The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/mp_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1996, by Steve Passe
    3  * Copyright (c) 2003, by Peter Wemm
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. The name of the developer may NOT be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include "opt_cpu.h"
   31 #include "opt_ddb.h"
   32 #include "opt_kstack_pages.h"
   33 #include "opt_sched.h"
   34 #include "opt_smp.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/cpuset.h>
   40 #ifdef GPROF 
   41 #include <sys/gmon.h>
   42 #endif
   43 #include <sys/kernel.h>
   44 #include <sys/ktr.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/memrange.h>
   48 #include <sys/mutex.h>
   49 #include <sys/pcpu.h>
   50 #include <sys/proc.h>
   51 #include <sys/sched.h>
   52 #include <sys/smp.h>
   53 #include <sys/sysctl.h>
   54 
   55 #include <vm/vm.h>
   56 #include <vm/vm_param.h>
   57 #include <vm/pmap.h>
   58 #include <vm/vm_kern.h>
   59 #include <vm/vm_extern.h>
   60 
   61 #include <x86/apicreg.h>
   62 #include <machine/clock.h>
   63 #include <machine/cputypes.h>
   64 #include <machine/cpufunc.h>
   65 #include <x86/mca.h>
   66 #include <machine/md_var.h>
   67 #include <machine/pcb.h>
   68 #include <machine/psl.h>
   69 #include <machine/smp.h>
   70 #include <machine/specialreg.h>
   71 #include <machine/tss.h>
   72 
   73 #define WARMBOOT_TARGET         0
   74 #define WARMBOOT_OFF            (KERNBASE + 0x0467)
   75 #define WARMBOOT_SEG            (KERNBASE + 0x0469)
   76 
   77 #define CMOS_REG                (0x70)
   78 #define CMOS_DATA               (0x71)
   79 #define BIOS_RESET              (0x0f)
   80 #define BIOS_WARM               (0x0a)
   81 
   82 /* lock region used by kernel profiling */
   83 int     mcount_lock;
   84 
   85 int     mp_naps;                /* # of Applications processors */
   86 int     boot_cpu_id = -1;       /* designated BSP */
   87 
   88 extern  struct pcpu __pcpu[];
   89 
   90 /* AP uses this during bootstrap.  Do not staticize.  */
   91 char *bootSTK;
   92 static int bootAP;
   93 
   94 /* Free these after use */
   95 void *bootstacks[MAXCPU];
   96 
   97 /* Temporary variables for init_secondary()  */
   98 char *doublefault_stack;
   99 char *nmi_stack;
  100 void *dpcpu;
  101 
  102 struct pcb stoppcbs[MAXCPU];
  103 struct pcb **susppcbs;
  104 void **suspfpusave;
  105 
  106 /* Variables needed for SMP tlb shootdown. */
  107 vm_offset_t smp_tlb_addr1;
  108 vm_offset_t smp_tlb_addr2;
  109 volatile int smp_tlb_wait;
  110 
  111 #ifdef COUNT_IPIS
  112 /* Interrupt counts. */
  113 static u_long *ipi_preempt_counts[MAXCPU];
  114 static u_long *ipi_ast_counts[MAXCPU];
  115 u_long *ipi_invltlb_counts[MAXCPU];
  116 u_long *ipi_invlrng_counts[MAXCPU];
  117 u_long *ipi_invlpg_counts[MAXCPU];
  118 u_long *ipi_invlcache_counts[MAXCPU];
  119 u_long *ipi_rendezvous_counts[MAXCPU];
  120 static u_long *ipi_hardclock_counts[MAXCPU];
  121 #endif
  122 
  123 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
  124 
  125 /*
  126  * Local data and functions.
  127  */
  128 
  129 static volatile cpuset_t ipi_nmi_pending;
  130 
  131 /* used to hold the AP's until we are ready to release them */
  132 static struct mtx ap_boot_mtx;
  133 
  134 /* Set to 1 once we're ready to let the APs out of the pen. */
  135 static volatile int aps_ready = 0;
  136 
  137 /*
  138  * Store data from cpu_add() until later in the boot when we actually setup
  139  * the APs.
