinit();
  499 
  500         /* A quick check from sanity claus */
  501         if (PCPU_GET(apic_id) != lapic_id()) {
  502                 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
  503                 printf("SMP: actual apic_id = %d\n", lapic_id());
  504                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  505                 panic("cpuid mismatch! boom!!");
  506         }
  507 
  508         /* Initialize curthread. */
  509         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  510         PCPU_SET(curthread, PCPU_GET(idlethread));
  511 
  512         mtx_lock_spin(&ap_boot_mtx);
  513 
  514         /* Init local apic for irq's */
  515         lapic_setup();
  516 
  517         /* Set memory range attributes for this CPU to match the BSP */
  518         mem_range_AP_init();
  519 
  520         smp_cpus++;
  521 
  522         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
  523         printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
  524 
  525         /* Determine if we are a logical CPU. */
  526         if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
  527                 logical_cpus_mask |= PCPU_GET(cpumask);
  528         
  529         /* Determine if we are a hyperthread. */
  530         if (hyperthreading_cpus > 1 &&
  531             PCPU_GET(apic_id) % hyperthreading_cpus != 0)
  532                 hyperthreading_cpus_mask |= PCPU_GET(cpumask);
  533 
  534         /* Build our map of 'other' CPUs. */
  535         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  536 
  537         if (bootverbose)
  538                 lapic_dump("AP");
  539 
  540         if (smp_cpus == mp_ncpus) {
  541                 /* enable IPI's, tlb shootdown, freezes etc */
  542                 atomic_store_rel_int(&smp_started, 1);
  543                 smp_active = 1;  /* historic */
  544         }
  545 
  546         mtx_unlock_spin(&ap_boot_mtx);
  547 
  548         /* wait until all the AP's are up */
  549         while (smp_started == 0)
  550                 ia32_pause();
  551 
  552         /* ok, now grab sched_lock and enter the scheduler */
  553         mtx_lock_spin(&sched_lock);
  554 
  555         /*
  556          * Correct spinlock nesting.  The idle thread context that we are
  557          * borrowing was created so that it would start out with a single
  558          * spin lock (sched_lock) held in fork_trampoline().  Since we've
  559          * explicitly acquired locks in this function, the nesting count
  560          * is now 2 rather than 1.  Since we are nested, calling
  561          * spinlock_exit() will simply adjust the counts without allowing
  562          * spin lock using code to interrupt us.
  563          */
  564         spinlock_exit();
  565         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
  566 
  567         binuptime(PCPU_PTR(switchtime));
  568         PCPU_SET(switchticks, ticks);
  569 
  570         cpu_throw(NULL, choosethread());        /* doesn't return */
  571 
  572         panic("scheduler returned us to %s", __func__);
  573         /* NOTREACHED */
  574 }
  575 
  576 /*******************************************************************
  577  * local functions and data
  578  */
  579 
  580 /*
  581  * Set the APIC logical IDs.
  582  *
  583  * We want to cluster logical CPU's within the same APIC ID cluster.
  584  * Since logical CPU's are aligned simply filling in the clusters in
  585  * APIC ID order works fine.  Note that this does not try to balance
  586  * the number of CPU's in each cluster. (XXX?)
  587  */
  588 static void
  589 set_logical_apic_ids(void)
  590 {
  591         u_int apic_id, cluster, cluster_id;
  592 
  593         /* Force us to allocate cluster 0 at the start. */
  594         cluster = -1;
  595         cluster_id = APIC_MAX_INTRACLUSTER_ID;
  596         for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
  597                 if (!cpu_info[apic_id].cpu_present)
  598                         continue;
  599                 if (cluster_id == APIC_MAX_INTRACLUSTER_ID) {
  600                         cluster = ioapic_next_logical_cluster();
  601                         cluster_id = 0;
  602                 } else
  603                         cluster_id++;
  604                 if (bootverbose)
  605                         printf("APIC ID: physical %u, logical %u:%u\n",
  606                             apic_id, cluster, cluster_id);
  607                 lapic_set_logical_id(apic_id, cluster, cluster_id);
  608         }
  609 }
  610 
  611 /*
  612  * start each AP in our list
  613  */
  614 static int
  615 start_all_aps(void)
  616 {
  617         vm_offset_t va = boot_address + KERNBASE;
  618         u_int64_t *pt4, *pt3, *pt2;
  619         u_int32_t mpbioswarmvec;
  620         int apic_id, cpu, i;
  621         u_char mpbiosreason;
  622 
  623         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  624 
  625         /* install the AP 1st level boot code */
  626         pmap_kenter(va, boot_address);
  627         pmap_invalidate_page(kernel_pmap, va);
  628         bcopy(mptramp_start, (void *)va, bootMP_size);
  629 
  630         /* Locate the page tables, they'll be below the trampoline */
  631         pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
  632         pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
  633         pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
  634 
  635         /* Create the initial 1GB replicated page tables */
  636         for (i = 0; i < 512; i++) {
  637                 /* Each slot of the level 4 pages points to the same level 3 page */
