The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * Copyright (c) 2003, by Peter Wemm
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the developer may NOT be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/9.1/sys/amd64/amd64/mp_machdep.c 235260 2012-05-11 04:10:23Z attilio $");
   29 
   30 #include "opt_cpu.h"
   31 #include "opt_kstack_pages.h"
   32 #include "opt_sched.h"
   33 #include "opt_smp.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/bus.h>
   38 #include <sys/cpuset.h>
   39 #ifdef GPROF 
   40 #include <sys/gmon.h>
   41 #endif
   42 #include <sys/kernel.h>
   43 #include <sys/ktr.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/memrange.h>
   47 #include <sys/mutex.h>
   48 #include <sys/pcpu.h>
   49 #include <sys/proc.h>
   50 #include <sys/sched.h>
   51 #include <sys/smp.h>
   52 #include <sys/sysctl.h>
   53 
   54 #include <vm/vm.h>
   55 #include <vm/vm_param.h>
   56 #include <vm/pmap.h>
   57 #include <vm/vm_kern.h>
   58 #include <vm/vm_extern.h>
   59 
   60 #include <x86/apicreg.h>
   61 #include <machine/clock.h>
   62 #include <machine/cputypes.h>
   63 #include <machine/cpufunc.h>
   64 #include <x86/mca.h>
   65 #include <machine/md_var.h>
   66 #include <machine/pcb.h>
   67 #include <machine/psl.h>
   68 #include <machine/smp.h>
   69 #include <machine/specialreg.h>
   70 #include <machine/tss.h>
   71 
   72 #define WARMBOOT_TARGET         0
   73 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   74 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   75 
   76 #define CMOS_REG                (0x70)
   77 #define CMOS_DATA               (0x71)
   78 #define BIOS_RESET              (0x0f)
   79 #define BIOS_WARM               (0x0a)
   80 
   81 /* lock region used by kernel profiling */
   82 int     mcount_lock;
   83 
   84 int     mp_naps;                /* # of Applications processors */
   85 int     boot_cpu_id = -1;       /* designated BSP */
   86 
   87 extern  struct pcpu __pcpu[];
   88 
   89 /* AP uses this during bootstrap.  Do not staticize.  */
   90 char *bootSTK;
   91 static int bootAP;
   92 
   93 /* Free these after use */
   94 void *bootstacks[MAXCPU];
   95 
   96 /* Temporary variables for init_secondary()  */
   97 char *doublefault_stack;
   98 char *nmi_stack;
   99 void *dpcpu;
  100 
  101 struct pcb stoppcbs[MAXCPU];
  102 struct pcb **susppcbs;
  103 void **suspfpusave;
  104 
  105 /* Variables needed for SMP tlb shootdown. */
  106 vm_offset_t smp_tlb_addr1;
  107 vm_offset_t smp_tlb_addr2;
  108 volatile int smp_tlb_wait;
  109 
  110 #ifdef COUNT_IPIS
  111 /* Interrupt counts. */
  112 static u_long *ipi_preempt_counts[MAXCPU];
  113 static u_long *ipi_ast_counts[MAXCPU];
  114 u_long *ipi_invltlb_counts[MAXCPU];
  115 u_long *ipi_invlrng_counts[MAXCPU];
  116 u_long *ipi_invlpg_counts[MAXCPU];
  117 u_long *ipi_invlcache_counts[MAXCPU];
  118 u_long *ipi_rendezvous_counts[MAXCPU];
  119 static u_long *ipi_hardclock_counts[MAXCPU];
  120 #endif
  121 
  122 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  123 
  124 /*
  125  * Local data and functions.
  126  */
  127 
  128 static volatile cpuset_t ipi_nmi_pending;
  129 
  130 /* used to hold the AP's until we are ready to release them */
  131 static struct mtx ap_boot_mtx;
  132 
  133 /* Set to 1 once we're ready to let the APs out of the pen. */
  134 static volatile int aps_ready = 0;
  135 
  136 /*
  137  * Store data from cpu_add() until later in the boot when we actually setup
  138  * the APs.
  139  */
  140 struct cpu_info {
  141         int     cpu_present:1;
  142         int     cpu_bsp:1;
  143         int     cpu_disabled:1;
  144         int     cpu_hyperthread:1;
  145 } static cpu_info[MAX_APIC_ID + 1];
  146 int cpu_apic_ids[MAXCPU];
  147 int apic_cpuids[MAX_APIC_ID + 1];
  148 
  149 /* Holds pending bitmap based IPIs per CPU */
  150 static volatile u_int cpu_ipi_pending[MAXCPU];
  151 
  152 static u_int boot_address;
  153 static int cpu_logical;                 /* logical cpus per core */
  154 static int cpu_cores;                   /* cores per package */
  155 
  156 static void     assign_cpu_ids(void);
  157 static void     set_interrupt_apic_ids(void);
  158 static int      start_all_aps(void);
  159 static int      start_ap(int apic_id);
  160 static void     release_aps(void *dummy);
  161 
  162 static u_int    hyperthreading_cpus;    /* logical cpus sharing L1 cache */
  163 static int      hyperthreading_allowed = 1;
  164 static u_int    bootMP_size;
  165 
  166 static void
  167 mem_range_AP_init(void)
  168 {
  169         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  170                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  171 }
  172 
  173 static void
  174 topo_probe_amd(void)
  175 {
  176         int core_id_bits;
  177         int id;
  178 
  179         /* AMD processors do not support HTT. */
  180         cpu_logical = 1;
  181 
  182         if ((amd_feature2 & AMDID2_CMP) == 0) {
  183                 cpu_cores = 1;
  184                 return;
  185         }
  186 
  187         core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
  188             AMDID_COREID_SIZE_SHIFT;
  189         if (core_id_bits == 0) {
  190                 cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
  191                 return;
  192         }
  193 
  194         /* Fam 10h and newer should get here. */
  195         for (id = 0; id <= MAX_APIC_ID; id++) {
  196                 /* Check logical CPU availability. */
  197                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  198                         continue;
  199                 /* Check if logical CPU has the same package ID. */
  200                 if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
  201                         continue;
  202                 cpu_cores++;
  203         }
  204 }
  205 
  206 /*
  207  * Round up to the next power of two, if necessary, and then
  208  * take log2.