  140  */
  141 struct cpu_info {
  142         int     cpu_present:1;
  143         int     cpu_bsp:1;
  144         int     cpu_disabled:1;
  145         int     cpu_hyperthread:1;
  146 } static cpu_info[MAX_APIC_ID + 1];
  147 int cpu_apic_ids[MAXCPU];
  148 int apic_cpuids[MAX_APIC_ID + 1];
  149 
  150 /* Holds pending bitmap based IPIs per CPU */
  151 static volatile u_int cpu_ipi_pending[MAXCPU];
  152 
  153 static u_int boot_address;
  154 static int cpu_logical;                 /* logical cpus per core */
  155 static int cpu_cores;                   /* cores per package */
  156 
  157 static void     assign_cpu_ids(void);
  158 static void     set_interrupt_apic_ids(void);
  159 static int      start_all_aps(void);
  160 static int      start_ap(int apic_id);
  161 static void     release_aps(void *dummy);
  162 
  163 static u_int    hyperthreading_cpus;    /* logical cpus sharing L1 cache */
  164 static int      hyperthreading_allowed = 1;
  165 static u_int    bootMP_size;
  166 
  167 static void
  168 mem_range_AP_init(void)
  169 {
  170         if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
  171                 mem_range_softc.mr_op->initAP(&mem_range_softc);
  172 }
  173 
  174 static void
  175 topo_probe_amd(void)
  176 {
  177         int core_id_bits;
  178         int id;
  179 
  180         /* AMD processors do not support HTT. */
  181         cpu_logical = 1;
  182 
  183         if ((amd_feature2 & AMDID2_CMP) == 0) {
  184                 cpu_cores = 1;
  185                 return;
  186         }
  187 
  188         core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
  189             AMDID_COREID_SIZE_SHIFT;
  190         if (core_id_bits == 0) {
  191                 cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
  192                 return;
  193         }
  194 
  195         /* Fam 10h and newer should get here. */
  196         for (id = 0; id <= MAX_APIC_ID; id++) {
  197                 /* Check logical CPU availability. */
  198                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  199                         continue;
  200                 /* Check if logical CPU has the same package ID. */
  201                 if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
  202                         continue;
  203                 cpu_cores++;
  204         }
  205 }
  206 
  207 /*
  208  * Round up to the next power of two, if necessary, and then
  209  * take log2.
  210  * Returns -1 if argument is zero.
  211  */
  212 static __inline int
  213 mask_width(u_int x)
  214 {
  215 
  216         return (fls(x << (1 - powerof2(x))) - 1);
  217 }
  218 
  219 static void
  220 topo_probe_0x4(void)
  221 {
  222         u_int p[4];
  223         int pkg_id_bits;
  224         int core_id_bits;
  225         int max_cores;
  226         int max_logical;
  227         int id;
  228 
  229         /* Both zero and one here mean one logical processor per package. */
  230         max_logical = (cpu_feature & CPUID_HTT) != 0 ?
  231             (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
  232         if (max_logical <= 1)
  233                 return;
  234 
  235         /*
  236          * Because of uniformity assumption we examine only
  237          * those logical processors that belong to the same
  238          * package as BSP.  Further, we count number of
  239          * logical processors that belong to the same core
  240          * as BSP thus deducing number of threads per core.
