The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * Copyright (c) 2003, by Peter Wemm
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the developer may NOT be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.0/sys/amd64/amd64/mp_machdep.c 196198 2009-08-13 17:54:11Z attilio $");
   29 
   30 #include "opt_cpu.h"
   31 #include "opt_kstack_pages.h"
   32 #include "opt_mp_watchdog.h"
   33 #include "opt_sched.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/bus.h>
   38 #ifdef GPROF 
   39 #include <sys/gmon.h>
   40 #endif
   41 #include <sys/kernel.h>
   42 #include <sys/ktr.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/memrange.h>
   46 #include <sys/mutex.h>
   47 #include <sys/pcpu.h>
   48 #include <sys/proc.h>
   49 #include <sys/sched.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 
   53 #include <vm/vm.h>
   54 #include <vm/vm_param.h>
   55 #include <vm/pmap.h>
   56 #include <vm/vm_kern.h>
   57 #include <vm/vm_extern.h>
   58 
   59 #include <machine/apicreg.h>
   60 #include <machine/clock.h>
   61 #include <machine/cputypes.h>
   62 #include <machine/cpufunc.h>
   63 #include <machine/mca.h>
   64 #include <machine/md_var.h>
   65 #include <machine/mp_watchdog.h>
   66 #include <machine/pcb.h>
   67 #include <machine/psl.h>
   68 #include <machine/smp.h>
   69 #include <machine/specialreg.h>
   70 #include <machine/tss.h>
   71 
   72 #define WARMBOOT_TARGET         0
   73 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   74 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   75 
   76 #define CMOS_REG                (0x70)
   77 #define CMOS_DATA               (0x71)
   78 #define BIOS_RESET              (0x0f)
   79 #define BIOS_WARM               (0x0a)
   80 
   81 /* lock region used by kernel profiling */
   82 int     mcount_lock;
   83 
   84 int     mp_naps;                /* # of Applications processors */
   85 int     boot_cpu_id = -1;       /* designated BSP */
   86 
   87 extern  struct pcpu __pcpu[];
   88 
   89 /* AP uses this during bootstrap.  Do not staticize.  */
   90 char *bootSTK;
   91 static int bootAP;
   92 
   93 /* Free these after use */
   94 void *bootstacks[MAXCPU];
   95 
   96 /* Temporary variables for init_secondary()  */
   97 char *doublefault_stack;
   98 char *nmi_stack;
   99 void *dpcpu;
  100 
  101 /* Hotwire a 0->4MB V==P mapping */
  102 extern pt_entry_t *KPTphys;
  103 
  104 /* SMP page table page */
  105 extern pt_entry_t *SMPpt;
  106 
  107 struct pcb stoppcbs[MAXCPU];
  108 struct xpcb *stopxpcbs = NULL;
  109 
  110 /* Variables needed for SMP tlb shootdown. */
  111 vm_offset_t smp_tlb_addr1;
  112 vm_offset_t smp_tlb_addr2;
  113 volatile int smp_tlb_wait;
  114 
  115 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  116 
  117 /*
  118  * Local data and functions.
  119  */
  120 
  121 static u_int logical_cpus;
  122 static volatile cpumask_t ipi_nmi_pending;
  123 
  124 /* used to hold the AP's until we are ready to release them */
  125 static struct mtx ap_boot_mtx;
  126 
  127 /* Set to 1 once we're ready to let the APs out of the pen. */
  128 static volatile int aps_ready = 0;
  129 
  130 /*
  131  * Store data from cpu_add() until later in the boot when we actually setup
  132  * the APs.
  133  */
  134 struct cpu_info {
  135         int     cpu_present:1;
  136         int     cpu_bsp:1;
  137         int     cpu_disabled:1;
  138         int     cpu_hyperthread:1;
  139 } static cpu_info[MAX_APIC_ID + 1];
  140 int cpu_apic_ids[MAXCPU];
  141 int apic_cpuids[MAX_APIC_ID + 1];
  142 
  143 /* Holds pending bitmap based IPIs per CPU */
  144 static volatile u_int cpu_ipi_pending[MAXCPU];
  145 
  146 static u_int boot_address;
  147 static int cpu_logical;
  148 static int cpu_cores;
  149 
  150 static void     assign_cpu_ids(void);
  151 static void     set_interrupt_apic_ids(void);
  152 static int      start_all_aps(void);
  153 static int      start_ap(int apic_id);
  154 static void     release_aps(void *dummy);
  155 
  156 static int      hlt_logical_cpus;
  157 static u_int    hyperthreading_cpus;
  158 static cpumask_t        hyperthreading_cpus_mask;
  159 static int      hyperthreading_allowed = 1;
  160 static struct   sysctl_ctx_list logical_cpu_clist;
  161 static u_int    bootMP_size;
  162 
  163 static void
  164 mem_range_AP_init(void)
  165 {
  166         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  167                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  168 }
  169 
  170 static void
  171 topo_probe_0xb(void)
  172 {
  173         int logical;
  174         int p[4];
  175         int bits;
  176         int type;
  177         int cnt;
  178         int i;
  179         int x;
  180 
  181         /* We only support two levels for now. */
  182         for (i = 0; i < 3; i++) {
  183                 cpuid_count(0x0B, i, p);
  184                 bits = p[0] & 0x1f;
  185                 logical = p[1] &= 0xffff;
  186                 type = (p[2] >> 8) & 0xff;
  187                 if (type == 0 || logical == 0)
  188                         break;
  189                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  190                         if (!cpu_info[x].cpu_present ||
  191                             cpu_info[x].cpu_disabled)
  192                                 continue;
  193                         if (x >> bits == boot_cpu_id >> bits)
  194                                 cnt++;
  195                 }
  196                 if (type == CPUID_TYPE_SMT)
  197                         cpu_logical = cnt;
  198                 else if (type == CPUID_TYPE_CORE)
  199                         cpu_cores = cnt;
  200         }
  201         if (cpu_logical == 0)
  202                 cpu_logical = 1;
  203         cpu_cores /= cpu_logical;
  204 }
  205 
  206 static void
  207 topo_probe_0x4(void)
  208 {
  209         u_int threads_per_cache, p[4];
  210         u_int htt, cmp;
  211         int i;
  212 
  213         htt = cmp = 1;
  214         /*
  215          * If this CPU supports HTT or CMP then mention the
  216          * number of physical/logical cores it contains.