  209  * Returns -1 if argument is zero.
  210  */
  211 static __inline int
  212 mask_width(u_int x)
  213 {
  214 
  215         return (fls(x << (1 - powerof2(x))) - 1);
  216 }
  217 
  218 static void
  219 topo_probe_0x4(void)
  220 {
  221         u_int p[4];
  222         int pkg_id_bits;
  223         int core_id_bits;
  224         int max_cores;
  225         int max_logical;
  226         int id;
  227 
  228         /* Both zero and one here mean one logical processor per package. */
  229         max_logical = (cpu_feature & CPUID_HTT) != 0 ?
  230             (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
  231         if (max_logical <= 1)
  232                 return;
  233 
  234         /*
  235          * Because of uniformity assumption we examine only
  236          * those logical processors that belong to the same
  237          * package as BSP.  Further, we count number of
  238          * logical processors that belong to the same core
  239          * as BSP thus deducing number of threads per core.
  240          */
  241         if (cpu_high >= 0x4) {
  242                 cpuid_count(0x04, 0, p);
  243                 max_cores = ((p[0] >> 26) & 0x3f) + 1;
  244         } else
  245                 max_cores = 1;
  246         core_id_bits = mask_width(max_logical/max_cores);
  247         if (core_id_bits < 0)
  248                 return;
  249         pkg_id_bits = core_id_bits + mask_width(max_cores);
  250 
  251         for (id = 0; id <= MAX_APIC_ID; id++) {
  252                 /* Check logical CPU availability. */
  253                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  254                         continue;
  255                 /* Check if logical CPU has the same package ID. */
  256                 if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
  257                         continue;
  258                 cpu_cores++;
  259                 /* Check if logical CPU has the same package and core IDs. */
  260                 if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
  261                         cpu_logical++;
  262         }
  263 
  264         KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
  265             ("topo_probe_0x4 couldn't find BSP"));
  266 
  267         cpu_cores /= cpu_logical;
  268         hyperthreading_cpus = cpu_logical;
  269 }
  270 
  271 static void
  272 topo_probe_0xb(void)
  273 {
  274         u_int p[4];
  275         int bits;
  276         int cnt;
  277         int i;
  278         int logical;
  279         int type;
  280         int x;
  281 
  282         /* We only support three levels for now. */
  283         for (i = 0; i < 3; i++) {
  284                 cpuid_count(0x0b, i, p);
  285 
  286                 /* Fall back if CPU leaf 11 doesn't really exist. */
  287                 if (i == 0 && p[1] == 0) {
  288                         topo_probe_0x4();
  289                         return;
  290                 }
  291 
  292                 bits = p[0] & 0x1f;
  293                 logical = p[1] &= 0xffff;
  294                 type = (p[2] >> 8) & 0xff;
  295                 if (type == 0 || logical == 0)
  296                         break;
  297                 /*
  298                  * Because of uniformity assumption we examine only
  299                  * those logical processors that belong to the same
  300                  * package as BSP.
  301                  */
  302                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  303                         if (!cpu_info[x].cpu_present ||
  304                             cpu_info[x].cpu_disabled)
  305                                 continue;
  306                         if (x >> bits == boot_cpu_id >> bits)
  307                                 cnt++;
  308                 }
  309                 if (type == CPUID_TYPE_SMT)
  310                         cpu_logical = cnt;
  311                 else if (type == CPUID_TYPE_CORE)
  312                         cpu_cores = cnt;
  313         }
  314         if (cpu_logical == 0)
  315                 cpu_logical = 1;
  316         cpu_cores /= cpu_logical;
  317 }
  318 
  319 /*
  320  * Both topology discovery code and code that consumes topology
  321  * information assume top-down uniformity of the topology.
  322  * That is, all physical packages must be identical and each
  323  * core in a package must have the same number of threads.
  324  * Topology information is queried only on BSP, on which this
  325  * code runs and for which it can query CPUID information.
  326  * Then topology is extrapolated on all packages using the
  327  * uniformity assumption.
  328  */
  329 static void
  330 topo_probe(void)
  331 {
  332         static int cpu_topo_probed = 0;
  333 
  334         if (cpu_topo_probed)
  335                 return;
  336 
  337         CPU_ZERO(&logical_cpus_mask);
  338         if (mp_ncpus <= 1)
  339                 cpu_cores = cpu_logical = 1;
  340         else if (cpu_vendor_id == CPU_VENDOR_AMD)
  341                 topo_probe_amd();
  342         else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
  343                 /*
  344                  * See Intel(R) 64 Architecture Processor
  345                  * Topology Enumeration article for details.
  346                  *
  347                  * Note that 0x1 <= cpu_high < 4 case should be
  348                  * compatible with topo_probe_0x4() logic when
  349                  * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
  350                  * or it should trigger the fallback otherwise.
  351                  */
  352                 if (cpu_high >= 0xb)
  353                         topo_probe_0xb();
  354                 else if (cpu_high >= 0x1)
  355                         topo_probe_0x4();
  356         }
  357 
  358         /*
  359          * Fallback: assume each logical CPU is in separate
  360          * physical package.  That is, no multi-core, no SMT.
  361          */
  362         if (cpu_cores == 0 || cpu_logical == 0)
  363                 cpu_cores = cpu_logical = 1;
  364         cpu_topo_probed = 1;
  365 }
  366 
  367 struct cpu_group *
  368 cpu_topo(void)
  369 {
  370         int cg_flags;
  371 
  372         /*
  373          * Determine whether any threading flags are
  374          * necessry.