  241          */
  242         if (cpu_high >= 0x4) {
  243                 cpuid_count(0x04, 0, p);
  244                 max_cores = ((p[0] >> 26) & 0x3f) + 1;
  245         } else
  246                 max_cores = 1;
  247         core_id_bits = mask_width(max_logical/max_cores);
  248         if (core_id_bits < 0)
  249                 return;
  250         pkg_id_bits = core_id_bits + mask_width(max_cores);
  251 
  252         for (id = 0; id <= MAX_APIC_ID; id++) {
  253                 /* Check logical CPU availability. */
  254                 if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
  255                         continue;
  256                 /* Check if logical CPU has the same package ID. */
  257                 if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
  258                         continue;
  259                 cpu_cores++;
  260                 /* Check if logical CPU has the same package and core IDs. */
  261                 if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
  262                         cpu_logical++;
  263         }
  264 
  265         KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
  266             ("topo_probe_0x4 couldn't find BSP"));
  267 
  268         cpu_cores /= cpu_logical;
  269         hyperthreading_cpus = cpu_logical;
  270 }
  271 
  272 static void
  273 topo_probe_0xb(void)
  274 {
  275         u_int p[4];
  276         int bits;
  277         int cnt;
  278         int i;
  279         int logical;
  280         int type;
  281         int x;
  282 
  283         /* We only support three levels for now. */
  284         for (i = 0; i < 3; i++) {
  285                 cpuid_count(0x0b, i, p);
  286 
  287                 /* Fall back if CPU leaf 11 doesn't really exist. */
  288                 if (i == 0 && p[1] == 0) {
  289                         topo_probe_0x4();
  290                         return;
  291                 }
  292 
  293                 bits = p[0] & 0x1f;
  294                 logical = p[1] &= 0xffff;
  295                 type = (p[2] >> 8) & 0xff;
  296                 if (type == 0 || logical == 0)
  297                         break;
  298                 /*
  299                  * Because of uniformity assumption we examine only
  300                  * those logical processors that belong to the same
  301                  * package as BSP.
  302                  */
  303                 for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
  304                         if (!cpu_info[x].cpu_present ||
  305                             cpu_info[x].cpu_disabled)
  306                                 continue;
  307                         if (x >> bits == boot_cpu_id >> bits)
  308                                 cnt++;
  309                 }
  310                 if (type == CPUID_TYPE_SMT)
  311                         cpu_logical = cnt;
  312                 else if (type == CPUID_TYPE_CORE)
  313                         cpu_cores = cnt;
  314         }
  315         if (cpu_logical == 0)
  316                 cpu_logical = 1;
  317         cpu_cores /= cpu_logical;
  318 }
  319 
  320 /*
  321  * Both topology discovery code and code that consumes topology
  322  * information assume top-down uniformity of the topology.
  323  * That is, all physical packages must be identical and each
  324  * core in a package must have the same number of threads.
  325  * Topology information is queried only on BSP, on which this
  326  * code runs and for which it can query CPUID information.
  327  * Then topology is extrapolated on all packages using the
  328  * uniformity assumption.
  329  */
  330 static void
  331 topo_probe(void)
  332 {
  333         static int cpu_topo_probed = 0;
  334 
  335         if (cpu_topo_probed)
  336                 return;
  337 
  338         CPU_ZERO(&logical_cpus_mask);
  339         if (mp_ncpus <= 1)
  340                 cpu_cores = cpu_logical = 1;
  341         else if (cpu_vendor_id == CPU_VENDOR_AMD)
  342                 topo_probe_amd();
  343         else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
  344                 /*
  345                  * See Intel(R) 64 Architecture Processor
  346                  * Topology Enumeration article for details.
  347                  *
  348                  * Note that 0x1 <= cpu_high < 4 case should be
  349                  * compatible with topo_probe_0x4() logic when
  350                  * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
  351                  * or it should trigger the fallback otherwise.
  352                  */
  353                 if (cpu_high >= 0xb)
  354                         topo_probe_0xb();
  355                 else if (cpu_high >= 0x1)
  356                         topo_probe_0x4();
  357         }
  358 
  359         /*
  360          * Fallback: assume each logical CPU is in separate
  361          * physical package.  That is, no multi-core, no SMT.
  362          */
  363         if (cpu_cores == 0 || cpu_logical == 0)
  364                 cpu_cores = cpu_logical = 1;
  365         cpu_topo_probed = 1;
  366 }
  367 
  368 struct cpu_group *
  369 cpu_topo(void)
  370 {
  371         int cg_flags;
  372 
  373         /*
  374          * Determine whether any threading flags are
  375          * necessry.
  376          */
  377         topo_probe();
  378         if (cpu_logical > 1 && hyperthreading_cpus)
  379                 cg_flags = CG_FLAG_HTT;
  380         else if (cpu_logical > 1)
  381                 cg_flags = CG_FLAG_SMT;
  382         else
  383                 cg_flags = 0;
  384         if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
  385                 printf("WARNING: Non-uniform processors.\n");
  386                 printf("WARNING: Using suboptimal topology.\n");
  387                 return (smp_topo_none());
  388         }
  389         /*
  390          * No multi-core or hyper-threaded.