  638                 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
  639                 pt4[i] |= PG_V | PG_RW | PG_U;
  640 
  641                 /* Each slot of the level 3 pages points to the same level 2 page */
  642                 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
  643                 pt3[i] |= PG_V | PG_RW | PG_U;
  644 
  645                 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
  646                 pt2[i] = i * (2 * 1024 * 1024);
  647                 pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
  648         }
  649 
  650         /* save the current value of the warm-start vector */
  651         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  652         outb(CMOS_REG, BIOS_RESET);
  653         mpbiosreason = inb(CMOS_DATA);
  654 
  655         /* setup a vector to our boot code */
  656         *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  657         *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  658         outb(CMOS_REG, BIOS_RESET);
  659         outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  660 
  661         /* start each AP */
  662         for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
  663 
  664                 /* Ignore non-existent CPUs and the BSP. */
  665                 if (!cpu_info[apic_id].cpu_present ||
  666                     cpu_info[apic_id].cpu_bsp)
  667                         continue;
  668 
  669                 /* Don't use this CPU if it has been disabled by a tunable. */
  670                 if (resource_disabled("lapic", apic_id)) {
  671                         cpu_info[apic_id].cpu_disabled = 1;
  672                         mp_ncpus--;
  673                         continue;
  674                 }
  675 
  676                 cpu++;
  677 
  678                 /* save APIC ID for this logical ID */
  679                 cpu_apic_ids[cpu] = apic_id;
  680 
  681                 /* allocate and set up an idle stack data page */
  682                 bootstacks[cpu] = (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  683 
  684                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
  685                 bootAP = cpu;
  686 
  687                 /* attempt to start the Application Processor */
  688                 if (!start_ap(apic_id)) {
  689                         /* restore the warmstart vector */
  690                         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  691                         panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
  692                 }
  693 
  694                 all_cpus |= (1 << cpu);         /* record AP in CPU map */
  695         }
  696 
  697         /* build our map of 'other' CPUs */
  698         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  699 
  700         /* restore the warmstart vector */
  701         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  702 
  703         outb(CMOS_REG, BIOS_RESET);
  704         outb(CMOS_DATA, mpbiosreason);
  705 
  706         /* number of APs actually started */
  707         return mp_naps;
  708 }
  709 
  710 
  711 /*
  712  * This function starts the AP (application processor) identified
  713  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  714  * to accomplish this.  This is necessary because of the nuances
  715  * of the different hardware we might encounter.  It isn't pretty,
  716  * but it seems to work.
  717  */
  718 static int
  719 start_ap(int apic_id)
  720 {
  721         int vector, ms;
  722         int cpus;
  723 
  724         /* calculate the vector */
  725         vector = (boot_address >> 12) & 0xff;
  726 
  727         /* used as a watchpoint to signal AP startup */
  728         cpus = mp_naps;
  729 
  730         /*
  731          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
  732          * and running the target CPU. OR this INIT IPI might be latched (P5
  733          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
  734          * ignored.
  735          */
  736 
  737         /* do an INIT IPI: assert RESET */
  738         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  739             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
  740 
  741         /* wait for pending status end */
  742         lapic_ipi_wait(-1);
  743 
  744         /* do an INIT IPI: deassert RESET */
  745         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
  746             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
  747 
  748         /* wait for pending status end */
  749         DELAY(10000);           /* wait ~10mS */
  750         lapic_ipi_wait(-1);
  751 
  752         /*
  753          * next we do a STARTUP IPI: the previous INIT IPI might still be
  754          * latched, (P5 bug) this 1st STARTUP would then terminate
  755          * immediately, and the previously started INIT IPI would continue. OR
  756          * the previous INIT IPI has already run. and this STARTUP IPI will
  757          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
  758          * will run.
  759          */
  760 
  761         /* do a STARTUP IPI */
  762         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  763             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  764             vector, apic_id);
  765         lapic_ipi_wait(-1);
  766         DELAY(200);             /* wait ~200uS */
  767 
  768         /*
  769          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
  770          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
  771          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
  772          * recognized after hardware RESET or INIT IPI.