  375          */
  376         topo_probe();
  377         if (cpu_logical > 1 && hyperthreading_cpus)
  378                 cg_flags = CG_FLAG_HTT;
  379         else if (cpu_logical > 1)
  380                 cg_flags = CG_FLAG_SMT;
  381         else
  382                 cg_flags = 0;
  383         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  384                 printf("WARNING: Non-uniform processors.\n");
  385                 printf("WARNING: Using suboptimal topology.\n");
  386                 return (smp_topo_none());
  387         }
  388         /*
  389          * No multi-core or hyper-threaded.
  390          */
  391         if (cpu_logical * cpu_cores == 1)
  392                 return (smp_topo_none());
  393         /*
  394          * Only HTT no multi-core.
  395          */
  396         if (cpu_logical > 1 && cpu_cores == 1)
  397                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  398         /*
  399          * Only multi-core no HTT.
  400          */
  401         if (cpu_cores > 1 && cpu_logical == 1)
  402                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  403         /*
  404          * Both HTT and multi-core.
  405          */
  406         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  407             CG_SHARE_L1, cpu_logical, cg_flags));
  408 }
  409 
  410 /*
  411  * Calculate usable address in base memory for AP trampoline code.
  412  */
  413 u_int
  414 mp_bootaddress(u_int basemem)
  415 {
  416 
  417         bootMP_size = mptramp_end - mptramp_start;
  418         boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
  419         if (((basemem * 1024) - boot_address) < bootMP_size)
  420                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  421         /* 3 levels of page table pages */
  422         mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
  423 
  424         return mptramp_pagetables;
  425 }
  426 
  427 void
  428 cpu_add(u_int apic_id, char boot_cpu)
  429 {
  430 
  431         if (apic_id > MAX_APIC_ID) {
  432                 panic("SMP: APIC ID %d too high", apic_id);
  433                 return;
  434         }
  435         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  436             apic_id));
  437         cpu_info[apic_id].cpu_present = 1;
  438         if (boot_cpu) {
  439                 KASSERT(boot_cpu_id == -1,
  440                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  441                     boot_cpu_id));
  442                 boot_cpu_id = apic_id;
  443                 cpu_info[apic_id].cpu_bsp = 1;
  444         }
  445         if (mp_ncpus < MAXCPU) {
  446                 mp_ncpus++;
  447                 mp_maxid = mp_ncpus - 1;
  448         }
  449         if (bootverbose)
  450                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  451                     "AP");
  452 }
  453 
  454 void
  455 cpu_mp_setmaxid(void)
  456 {
  457 
  458         /*
  459          * mp_maxid should be already set by calls to cpu_add().
  460          * Just sanity check its value here.
  461          */
  462         if (mp_ncpus == 0)
  463                 KASSERT(mp_maxid == 0,
  464                     ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
  465         else if (mp_ncpus == 1)
  466                 mp_maxid = 0;
  467         else
  468                 KASSERT(mp_maxid >= mp_ncpus - 1,
  469                     ("%s: counters out of sync: max %d, count %d", __func__,
  470                         mp_maxid, mp_ncpus));
  471 }
  472 
  473 int
  474 cpu_mp_probe(void)
  475 {
  476 
  477         /*
  478          * Always record BSP in CPU map so that the mbuf init code works
  479          * correctly.
  480          */
  481         CPU_SETOF(0, &all_cpus);
  482         if (mp_ncpus == 0) {
  483                 /*
  484                  * No CPUs were found, so this must be a UP system.  Setup
  485                  * the variables to represent a system with a single CPU
  486                  * with an id of 0.
  487                  */
  488                 mp_ncpus = 1;
  489                 return (0);
  490         }
  491 
  492         /* At least one CPU was found. */
  493         if (mp_ncpus == 1) {
  494                 /*
  495                  * One CPU was found, so this must be a UP system with
  496                  * an I/O APIC.
  497                  */
  498                 mp_maxid = 0;
  499                 return (0);
  500         }
  501 
  502         /* At least two CPUs were found. */
  503         return (1);
  504 }
  505 
  506 /*
  507  * Initialize the IPI handlers and start up the AP's.
  508  */
  509 void
  510 cpu_mp_start(void)
  511 {
  512         int i;
  513 
  514         /* Initialize the logical ID to APIC ID table. */
  515         for (i = 0; i < MAXCPU; i++) {
  516                 cpu_apic_ids[i] = -1;
  517                 cpu_ipi_pending[i] = 0;
  518         }
  519 
  520         /* Install an inter-CPU IPI for TLB invalidation */
  521         setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
  522         setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
  523         setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
  524 
  525         /* Install an inter-CPU IPI for cache invalidation. */
  526         setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
  527 
  528         /* Install an inter-CPU IPI for all-CPU rendezvous */
  529         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
  530 
  531         /* Install generic inter-CPU IPI handler */
  532         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  533                SDT_SYSIGT, SEL_KPL, 0);
  534 
  535         /* Install an inter-CPU IPI for CPU stop/restart */
  536         setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
  537 
  538         /* Install an inter-CPU IPI for CPU suspend/resume */
  539         setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
  540 
  541         /* Set boot_cpu_id if needed. */
  542         if (boot_cpu_id == -1) {
  543                 boot_cpu_id = PCPU_GET(apic_id);
  544                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  545         } else
  546                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  547                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  548 
  549         /* Probe logical/physical core configuration. */
  550         topo_probe();
  551 
  552         assign_cpu_ids();
  553 
  554         /* Start each Application Processor */
  555         start_all_aps();
  556 
  557         set_interrupt_apic_ids();
  558 }
  559 
  560 
  561 /*
  562  * Print various information about the SMP system hardware and setup.
