The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * Copyright (c) 2003, by Peter Wemm
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the developer may NOT be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.2/sys/amd64/amd64/mp_machdep.c 215904 2010-11-26 21:39:11Z jkim $");
   29 
   30 #include "opt_cpu.h"
   31 #include "opt_kstack_pages.h"
   32 #include "opt_mp_watchdog.h"
   33 #include "opt_sched.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/bus.h>
   38 #ifdef GPROF 
   39 #include <sys/gmon.h>
   40 #endif
   41 #include <sys/kernel.h>
   42 #include <sys/ktr.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/memrange.h>
   46 #include <sys/mutex.h>
   47 #include <sys/pcpu.h>
   48 #include <sys/proc.h>
   49 #include <sys/sched.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 
   53 #include <vm/vm.h>
   54 #include <vm/vm_param.h>
   55 #include <vm/pmap.h>
   56 #include <vm/vm_kern.h>
   57 #include <vm/vm_extern.h>
   58 
   59 #include <machine/apicreg.h>
   60 #include <machine/clock.h>
   61 #include <machine/cputypes.h>
   62 #include <machine/cpufunc.h>
   63 #include <machine/mca.h>
   64 #include <machine/md_var.h>
   65 #include <machine/mp_watchdog.h>
   66 #include <machine/pcb.h>
   67 #include <machine/psl.h>
   68 #include <machine/smp.h>
   69 #include <machine/specialreg.h>
   70 #include <machine/tss.h>
   71 
   72 #define WARMBOOT_TARGET         0
   73 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   74 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   75 
   76 #define CMOS_REG                (0x70)
   77 #define CMOS_DATA               (0x71)
   78 #define BIOS_RESET              (0x0f)
   79 #define BIOS_WARM               (0x0a)
   80 
   81 /* lock region used by kernel profiling */
   82 int     mcount_lock;
   83 
   84 int     mp_naps;                /* # of Applications processors */
   85 int     boot_cpu_id = -1;       /* designated BSP */
   86 
   87 extern  struct pcpu __pcpu[];
   88 
   89 /* AP uses this during bootstrap.  Do not staticize.  */
   90 char *bootSTK;
   91 static int bootAP;
   92 
   93 /* Free these after use */
   94 void *bootstacks[MAXCPU];
   95 
   96 /* Temporary variables for init_secondary()  */
   97 char *doublefault_stack;
   98 char *nmi_stack;
   99 void *dpcpu;
  100 
  101 /* Hotwire a 0->4MB V==P mapping */
  102 extern pt_entry_t *KPTphys;
  103 
  104 /* SMP page table page */
  105 extern pt_entry_t *SMPpt;
  106 
  107 struct pcb stoppcbs[MAXCPU];
  108 struct pcb **susppcbs = NULL;
  109 
  110 /* Variables needed for SMP tlb shootdown. */
  111 vm_offset_t smp_tlb_addr1;
  112 vm_offset_t smp_tlb_addr2;
  113 volatile int smp_tlb_wait;
  114 
  115 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  116 
  117 /*
  118  * Local data and functions.
  119  */
  120 
  121 static volatile cpumask_t ipi_nmi_pending;
  122 
  123 /* used to hold the AP's until we are ready to release them */
  124 static struct mtx ap_boot_mtx;
  125 
  126 /* Set to 1 once we're ready to let the APs out of the pen. */
  127 static volatile int aps_ready = 0;
  128 
  129 /*
  130  * Store data from cpu_add() until later in the boot when we actually setup
  131  * the APs.
  132  */
  133 struct cpu_info {
  134         int     cpu_present:1;
  135         int     cpu_bsp:1;
  136         int     cpu_disabled:1;
  137         int     cpu_hyperthread:1;
  138 } static cpu_info[MAX_APIC_ID + 1];
  139 int cpu_apic_ids[MAXCPU];
  140 int apic_cpuids[MAX_APIC_ID + 1];
  141 
  142 /* Holds pending bitmap based IPIs per CPU */
  143 static volatile u_int cpu_ipi_pending[MAXCPU];
  144 
  145 static u_int boot_address;
  146 static int cpu_logical;                 /* logical cpus per core */
  147 static int cpu_cores;                   /* cores per package */
  148 
  149 static void     assign_cpu_ids(void);
  150 static void     set_interrupt_apic_ids(void);
  151 static int      start_all_aps(void);
  152 static int      start_ap(int apic_id);
  153 static void     release_aps(void *dummy);
  154 
  155 static int      hlt_logical_cpus;
  156 static u_int    hyperthreading_cpus;    /* logical cpus sharing L1 cache */
  157 static cpumask_t        hyperthreading_cpus_mask;
  158 static int      hyperthreading_allowed = 1;
  159 static struct   sysctl_ctx_list logical_cpu_clist;
  160 static u_int    bootMP_size;
  161 
  162 static void
  163 mem_range_AP_init(void)
  164 {
  165         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  166                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  167 }
  168 
  169 static void
  170 topo_probe_amd(void)
  171 {
  172 
  173         /* AMD processors do not support HTT. */
  174         cpu_cores = (amd_feature2 & AMDID2_CMP) != 0 ?
  175             (cpu_procinfo2 & AMDID_CMP_CORES) + 1 : 1;
  176         cpu_logical = 1;
  177 }
  178 
  179 /*
  180  * Round up to the next power of two, if necessary, and then
  181  * take log2.
  182  * Returns -1 if argument is zero.
  183  */
  184 static __inline int
  185 mask_width(u_int x)
  186 {
  187 
  188         return (fls(x << (1 - powerof2(x))) - 1);
  189 }
  190 
  191 static void
  192 topo_probe_0x4(void)
  193 {
  194         u_int p[4];
  195         int pkg_id_bits;
  196         int core_id_bits;
  197         int max_cores;
  198         int max_logical;
  199         int id;
  200 
  201         /* Both zero and one here mean one logical processor per package. */
  202         max_logical = (cpu_feature & CPUID_HTT) != 0 ?