  773          */
  774 
  775         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  776             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  777             vector, apic_id);
  778         lapic_ipi_wait(-1);
  779         DELAY(200);             /* wait ~200uS */
  780 
  781         /* Wait up to 5 seconds for it to start. */
  782         for (ms = 0; ms < 5000; ms++) {
  783                 if (mp_naps > cpus)
  784                         return 1;       /* return SUCCESS */
  785                 DELAY(1000);
  786         }
  787         return 0;               /* return FAILURE */
  788 }
  789 
  790 /*
  791  * Flush the TLB on all other CPU's
  792  */
  793 static void
  794 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
  795 {
  796         u_int ncpu;
  797 
  798         ncpu = mp_ncpus - 1;    /* does not shootdown self */
  799         if (ncpu < 1)
  800                 return;         /* no other cpus */
  801         mtx_assert(&smp_ipi_mtx, MA_OWNED);
  802         smp_tlb_addr1 = addr1;
  803         smp_tlb_addr2 = addr2;
  804         atomic_store_rel_int(&smp_tlb_wait, 0);
  805         ipi_all_but_self(vector);
  806         while (smp_tlb_wait < ncpu)
  807                 ia32_pause();
  808 }
  809 
  810 static void
  811 smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
  812 {
  813         int ncpu, othercpus;
  814 
  815         othercpus = mp_ncpus - 1;
  816         if (mask == (u_int)-1) {
  817                 ncpu = othercpus;
  818                 if (ncpu < 1)
  819                         return;
  820         } else {
  821                 mask &= ~PCPU_GET(cpumask);
  822                 if (mask == 0)
  823                         return;
  824                 ncpu = bitcount32(mask);
  825                 if (ncpu > othercpus) {
  826                         /* XXX this should be a panic offence */
  827                         printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
  828                             ncpu, othercpus);
  829                         ncpu = othercpus;
  830                 }
  831                 /* XXX should be a panic, implied by mask == 0 above */
  832                 if (ncpu < 1)
  833                         return;
  834         }
  835         mtx_assert(&smp_ipi_mtx, MA_OWNED);
  836         smp_tlb_addr1 = addr1;
  837         smp_tlb_addr2 = addr2;
  838         atomic_store_rel_int(&smp_tlb_wait, 0);
  839         if (mask == (u_int)-1)
  840                 ipi_all_but_self(vector);
  841         else
  842                 ipi_selected(mask, vector);
  843         while (smp_tlb_wait < ncpu)
  844                 ia32_pause();
  845 }
  846 
  847 void
  848 smp_invltlb(void)
  849 {
  850 
  851         if (smp_started) {
  852                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
  853         }
  854 }
  855 
  856 void
  857 smp_invlpg(vm_offset_t addr)
  858 {
  859 
  860         if (smp_started)
  861                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
  862 }
  863 
  864 void
  865 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
  866 {
  867 
  868         if (smp_started) {
  869                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
  870         }
  871 }
  872 
  873 void
  874 smp_masked_invltlb(u_int mask)
  875 {
  876 
  877         if (smp_started) {
  878                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
  879         }
  880 }
  881 
  882 void
  883 smp_masked_invlpg(u_int mask, vm_offset_t addr)
  884 {
  885 
  886         if (smp_started) {
  887                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
  888         }
  889 }
  890 
  891 void
  892 smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
  893 {
  894 
  895         if (smp_started) {
  896                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
  897         }
  898 }
  899 
  900 
  901 void
  902 ipi_bitmap_handler(struct clockframe frame)
  903 {
  904         int cpu = PCPU_GET(cpuid);
  905         u_int ipi_bitmap;
  906 
  907         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
  908 
  909 #ifdef IPI_PREEMPTION
  910         if (ipi_bitmap & IPI_PREEMPT) {
  911                 mtx_lock_spin(&sched_lock);
  912                 /* Don't preempt the idle thread */
  913                 if (curthread->td_priority <  PRI_MIN_IDLE) {
  914                         struct thread *running_thread = curthread;
  915                         if (running_thread->td_critnest > 1) 
  916                                 running_thread->td_owepreempt = 1;
  917                         else            
  918                                 mi_switch(SW_INVOL | SW_PREEMPT, NULL);
  919                 }
  920                 mtx_unlock_spin(&sched_lock);
  921         }
  922 #endif
  923 
  924         /* Nothing to do for AST */
  925 }
  926 
  927 /*
  928  * send an IPI to a set of cpus.