  563  */
  564 void
  565 cpu_mp_announce(void)
  566 {
  567         const char *hyperthread;
  568         int i;
  569 
  570         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  571             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  572         if (hyperthreading_cpus > 1)
  573             printf(" x %d HTT threads", cpu_logical);
  574         else if (cpu_logical > 1)
  575             printf(" x %d SMT threads", cpu_logical);
  576         printf("\n");
  577 
  578         /* List active CPUs first. */
  579         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  580         for (i = 1; i < mp_ncpus; i++) {
  581                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  582                         hyperthread = "/HT";
  583                 else
  584                         hyperthread = "";
  585                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  586                     cpu_apic_ids[i]);
  587         }
  588 
  589         /* List disabled CPUs last. */
  590         for (i = 0; i <= MAX_APIC_ID; i++) {
  591                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  592                         continue;
  593                 if (cpu_info[i].cpu_hyperthread)
  594                         hyperthread = "/HT";
  595                 else
  596                         hyperthread = "";
  597                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  598                     i);
  599         }
  600 }
  601 
  602 /*
  603  * AP CPU's call this to initialize themselves.
  604  */
  605 void
  606 init_secondary(void)
  607 {
  608         struct pcpu *pc;
  609         struct nmi_pcpu *np;
  610         u_int64_t msr, cr0;
  611         u_int cpuid;
  612         int cpu, gsel_tss, x;
  613         struct region_descriptor ap_gdt;
  614 
  615         /* Set by the startup code for us to use */
  616         cpu = bootAP;
  617 
  618         /* Init tss */
  619         common_tss[cpu] = common_tss[0];
  620         common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
  621         common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
  622             IOPAGES * PAGE_SIZE;
  623         common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
  624 
  625         /* The NMI stack runs on IST2. */
  626         np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
  627         common_tss[cpu].tss_ist2 = (long) np;
  628 
  629         /* Prepare private GDT */
  630         gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
  631         for (x = 0; x < NGDT; x++) {
  632                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
  633                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
  634                         ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
  635         }
  636         ssdtosyssd(&gdt_segs[GPROC0_SEL],
  637             (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
  638         ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  639         ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
  640         lgdt(&ap_gdt);                  /* does magic intra-segment return */
  641 
  642         /* Get per-cpu data */
  643         pc = &__pcpu[cpu];
  644 
  645         /* prime data page for it to use */
  646         pcpu_init(pc, cpu, sizeof(struct pcpu));
  647         dpcpu_init(dpcpu, cpu);
  648         pc->pc_apic_id = cpu_apic_ids[cpu];
  649         pc->pc_prvspace = pc;
  650         pc->pc_curthread = 0;
  651         pc->pc_tssp = &common_tss[cpu];
  652         pc->pc_commontssp = &common_tss[cpu];
  653         pc->pc_rsp0 = 0;
  654         pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  655             GPROC0_SEL];
  656         pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
  657         pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
  658         pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  659             GUSERLDT_SEL];
  660 
  661         /* Save the per-cpu pointer for use by the NMI handler. */
  662         np->np_pcpu = (register_t) pc;
  663 
  664         wrmsr(MSR_FSBASE, 0);           /* User value */
  665         wrmsr(MSR_GSBASE, (u_int64_t)pc);
  666         wrmsr(MSR_KGSBASE, (u_int64_t)pc);      /* XXX User value while we're in the kernel */
  667 
  668         lidt(&r_idt);
  669 
  670         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  671         ltr(gsel_tss);
  672 
  673         /*
  674          * Set to a known state:
  675          * Set by mpboot.s: CR0_PG, CR0_PE
  676          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  677          */
  678         cr0 = rcr0();
  679         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  680         load_cr0(cr0);
  681 
  682         /* Set up the fast syscall stuff */
  683         msr = rdmsr(MSR_EFER) | EFER_SCE;
  684         wrmsr(MSR_EFER, msr);
  685         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
  686         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
  687         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
  688               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
  689         wrmsr(MSR_STAR, msr);
  690         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
  691 
  692         /* Disable local APIC just to be sure. */
  693         lapic_disable();
  694 
  695         /* signal our startup to the BSP. */
  696         mp_naps++;
  697 
  698         /* Spin until the BSP releases the AP's. */
  699         while (!aps_ready)
  700                 ia32_pause();
  701 
  702         /* Initialize the PAT MSR. */
  703         pmap_init_pat();
  704 
  705         /* set up CPU registers and state */
  706         cpu_setregs();
  707 
  708         /* set up SSE/NX registers */
  709         initializecpu();
  710 
  711         /* set up FPU state on the AP */
  712         fpuinit();
  713 
  714         /* A quick check from sanity claus */
  715         cpuid = PCPU_GET(cpuid);
  716         if (PCPU_GET(apic_id) != lapic_id()) {
  717                 printf("SMP: cpuid = %d\n", cpuid);
  718                 printf("SMP: actual apic_id = %d\n", lapic_id());
  719                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  720                 panic("cpuid mismatch! boom!!");
  721         }
  722 
  723         /* Initialize curthread. */
  724         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  725         PCPU_SET(curthread, PCPU_GET(idlethread));
  726 
  727         mca_init();
  728 
  729         mtx_lock_spin(&ap_boot_mtx);
  730 
  731         /* Init local apic for irq's */
  732         lapic_setup(1);
  733 
  734         /* Set memory range attributes for this CPU to match the BSP */
  735         mem_range_AP_init();
  736 
  737         smp_cpus++;
  738 
  739         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
  740         printf("SMP: AP CPU #%d Launched!\n", cpuid);
  741 
  742         /* Determine if we are a logical CPU. */
  743         /* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
  744         if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
  745                 CPU_SET(cpuid, &logical_cpus_mask);
  746 
  747         if (bootverbose)
  748                 lapic_dump("AP");
  749 
  750         if (smp_cpus == mp_ncpus) {
  751                 /* enable IPI's, tlb shootdown, freezes etc */
  752                 atomic_store_rel_int(&smp_started, 1);
  753                 smp_active = 1;  /* historic */
  754         }
  755 
  756         /*
  757          * Enable global pages TLB extension
  758          * This also implicitly flushes the TLB 
  759          */
  760 
  761         load_cr4(rcr4() | CR4_PGE);
  762         load_ds(_udatasel);
  763         load_es(_udatasel);
  764         load_fs(_ufssel);
  765         mtx_unlock_spin(&ap_boot_mtx);
  766 
  767         /* Wait until all the AP's are up. */
  768         while (smp_started == 0)
  769                 ia32_pause();
  770 
  771         /* Start per-CPU event timers. */
  772         cpu_initclocks_ap();
  773 
  774         sched_throw(NULL);
  775 
  776         panic("scheduler returned us to %s", __func__);
  777         /* NOTREACHED */
  778 }
  779 
  780 /*******************************************************************
  781  * local functions and data
  782  */
  783 
  784 /*
  785  * We tell the I/O APIC code about all the CPUs we want to receive
  786  * interrupts.  If we don't want certain CPUs to receive IRQs we
  787  * can simply not tell the I/O APIC code about them in this function.