  217          */
  218         if (cpu_feature & CPUID_HTT)
  219                 htt = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  220         if (cpu_vendor_id == CPU_VENDOR_AMD && (amd_feature2 & AMDID2_CMP))
  221                 cmp = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
  222         else if (cpu_vendor_id == CPU_VENDOR_INTEL && (cpu_high >= 4)) {
  223                 cpuid_count(4, 0, p);
  224                 if ((p[0] & 0x1f) != 0)
  225                         cmp = ((p[0] >> 26) & 0x3f) + 1;
  226         }
  227         cpu_cores = cmp;
  228         cpu_logical = htt / cmp;
  229 
  230         /* Setup the initial logical CPUs info. */
  231         if (cpu_feature & CPUID_HTT)
  232                 logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
  233 
  234         /*
  235          * Work out if hyperthreading is *really* enabled.  This
  236          * is made really ugly by the fact that processors lie: Dual
  237          * core processors claim to be hyperthreaded even when they're
  238          * not, presumably because they want to be treated the same
  239          * way as HTT with respect to per-cpu software licensing.
  240          * At the time of writing (May 12, 2005) the only hyperthreaded
  241          * cpus are from Intel, and Intel's dual-core processors can be
  242          * identified via the "deterministic cache parameters" cpuid
  243          * calls.
  244          */
  245         /*
  246          * First determine if this is an Intel processor which claims
  247          * to have hyperthreading support.
  248          */
  249         if ((cpu_feature & CPUID_HTT) && cpu_vendor_id == CPU_VENDOR_INTEL) {
  250                 /*
  251                  * If the "deterministic cache parameters" cpuid calls
  252                  * are available, use them.
  253                  */
  254                 if (cpu_high >= 4) {
  255                         /* Ask the processor about the L1 cache. */
  256                         for (i = 0; i < 1; i++) {
  257                                 cpuid_count(4, i, p);
  258                                 threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
  259                                 if (hyperthreading_cpus < threads_per_cache)
  260                                         hyperthreading_cpus = threads_per_cache;
  261                                 if ((p[0] & 0x1f) == 0)
  262                                         break;
  263                         }
  264                 }
  265 
  266                 /*
  267                  * If the deterministic cache parameters are not
  268                  * available, or if no caches were reported to exist,
  269                  * just accept what the HTT flag indicated.
  270                  */
  271                 if (hyperthreading_cpus == 0)
  272                         hyperthreading_cpus = logical_cpus;
  273         }
  274 }
  275 
  276 static void
  277 topo_probe(void)
  278 {
  279         static int cpu_topo_probed = 0;
  280 
  281         if (cpu_topo_probed)
  282                 return;
  283 
  284         logical_cpus = logical_cpus_mask = 0;
  285         if (cpu_high >= 0xb)
  286                 topo_probe_0xb();
  287         else if (cpu_high)
  288                 topo_probe_0x4();
  289         if (cpu_cores == 0)
  290                 cpu_cores = mp_ncpus > 0 ? mp_ncpus : 1;
  291         if (cpu_logical == 0)
  292                 cpu_logical = 1;
  293         cpu_topo_probed = 1;
  294 }
  295 
  296 struct cpu_group *
  297 cpu_topo(void)
  298 {
  299         int cg_flags;
  300 
  301         /*
  302          * Determine whether any threading flags are
  303          * necessry.
  304          */
  305         topo_probe();
  306         if (cpu_logical > 1 && hyperthreading_cpus)
  307                 cg_flags = CG_FLAG_HTT;
  308         else if (cpu_logical > 1)
  309                 cg_flags = CG_FLAG_SMT;
  310         else
  311                 cg_flags = 0;
  312         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  313                 printf("WARNING: Non-uniform processors.\n");
  314                 printf("WARNING: Using suboptimal topology.\n");
  315                 return (smp_topo_none());
  316         }
  317         /*
  318          * No multi-core or hyper-threaded.
  319          */
  320         if (cpu_logical * cpu_cores == 1)
  321                 return (smp_topo_none());
  322         /*
  323          * Only HTT no multi-core.
  324          */
  325         if (cpu_logical > 1 && cpu_cores == 1)
  326                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  327         /*
  328          * Only multi-core no HTT.
  329          */
  330         if (cpu_cores > 1 && cpu_logical == 1)
  331                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  332         /*
  333          * Both HTT and multi-core.
  334          */
  335         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  336             CG_SHARE_L1, cpu_logical, cg_flags));
  337 }
  338 
  339 /*
  340  * Calculate usable address in base memory for AP trampoline code.