  391          */
  392         if (cpu_logical * cpu_cores == 1)
  393                 return (smp_topo_none());
  394         /*
  395          * Only HTT no multi-core.
  396          */
  397         if (cpu_logical > 1 && cpu_cores == 1)
  398                 return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
  399         /*
  400          * Only multi-core no HTT.
  401          */
  402         if (cpu_cores > 1 && cpu_logical == 1)
  403                 return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
  404         /*
  405          * Both HTT and multi-core.
  406          */
  407         return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
  408             CG_SHARE_L1, cpu_logical, cg_flags));
  409 }
  410 
  411 /*
  412  * Calculate usable address in base memory for AP trampoline code.
  413  */
  414 u_int
  415 mp_bootaddress(u_int basemem)
  416 {
  417 
  418         bootMP_size = mptramp_end - mptramp_start;
  419         boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
  420         if (((basemem * 1024) - boot_address) < bootMP_size)
  421                 boot_address -= PAGE_SIZE;      /* not enough, lower by 4k */
  422         /* 3 levels of page table pages */
  423         mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
  424 
  425         return mptramp_pagetables;
  426 }
  427 
  428 void
  429 cpu_add(u_int apic_id, char boot_cpu)
  430 {
  431 
  432         if (apic_id > MAX_APIC_ID) {
  433                 panic("SMP: APIC ID %d too high", apic_id);
  434                 return;
  435         }
  436         KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
  437             apic_id));
  438         cpu_info[apic_id].cpu_present = 1;
  439         if (boot_cpu) {
  440                 KASSERT(boot_cpu_id == -1,
  441                     ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
  442                     boot_cpu_id));
  443                 boot_cpu_id = apic_id;
  444                 cpu_info[apic_id].cpu_bsp = 1;
  445         }
  446         if (mp_ncpus < MAXCPU) {
  447                 mp_ncpus++;
  448                 mp_maxid = mp_ncpus - 1;
  449         }
  450         if (bootverbose)
  451                 printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
  452                     "AP");
  453 }
  454 
  455 void
  456 cpu_mp_setmaxid(void)
  457 {
  458 
  459         /*
  460          * mp_maxid should be already set by calls to cpu_add().
  461          * Just sanity check its value here.
  462          */
  463         if (mp_ncpus == 0)
  464                 KASSERT(mp_maxid == 0,
  465                     ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
  466         else if (mp_ncpus == 1)
  467                 mp_maxid = 0;
  468         else
  469                 KASSERT(mp_maxid >= mp_ncpus - 1,
  470                     ("%s: counters out of sync: max %d, count %d", __func__,
  471                         mp_maxid, mp_ncpus));
  472 }
  473 
  474 int
  475 cpu_mp_probe(void)
  476 {
  477 
  478         /*
  479          * Always record BSP in CPU map so that the mbuf init code works
  480          * correctly.
  481          */
  482         CPU_SETOF(0, &all_cpus);
  483         if (mp_ncpus == 0) {
  484                 /*
  485                  * No CPUs were found, so this must be a UP system.  Setup
  486                  * the variables to represent a system with a single CPU
  487                  * with an id of 0.
  488                  */
  489                 mp_ncpus = 1;
  490                 return (0);
  491         }
  492 
  493         /* At least one CPU was found. */
  494         if (mp_ncpus == 1) {
  495                 /*
  496                  * One CPU was found, so this must be a UP system with
  497                  * an I/O APIC.
  498                  */
  499                 mp_maxid = 0;
  500                 return (0);
  501         }
  502 
  503         /* At least two CPUs were found. */
  504         return (1);
  505 }
  506 
  507 /*
  508  * Initialize the IPI handlers and start up the AP's.