  929  */
  930 void
  931 ipi_selected(u_int32_t cpus, u_int ipi)
  932 {
  933         int cpu;
  934         u_int bitmap = 0;
  935         u_int old_pending;
  936         u_int new_pending;
  937 
  938         if (IPI_IS_BITMAPED(ipi)) { 
  939                 bitmap = 1 << ipi;
  940                 ipi = IPI_BITMAP_VECTOR;
  941         }
  942 
  943         CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
  944         while ((cpu = ffs(cpus)) != 0) {
  945                 cpu--;
  946                 cpus &= ~(1 << cpu);
  947 
  948                 KASSERT(cpu_apic_ids[cpu] != -1,
  949                     ("IPI to non-existent CPU %d", cpu));
  950 
  951                 if (bitmap) {
  952                         do {
  953                                 old_pending = cpu_ipi_pending[cpu];
  954                                 new_pending = old_pending | bitmap;
  955                         } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));  
  956 
  957                         if (old_pending)
  958                                 continue;
  959                 }
  960 
  961                 lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
  962         }
  963 
  964 }
  965 
  966 /*
  967  * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
  968  */
  969 void
  970 ipi_all(u_int ipi)
  971 {
  972 
  973         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
  974         lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
  975 }
  976 
  977 /*
  978  * send an IPI to all CPUs EXCEPT myself
  979  */
  980 void
  981 ipi_all_but_self(u_int ipi)
  982 {
  983 
  984         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
  985         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
  986 }
  987 
  988 /*
  989  * send an IPI to myself
  990  */
  991 void
  992 ipi_self(u_int ipi)
  993 {
  994 
  995         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
  996         lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
  997 }
  998 
  999 #ifdef KDB_STOP_NMI
 1000 /*
 1001  * send NMI IPI to selected CPUs
 1002  */
 1003 
 1004 #define BEFORE_SPIN     1000000
 1005 
 1006 void
 1007 ipi_nmi_selected(u_int32_t cpus)
 1008 {
 1009 
 1010         int cpu;
 1011         register_t icrlo;
 1012 
 1013         icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT 
 1014                 | APIC_TRIGMOD_EDGE; 
 1015         
 1016         CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
 1017 
 1018 
 1019         atomic_set_int(&ipi_nmi_pending, cpus);
 1020 
 1021 
 1022         while ((cpu = ffs(cpus)) != 0) {
 1023                 cpu--;
 1024                 cpus &= ~(1 << cpu);
 1025 
 1026                 KASSERT(cpu_apic_ids[cpu] != -1,
 1027                     ("IPI NMI to non-existent CPU %d", cpu));
 1028                 
 1029                 /* Wait for an earlier IPI to finish. */
 1030                 if (!lapic_ipi_wait(BEFORE_SPIN))
 1031                         panic("ipi_nmi_selected: previous IPI has not cleared");
 1032 
 1033                 lapic_ipi_raw(icrlo,cpu_apic_ids[cpu]);
 1034         }
 1035 }
 1036 
 1037 
 1038 int
 1039 ipi_nmi_handler()
 1040 {
 1041         int cpu  = PCPU_GET(cpuid);
 1042 
 1043         if(!(atomic_load_acq_int(&ipi_nmi_pending) & (1 << cpu)))
 1044                 return 1;
 1045 
 1046         atomic_clear_int(&ipi_nmi_pending,1 << cpu);
 1047 
 1048         savectx(&stoppcbs[cpu]);
 1049 
 1050         /* Indicate that we are stopped */
 1051         atomic_set_int(&stopped_cpus,1 << cpu);
 1052 
 1053 
 1054         /* Wait for restart */
 1055         while(!(atomic_load_acq_int(&started_cpus) & (1 << cpu)))
 1056             ia32_pause();
 1057 
 1058         atomic_clear_int(&started_cpus,1 << cpu);
 1059         atomic_clear_int(&stopped_cpus,1 << cpu);
 1060 
 1061         if(cpu == 0 && cpustop_restartfunc != NULL)
 1062                 cpustop_restartfunc();
 1063 
 1064         return 0;
 1065 }
 1066      
 1067 #endif /* KDB_STOP_NMI */
 1068 
 1069 /*
 1070  * This is called once the rest of the system is up and running and we're
 1071  * ready to let the AP's out of the pen.