  203             (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
  204         if (max_logical <= 1)
  205                 return;
  206 
  207         /*
  208          * Because of uniformity assumption we examine only
  209          * those logical processors that belong to the same
  210          * package as BSP.  Further, we count number of
  211          * logical processors that belong to the same core
  212          * as BSP thus deducing number of threads per core.
  213          */
  214         cpuid_count(0x04, 0, p);
  215         max_cores = ((p[0] >> 26) & 0x3f) + 1;
  216         core_id_bits = mask_width(max_logical/max_cores);
  217         if (core_id_bits < 0)
  218                 return;
  219         pkg_id_bits = core_id_bits + mask_width(max_cores);
  220 
  221         for (id = 0; id <= MAX_APIC_ID; id++) {
  222                 /* Check logical CPU availability. */
  223                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  224                         continue;
  225                 /* Check if logical CPU has the same package ID. */
  226                 if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
  227                         continue;
  228                 cpu_cores++;
  229                 /* Check if logical CPU has the same package and core IDs. */
  230                 if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
  231                         cpu_logical++;
  232         }
  233 
  234         KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
  235             ("topo_probe_0x4 couldn't find BSP"));
  236 
  237         cpu_cores /= cpu_logical;
  238         hyperthreading_cpus = cpu_logical;
  239 }
  240 
  241 static void
  242 topo_probe_0xb(void)
  243 {
  244         u_int p[4];
  245         int bits;
  246         int cnt;
  247         int i;
  248         int logical;
  249         int type;
  250         int x;
  251 
  252         /* We only support three levels for now. */
  253         for (i = 0; i < 3; i++) {
  254                 cpuid_count(0x0b, i, p);
  255 
  256                 /* Fall back if CPU leaf 11 doesn't really exist. */
  257                 if (i == 0 && p[1] == 0) {
  258                         topo_probe_0x4();
  259                         return;
  260                 }
  261 
  262                 bits = p[0] & 0x1f;
  263                 logical = p[1] &= 0xffff;
  264                 type = (p[2] >> 8) & 0xff;
  265                 if (type == 0 || logical == 0)
  266                         break;
  267                 /*
  268                  * Because of uniformity assumption we examine only
  269                  * those logical processors that belong to the same
  270                  * package as BSP.
  271                  */
  272                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  273                         if (!cpu_info[x].cpu_present ||
  274                             cpu_info[x].cpu_disabled)
  275                                 continue;
  276                         if (x >> bits == boot_cpu_id >> bits)
  277                                 cnt++;
  278                 }
  279                 if (type == CPUID_TYPE_SMT)
  280                         cpu_logical = cnt;
  281                 else if (type == CPUID_TYPE_CORE)
  282                         cpu_cores = cnt;
  283         }
  284         if (cpu_logical == 0)
  285                 cpu_logical = 1;
  286         cpu_cores /= cpu_logical;
  287 }
  288 
  289 /*
  290  * Both topology discovery code and code that consumes topology
  291  * information assume top-down uniformity of the topology.
  292  * That is, all physical packages must be identical and each
  293  * core in a package must have the same number of threads.
  294  * Topology information is queried only on BSP, on which this
  295  * code runs and for which it can query CPUID information.
  296  * Then topology is extrapolated on all packages using the
  297  * uniformity assumption.
  298  */
  299 static void
  300 topo_probe(void)
  301 {
  302         static int cpu_topo_probed = 0;
  303 
  304         if (cpu_topo_probed)
  305                 return;
  306 
  307         logical_cpus_mask = 0;
  308         if (mp_ncpus <= 1)
  309                 cpu_cores = cpu_logical = 1;
  310         else if (cpu_vendor_id == CPU_VENDOR_AMD)
  311                 topo_probe_amd();
  312         else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
  313                 /*
  314                  * See Intel(R) 64 Architecture Processor
  315                  * Topology Enumeration article for details.
  316                  *
  317                  * Note that 0x1 <= cpu_high < 4 case should be
  318                  * compatible with topo_probe_0x4() logic when
  319                  * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
  320                  * or it should trigger the fallback otherwise.
  321                  */
  322                 if (cpu_high >= 0xb)
  323                         topo_probe_0xb();
  324                 else if (cpu_high >= 0x1)
  325                         topo_probe_0x4();
  326         }
  327 
  328         /*
  329          * Fallback: assume each logical CPU is in separate
  330          * physical package.  That is, no multi-core, no SMT.
  331          */
  332         if (cpu_cores == 0 || cpu_logical == 0)
  333                 cpu_cores = cpu_logical = 1;
  334         cpu_topo_probed = 1;
  335 }
  336 
  337 struct cpu_group *
  338 cpu_topo(void)
  339 {
  340         int cg_flags;
  341 
  342         /*
  343          * Determine whether any threading flags are
  344          * necessry.
  345          */
  346         topo_probe();
  347         if (cpu_logical > 1 && hyperthreading_cpus)
  348                 cg_flags = CG_FLAG_HTT;
  349         else if (cpu_logical > 1)
  350                 cg_flags = CG_FLAG_SMT;
  351         else
  352                 cg_flags = 0;
  353         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  354                 printf("WARNING: Non-uniform processors.\n");
  355                 printf("WARNING: Using suboptimal topology.\n");
  356                 return (smp_topo_none());
  357         }
  358         /*
  359          * No multi-core or hyper-threaded.
  360          */
  361         if (cpu_logical * cpu_cores == 1)
  362                 return (smp_topo_none());
  363         /*
  364          * Only HTT no multi-core.
  365          */
  366         if (cpu_logical > 1 && cpu_cores == 1)
  367                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  368         /*
  369          * Only multi-core no HTT.
  370          */
  371         if (cpu_cores > 1 && cpu_logical == 1)
  372                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  373         /*
  374          * Both HTT and multi-core.
  375          */
  376         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  377             CG_SHARE_L1, cpu_logical, cg_flags));
  378 }
  379 
  380 /*
  381  * Calculate usable address in base memory for AP trampoline code.