  341  */
  342 u_int
  343 mp_bootaddress(u_int basemem)
  344 {
  345 
  346         bootMP_size = mptramp_end - mptramp_start;
  347         boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
  348         if (((basemem * 1024) - boot_address) < bootMP_size)
  349                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  350         /* 3 levels of page table pages */
  351         mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
  352 
  353         return mptramp_pagetables;
  354 }
  355 
  356 void
  357 cpu_add(u_int apic_id, char boot_cpu)
  358 {
  359 
  360         if (apic_id > MAX_APIC_ID) {
  361                 panic("SMP: APIC ID %d too high", apic_id);
  362                 return;
  363         }
  364         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  365             apic_id));
  366         cpu_info[apic_id].cpu_present = 1;
  367         if (boot_cpu) {
  368                 KASSERT(boot_cpu_id == -1,
  369                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  370                     boot_cpu_id));
  371                 boot_cpu_id = apic_id;
  372                 cpu_info[apic_id].cpu_bsp = 1;
  373         }
  374         if (mp_ncpus < MAXCPU) {
  375                 mp_ncpus++;
  376                 mp_maxid = mp_ncpus -1;
  377         }
  378         if (bootverbose)
  379                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  380                     "AP");
  381 }
  382 
  383 void
  384 cpu_mp_setmaxid(void)
  385 {
  386 
  387         /*
  388          * mp_maxid should be already set by calls to cpu_add().
  389          * Just sanity check its value here.
  390          */
  391         if (mp_ncpus == 0)
  392                 KASSERT(mp_maxid == 0,
  393                     ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
  394         else if (mp_ncpus == 1)
  395                 mp_maxid = 0;
  396         else
  397                 KASSERT(mp_maxid >= mp_ncpus - 1,
  398                     ("%s: counters out of sync: max %d, count %d", __func__,
  399                         mp_maxid, mp_ncpus));           
  400 }
  401 
  402 int
  403 cpu_mp_probe(void)
  404 {
  405 
  406         /*
  407          * Always record BSP in CPU map so that the mbuf init code works
  408          * correctly.
  409          */
  410         all_cpus = 1;
  411         if (mp_ncpus == 0) {
  412                 /*
  413                  * No CPUs were found, so this must be a UP system.  Setup
  414                  * the variables to represent a system with a single CPU
  415                  * with an id of 0.
  416                  */
  417                 mp_ncpus = 1;
  418                 return (0);
  419         }
  420 
  421         /* At least one CPU was found. */
  422         if (mp_ncpus == 1) {
  423                 /*
  424                  * One CPU was found, so this must be a UP system with
  425                  * an I/O APIC.
  426                  */
  427                 mp_maxid = 0;
  428                 return (0);
  429         }
  430 
  431         /* At least two CPUs were found. */
  432         return (1);
  433 }
  434 
  435 /*
  436  * Initialize the IPI handlers and start up the AP's.
  437  */
  438 void
  439 cpu_mp_start(void)
  440 {
  441         int i;
  442 
  443         /* Initialize the logical ID to APIC ID table. */
  444         for (i = 0; i < MAXCPU; i++) {
  445                 cpu_apic_ids[i] = -1;
  446                 cpu_ipi_pending[i] = 0;
  447         }
  448 
  449         /* Install an inter-CPU IPI for TLB invalidation */
  450         setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
  451         setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
  452         setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
  453 
  454         /* Install an inter-CPU IPI for cache invalidation. */
  455         setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
  456 
  457         /* Install an inter-CPU IPI for all-CPU rendezvous */
  458         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
  459 
  460         /* Install generic inter-CPU IPI handler */
  461         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  462                SDT_SYSIGT, SEL_KPL, 0);
  463 
  464         /* Install an inter-CPU IPI for CPU stop/restart */
  465         setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
  466 
  467         /* Install an inter-CPU IPI for CPU suspend/resume */
  468         setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
  469 
  470         /* Set boot_cpu_id if needed. */
  471         if (boot_cpu_id == -1) {
  472                 boot_cpu_id = PCPU_GET(apic_id);
  473                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  474         } else
  475                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  476                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  477 
  478         /* Probe logical/physical core configuration. */
  479         topo_probe();
  480 
  481         assign_cpu_ids();
  482 
  483         /* Start each Application Processor */
  484         start_all_aps();
  485 
  486         set_interrupt_apic_ids();
  487 }
  488 
  489 
  490 /*
  491  * Print various information about the SMP system hardware and setup.
  492  */
  493 void
  494 cpu_mp_announce(void)
  495 {
  496         const char *hyperthread;
  497         int i;
  498 
  499         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  500             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  501         if (hyperthreading_cpus > 1)
  502             printf(" x %d HTT threads", cpu_logical);
  503         else if (cpu_logical > 1)
  504             printf(" x %d SMT threads", cpu_logical);
  505         printf("\n");
  506 
  507         /* List active CPUs first. */
  508         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  509         for (i = 1; i < mp_ncpus; i++) {
  510                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  511                         hyperthread = "/HT";
  512                 else
  513                         hyperthread = "";
  514                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  515                     cpu_apic_ids[i]);
  516         }
  517 
  518         /* List disabled CPUs last. */
  519         for (i = 0; i <= MAX_APIC_ID; i++) {
  520                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  521                         continue;
  522                 if (cpu_info[i].cpu_hyperthread)
  523                         hyperthread = "/HT";
  524                 else
  525                         hyperthread = "";
  526                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  527                     i);
  528         }
  529 }
  530 
  531 /*
  532  * AP CPU's call this to initialize themselves.