  509  */
  510 void
  511 cpu_mp_start(void)
  512 {
  513         int i;
  514 
  515         /* Initialize the logical ID to APIC ID table. */
  516         for (i = 0; i < MAXCPU; i++) {
  517                 cpu_apic_ids[i] = -1;
  518                 cpu_ipi_pending[i] = 0;
  519         }
  520 
  521         /* Install an inter-CPU IPI for TLB invalidation */
  522         setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
  523         setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
  524         setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
  525 
  526         /* Install an inter-CPU IPI for cache invalidation. */
  527         setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
  528 
  529         /* Install an inter-CPU IPI for all-CPU rendezvous */
  530         setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
  531 
  532         /* Install generic inter-CPU IPI handler */
  533         setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
  534                SDT_SYSIGT, SEL_KPL, 0);
  535 
  536         /* Install an inter-CPU IPI for CPU stop/restart */
  537         setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
  538 
  539         /* Install an inter-CPU IPI for CPU suspend/resume */
  540         setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
  541 
  542         /* Set boot_cpu_id if needed. */
  543         if (boot_cpu_id == -1) {
  544                 boot_cpu_id = PCPU_GET(apic_id);
  545                 cpu_info[boot_cpu_id].cpu_bsp = 1;
  546         } else
  547                 KASSERT(boot_cpu_id == PCPU_GET(apic_id),
  548                     ("BSP's APIC ID doesn't match boot_cpu_id"));
  549 
  550         /* Probe logical/physical core configuration. */
  551         topo_probe();
  552 
  553         assign_cpu_ids();
  554 
  555         /* Start each Application Processor */
  556         start_all_aps();
  557 
  558         set_interrupt_apic_ids();
  559 }
  560 
  561 
  562 /*
  563  * Print various information about the SMP system hardware and setup.
  564  */
  565 void
  566 cpu_mp_announce(void)
  567 {
  568         const char *hyperthread;
  569         int i;
  570 
  571         printf("FreeBSD/SMP: %d package(s) x %d core(s)",
  572             mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
  573         if (hyperthreading_cpus > 1)
  574             printf(" x %d HTT threads", cpu_logical);
  575         else if (cpu_logical > 1)
  576             printf(" x %d SMT threads", cpu_logical);
  577         printf("\n");
  578 
  579         /* List active CPUs first. */
  580         printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
  581         for (i = 1; i < mp_ncpus; i++) {
  582                 if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
  583                         hyperthread = "/HT";
  584                 else
  585                         hyperthread = "";
  586                 printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
  587                     cpu_apic_ids[i]);
  588         }
  589 
  590         /* List disabled CPUs last. */
  591         for (i = 0; i <= MAX_APIC_ID; i++) {
  592                 if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
  593                         continue;
  594                 if (cpu_info[i].cpu_hyperthread)
  595                         hyperthread = "/HT";
  596                 else
  597                         hyperthread = "";
  598                 printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
  599                     i);
  600         }
  601 }
  602 
  603 /*
  604  * AP CPU's call this to initialize themselves.
  605  */
  606 void
  607 init_secondary(void)
  608 {
  609         struct pcpu *pc;
  610         struct nmi_pcpu *np;
  611         u_int64_t msr, cr0;
  612         u_int cpuid;
  613         int cpu, gsel_tss, x;
  614         struct region_descriptor ap_gdt;
  615 
  616         /* Set by the startup code for us to use */
  617         cpu = bootAP;
  618 
  619         /* Init tss */
  620         common_tss[cpu] = common_tss[0];
  621         common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
  622         common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
  623             IOPAGES * PAGE_SIZE;
  624         common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
  625 
  626         /* The NMI stack runs on IST2. */
  627         np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
  628         common_tss[cpu].tss_ist2 = (long) np;
  629 
  630         /* Prepare private GDT */
  631         gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
  632         for (x = 0; x < NGDT; x++) {
  633                 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
  634                     x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
  635                         ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
  636         }
  637         ssdtosyssd(&gdt_segs[GPROC0_SEL],
  638             (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
  639         ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
  640         ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
  641         lgdt(&ap_gdt);                  /* does magic intra-segment return */
  642 
  643         /* Get per-cpu data */
  644         pc = &__pcpu[cpu];
  645 