  382  */
  383 u_int
  384 mp_bootaddress(u_int basemem)
  385 {
  386 
  387         bootMP_size = mptramp_end - mptramp_start;
  388         boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
  389         if (((basemem * 1024) - boot_address) < bootMP_size)
  390                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  391         /* 3 levels of page table pages */
  392         mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
  393 
  394         return mptramp_pagetables;
  395 }
  396 
  397 void
  398 cpu_add(u_int apic_id, char boot_cpu)
  399 {
  400 
  401         if (apic_id > MAX_APIC_ID) {
  402                 panic("SMP: APIC ID %d too high", apic_id);
  403                 return;
  404         }
  405         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  406             apic_id));
  407         cpu_info[apic_id].cpu_present = 1;
  408         if (boot_cpu) {
  409                 KASSERT(boot_cpu_id == -1,
  410                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  411                     boot_cpu_id));
  412                 boot_cpu_id = apic_id;
  413                 cpu_info[apic_id].cpu_bsp = 1;
  414         }
  415         if (mp_ncpus < MAXCPU) {
  416                 mp_ncpus++;
  417                 mp_maxid = mp_ncpus -1;
  418         }
  419         if (bootverbose)
  420                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  421                     "AP");
  422 }
  423 
  424 void
  425 cpu_mp_setmaxid(void)
  426 {
  427 
  428         /*
  429          * mp_maxid should be already set by calls to cpu_add().
  430          * Just sanity check its value here.
  431          */
  432         if (mp_ncpus == 0)
  433                 KASSERT(mp_maxid == 0,
  434                     ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
  435         else if (mp_ncpus == 1)
  436                 mp_maxid = 0;
  437         else
  438                 KASSERT(mp_maxid >= mp_ncpus - 1,
  439                     ("%s: counters out of sync: max %d, count %d", __func__,
  440                         mp_maxid, mp_ncpus));           
  441 }
  442 
  443 int
  444 cpu_mp_probe(void)
  445 {
  446 
  447         /*
  448          * Always record BSP in CPU map so that the mbuf init code works
  449          * correctly.
  450          */
  451         all_cpus = 1;
  452         if (mp_ncpus == 0) {
  453                 /*
  454                  * No CPUs were found, so this must be a UP system.  Setup
  455                  * the variables to represent a system with a single CPU
  456                  * with an id of 0.
  457                  */
  458                 mp_ncpus = 1;
  459                 return (0);
  460         }
  461 
  462         /* At least one CPU was found. */
  463         if (mp_ncpus == 1) {
  464                 /*
  465                  * One CPU was found, so this must be a UP system with
  466                  * an I/O APIC.
  467                  */
  468                 mp_maxid = 0;
  469                 return (0);
  470         }
  471 
  472         /* At least two CPUs were found. */
  473         return (1);
  474 }
  475 
  476 /*
  477  * Initialize the IPI handlers and start up the AP's.
  478  */
  479 void
  480 cpu_mp_start(void)
  481 {
  482         int i;
  483 
  484         /* Initialize the logical ID to APIC ID table. */
  485         for (i = 0; i < MAXCPU; i++) {
  486                 cpu_apic_ids[i] = -1;
  487                 cpu_ipi_pending[i] = 0;
  488         }
  489 
  490         /* Install an inter-CPU IPI for TLB invalidation */
  491         setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
  492         setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
  493         setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
  494 
  495         /* Install an inter-CPU IPI for cache invalidation. */
  496         setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
  497 
  498         /* Install an inter-CPU IPI for all-CPU rendezvous */
  499         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
  500 
  501         /* Install generic inter-CPU IPI handler */
  502         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  503                SDT_SYSIGT, SEL_KPL, 0);
  504 
  505         /* Install an inter-CPU IPI for CPU stop/restart */
  506         setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
  507 
  508         /* Install an inter-CPU IPI for CPU suspend/resume */
  509         setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
  510 
  511         /* Set boot_cpu_id if needed. */
  512         if (boot_cpu_id == -1) {
  513                 boot_cpu_id = PCPU_GET(apic_id);
  514                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  515         } else
  516                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  517                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  518 
  519         /* Probe logical/physical core configuration. */
  520         topo_probe();
  521 
  522         assign_cpu_ids();
  523 
  524         /* Start each Application Processor */
  525         start_all_aps();
  526 
  527         set_interrupt_apic_ids();
  528 }
  529 
  530 
  531 /*
  532  * Print various information about the SMP system hardware and setup.
  533  */
  534 void
  535 cpu_mp_announce(void)
  536 {
  537         const char *hyperthread;
  538         int i;
  539 
  540         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  541             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  542         if (hyperthreading_cpus > 1)
  543             printf(" x %d HTT threads", cpu_logical);
  544         else if (cpu_logical > 1)
  545             printf(" x %d SMT threads", cpu_logical);
  546         printf("\n");
  547 
  548         /* List active CPUs first. */
  549         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  550         for (i = 1; i < mp_ncpus; i++) {
  551                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  552                         hyperthread = "/HT";
  553                 else
  554                         hyperthread = "";
  555                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  556                     cpu_apic_ids[i]);
  557         }
  558 
  559         /* List disabled CPUs last. */
  560         for (i = 0; i <= MAX_APIC_ID; i++) {
  561                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  562                         continue;
  563                 if (cpu_info[i].cpu_hyperthread)
  564                         hyperthread = "/HT";
  565                 else
  566                         hyperthread = "";
  567                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  568                     i);
  569         }
  570 }
  571 
  572 /*
  573  * AP CPU's call this to initialize themselves.