  533  */
  534 void
  535 init_secondary(void)
  536 {
  537         struct pcpu *pc;
  538         struct nmi_pcpu *np;
  539         u_int64_t msr, cr0;
  540         int cpu, gsel_tss, x;
  541         struct region_descriptor ap_gdt;
  542 
  543         /* Set by the startup code for us to use */
  544         cpu = bootAP;
  545 
  546         /* Init tss */
  547         common_tss[cpu] = common_tss[0];
  548         common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
  549         common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
  550             IOPAGES * PAGE_SIZE;
  551         common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
  552 
  553         /* The NMI stack runs on IST2. */
  554         np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
  555         common_tss[cpu].tss_ist2 = (long) np;
  556 
  557         /* Prepare private GDT */
  558         gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
  559         for (x = 0; x < NGDT; x++) {
  560                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
  561                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
  562                         ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
  563         }
  564         ssdtosyssd(&gdt_segs[GPROC0_SEL],
  565             (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
  566         ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  567         ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
  568         lgdt(&ap_gdt);                  /* does magic intra-segment return */
  569 
  570         /* Get per-cpu data */
  571         pc = &__pcpu[cpu];
  572 
  573         /* prime data page for it to use */
  574         pcpu_init(pc, cpu, sizeof(struct pcpu));
  575         dpcpu_init(dpcpu, cpu);
  576         pc->pc_apic_id = cpu_apic_ids[cpu];
  577         pc->pc_prvspace = pc;
  578         pc->pc_curthread = 0;
  579         pc->pc_tssp = &common_tss[cpu];
  580         pc->pc_commontssp = &common_tss[cpu];
  581         pc->pc_rsp0 = 0;
  582         pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  583             GPROC0_SEL];
  584         pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
  585         pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
  586         pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  587             GUSERLDT_SEL];
  588 
  589         /* Save the per-cpu pointer for use by the NMI handler. */
  590         np->np_pcpu = (register_t) pc;
  591 
  592         wrmsr(MSR_FSBASE, 0);           /* User value */
  593         wrmsr(MSR_GSBASE, (u_int64_t)pc);
  594         wrmsr(MSR_KGSBASE, (u_int64_t)pc);      /* XXX User value while we're in the kernel */
  595 
  596         lidt(&r_idt);
  597 
  598         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  599         ltr(gsel_tss);
  600 
  601         /*
  602          * Set to a known state:
  603          * Set by mpboot.s: CR0_PG, CR0_PE
  604          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  605          */
  606         cr0 = rcr0();
  607         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  608         load_cr0(cr0);
  609 
  610         /* Set up the fast syscall stuff */
  611         msr = rdmsr(MSR_EFER) | EFER_SCE;
  612         wrmsr(MSR_EFER, msr);
  613         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
  614         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
  615         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
  616               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
  617         wrmsr(MSR_STAR, msr);
  618         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
  619 
  620         /* Disable local APIC just to be sure. */
  621         lapic_disable();
  622 
  623         /* signal our startup to the BSP. */
  624         mp_naps++;
  625 
  626         /* Spin until the BSP releases the AP's. */
  627         while (!aps_ready)
  628                 ia32_pause();
  629 
  630         /* Initialize the PAT MSR. */
  631         pmap_init_pat();
  632 
  633         /* set up CPU registers and state */
  634         cpu_setregs();
  635 
  636         /* set up SSE/NX registers */
  637         initializecpu();
  638 
  639         /* set up FPU state on the AP */
  640         fpuinit();
  641 
  642         /* A quick check from sanity claus */
  643         if (PCPU_GET(apic_id) != lapic_id()) {
  644                 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
  645                 printf("SMP: actual apic_id = %d\n", lapic_id());
  646                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  647                 panic("cpuid mismatch! boom!!");
  648         }
  649 
  650         /* Initialize curthread. */
  651         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  652         PCPU_SET(curthread, PCPU_GET(idlethread));
  653 
  654         mca_init();
  655 
  656         mtx_lock_spin(&ap_boot_mtx);
  657 
  658         /* Init local apic for irq's */
  659         lapic_setup(1);
  660 
  661         /* Set memory range attributes for this CPU to match the BSP */
  662         mem_range_AP_init();
  663 
  664         smp_cpus++;
  665 
  666         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
  667         printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
  668 
  669         /* Determine if we are a logical CPU. */
  670         if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
  671                 logical_cpus_mask |= PCPU_GET(cpumask);
  672         
  673         /* Determine if we are a hyperthread. */
  674         if (hyperthreading_cpus > 1 &&
  675             PCPU_GET(apic_id) % hyperthreading_cpus != 0)
  676                 hyperthreading_cpus_mask |= PCPU_GET(cpumask);
  677 
  678         /* Build our map of 'other' CPUs. */
  679         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  680 
  681         if (bootverbose)
  682                 lapic_dump("AP");
  683 
  684         if (smp_cpus == mp_ncpus) {
  685                 /* enable IPI's, tlb shootdown, freezes etc */
  686                 atomic_store_rel_int(&smp_started, 1);
  687                 smp_active = 1;  /* historic */
  688         }
  689 
  690         /*
  691          * Enable global pages TLB extension
  692          * This also implicitly flushes the TLB 
  693          */
  694 
  695         load_cr4(rcr4() | CR4_PGE);
  696         load_ds(_udatasel);
  697         load_es(_udatasel);
  698         load_fs(_ufssel);
  699         mtx_unlock_spin(&ap_boot_mtx);
  700 
  701         /* wait until all the AP's are up */
  702         while (smp_started == 0)
  703                 ia32_pause();
  704 
  705         sched_throw(NULL);
  706 
  707         panic("scheduler returned us to %s", __func__);
  708         /* NOTREACHED */
  709 }
  710 
  711 /*******************************************************************
  712  * local functions and data
  713  */
  714 
  715 /*
  716  * We tell the I/O APIC code about all the CPUs we want to receive
  717  * interrupts.  If we don't want certain CPUs to receive IRQs we
  718  * can simply not tell the I/O APIC code about them in this function.
  719  * We also do not tell it about the BSP since it tells itself about
  720  * the BSP internally to work with UP kernels and on UP machines.