  788  */
  789 static void
  790 set_interrupt_apic_ids(void)
  791 {
  792         u_int i, apic_id;
  793 
  794         for (i = 0; i < MAXCPU; i++) {
  795                 apic_id = cpu_apic_ids[i];
  796                 if (apic_id == -1)
  797                         continue;
  798                 if (cpu_info[apic_id].cpu_disabled)
  799                         continue;
  800 
  801                 /* Don't let hyperthreads service interrupts. */
  802                 if (hyperthreading_cpus > 1 &&
  803                     apic_id % hyperthreading_cpus != 0)
  804                         continue;
  805 
  806                 intr_add_cpu(i);
  807         }
  808 }
  809 
  810 /*
  811  * Assign logical CPU IDs to local APICs.
  812  */
  813 static void
  814 assign_cpu_ids(void)
  815 {
  816         u_int i;
  817 
  818         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  819             &hyperthreading_allowed);
  820 
  821         /* Check for explicitly disabled CPUs. */
  822         for (i = 0; i <= MAX_APIC_ID; i++) {
  823                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  824                         continue;
  825 
  826                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  827                         cpu_info[i].cpu_hyperthread = 1;
  828 
  829                         /*
  830                          * Don't use HT CPU if it has been disabled by a
  831                          * tunable.
  832                          */
  833                         if (hyperthreading_allowed == 0) {
  834                                 cpu_info[i].cpu_disabled = 1;
  835                                 continue;
  836                         }
  837                 }
  838 
  839                 /* Don't use this CPU if it has been disabled by a tunable. */
  840                 if (resource_disabled("lapic", i)) {
  841                         cpu_info[i].cpu_disabled = 1;
  842                         continue;
  843                 }
  844         }
  845 
  846         if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
  847                 hyperthreading_cpus = 0;
  848                 cpu_logical = 1;
  849         }
  850 
  851         /*
  852          * Assign CPU IDs to local APIC IDs and disable any CPUs
  853          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  854          *
  855          * To minimize confusion for userland, we attempt to number
  856          * CPUs such that all threads and cores in a package are
  857          * grouped together.  For now we assume that the BSP is always
  858          * the first thread in a package and just start adding APs
  859          * starting with the BSP's APIC ID.
  860          */
  861         mp_ncpus = 1;
  862         cpu_apic_ids[0] = boot_cpu_id;
  863         apic_cpuids[boot_cpu_id] = 0;
  864         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  865              i == MAX_APIC_ID ? i = 0 : i++) {
  866                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  867                     cpu_info[i].cpu_disabled)
  868                         continue;
  869 
  870                 if (mp_ncpus < MAXCPU) {
  871                         cpu_apic_ids[mp_ncpus] = i;
  872                         apic_cpuids[i] = mp_ncpus;
  873                         mp_ncpus++;
  874                 } else
  875                         cpu_info[i].cpu_disabled = 1;
  876         }
  877         KASSERT(mp_maxid >= mp_ncpus - 1,
  878             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  879             mp_ncpus));         
  880 }
  881 
  882 /*
  883  * start each AP in our list
  884  */
  885 static int
  886 start_all_aps(void)
  887 {
  888         vm_offset_t va = boot_address + KERNBASE;
  889         u_int64_t *pt4, *pt3, *pt2;
  890         u_int32_t mpbioswarmvec;
  891         int apic_id, cpu, i;
  892         u_char mpbiosreason;
  893 
  894         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  895 
  896         /* install the AP 1st level boot code */
  897         pmap_kenter(va, boot_address);
  898         pmap_invalidate_page(kernel_pmap, va);
  899         bcopy(mptramp_start, (void *)va, bootMP_size);
  900 
  901         /* Locate the page tables, they'll be below the trampoline */
  902         pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
  903         pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
  904         pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
  905 
  906         /* Create the initial 1GB replicated page tables */
  907         for (i = 0; i < 512; i++) {
  908                 /* Each slot of the level 4 pages points to the same level 3 page */
  909                 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
  910                 pt4[i] |= PG_V | PG_RW | PG_U;
  911 
  912                 /* Each slot of the level 3 pages points to the same level 2 page */
  913                 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
  914                 pt3[i] |= PG_V | PG_RW | PG_U;
  915 
  916                 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
  917                 pt2[i] = i * (2 * 1024 * 1024);
  918                 pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
  919         }
  920 
  921         /* save the current value of the warm-start vector */
  922         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  923         outb(CMOS_REG, BIOS_RESET);
  924         mpbiosreason = inb(CMOS_DATA);
  925 
  926         /* setup a vector to our boot code */
  927         *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  928         *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  929         outb(CMOS_REG, BIOS_RESET);
  930         outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  931 
  932         /* start each AP */
  933         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  934                 apic_id = cpu_apic_ids[cpu];
  935 
  936                 /* allocate and set up an idle stack data page */
  937                 bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  938                 doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
  939                 nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
  940                 dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
  941 
  942                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
  943                 bootAP = cpu;
  944 
  945                 /* attempt to start the Application Processor */
  946                 if (!start_ap(apic_id)) {
  947                         /* restore the warmstart vector */
  948                         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  949                         panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
  950                 }
  951 
  952                 CPU_SET(cpu, &all_cpus);        /* record AP in CPU map */
  953         }
  954 
  955         /* restore the warmstart vector */
  956         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  957 
  958         outb(CMOS_REG, BIOS_RESET);
  959         outb(CMOS_DATA, mpbiosreason);
  960 
  961         /* number of APs actually started */
  962         return mp_naps;
  963 }
  964 
  965 
  966 /*
  967  * This function starts the AP (application processor) identified
  968  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  969  * to accomplish this.  This is necessary because of the nuances
  970  * of the different hardware we might encounter.  It isn't pretty,
  971  * but it seems to work.