  574  */
  575 void
  576 init_secondary(void)
  577 {
  578         struct pcpu *pc;
  579         struct nmi_pcpu *np;
  580         u_int64_t msr, cr0;
  581         int cpu, gsel_tss, x;
  582         struct region_descriptor ap_gdt;
  583 
  584         /* Set by the startup code for us to use */
  585         cpu = bootAP;
  586 
  587         /* Init tss */
  588         common_tss[cpu] = common_tss[0];
  589         common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
  590         common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
  591             IOPAGES * PAGE_SIZE;
  592         common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
  593 
  594         /* The NMI stack runs on IST2. */
  595         np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
  596         common_tss[cpu].tss_ist2 = (long) np;
  597 
  598         /* Prepare private GDT */
  599         gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
  600         for (x = 0; x < NGDT; x++) {
  601                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
  602                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
  603                         ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
  604         }
  605         ssdtosyssd(&gdt_segs[GPROC0_SEL],
  606             (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
  607         ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  608         ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
  609         lgdt(&ap_gdt);                  /* does magic intra-segment return */
  610 
  611         /* Get per-cpu data */
  612         pc = &__pcpu[cpu];
  613 
  614         /* prime data page for it to use */
  615         pcpu_init(pc, cpu, sizeof(struct pcpu));
  616         dpcpu_init(dpcpu, cpu);
  617         pc->pc_apic_id = cpu_apic_ids[cpu];
  618         pc->pc_prvspace = pc;
  619         pc->pc_curthread = 0;
  620         pc->pc_tssp = &common_tss[cpu];
  621         pc->pc_commontssp = &common_tss[cpu];
  622         pc->pc_rsp0 = 0;
  623         pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  624             GPROC0_SEL];
  625         pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
  626         pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
  627         pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  628             GUSERLDT_SEL];
  629 
  630         /* Save the per-cpu pointer for use by the NMI handler. */
  631         np->np_pcpu = (register_t) pc;
  632 
  633         wrmsr(MSR_FSBASE, 0);           /* User value */
  634         wrmsr(MSR_GSBASE, (u_int64_t)pc);
  635         wrmsr(MSR_KGSBASE, (u_int64_t)pc);      /* XXX User value while we're in the kernel */
  636 
  637         lidt(&r_idt);
  638 
  639         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  640         ltr(gsel_tss);
  641 
  642         /*
  643          * Set to a known state:
  644          * Set by mpboot.s: CR0_PG, CR0_PE
  645          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  646          */
  647         cr0 = rcr0();
  648         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  649         load_cr0(cr0);
  650 
  651         /* Set up the fast syscall stuff */
  652         msr = rdmsr(MSR_EFER) | EFER_SCE;
  653         wrmsr(MSR_EFER, msr);
  654         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
  655         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
  656         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
  657               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
  658         wrmsr(MSR_STAR, msr);
  659         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
  660 
  661         /* Disable local APIC just to be sure. */
  662         lapic_disable();
  663 
  664         /* signal our startup to the BSP. */
  665         mp_naps++;
  666 
  667         /* Spin until the BSP releases the AP's. */
  668         while (!aps_ready)
  669                 ia32_pause();
  670 
  671         /* Initialize the PAT MSR. */
  672         pmap_init_pat();
  673 
  674         /* set up CPU registers and state */
  675         cpu_setregs();
  676 
  677         /* set up SSE/NX registers */
  678         initializecpu();
  679 
  680         /* set up FPU state on the AP */
  681         fpuinit();
  682 
  683         /* A quick check from sanity claus */
  684         if (PCPU_GET(apic_id) != lapic_id()) {
  685                 printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
  686                 printf("SMP: actual apic_id = %d\n", lapic_id());
  687                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  688                 panic("cpuid mismatch! boom!!");
  689         }
  690 
  691         /* Initialize curthread. */
  692         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  693         PCPU_SET(curthread, PCPU_GET(idlethread));
  694 
  695         mca_init();
  696 
  697         mtx_lock_spin(&ap_boot_mtx);
  698 
  699         /* Init local apic for irq's */
  700         lapic_setup(1);
  701 
  702         /* Set memory range attributes for this CPU to match the BSP */
  703         mem_range_AP_init();
  704 
  705         smp_cpus++;
  706 
  707         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
  708         printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
  709 
  710         /* Determine if we are a logical CPU. */
  711         /* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
  712         if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
  713                 logical_cpus_mask |= PCPU_GET(cpumask);
  714         
  715         /* Determine if we are a hyperthread. */
  716         if (hyperthreading_cpus > 1 &&
  717             PCPU_GET(apic_id) % hyperthreading_cpus != 0)
  718                 hyperthreading_cpus_mask |= PCPU_GET(cpumask);
  719 
  720         /* Build our map of 'other' CPUs. */
  721         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  722 
  723         if (bootverbose)
  724                 lapic_dump("AP");
  725 
  726         if (smp_cpus == mp_ncpus) {
  727                 /* enable IPI's, tlb shootdown, freezes etc */
  728                 atomic_store_rel_int(&smp_started, 1);
  729                 smp_active = 1;  /* historic */
  730         }
  731 
  732         /*
  733          * Enable global pages TLB extension
  734          * This also implicitly flushes the TLB 
  735          */
  736 
  737         load_cr4(rcr4() | CR4_PGE);
  738         load_ds(_udatasel);
  739         load_es(_udatasel);
  740         load_fs(_ufssel);
  741         mtx_unlock_spin(&ap_boot_mtx);
  742 
  743         /* wait until all the AP's are up */
  744         while (smp_started == 0)
  745                 ia32_pause();
  746 
  747         sched_throw(NULL);
  748 
  749         panic("scheduler returned us to %s", __func__);
  750         /* NOTREACHED */
  751 }
  752 
  753 /*******************************************************************
  754  * local functions and data
  755  */
  756 
  757 /*
  758  * We tell the I/O APIC code about all the CPUs we want to receive
  759  * interrupts.  If we don't want certain CPUs to receive IRQs we
  760  * can simply not tell the I/O APIC code about them in this function.
  761  * We also do not tell it about the BSP since it tells itself about
  762  * the BSP internally to work with UP kernels and on UP machines.