  721  */
  722 static void
  723 set_interrupt_apic_ids(void)
  724 {
  725         u_int i, apic_id;
  726 
  727         for (i = 0; i < MAXCPU; i++) {
  728                 apic_id = cpu_apic_ids[i];
  729                 if (apic_id == -1)
  730                         continue;
  731                 if (cpu_info[apic_id].cpu_bsp)
  732                         continue;
  733                 if (cpu_info[apic_id].cpu_disabled)
  734                         continue;
  735 
  736                 /* Don't let hyperthreads service interrupts. */
  737                 if (hyperthreading_cpus > 1 &&
  738                     apic_id % hyperthreading_cpus != 0)
  739                         continue;
  740 
  741                 intr_add_cpu(i);
  742         }
  743 }
  744 
  745 /*
  746  * Assign logical CPU IDs to local APICs.
  747  */
  748 static void
  749 assign_cpu_ids(void)
  750 {
  751         u_int i;
  752 
  753         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  754             &hyperthreading_allowed);
  755 
  756         /* Check for explicitly disabled CPUs. */
  757         for (i = 0; i <= MAX_APIC_ID; i++) {
  758                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  759                         continue;
  760 
  761                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  762                         cpu_info[i].cpu_hyperthread = 1;
  763 #if defined(SCHED_ULE)
  764                         /*
  765                          * Don't use HT CPU if it has been disabled by a
  766                          * tunable.
  767                          */
  768                         if (hyperthreading_allowed == 0) {
  769                                 cpu_info[i].cpu_disabled = 1;
  770                                 continue;
  771                         }
  772 #endif
  773                 }
  774 
  775                 /* Don't use this CPU if it has been disabled by a tunable. */
  776                 if (resource_disabled("lapic", i)) {
  777                         cpu_info[i].cpu_disabled = 1;
  778                         continue;
  779                 }
  780         }
  781 
  782         /*
  783          * Assign CPU IDs to local APIC IDs and disable any CPUs
  784          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  785          *
  786          * To minimize confusion for userland, we attempt to number
  787          * CPUs such that all threads and cores in a package are
  788          * grouped together.  For now we assume that the BSP is always
  789          * the first thread in a package and just start adding APs
  790          * starting with the BSP's APIC ID.
  791          */
  792         mp_ncpus = 1;
  793         cpu_apic_ids[0] = boot_cpu_id;
  794         apic_cpuids[boot_cpu_id] = 0;
  795         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  796              i == MAX_APIC_ID ? i = 0 : i++) {
  797                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  798                     cpu_info[i].cpu_disabled)
  799                         continue;
  800 
  801                 if (mp_ncpus < MAXCPU) {
  802                         cpu_apic_ids[mp_ncpus] = i;
  803                         apic_cpuids[i] = mp_ncpus;
  804                         mp_ncpus++;
  805                 } else
  806                         cpu_info[i].cpu_disabled = 1;
  807         }
  808         KASSERT(mp_maxid >= mp_ncpus - 1,
  809             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  810             mp_ncpus));         
  811 }
  812 
  813 /*
  814  * start each AP in our list
  815  */
  816 static int
  817 start_all_aps(void)
  818 {
  819         vm_offset_t va = boot_address + KERNBASE;
  820         u_int64_t *pt4, *pt3, *pt2;
  821         u_int32_t mpbioswarmvec;
  822         int apic_id, cpu, i;
  823         u_char mpbiosreason;
  824 
  825         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  826 
  827         /* install the AP 1st level boot code */
  828         pmap_kenter(va, boot_address);
  829         pmap_invalidate_page(kernel_pmap, va);
  830         bcopy(mptramp_start, (void *)va, bootMP_size);
  831 
  832         /* Locate the page tables, they'll be below the trampoline */
  833         pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
  834         pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
  835         pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
  836 
  837         /* Create the initial 1GB replicated page tables */
  838         for (i = 0; i < 512; i++) {
  839                 /* Each slot of the level 4 pages points to the same level 3 page */
  840                 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
  841                 pt4[i] |= PG_V | PG_RW | PG_U;
  842 
  843                 /* Each slot of the level 3 pages points to the same level 2 page */
  844                 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
  845                 pt3[i] |= PG_V | PG_RW | PG_U;
  846 
  847                 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
  848                 pt2[i] = i * (2 * 1024 * 1024);
  849                 pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
  850         }
  851 
  852         /* save the current value of the warm-start vector */
  853         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  854         outb(CMOS_REG, BIOS_RESET);
  855         mpbiosreason = inb(CMOS_DATA);
  856 
  857         /* setup a vector to our boot code */
  858         *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  859         *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  860         outb(CMOS_REG, BIOS_RESET);
  861         outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  862 
  863         /* start each AP */
  864         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  865                 apic_id = cpu_apic_ids[cpu];
  866 
  867                 /* allocate and set up an idle stack data page */
  868                 bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  869                 doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
  870                 nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
  871                 dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
  872 
  873                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
  874                 bootAP = cpu;
  875 
  876                 /* attempt to start the Application Processor */
  877                 if (!start_ap(apic_id)) {
  878                         /* restore the warmstart vector */
  879                         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  880                         panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
  881                 }
  882 
  883                 all_cpus |= (1 << cpu);         /* record AP in CPU map */
  884         }
  885 
  886         /* build our map of 'other' CPUs */
  887         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  888 
  889         /* restore the warmstart vector */
  890         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  891 
  892         outb(CMOS_REG, BIOS_RESET);
  893         outb(CMOS_DATA, mpbiosreason);
  894 
  895         /* number of APs actually started */
  896         return mp_naps;
  897 }
  898 
  899 
  900 /*
  901  * This function starts the AP (application processor) identified
  902  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  903  * to accomplish this.  This is necessary because of the nuances
  904  * of the different hardware we might encounter.  It isn't pretty,
  905  * but it seems to work.