  972  */
  973 static int
  974 start_ap(int apic_id)
  975 {
  976         int vector, ms;
  977         int cpus;
  978 
  979         /* calculate the vector */
  980         vector = (boot_address >> 12) & 0xff;
  981 
  982         /* used as a watchpoint to signal AP startup */
  983         cpus = mp_naps;
  984 
  985         /*
  986          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
  987          * and running the target CPU. OR this INIT IPI might be latched (P5
  988          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
  989          * ignored.
  990          */
  991 
  992         /* do an INIT IPI: assert RESET */
  993         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  994             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
  995 
  996         /* wait for pending status end */
  997         lapic_ipi_wait(-1);
  998 
  999         /* do an INIT IPI: deassert RESET */
 1000         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
 1001             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
 1002 
 1003         /* wait for pending status end */
 1004         DELAY(10000);           /* wait ~10mS */
 1005         lapic_ipi_wait(-1);
 1006 
 1007         /*
 1008          * next we do a STARTUP IPI: the previous INIT IPI might still be
 1009          * latched, (P5 bug) this 1st STARTUP would then terminate
 1010          * immediately, and the previously started INIT IPI would continue. OR
 1011          * the previous INIT IPI has already run. and this STARTUP IPI will
 1012          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
 1013          * will run.
 1014          */
 1015 
 1016         /* do a STARTUP IPI */
 1017         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1018             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1019             vector, apic_id);
 1020         lapic_ipi_wait(-1);
 1021         DELAY(200);             /* wait ~200uS */
 1022 
 1023         /*
 1024          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 1025          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 1026          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 1027          * recognized after hardware RESET or INIT IPI.
 1028          */
 1029 
 1030         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1031             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1032             vector, apic_id);
 1033         lapic_ipi_wait(-1);
 1034         DELAY(200);             /* wait ~200uS */
 1035 
 1036         /* Wait up to 5 seconds for it to start. */
 1037         for (ms = 0; ms < 5000; ms++) {
 1038                 if (mp_naps > cpus)
 1039                         return 1;       /* return SUCCESS */
 1040                 DELAY(1000);
 1041         }
 1042         return 0;               /* return FAILURE */
 1043 }
 1044 
 1045 #ifdef COUNT_XINVLTLB_HITS
 1046 u_int xhits_gbl[MAXCPU];
 1047 u_int xhits_pg[MAXCPU];
 1048 u_int xhits_rng[MAXCPU];
 1049 SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
 1050 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
 1051     sizeof(xhits_gbl), "IU", "");
 1052 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
 1053     sizeof(xhits_pg), "IU", "");
 1054 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
 1055     sizeof(xhits_rng), "IU", "");
 1056 
 1057 u_int ipi_global;
 1058 u_int ipi_page;
 1059 u_int ipi_range;
 1060 u_int ipi_range_size;
 1061 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
 1062 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
 1063 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
 1064 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
 1065     &ipi_range_size, 0, "");
 1066 
 1067 u_int ipi_masked_global;
 1068 u_int ipi_masked_page;
 1069 u_int ipi_masked_range;
 1070 u_int ipi_masked_range_size;
 1071 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
 1072     &ipi_masked_global, 0, "");
 1073 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
 1074     &ipi_masked_page, 0, "");
 1075 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
 1076     &ipi_masked_range, 0, "");
 1077 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
 1078     &ipi_masked_range_size, 0, "");
 1079 #endif /* COUNT_XINVLTLB_HITS */
 1080 
 1081 /*
 1082  * Send an IPI to specified CPU handling the bitmap logic.