  763  */
  764 static void
  765 set_interrupt_apic_ids(void)
  766 {
  767         u_int i, apic_id;
  768 
  769         for (i = 0; i < MAXCPU; i++) {
  770                 apic_id = cpu_apic_ids[i];
  771                 if (apic_id == -1)
  772                         continue;
  773                 if (cpu_info[apic_id].cpu_bsp)
  774                         continue;
  775                 if (cpu_info[apic_id].cpu_disabled)
  776                         continue;
  777 
  778                 /* Don't let hyperthreads service interrupts. */
  779                 if (hyperthreading_cpus > 1 &&
  780                     apic_id % hyperthreading_cpus != 0)
  781                         continue;
  782 
  783                 intr_add_cpu(i);
  784         }
  785 }
  786 
  787 /*
  788  * Assign logical CPU IDs to local APICs.
  789  */
  790 static void
  791 assign_cpu_ids(void)
  792 {
  793         u_int i;
  794 
  795         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  796             &hyperthreading_allowed);
  797 
  798         /* Check for explicitly disabled CPUs. */
  799         for (i = 0; i <= MAX_APIC_ID; i++) {
  800                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  801                         continue;
  802 
  803                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  804                         cpu_info[i].cpu_hyperthread = 1;
  805 #if defined(SCHED_ULE)
  806                         /*
  807                          * Don't use HT CPU if it has been disabled by a
  808                          * tunable.
  809                          */
  810                         if (hyperthreading_allowed == 0) {
  811                                 cpu_info[i].cpu_disabled = 1;
  812                                 continue;
  813                         }
  814 #endif
  815                 }
  816 
  817                 /* Don't use this CPU if it has been disabled by a tunable. */
  818                 if (resource_disabled("lapic", i)) {
  819                         cpu_info[i].cpu_disabled = 1;
  820                         continue;
  821                 }
  822         }
  823 
  824         /*
  825          * Assign CPU IDs to local APIC IDs and disable any CPUs
  826          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  827          *
  828          * To minimize confusion for userland, we attempt to number
  829          * CPUs such that all threads and cores in a package are
  830          * grouped together.  For now we assume that the BSP is always
  831          * the first thread in a package and just start adding APs
  832          * starting with the BSP's APIC ID.
  833          */
  834         mp_ncpus = 1;
  835         cpu_apic_ids[0] = boot_cpu_id;
  836         apic_cpuids[boot_cpu_id] = 0;
  837         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  838              i == MAX_APIC_ID ? i = 0 : i++) {
  839                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  840                     cpu_info[i].cpu_disabled)
  841                         continue;
  842 
  843                 if (mp_ncpus < MAXCPU) {
  844                         cpu_apic_ids[mp_ncpus] = i;
  845                         apic_cpuids[i] = mp_ncpus;
  846                         mp_ncpus++;
  847                 } else
  848                         cpu_info[i].cpu_disabled = 1;
  849         }
  850         KASSERT(mp_maxid >= mp_ncpus - 1,
  851             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  852             mp_ncpus));         
  853 }
  854 
  855 /*
  856  * start each AP in our list
  857  */
  858 static int
  859 start_all_aps(void)
  860 {
  861         vm_offset_t va = boot_address + KERNBASE;
  862         u_int64_t *pt4, *pt3, *pt2;
  863         u_int32_t mpbioswarmvec;
  864         int apic_id, cpu, i;
  865         u_char mpbiosreason;
  866 
  867         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  868 
  869         /* install the AP 1st level boot code */
  870         pmap_kenter(va, boot_address);
  871         pmap_invalidate_page(kernel_pmap, va);
  872         bcopy(mptramp_start, (void *)va, bootMP_size);
  873 
  874         /* Locate the page tables, they'll be below the trampoline */
  875         pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
  876         pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
  877         pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
  878 
  879         /* Create the initial 1GB replicated page tables */
  880         for (i = 0; i < 512; i++) {
  881                 /* Each slot of the level 4 pages points to the same level 3 page */
  882                 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
  883                 pt4[i] |= PG_V | PG_RW | PG_U;
  884 
  885                 /* Each slot of the level 3 pages points to the same level 2 page */
  886                 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
  887                 pt3[i] |= PG_V | PG_RW | PG_U;
  888 
  889                 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
  890                 pt2[i] = i * (2 * 1024 * 1024);
  891                 pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
  892         }
  893 
  894         /* save the current value of the warm-start vector */
  895         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  896         outb(CMOS_REG, BIOS_RESET);
  897         mpbiosreason = inb(CMOS_DATA);
  898 
  899         /* setup a vector to our boot code */
  900         *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  901         *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  902         outb(CMOS_REG, BIOS_RESET);
  903         outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  904 
  905         /* start each AP */
  906         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  907                 apic_id = cpu_apic_ids[cpu];
  908 
  909                 /* allocate and set up an idle stack data page */
  910                 bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  911                 doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
  912                 nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
  913                 dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
  914 
  915                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
  916                 bootAP = cpu;
  917 
  918                 /* attempt to start the Application Processor */
  919                 if (!start_ap(apic_id)) {
  920                         /* restore the warmstart vector */
  921                         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  922                         panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
  923                 }
  924 
  925                 all_cpus |= (1 << cpu);         /* record AP in CPU map */
  926         }
  927 
  928         /* build our map of 'other' CPUs */
  929         PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
  930 
  931         /* restore the warmstart vector */
  932         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  933 
  934         outb(CMOS_REG, BIOS_RESET);
  935         outb(CMOS_DATA, mpbiosreason);
  936 
  937         /* number of APs actually started */
  938         return mp_naps;
  939 }
  940 
  941 
  942 /*
  943  * This function starts the AP (application processor) identified
  944  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  945  * to accomplish this.  This is necessary because of the nuances
  946  * of the different hardware we might encounter.  It isn't pretty,
  947  * but it seems to work.