  646         /* prime data page for it to use */
  647         pcpu_init(pc, cpu, sizeof(struct pcpu));
  648         dpcpu_init(dpcpu, cpu);
  649         pc->pc_apic_id = cpu_apic_ids[cpu];
  650         pc->pc_prvspace = pc;
  651         pc->pc_curthread = 0;
  652         pc->pc_tssp = &common_tss[cpu];
  653         pc->pc_commontssp = &common_tss[cpu];
  654         pc->pc_rsp0 = 0;
  655         pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  656             GPROC0_SEL];
  657         pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
  658         pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
  659         pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
  660             GUSERLDT_SEL];
  661 
  662         /* Save the per-cpu pointer for use by the NMI handler. */
  663         np->np_pcpu = (register_t) pc;
  664 
  665         wrmsr(MSR_FSBASE, 0);           /* User value */
  666         wrmsr(MSR_GSBASE, (u_int64_t)pc);
  667         wrmsr(MSR_KGSBASE, (u_int64_t)pc);      /* XXX User value while we're in the kernel */
  668 
  669         lidt(&r_idt);
  670 
  671         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
  672         ltr(gsel_tss);
  673 
  674         /*
  675          * Set to a known state:
  676          * Set by mpboot.s: CR0_PG, CR0_PE
  677          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
  678          */
  679         cr0 = rcr0();
  680         cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
  681         load_cr0(cr0);
  682 
  683         /* Set up the fast syscall stuff */
  684         msr = rdmsr(MSR_EFER) | EFER_SCE;
  685         wrmsr(MSR_EFER, msr);
  686         wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
  687         wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
  688         msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
  689               ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
  690         wrmsr(MSR_STAR, msr);
  691         wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
  692 
  693         /* Disable local APIC just to be sure. */
  694         lapic_disable();
  695 
  696         /* signal our startup to the BSP. */
  697         mp_naps++;
  698 
  699         /* Spin until the BSP releases the AP's. */
  700         while (!aps_ready)
  701                 ia32_pause();
  702 
  703         /* Initialize the PAT MSR. */
  704         pmap_init_pat();
  705 
  706         /* set up CPU registers and state */
  707         cpu_setregs();
  708 
  709         /* set up SSE/NX registers */
  710         initializecpu();
  711 
  712         /* set up FPU state on the AP */
  713         fpuinit();
  714 
  715         /* A quick check from sanity claus */
  716         cpuid = PCPU_GET(cpuid);
  717         if (PCPU_GET(apic_id) != lapic_id()) {
  718                 printf("SMP: cpuid = %d\n", cpuid);
  719                 printf("SMP: actual apic_id = %d\n", lapic_id());
  720                 printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
  721                 panic("cpuid mismatch! boom!!");
  722         }
  723 
  724         /* Initialize curthread. */
  725         KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
  726         PCPU_SET(curthread, PCPU_GET(idlethread));
  727 
  728         mca_init();
  729 
  730         mtx_lock_spin(&ap_boot_mtx);
  731 
  732         /* Init local apic for irq's */
  733         lapic_setup(1);
  734 
  735         /* Set memory range attributes for this CPU to match the BSP */
  736         mem_range_AP_init();
  737 
  738         smp_cpus++;
  739 
  740         CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
  741         printf("SMP: AP CPU #%d Launched!\n", cpuid);
  742 
  743         /* Determine if we are a logical CPU. */
  744         /* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
  745         if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
  746                 CPU_SET(cpuid, &logical_cpus_mask);
  747 
  748         if (bootverbose)
  749                 lapic_dump("AP");
  750 
  751         if (smp_cpus == mp_ncpus) {
  752                 /* enable IPI's, tlb shootdown, freezes etc */
  753                 atomic_store_rel_int(&smp_started, 1);
  754                 smp_active = 1;  /* historic */
  755         }
  756 
  757         /*
  758          * Enable global pages TLB extension
  759          * This also implicitly flushes the TLB 
  760          */
  761 
  762         load_cr4(rcr4() | CR4_PGE);
  763         load_ds(_udatasel);
  764         load_es(_udatasel);
  765         load_fs(_ufssel);
  766         mtx_unlock_spin(&ap_boot_mtx);
  767 
  768         /* Wait until all the AP's are up. */
  769         while (smp_started == 0)
  770                 ia32_pause();
  771 
  772         /* Start per-CPU event timers. */
  773         cpu_initclocks_ap();
  774 
  775         sched_throw(NULL);
  776 
  777         panic("scheduler returned us to %s", __func__);
  778         /* NOTREACHED */
  779 }
  780 
  781 /*******************************************************************
  782  * local functions and data
  783  */
  784 
  785 /*
  786  * We tell the I/O APIC code about all the CPUs we want to receive
  787  * interrupts.  If we don't want certain CPUs to receive IRQs we
  788  * can simply not tell the I/O APIC code about them in this function.