 1083  */
 1084 static void
 1085 ipi_send_cpu(int cpu, u_int ipi)
 1086 {
 1087         u_int bitmap, old_pending, new_pending;
 1088 
 1089         KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
 1090 
 1091         if (IPI_IS_BITMAPED(ipi)) {
 1092                 bitmap = 1 << ipi;
 1093                 ipi = IPI_BITMAP_VECTOR;
 1094                 do {
 1095                         old_pending = cpu_ipi_pending[cpu];
 1096                         new_pending = old_pending | bitmap;
 1097                 } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
 1098                     old_pending, new_pending)); 
 1099                 if (old_pending)
 1100                         return;
 1101         }
 1102         lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1103 }
 1104 
 1105 /*
 1106  * Flush the TLB on all other CPU's
 1107  */
 1108 static void
 1109 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1110 {
 1111         u_int ncpu;
 1112 
 1113         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1114         if (ncpu < 1)
 1115                 return;         /* no other cpus */
 1116         if (!(read_rflags() & PSL_I))
 1117                 panic("%s: interrupts disabled", __func__);
 1118         mtx_lock_spin(&smp_ipi_mtx);
 1119         smp_tlb_addr1 = addr1;
 1120         smp_tlb_addr2 = addr2;
 1121         atomic_store_rel_int(&smp_tlb_wait, 0);
 1122         ipi_all_but_self(vector);
 1123         while (smp_tlb_wait < ncpu)
 1124                 ia32_pause();
 1125         mtx_unlock_spin(&smp_ipi_mtx);
 1126 }
 1127 
 1128 static void
 1129 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1130 {
 1131         int cpu, ncpu, othercpus;
 1132 
 1133         othercpus = mp_ncpus - 1;
 1134         if (CPU_ISFULLSET(&mask)) {
 1135                 if (othercpus < 1)
 1136                         return;
 1137         } else {
 1138                 CPU_CLR(PCPU_GET(cpuid), &mask);
 1139                 if (CPU_EMPTY(&mask))
 1140                         return;
 1141         }
 1142         if (!(read_rflags() & PSL_I))
 1143                 panic("%s: interrupts disabled", __func__);
 1144         mtx_lock_spin(&smp_ipi_mtx);
 1145         smp_tlb_addr1 = addr1;
 1146         smp_tlb_addr2 = addr2;
 1147         atomic_store_rel_int(&smp_tlb_wait, 0);
 1148         if (CPU_ISFULLSET(&mask)) {
 1149                 ncpu = othercpus;
 1150                 ipi_all_but_self(vector);
 1151         } else {
 1152                 ncpu = 0;
 1153                 while ((cpu = cpusetobj_ffs(&mask)) != 0) {
 1154                         cpu--;
 1155                         CPU_CLR(cpu, &mask);
 1156                         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
 1157                             cpu, vector);
 1158                         ipi_send_cpu(cpu, vector);
 1159                         ncpu++;
 1160                 }
 1161         }
 1162         while (smp_tlb_wait < ncpu)
 1163                 ia32_pause();
 1164         mtx_unlock_spin(&smp_ipi_mtx);
 1165 }
 1166 
 1167 void
 1168 smp_cache_flush(void)
 1169 {
 1170 
 1171         if (smp_started)
 1172                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1173 }
 1174 
 1175 void
 1176 smp_invltlb(void)
 1177 {
 1178 
 1179         if (smp_started) {
 1180                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1181 #ifdef COUNT_XINVLTLB_HITS
 1182                 ipi_global++;
 1183 #endif
 1184         }
 1185 }
 1186 
 1187 void
 1188 smp_invlpg(vm_offset_t addr)
 1189 {
 1190 
 1191         if (smp_started) {
 1192                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1193 #ifdef COUNT_XINVLTLB_HITS
 1194                 ipi_page++;
 1195 #endif
 1196         }
 1197 }
 1198 
 1199 void
 1200 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1201 {
 1202 
 1203         if (smp_started) {
 1204                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1205 #ifdef COUNT_XINVLTLB_HITS
 1206                 ipi_range++;
 1207                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1208 #endif
 1209         }
 1210 }
 1211 
 1212 void
 1213 smp_masked_invltlb(cpuset_t mask)
 1214 {
 1215 
 1216         if (smp_started) {
 1217                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1218 #ifdef COUNT_XINVLTLB_HITS
 1219                 ipi_masked_global++;
 1220 #endif
 1221         }
 1222 }
 1223 
 1224 void
 1225 smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
 1226 {
 1227 
 1228         if (smp_started) {
 1229                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1230 #ifdef COUNT_XINVLTLB_HITS
 1231                 ipi_masked_page++;
 1232 #endif
 1233         }
 1234 }
 1235 
 1236 void
 1237 smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
 1238 {
 1239 
 1240         if (smp_started) {
 1241                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1242 #ifdef COUNT_XINVLTLB_HITS
 1243                 ipi_masked_range++;
 1244                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1245 #endif
 1246         }
 1247 }
 1248 
 1249 void
 1250 ipi_bitmap_handler(struct trapframe frame)
 1251 {
 1252         struct trapframe *oldframe;
 1253         struct thread *td;
 1254         int cpu = PCPU_GET(cpuid);
 1255         u_int ipi_bitmap;
 1256 
 1257         critical_enter();
 1258         td = curthread;
 1259         td->td_intr_nesting_level++;
 1260         oldframe = td->td_intr_frame;
 1261         td->td_intr_frame = &frame;
 1262         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1263         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1264 #ifdef COUNT_IPIS
 1265                 (*ipi_preempt_counts[cpu])++;
 1266 #endif
 1267                 sched_preempt(td);
 1268         }
 1269         if (ipi_bitmap & (1 << IPI_AST)) {
 1270 #ifdef COUNT_IPIS
 1271                 (*ipi_ast_counts[cpu])++;
 1272 #endif
 1273                 /* Nothing to do for AST */
 1274         }
 1275         if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
 1276 #ifdef COUNT_IPIS
 1277                 (*ipi_hardclock_counts[cpu])++;
 1278 #endif
 1279                 hardclockintr();
 1280         }
 1281         td->td_intr_frame = oldframe;
 1282         td->td_intr_nesting_level--;
 1283         critical_exit();
 1284 }
 1285 
 1286 /*
 1287  * send an IPI to a set of cpus.
 1288  */
 1289 void
 1290 ipi_selected(cpuset_t cpus, u_int ipi)
 1291 {
 1292         int cpu;
 1293 
 1294         /*
 1295          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1296          * of help in order to understand what is the source.
 1297          * Set the mask of receiving CPUs for this purpose.