  948  */
  949 static int
  950 start_ap(int apic_id)
  951 {
  952         int vector, ms;
  953         int cpus;
  954 
  955         /* calculate the vector */
  956         vector = (boot_address >> 12) & 0xff;
  957 
  958         /* used as a watchpoint to signal AP startup */
  959         cpus = mp_naps;
  960 
  961         /*
  962          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
  963          * and running the target CPU. OR this INIT IPI might be latched (P5
  964          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
  965          * ignored.
  966          */
  967 
  968         /* do an INIT IPI: assert RESET */
  969         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  970             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
  971 
  972         /* wait for pending status end */
  973         lapic_ipi_wait(-1);
  974 
  975         /* do an INIT IPI: deassert RESET */
  976         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
  977             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
  978 
  979         /* wait for pending status end */
  980         DELAY(10000);           /* wait ~10mS */
  981         lapic_ipi_wait(-1);
  982 
  983         /*
  984          * next we do a STARTUP IPI: the previous INIT IPI might still be
  985          * latched, (P5 bug) this 1st STARTUP would then terminate
  986          * immediately, and the previously started INIT IPI would continue. OR
  987          * the previous INIT IPI has already run. and this STARTUP IPI will
  988          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
  989          * will run.
  990          */
  991 
  992         /* do a STARTUP IPI */
  993         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  994             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
  995             vector, apic_id);
  996         lapic_ipi_wait(-1);
  997         DELAY(200);             /* wait ~200uS */
  998 
  999         /*
 1000          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 1001          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 1002          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 1003          * recognized after hardware RESET or INIT IPI.
 1004          */
 1005 
 1006         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1007             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1008             vector, apic_id);
 1009         lapic_ipi_wait(-1);
 1010         DELAY(200);             /* wait ~200uS */
 1011 
 1012         /* Wait up to 5 seconds for it to start. */
 1013         for (ms = 0; ms < 5000; ms++) {
 1014                 if (mp_naps > cpus)
 1015                         return 1;       /* return SUCCESS */
 1016                 DELAY(1000);
 1017         }
 1018         return 0;               /* return FAILURE */
 1019 }
 1020 
 1021 /*
 1022  * Flush the TLB on all other CPU's
 1023  */
 1024 static void
 1025 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1026 {
 1027         u_int ncpu;
 1028 
 1029         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1030         if (ncpu < 1)
 1031                 return;         /* no other cpus */
 1032         if (!(read_rflags() & PSL_I))
 1033                 panic("%s: interrupts disabled", __func__);
 1034         mtx_lock_spin(&smp_ipi_mtx);
 1035         smp_tlb_addr1 = addr1;
 1036         smp_tlb_addr2 = addr2;
 1037         atomic_store_rel_int(&smp_tlb_wait, 0);
 1038         ipi_all_but_self(vector);
 1039         while (smp_tlb_wait < ncpu)
 1040                 ia32_pause();
 1041         mtx_unlock_spin(&smp_ipi_mtx);
 1042 }
 1043 
 1044 static void
 1045 smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1046 {
 1047         int ncpu, othercpus;
 1048 
 1049         othercpus = mp_ncpus - 1;
 1050         if (mask == (cpumask_t)-1) {
 1051                 ncpu = othercpus;
 1052                 if (ncpu < 1)
 1053                         return;
 1054         } else {
 1055                 mask &= ~PCPU_GET(cpumask);
 1056                 if (mask == 0)
 1057                         return;
 1058                 ncpu = bitcount32(mask);
 1059                 if (ncpu > othercpus) {
 1060                         /* XXX this should be a panic offence */
 1061                         printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
 1062                             ncpu, othercpus);
 1063                         ncpu = othercpus;
 1064                 }
 1065                 /* XXX should be a panic, implied by mask == 0 above */
 1066                 if (ncpu < 1)
 1067                         return;
 1068         }
 1069         if (!(read_rflags() & PSL_I))
 1070                 panic("%s: interrupts disabled", __func__);
 1071         mtx_lock_spin(&smp_ipi_mtx);
 1072         smp_tlb_addr1 = addr1;
 1073         smp_tlb_addr2 = addr2;
 1074         atomic_store_rel_int(&smp_tlb_wait, 0);
 1075         if (mask == (cpumask_t)-1)
 1076                 ipi_all_but_self(vector);
 1077         else
 1078                 ipi_selected(mask, vector);
 1079         while (smp_tlb_wait < ncpu)
 1080                 ia32_pause();
 1081         mtx_unlock_spin(&smp_ipi_mtx);
 1082 }
 1083 
 1084 /*
 1085  * Send an IPI to specified CPU handling the bitmap logic.
 1086  */
 1087 static void
 1088 ipi_send_cpu(int cpu, u_int ipi)
 1089 {
 1090         u_int bitmap, old_pending, new_pending;
 1091 
 1092         KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
 1093 
 1094         if (IPI_IS_BITMAPED(ipi)) {
 1095                 bitmap = 1 << ipi;
 1096                 ipi = IPI_BITMAP_VECTOR;
 1097                 do {
 1098                         old_pending = cpu_ipi_pending[cpu];
 1099                         new_pending = old_pending | bitmap;
 1100                 } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
 1101                     old_pending, new_pending)); 
 1102                 if (old_pending)
 1103                         return;
 1104         }
 1105         lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1106 }
 1107 
 1108 void
 1109 smp_cache_flush(void)
 1110 {
 1111 
 1112         if (smp_started)
 1113                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1114 }
 1115 
 1116 void
 1117 smp_invltlb(void)
 1118 {
 1119 
 1120         if (smp_started) {
 1121                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1122         }
 1123 }
 1124 
 1125 void
 1126 smp_invlpg(vm_offset_t addr)
 1127 {
 1128 
 1129         if (smp_started)
 1130                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1131 }
 1132 
 1133 void
 1134 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1135 {
 1136 
 1137         if (smp_started) {
 1138                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1139         }
 1140 }
 1141 
 1142 void
 1143 smp_masked_invltlb(cpumask_t mask)
 1144 {
 1145 
 1146         if (smp_started) {
 1147                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1148         }
 1149 }
 1150 
 1151 void
 1152 smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
 1153 {
 1154 
 1155         if (smp_started) {
 1156                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1157         }
 1158 }
 1159 
 1160 void
 1161 smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
 1162 {
 1163 
 1164         if (smp_started) {
 1165                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1166         }
 1167 }
 1168 
 1169 void
 1170 ipi_bitmap_handler(struct trapframe frame)
 1171 {
 1172         int cpu = PCPU_GET(cpuid);
 1173         u_int ipi_bitmap;
 1174 
 1175         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1176 
 1177         if (ipi_bitmap & (1 << IPI_PREEMPT))
 1178                 sched_preempt(curthread);
 1179 
 1180         /* Nothing to do for AST */
 1181 
 1182         if (ipi_bitmap & (1 << IPI_HARDCLOCK))
 1183                 hardclockintr(&frame);
 1184 
 1185         if (ipi_bitmap & (1 << IPI_STATCLOCK))
 1186                 statclockintr(&frame);
 1187 
 1188         if (ipi_bitmap & (1 << IPI_PROFCLOCK))
 1189                 profclockintr(&frame);
 1190 }
 1191 
 1192 /*
 1193  * send an IPI to a set of cpus.