 1072  */
 1073 static void
 1074 release_aps(void *dummy __unused)
 1075 {
 1076 
 1077         if (mp_ncpus == 1) 
 1078                 return;
 1079         mtx_lock_spin(&sched_lock);
 1080         atomic_store_rel_int(&aps_ready, 1);
 1081         while (smp_started == 0)
 1082                 ia32_pause();
 1083         mtx_unlock_spin(&sched_lock);
 1084 }
 1085 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1086 
 1087 static int
 1088 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
 1089 {
 1090         u_int mask;
 1091         int error;
 1092 
 1093         mask = hlt_cpus_mask;
 1094         error = sysctl_handle_int(oidp, &mask, 0, req);
 1095         if (error || !req->newptr)
 1096                 return (error);
 1097 
 1098         if (logical_cpus_mask != 0 &&
 1099             (mask & logical_cpus_mask) == logical_cpus_mask)
 1100                 hlt_logical_cpus = 1;
 1101         else
 1102                 hlt_logical_cpus = 0;
 1103 
 1104         if (! hyperthreading_allowed)
 1105                 mask |= hyperthreading_cpus_mask;
 1106 
 1107         if ((mask & all_cpus) == all_cpus)
 1108                 mask &= ~(1<<0);
 1109         hlt_cpus_mask = mask;
 1110         return (error);
 1111 }
 1112 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
 1113     0, 0, sysctl_hlt_cpus, "IU",
 1114     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
 1115 
 1116 static int
 1117 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
 1118 {
 1119         int disable, error;
 1120 
 1121         disable = hlt_logical_cpus;
 1122         error = sysctl_handle_int(oidp, &disable, 0, req);
 1123         if (error || !req->newptr)
 1124                 return (error);
 1125 
 1126         if (disable)
 1127                 hlt_cpus_mask |= logical_cpus_mask;
 1128         else
 1129                 hlt_cpus_mask &= ~logical_cpus_mask;
 1130 
 1131         if (! hyperthreading_allowed)
 1132                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1133 
 1134         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1135                 hlt_cpus_mask &= ~(1<<0);
 1136 
 1137         hlt_logical_cpus = disable;
 1138         return (error);
 1139 }
 1140 
 1141 static int
 1142 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
 1143 {
 1144         int allowed, error;
 1145 
 1146         allowed = hyperthreading_allowed;
 1147         error = sysctl_handle_int(oidp, &allowed, 0, req);
 1148         if (error || !req->newptr)
 1149                 return (error);
 1150 
 1151         if (allowed)
 1152                 hlt_cpus_mask &= ~hyperthreading_cpus_mask;
 1153         else
 1154                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1155 
 1156         if (logical_cpus_mask != 0 &&
 1157             (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
 1158                 hlt_logical_cpus = 1;
 1159         else
 1160                 hlt_logical_cpus = 0;
 1161 
 1162         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1163                 hlt_cpus_mask &= ~(1<<0);
 1164 
 1165         hyperthreading_allowed = allowed;
 1166         return (error);
 1167 }
 1168 
 1169 static void
 1170 cpu_hlt_setup(void *dummy __unused)
 1171 {
 1172 
 1173         if (logical_cpus_mask != 0) {
 1174                 TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
 1175                     &hlt_logical_cpus);
 1176                 sysctl_ctx_init(&logical_cpu_clist);
 1177                 SYSCTL_ADD_PROC(&logical_cpu_clist,
 1178                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1179                     "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
 1180                     sysctl_hlt_logical_cpus, "IU", "");
 1181                 SYSCTL_ADD_UINT(&logical_cpu_clist,
 1182                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1183                     "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
 1184                     &logical_cpus_mask, 0, "");
 1185 
 1186                 if (hlt_logical_cpus)
 1187                         hlt_cpus_mask |= logical_cpus_mask;
 1188 
 1189                 /*
 1190                  * If necessary for security purposes, force
 1191                  * hyperthreading off, regardless of the value
 1192                  * of hlt_logical_cpus.
 1193                  */
 1194                 if (hyperthreading_cpus_mask) {
 1195                         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
 1196                             &hyperthreading_allowed);
 1197                         SYSCTL_ADD_PROC(&logical_cpu_clist,
 1198                             SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1199                             "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
 1200                             0, 0, sysctl_hyperthreading_allowed, "IU", "");
 1201                         if (! hyperthreading_allowed)
 1202                                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1203                 }
 1204         }
 1205 }
 1206 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
 1207 
 1208 int
 1209 mp_grab_cpu_hlt(void)
 1210 {
 1211         u_int mask = PCPU_GET(cpumask);
 1212 #ifdef MP_WATCHDOG
 1213         u_int cpuid = PCPU_GET(cpuid);
 1214 #endif
 1215         int retval;
 1216 
 1217 #ifdef MP_WATCHDOG
 1218         ap_watchdog(cpuid);
 1219 #endif
 1220 
 1221         retval = mask & hlt_cpus_mask;
 1222         while (mask & hlt_cpus_mask)
 1223                 __asm __volatile("sti; hlt" : : : "memory");
 1224         return (retval);
 1225 }

Cache object: 9649f504d4a19ef781e23c20a7f4fa07


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.