  789  */
  790 static void
  791 set_interrupt_apic_ids(void)
  792 {
  793         u_int i, apic_id;
  794 
  795         for (i = 0; i < MAXCPU; i++) {
  796                 apic_id = cpu_apic_ids[i];
  797                 if (apic_id == -1)
  798                         continue;
  799                 if (cpu_info[apic_id].cpu_disabled)
  800                         continue;
  801 
  802                 /* Don't let hyperthreads service interrupts. */
  803                 if (hyperthreading_cpus > 1 &&
  804                     apic_id % hyperthreading_cpus != 0)
  805                         continue;
  806 
  807                 intr_add_cpu(i);
  808         }
  809 }
  810 
  811 /*
  812  * Assign logical CPU IDs to local APICs.
  813  */
  814 static void
  815 assign_cpu_ids(void)
  816 {
  817         u_int i;
  818 
  819         TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
  820             &hyperthreading_allowed);
  821 
  822         /* Check for explicitly disabled CPUs. */
  823         for (i = 0; i <= MAX_APIC_ID; i++) {
  824                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
  825                         continue;
  826 
  827                 if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
  828                         cpu_info[i].cpu_hyperthread = 1;
  829 
  830                         /*
  831                          * Don't use HT CPU if it has been disabled by a
  832                          * tunable.
  833                          */
  834                         if (hyperthreading_allowed == 0) {
  835                                 cpu_info[i].cpu_disabled = 1;
  836                                 continue;
  837                         }
  838                 }
  839 
  840                 /* Don't use this CPU if it has been disabled by a tunable. */
  841                 if (resource_disabled("lapic", i)) {
  842                         cpu_info[i].cpu_disabled = 1;
  843                         continue;
  844                 }
  845         }
  846 
  847         if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
  848                 hyperthreading_cpus = 0;
  849                 cpu_logical = 1;
  850         }
  851 
  852         /*
  853          * Assign CPU IDs to local APIC IDs and disable any CPUs
  854          * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
  855          *
  856          * To minimize confusion for userland, we attempt to number
  857          * CPUs such that all threads and cores in a package are
  858          * grouped together.  For now we assume that the BSP is always
  859          * the first thread in a package and just start adding APs
  860          * starting with the BSP's APIC ID.
  861          */
  862         mp_ncpus = 1;
  863         cpu_apic_ids[0] = boot_cpu_id;
  864         apic_cpuids[boot_cpu_id] = 0;
  865         for (i = boot_cpu_id + 1; i != boot_cpu_id;
  866              i == MAX_APIC_ID ? i = 0 : i++) {
  867                 if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
  868                     cpu_info[i].cpu_disabled)
  869                         continue;
  870 
  871                 if (mp_ncpus < MAXCPU) {
  872                         cpu_apic_ids[mp_ncpus] = i;
  873                         apic_cpuids[i] = mp_ncpus;
  874                         mp_ncpus++;
  875                 } else
  876                         cpu_info[i].cpu_disabled = 1;
  877         }
  878         KASSERT(mp_maxid >= mp_ncpus - 1,
  879             ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
  880             mp_ncpus));         
  881 }
  882 
  883 /*
  884  * start each AP in our list
  885  */
  886 static int
  887 start_all_aps(void)
  888 {
  889         vm_offset_t va = boot_address + KERNBASE;
  890         u_int64_t *pt4, *pt3, *pt2;
  891         u_int32_t mpbioswarmvec;
  892         int apic_id, cpu, i;
  893         u_char mpbiosreason;
  894 
  895         mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
  896 
  897         /* install the AP 1st level boot code */
  898         pmap_kenter(va, boot_address);
  899         pmap_invalidate_page(kernel_pmap, va);
  900         bcopy(mptramp_start, (void *)va, bootMP_size);
  901 
  902         /* Locate the page tables, they'll be below the trampoline */
  903         pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
  904         pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
  905         pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
  906 
  907         /* Create the initial 1GB replicated page tables */
  908         for (i = 0; i < 512; i++) {
  909                 /* Each slot of the level 4 pages points to the same level 3 page */
  910                 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
  911                 pt4[i] |= PG_V | PG_RW | PG_U;
  912 