 1298          */
 1299         if (ipi == IPI_STOP_HARD)
 1300                 CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
 1301 
 1302         while ((cpu = cpusetobj_ffs(&cpus)) != 0) {
 1303                 cpu--;
 1304                 CPU_CLR(cpu, &cpus);
 1305                 CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1306                 ipi_send_cpu(cpu, ipi);
 1307         }
 1308 }
 1309 
 1310 /*
 1311  * send an IPI to a specific CPU.
 1312  */
 1313 void
 1314 ipi_cpu(int cpu, u_int ipi)
 1315 {
 1316 
 1317         /*
 1318          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1319          * of help in order to understand what is the source.
 1320          * Set the mask of receiving CPUs for this purpose.
 1321          */
 1322         if (ipi == IPI_STOP_HARD)
 1323                 CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
 1324 
 1325         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1326         ipi_send_cpu(cpu, ipi);
 1327 }
 1328 
 1329 /*
 1330  * send an IPI to all CPUs EXCEPT myself
 1331  */
 1332 void
 1333 ipi_all_but_self(u_int ipi)
 1334 {
 1335         cpuset_t other_cpus;
 1336 
 1337         other_cpus = all_cpus;
 1338         CPU_CLR(PCPU_GET(cpuid), &other_cpus);
 1339 
 1340         if (IPI_IS_BITMAPED(ipi)) {
 1341                 ipi_selected(other_cpus, ipi);
 1342                 return;
 1343         }
 1344 
 1345         /*
 1346          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1347          * of help in order to understand what is the source.
 1348          * Set the mask of receiving CPUs for this purpose.
 1349          */
 1350         if (ipi == IPI_STOP_HARD)
 1351                 CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
 1352 
 1353         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1354         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1355 }
 1356 
 1357 int
 1358 ipi_nmi_handler()
 1359 {
 1360         u_int cpuid;
 1361 
 1362         /*
 1363          * As long as there is not a simple way to know about a NMI's
 1364          * source, if the bitmask for the current CPU is present in
 1365          * the global pending bitword an IPI_STOP_HARD has been issued
 1366          * and should be handled.
 1367          */
 1368         cpuid = PCPU_GET(cpuid);
 1369         if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
 1370                 return (1);
 1371 
 1372         CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
 1373         cpustop_handler();
 1374         return (0);
 1375 }
 1376      
 1377 /*
 1378  * Handle an IPI_STOP by saving our current context and spinning until we
 1379  * are resumed.
 1380  */
 1381 void
 1382 cpustop_handler(void)
 1383 {
 1384         u_int cpu;
 1385 
 1386         cpu = PCPU_GET(cpuid);
 1387 
 1388         savectx(&stoppcbs[cpu]);
 1389 
 1390         /* Indicate that we are stopped */
 1391         CPU_SET_ATOMIC(cpu, &stopped_cpus);
 1392 
 1393         /* Wait for restart */
 1394         while (!CPU_ISSET(cpu, &started_cpus))
 1395             ia32_pause();
 1396 
 1397         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1398         CPU_CLR_ATOMIC(cpu, &stopped_cpus);
 1399 
 1400         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1401                 cpustop_restartfunc();
 1402                 cpustop_restartfunc = NULL;
 1403         }
 1404 }
 1405 
 1406 /*
 1407  * Handle an IPI_SUSPEND by saving our current context and spinning until we
 1408  * are resumed.
 1409  */
 1410 void
 1411 cpususpend_handler(void)
 1412 {
 1413         u_int cpu;
 1414 
 1415         cpu = PCPU_GET(cpuid);
 1416 
 1417         if (savectx(susppcbs[cpu])) {
 1418                 ctx_fpusave(suspfpusave[cpu]);
 1419                 wbinvd();
 1420                 CPU_SET_ATOMIC(cpu, &stopped_cpus);
 1421         } else {
 1422                 pmap_init_pat();
 1423                 load_cr3(susppcbs[cpu]->pcb_cr3);
 1424                 initializecpu();
 1425                 PCPU_SET(switchtime, 0);
 1426                 PCPU_SET(switchticks, ticks);
 1427         }
 1428 
 1429         /* Wait for resume */
 1430         while (!CPU_ISSET(cpu, &started_cpus))
 1431                 ia32_pause();
 1432 
 1433         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1434         CPU_CLR_ATOMIC(cpu, &stopped_cpus);
 1435 
 1436         /* Resume MCA and local APIC */
 1437         mca_resume();
 1438         lapic_setup(0);
 1439 }
 1440 
 1441 /*
 1442  * This is called once the rest of the system is up and running and we're
 1443  * ready to let the AP's out of the pen.
 1444  */
 1445 static void
 1446 release_aps(void *dummy __unused)
 1447 {
 1448 
 1449         if (mp_ncpus == 1) 
 1450                 return;
 1451         atomic_store_rel_int(&aps_ready, 1);
 1452         while (smp_started == 0)
 1453                 ia32_pause();
 1454 }
 1455 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1456 
 1457 #ifdef COUNT_IPIS
 1458 /*
 1459  * Setup interrupt counters for IPI handlers.
 1460  */
 1461 static void
 1462 mp_ipi_intrcnt(void *dummy)
 1463 {
 1464         char buf[64];
 1465         int i;
 1466 
 1467         CPU_FOREACH(i) {
 1468                 snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
 1469                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1470                 snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
 1471                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1472                 snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
 1473                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1474                 snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
 1475                 intrcnt_add(buf, &ipi_invlcache_counts[i]);
 1476                 snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
 1477                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1478                 snprintf(buf, sizeof(buf), "cpu%d:ast", i);
 1479                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1480                 snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
 1481                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1482                 snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
 1483                 intrcnt_add(buf, &ipi_hardclock_counts[i]);
 1484         }
 1485 }
 1486 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
 1487 #endif
 1488 

Cache object: f1182af61e3834d9bfb9ddb984734f86


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.