 1194  */
 1195 void
 1196 ipi_selected(cpumask_t cpus, u_int ipi)
 1197 {
 1198         int cpu;
 1199 
 1200         /*
 1201          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1202          * of help in order to understand what is the source.
 1203          * Set the mask of receiving CPUs for this purpose.
 1204          */
 1205         if (ipi == IPI_STOP_HARD)
 1206                 atomic_set_int(&ipi_nmi_pending, cpus);
 1207 
 1208         CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
 1209         while ((cpu = ffs(cpus)) != 0) {
 1210                 cpu--;
 1211                 cpus &= ~(1 << cpu);
 1212                 ipi_send_cpu(cpu, ipi);
 1213         }
 1214 }
 1215 
 1216 /*
 1217  * send an IPI to a specific CPU.
 1218  */
 1219 void
 1220 ipi_cpu(int cpu, u_int ipi)
 1221 {
 1222 
 1223         /*
 1224          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1225          * of help in order to understand what is the source.
 1226          * Set the mask of receiving CPUs for this purpose.
 1227          */
 1228         if (ipi == IPI_STOP_HARD)
 1229                 atomic_set_int(&ipi_nmi_pending, 1 << cpu);
 1230 
 1231         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1232         ipi_send_cpu(cpu, ipi);
 1233 }
 1234 
 1235 /*
 1236  * send an IPI to all CPUs EXCEPT myself
 1237  */
 1238 void
 1239 ipi_all_but_self(u_int ipi)
 1240 {
 1241 
 1242         if (IPI_IS_BITMAPED(ipi)) {
 1243                 ipi_selected(PCPU_GET(other_cpus), ipi);
 1244                 return;
 1245         }
 1246 
 1247         /*
 1248          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1249          * of help in order to understand what is the source.
 1250          * Set the mask of receiving CPUs for this purpose.
 1251          */
 1252         if (ipi == IPI_STOP_HARD)
 1253                 atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
 1254 
 1255         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1256         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1257 }
 1258 
 1259 int
 1260 ipi_nmi_handler()
 1261 {
 1262         cpumask_t cpumask;
 1263 
 1264         /*
 1265          * As long as there is not a simple way to know about a NMI's
 1266          * source, if the bitmask for the current CPU is present in
 1267          * the global pending bitword an IPI_STOP_HARD has been issued
 1268          * and should be handled.
 1269          */
 1270         cpumask = PCPU_GET(cpumask);
 1271         if ((ipi_nmi_pending & cpumask) == 0)
 1272                 return (1);
 1273 
 1274         atomic_clear_int(&ipi_nmi_pending, cpumask);
 1275         cpustop_handler();
 1276         return (0);
 1277 }
 1278      
 1279 /*
 1280  * Handle an IPI_STOP by saving our current context and spinning until we
 1281  * are resumed.
 1282  */
 1283 void
 1284 cpustop_handler(void)
 1285 {
 1286         cpumask_t cpumask;
 1287         u_int cpu;
 1288 
 1289         cpu = PCPU_GET(cpuid);
 1290         cpumask = PCPU_GET(cpumask);
 1291 
 1292         savectx(&stoppcbs[cpu]);
 1293 
 1294         /* Indicate that we are stopped */
 1295         atomic_set_int(&stopped_cpus, cpumask);
 1296 
 1297         /* Wait for restart */
 1298         while (!(started_cpus & cpumask))
 1299             ia32_pause();
 1300 
 1301         atomic_clear_int(&started_cpus, cpumask);
 1302         atomic_clear_int(&stopped_cpus, cpumask);
 1303 
 1304         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1305                 cpustop_restartfunc();
 1306                 cpustop_restartfunc = NULL;
 1307         }
 1308 }
 1309 
 1310 /*
 1311  * Handle an IPI_SUSPEND by saving our current context and spinning until we
 1312  * are resumed.
 1313  */
 1314 void
 1315 cpususpend_handler(void)
 1316 {
 1317         cpumask_t cpumask;
 1318         register_t cr3, rf;
 1319         u_int cpu;
 1320 
 1321         cpu = PCPU_GET(cpuid);
 1322         cpumask = PCPU_GET(cpumask);
 1323 
 1324         rf = intr_disable();
 1325         cr3 = rcr3();
 1326 
 1327         if (savectx(susppcbs[cpu])) {
 1328                 wbinvd();
 1329                 atomic_set_int(&stopped_cpus, cpumask);
 1330         } else {
 1331                 pmap_init_pat();
 1332                 PCPU_SET(switchtime, 0);
 1333                 PCPU_SET(switchticks, ticks);
 1334         }
 1335 
 1336         /* Wait for resume */
 1337         while (!(started_cpus & cpumask))
 1338                 ia32_pause();
 1339 
 1340         atomic_clear_int(&started_cpus, cpumask);
 1341         atomic_clear_int(&stopped_cpus, cpumask);
 1342 
 1343         /* Restore CR3 and enable interrupts */
 1344         load_cr3(cr3);
 1345         mca_resume();
 1346         lapic_setup(0);
 1347         intr_restore(rf);
 1348 }
 1349 
 1350 /*
 1351  * This is called once the rest of the system is up and running and we're
 1352  * ready to let the AP's out of the pen.