  906  */
  907 static int
  908 start_ap(int apic_id)
  909 {
  910         int vector, ms;
  911         int cpus;
  912 
  913         /* calculate the vector */
  914         vector = (boot_address >> 12) & 0xff;
  915 
  916         /* used as a watchpoint to signal AP startup */
  917         cpus = mp_naps;
  918 
  919         /*
  920          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
  921          * and running the target CPU. OR this INIT IPI might be latched (P5
  922          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
  923          * ignored.
  924          */
  925 
  926         /* do an INIT IPI: assert RESET */
  927         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  928             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
  929 
  930         /* wait for pending status end */
  931         lapic_ipi_wait(-1);
  932 
  933         /* do an INIT IPI: deassert RESET */
  934         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
  935             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
  936 
  937         /* wait for pending status end */
  938         DELAY(10000);           /* wait ~10mS */
  939         lapic_ipi_wait(-1);
  940 
  941         /*
  942          * next we do a STARTUP IPI: the previous INIT IPI might still be
  943          * latched, (P5 bug) this 1st STARTUP would then terminate
  944          * immediately, and the previously started INIT IPI would continue. OR
  945          * the previous INIT IPI has already run. and this STARTUP IPI will
  946          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
  947          * will run.
  948          */
  949 
  950         /* do a STARTUP IPI */
  951         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  952             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  953             vector, apic_id);
  954         lapic_ipi_wait(-1);
  955         DELAY(200);             /* wait ~200uS */
  956 
  957         /*
  958          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
  959          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
  960          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
  961          * recognized after hardware RESET or INIT IPI.
  962          */
  963 
  964         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  965             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  966             vector, apic_id);
  967         lapic_ipi_wait(-1);
  968         DELAY(200);             /* wait ~200uS */
  969 
  970         /* Wait up to 5 seconds for it to start. */
  971         for (ms = 0; ms < 5000; ms++) {
  972                 if (mp_naps > cpus)
  973                         return 1;       /* return SUCCESS */
  974                 DELAY(1000);
  975         }
  976         return 0;               /* return FAILURE */
  977 }
  978 
  979 /*
  980  * Flush the TLB on all other CPU's
  981  */
  982 static void
  983 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
  984 {
  985         u_int ncpu;
  986 
  987         ncpu = mp_ncpus - 1;    /* does not shootdown self */
  988         if (ncpu < 1)
  989                 return;         /* no other cpus */
  990         if (!(read_rflags() & PSL_I))
  991                 panic("%s: interrupts disabled", __func__);
  992         mtx_lock_spin(&smp_ipi_mtx);
  993         smp_tlb_addr1 = addr1;
  994         smp_tlb_addr2 = addr2;
  995         atomic_store_rel_int(&smp_tlb_wait, 0);
  996         ipi_all_but_self(vector);
  997         while (smp_tlb_wait < ncpu)
  998                 ia32_pause();
  999         mtx_unlock_spin(&smp_ipi_mtx);
 1000 }
 1001 
 1002 static void
 1003 smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1004 {
 1005         int ncpu, othercpus;
 1006 
 1007         othercpus = mp_ncpus - 1;
 1008         if (mask == (u_int)-1) {
 1009                 ncpu = othercpus;
 1010                 if (ncpu < 1)
 1011                         return;
 1012         } else {
 1013                 mask &= ~PCPU_GET(cpumask);
 1014                 if (mask == 0)
 1015                         return;
 1016                 ncpu = bitcount32(mask);
 1017                 if (ncpu > othercpus) {
 1018                         /* XXX this should be a panic offence */
 1019                         printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
 1020                             ncpu, othercpus);
 1021                         ncpu = othercpus;
 1022                 }
 1023                 /* XXX should be a panic, implied by mask == 0 above */
 1024                 if (ncpu < 1)
 1025                         return;
 1026         }
 1027         if (!(read_rflags() & PSL_I))
 1028                 panic("%s: interrupts disabled", __func__);
 1029         mtx_lock_spin(&smp_ipi_mtx);
 1030         smp_tlb_addr1 = addr1;
 1031         smp_tlb_addr2 = addr2;
 1032         atomic_store_rel_int(&smp_tlb_wait, 0);
 1033         if (mask == (u_int)-1)
 1034                 ipi_all_but_self(vector);
 1035         else
 1036                 ipi_selected(mask, vector);
 1037         while (smp_tlb_wait < ncpu)
 1038                 ia32_pause();
 1039         mtx_unlock_spin(&smp_ipi_mtx);
 1040 }
 1041 
 1042 void
 1043 smp_cache_flush(void)
 1044 {
 1045 
 1046         if (smp_started)
 1047                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1048 }
 1049 
 1050 void
 1051 smp_invltlb(void)
 1052 {
 1053 
 1054         if (smp_started) {
 1055                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1056         }
 1057 }
 1058 
 1059 void
 1060 smp_invlpg(vm_offset_t addr)
 1061 {
 1062 
 1063         if (smp_started)
 1064                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1065 }
 1066 
 1067 void
 1068 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1069 {
 1070 
 1071         if (smp_started) {
 1072                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1073         }
 1074 }
 1075 
 1076 void
 1077 smp_masked_invltlb(cpumask_t mask)
 1078 {
 1079 
 1080         if (smp_started) {
 1081                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1082         }
 1083 }
 1084 
 1085 void
 1086 smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
 1087 {
 1088 
 1089         if (smp_started) {
 1090                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1091         }
 1092 }
 1093 
 1094 void
 1095 smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
 1096 {
 1097 
 1098         if (smp_started) {
 1099                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1100         }
 1101 }
 1102 
 1103 void
 1104 ipi_bitmap_handler(struct trapframe frame)
 1105 {
 1106         int cpu = PCPU_GET(cpuid);
 1107         u_int ipi_bitmap;
 1108 
 1109         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1110 
 1111         if (ipi_bitmap & (1 << IPI_PREEMPT))
 1112                 sched_preempt(curthread);
 1113 
 1114         /* Nothing to do for AST */
 1115 
 1116         if (ipi_bitmap & (1 << IPI_HARDCLOCK))
 1117                 hardclockintr(&frame);
 1118 
 1119         if (ipi_bitmap & (1 << IPI_STATCLOCK))
 1120                 statclockintr(&frame);
 1121 
 1122         if (ipi_bitmap & (1 << IPI_PROFCLOCK))
 1123                 profclockintr(&frame);
 1124 }
 1125 
 1126 /*
 1127  * send an IPI to a set of cpus.