 1353  */
 1354 static void
 1355 release_aps(void *dummy __unused)
 1356 {
 1357 
 1358         if (mp_ncpus == 1) 
 1359                 return;
 1360         atomic_store_rel_int(&aps_ready, 1);
 1361         while (smp_started == 0)
 1362                 ia32_pause();
 1363 }
 1364 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1365 
 1366 static int
 1367 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
 1368 {
 1369         cpumask_t mask;
 1370         int error;
 1371 
 1372         mask = hlt_cpus_mask;
 1373         error = sysctl_handle_int(oidp, &mask, 0, req);
 1374         if (error || !req->newptr)
 1375                 return (error);
 1376 
 1377         if (logical_cpus_mask != 0 &&
 1378             (mask & logical_cpus_mask) == logical_cpus_mask)
 1379                 hlt_logical_cpus = 1;
 1380         else
 1381                 hlt_logical_cpus = 0;
 1382 
 1383         if (! hyperthreading_allowed)
 1384                 mask |= hyperthreading_cpus_mask;
 1385 
 1386         if ((mask & all_cpus) == all_cpus)
 1387                 mask &= ~(1<<0);
 1388         hlt_cpus_mask = mask;
 1389         return (error);
 1390 }
 1391 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
 1392     0, 0, sysctl_hlt_cpus, "IU",
 1393     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
 1394 
 1395 static int
 1396 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
 1397 {
 1398         int disable, error;
 1399 
 1400         disable = hlt_logical_cpus;
 1401         error = sysctl_handle_int(oidp, &disable, 0, req);
 1402         if (error || !req->newptr)
 1403                 return (error);
 1404 
 1405         if (disable)
 1406                 hlt_cpus_mask |= logical_cpus_mask;
 1407         else
 1408                 hlt_cpus_mask &= ~logical_cpus_mask;
 1409 
 1410         if (! hyperthreading_allowed)
 1411                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1412 
 1413         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1414                 hlt_cpus_mask &= ~(1<<0);
 1415 
 1416         hlt_logical_cpus = disable;
 1417         return (error);
 1418 }
 1419 
 1420 static int
 1421 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
 1422 {
 1423         int allowed, error;
 1424 
 1425         allowed = hyperthreading_allowed;
 1426         error = sysctl_handle_int(oidp, &allowed, 0, req);
 1427         if (error || !req->newptr)
 1428                 return (error);
 1429 
 1430 #ifdef SCHED_ULE
 1431         /*
 1432          * SCHED_ULE doesn't allow enabling/disabling HT cores at
 1433          * run-time.
 1434          */
 1435         if (allowed != hyperthreading_allowed)
 1436                 return (ENOTSUP);
 1437         return (error);
 1438 #endif
 1439 
 1440         if (allowed)
 1441                 hlt_cpus_mask &= ~hyperthreading_cpus_mask;
 1442         else
 1443                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1444 
 1445         if (logical_cpus_mask != 0 &&
 1446             (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
 1447                 hlt_logical_cpus = 1;
 1448         else
 1449                 hlt_logical_cpus = 0;
 1450 
 1451         if ((hlt_cpus_mask & all_cpus) == all_cpus)
 1452                 hlt_cpus_mask &= ~(1<<0);
 1453 
 1454         hyperthreading_allowed = allowed;
 1455         return (error);
 1456 }
 1457 
 1458 static void
 1459 cpu_hlt_setup(void *dummy __unused)
 1460 {
 1461 
 1462         if (logical_cpus_mask != 0) {
 1463                 TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
 1464                     &hlt_logical_cpus);
 1465                 sysctl_ctx_init(&logical_cpu_clist);
 1466                 SYSCTL_ADD_PROC(&logical_cpu_clist,
 1467                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1468                     "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
 1469                     sysctl_hlt_logical_cpus, "IU", "");
 1470                 SYSCTL_ADD_UINT(&logical_cpu_clist,
 1471                     SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1472                     "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
 1473                     &logical_cpus_mask, 0, "");
 1474 
 1475                 if (hlt_logical_cpus)
 1476                         hlt_cpus_mask |= logical_cpus_mask;
 1477 
 1478                 /*
 1479                  * If necessary for security purposes, force
 1480                  * hyperthreading off, regardless of the value
 1481                  * of hlt_logical_cpus.
 1482                  */
 1483                 if (hyperthreading_cpus_mask) {
 1484                         SYSCTL_ADD_PROC(&logical_cpu_clist,
 1485                             SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
 1486                             "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
 1487                             0, 0, sysctl_hyperthreading_allowed, "IU", "");
 1488                         if (! hyperthreading_allowed)
 1489                                 hlt_cpus_mask |= hyperthreading_cpus_mask;
 1490                 }
 1491         }
 1492 }
 1493 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
 1494 
 1495 int
 1496 mp_grab_cpu_hlt(void)
 1497 {
 1498         cpumask_t mask;
 1499 #ifdef MP_WATCHDOG
 1500         u_int cpuid;
 1501 #endif
 1502         int retval;
 1503 
 1504         mask = PCPU_GET(cpumask);
 1505 #ifdef MP_WATCHDOG
 1506         cpuid = PCPU_GET(cpuid);
 1507         ap_watchdog(cpuid);
 1508 #endif
 1509 
 1510         retval = 0;
 1511         while (mask & hlt_cpus_mask) {
 1512                 retval = 1;
 1513                 __asm __volatile("sti; hlt" : : : "memory");
 1514         }
 1515         return (retval);
 1516 }

Cache object: 0157cf848d1add107b26dd75b4a82940


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.