 1128  */
 1129 void
 1130 ipi_selected(cpumask_t cpus, u_int ipi)
 1131 {
 1132         int cpu;
 1133         u_int bitmap = 0;
 1134         u_int old_pending;
 1135         u_int new_pending;
 1136 
 1137         if (IPI_IS_BITMAPED(ipi)) { 
 1138                 bitmap = 1 << ipi;
 1139                 ipi = IPI_BITMAP_VECTOR;
 1140         }
 1141 
 1142         /*
 1143          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1144          * of help in order to understand what is the source.
 1145          * Set the mask of receiving CPUs for this purpose.
 1146          */
 1147         if (ipi == IPI_STOP_HARD)
 1148                 atomic_set_int(&ipi_nmi_pending, cpus);
 1149 
 1150         CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
 1151         while ((cpu = ffs(cpus)) != 0) {
 1152                 cpu--;
 1153                 cpus &= ~(1 << cpu);
 1154 
 1155                 KASSERT(cpu_apic_ids[cpu] != -1,
 1156                     ("IPI to non-existent CPU %d", cpu));
 1157 
 1158                 if (bitmap) {
 1159                         do {
 1160                                 old_pending = cpu_ipi_pending[cpu];
 1161                                 new_pending = old_pending | bitmap;
 1162                         } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));  
 1163 
 1164                         if (old_pending)
 1165                                 continue;
 1166                 }
 1167 
 1168                 lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1169         }
 1170 
 1171 }
 1172 
 1173 /*
 1174  * send an IPI to all CPUs EXCEPT myself
 1175  */
 1176 void
 1177 ipi_all_but_self(u_int ipi)
 1178 {
 1179 
 1180         if (IPI_IS_BITMAPED(ipi)) {
 1181                 ipi_selected(PCPU_GET(other_cpus), ipi);
 1182                 return;
 1183         }
 1184 
 1185         /*
 1186          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1187          * of help in order to understand what is the source.
 1188          * Set the mask of receiving CPUs for this purpose.
 1189          */
 1190         if (ipi == IPI_STOP_HARD)
 1191                 atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
 1192 
 1193         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1194         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1195 }
 1196 
 1197 int
 1198 ipi_nmi_handler()
 1199 {
 1200         cpumask_t cpumask;
 1201 
 1202         /*
 1203          * As long as there is not a simple way to know about a NMI's
 1204          * source, if the bitmask for the current CPU is present in
 1205          * the global pending bitword an IPI_STOP_HARD has been issued
 1206          * and should be handled.
 1207          */
 1208         cpumask = PCPU_GET(cpumask);
 1209         if ((ipi_nmi_pending & cpumask) == 0)
 1210                 return (1);
 1211 
 1212         atomic_clear_int(&ipi_nmi_pending, cpumask);
 1213         cpustop_handler();
 1214         return (0);
 1215 }
 1216      
 1217 /*
 1218  * Handle an IPI_STOP by saving our current context and spinning until we
 1219  * are resumed.
 1220  */
 1221 void
 1222 cpustop_handler(void)
 1223 {
 1224         int cpu = PCPU_GET(cpuid);
 1225         int cpumask = PCPU_GET(cpumask);
 1226 
 1227         savectx(&stoppcbs[cpu]);
 1228 
 1229         /* Indicate that we are stopped */
 1230         atomic_set_int(&stopped_cpus, cpumask);
 1231 
 1232         /* Wait for restart */
 1233         while (!(started_cpus & cpumask))
 1234             ia32_pause();
 1235 
 1236         atomic_clear_int(&started_cpus, cpumask);
 1237         atomic_clear_int(&stopped_cpus, cpumask);
 1238 
 1239         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1240                 cpustop_restartfunc();
 1241                 cpustop_restartfunc = NULL;
 1242         }
 1243 }
 1244 
 1245 /*
 1246  * Handle an IPI_SUSPEND by saving our current context and spinning until we
 1247  * are resumed.
 1248  */
 1249 void
 1250 cpususpend_handler(void)
 1251 {
 1252         struct savefpu *stopfpu;
 1253         register_t cr3, rf;
 1254         int cpu = PCPU_GET(cpuid);
 1255         int cpumask = PCPU_GET(cpumask);
 1256 
 1257         rf = intr_disable();
 1258         cr3 = rcr3();
 1259         stopfpu = &stopxpcbs[cpu].xpcb_pcb.pcb_save;
 1260         if (savectx2(&stopxpcbs[cpu])) {
 1261                 fpugetregs(curthread, stopfpu);
 1262                 wbinvd();
 1263                 atomic_set_int(&stopped_cpus, cpumask);
 1264         } else
 1265                 fpusetregs(curthread, stopfpu);
 1266 
 1267         /* Wait for resume */
 1268         while (!(started_cpus & cpumask))
 1269                 ia32_pause();
 1270 
 1271         atomic_clear_int(&started_cpus, cpumask);
 1272         atomic_clear_int(&stopped_cpus, cpumask);
 1273 
 1274         /* Restore CR3 and enable interrupts */
 1275         load_cr3(cr3);
 1276         lapic_setup(0);
 1277         intr_restore(rf);
 1278 }
 1279 
 1280 /*
 1281  * This is called once the rest of the system is up and running and we're
 1282  * ready to let the AP's out of the pen.
 1283  */
 1284 static void
 1285 release_aps(void *dummy __unused)
 1286 {
 1287 
 1288         if (mp_ncpus == 1) 
 1289                 return;
 1290         atomic_store_rel_int(&aps_ready, 1);
 1291         while (smp_started == 0)
 1292                 ia32_pause();
 1293 }
 1294 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1295 
 1296 static int
 1297 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
 1298 {
 1299         cpumask_t mask;
 1300         int error;
 1301 
 1302         mask = hlt_cpus_mask;
 1303         error = sysctl_handle_int(oidp, &mask, 0, req);
 1304         if (error || !req->newptr)
 1305                 return (error);
 1306 
 1307         if (logical_cpus_mask != 0 &&
 1308             (mask & logical_cpus_mask) == logical_cpus_mask)
 1309                 hlt_logical_cpus = 1;
 1310         else
 1311                 hlt_logical_cpus = 0;
 1312 
 1313         if (! hyperthreading_allowed)
 1314                 mask |= hyperthreading_cpus_mask;
 1315 
 1316         if ((mask & all_cpus) == all_cpus)
 1317                 mask &= ~(1<<0);
 1318         hlt_cpus_mask = mask;
 1319         return (error);
 1320 }
 1321 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
 1322     0, 0, sysctl_hlt_cpus, "IU",
 1323     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
 1324 
 1325 static int
 1326 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
 1327 {
 1328         int disable, error;
 1329 
 1330         disable = hlt_logical_cpus;
 1331         error = sysctl_handle_int(oidp, &disable, 0, req);
 1332         if (error || !req->newptr)
 1333                 return (error);
 1334 
 1335         if (disable)
 1336                 hlt_cpus_mask |= logical_cpus_mask;
 1337         else
 1338                 hlt_cpus_mask &= ~logical_cpus_mask;
 1339 
 1340         if (! hyperthreading_allowed)
 1341                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1342 
 1343         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1344                 hlt_cpus_mask &= ~(1<<0);
 1345 
 1346         hlt_logical_cpus = disable;
 1347         return (error);
 1348 }
 1349 
 1350 static int
 1351 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
 1352 {
 1353         int allowed, error;
 1354 
 1355         allowed = hyperthreading_allowed;
 1356         error = sysctl_handle_int(oidp, &allowed, 0, req);
 1357         if (error || !req->newptr)
 1358                 return (error);
 1359 
 1360 #ifdef SCHED_ULE
 1361         /*
 1362          * SCHED_ULE doesn't allow enabling/disabling HT cores at
 1363          * run-time.
 1364          */
 1365         if (allowed != hyperthreading_allowed)
 1366                 return (ENOTSUP);
 1367         return (error);
 1368 #endif
 1369 
 1370         if (allowed)
 1371                 hlt_cpus_mask &= ~hyperthreading_cpus_mask;
 1372         else
 1373                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1374 
 1375         if (logical_cpus_mask != 0 &&
 1376             (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
 1377                 hlt_logical_cpus = 1;
 1378         else
 1379                 hlt_logical_cpus = 0;
 1380 
 1381         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1382                 hlt_cpus_mask &= ~(1<<0);
 1383 
 1384         hyperthreading_allowed = allowed;
 1385         return (error);
 1386 }
 1387 
 1388 static void
 1389 cpu_hlt_setup(void *dummy __unused)
 1390 {
 1391 
 1392         if (logical_cpus_mask != 0) {
 1393                 TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
 1394                     &hlt_logical_cpus);
 1395                 sysctl_ctx_init(&logical_cpu_clist);
 1396                 SYSCTL_ADD_PROC(&logical_cpu_clist,
 1397                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1398                     "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
 1399                     sysctl_hlt_logical_cpus, "IU", "");
 1400                 SYSCTL_ADD_UINT(&logical_cpu_clist,
 1401                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1402                     "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
 1403                     &logical_cpus_mask, 0, "");
 1404 
 1405                 if (hlt_logical_cpus)
 1406                         hlt_cpus_mask |= logical_cpus_mask;
 1407 
 1408                 /*
 1409                  * If necessary for security purposes, force
 1410                  * hyperthreading off, regardless of the value
 1411                  * of hlt_logical_cpus.
 1412                  */
 1413                 if (hyperthreading_cpus_mask) {
 1414                         SYSCTL_ADD_PROC(&logical_cpu_clist,
 1415                             SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1416                             "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
 1417                             0, 0, sysctl_hyperthreading_allowed, "IU", "");
 1418                         if (! hyperthreading_allowed)
 1419                                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1420                 }
 1421         }
 1422 }
 1423 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
 1424 
 1425 int
 1426 mp_grab_cpu_hlt(void)
 1427 {
 1428         u_int mask = PCPU_GET(cpumask);
 1429 #ifdef MP_WATCHDOG
 1430         u_int cpuid = PCPU_GET(cpuid);
 1431 #endif
 1432         int retval;
 1433 
 1434 #ifdef MP_WATCHDOG
 1435         ap_watchdog(cpuid);
 1436 #endif
 1437 
 1438         retval = mask & hlt_cpus_mask;
 1439         while (mask & hlt_cpus_mask)
 1440                 __asm __volatile("sti; hlt" : : : "memory");
 1441         return (retval);
 1442 }

Cache object: 247d8e1570c755a16b833ac9aa943ac3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.