  913                 /* Each slot of the level 3 pages points to the same level 2 page */
  914                 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
  915                 pt3[i] |= PG_V | PG_RW | PG_U;
  916 
  917                 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
  918                 pt2[i] = i * (2 * 1024 * 1024);
  919                 pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
  920         }
  921 
  922         /* save the current value of the warm-start vector */
  923         mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
  924         outb(CMOS_REG, BIOS_RESET);
  925         mpbiosreason = inb(CMOS_DATA);
  926 
  927         /* setup a vector to our boot code */
  928         *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
  929         *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
  930         outb(CMOS_REG, BIOS_RESET);
  931         outb(CMOS_DATA, BIOS_WARM);     /* 'warm-start' */
  932 
  933         /* start each AP */
  934         for (cpu = 1; cpu < mp_ncpus; cpu++) {
  935                 apic_id = cpu_apic_ids[cpu];
  936 
  937                 /* allocate and set up an idle stack data page */
  938                 bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
  939                 doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
  940                 nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
  941                 dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
  942 
  943                 bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
  944                 bootAP = cpu;
  945 
  946                 /* attempt to start the Application Processor */
  947                 if (!start_ap(apic_id)) {
  948                         /* restore the warmstart vector */
  949                         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  950                         panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
  951                 }
  952 
  953                 CPU_SET(cpu, &all_cpus);        /* record AP in CPU map */
  954         }
  955 
  956         /* restore the warmstart vector */
  957         *(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
  958 
  959         outb(CMOS_REG, BIOS_RESET);
  960         outb(CMOS_DATA, mpbiosreason);
  961 
  962         /* number of APs actually started */
  963         return mp_naps;
  964 }
  965 
  966 
  967 /*
  968  * This function starts the AP (application processor) identified
  969  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
  970  * to accomplish this.  This is necessary because of the nuances
  971  * of the different hardware we might encounter.  It isn't pretty,
  972  * but it seems to work.
  973  */
  974 static int
  975 start_ap(int apic_id)
  976 {
  977         int vector, ms;
  978         int cpus;
  979 
  980         /* calculate the vector */
  981         vector = (boot_address >> 12) & 0xff;
  982 
  983         /* used as a watchpoint to signal AP startup */
  984         cpus = mp_naps;
  985 
  986         /*
  987          * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
  988          * and running the target CPU. OR this INIT IPI might be latched (P5
  989          * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
  990          * ignored.
  991          */
  992 
  993         /* do an INIT IPI: assert RESET */
  994         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
  995             APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
  996 
  997         /* wait for pending status end */
  998         lapic_ipi_wait(-1);
  999 
 1000         /* do an INIT IPI: deassert RESET */
 1001         lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
 1002             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
 1003 
 1004         /* wait for pending status end */
 1005         DELAY(10000);           /* wait ~10mS */
 1006         lapic_ipi_wait(-1);
 1007 
 1008         /*
 1009          * next we do a STARTUP IPI: the previous INIT IPI might still be
 1010          * latched, (P5 bug) this 1st STARTUP would then terminate
 1011          * immediately, and the previously started INIT IPI would continue. OR
 1012          * the previous INIT IPI has already run. and this STARTUP IPI will
 1013          * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
 1014          * will run.
 1015          */
 1016 
 1017         /* do a STARTUP IPI */
 1018         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1019             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1020             vector, apic_id);
 1021         lapic_ipi_wait(-1);
 1022         DELAY(200);             /* wait ~200uS */
 1023 
 1024         /*
 1025          * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
 1026          * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
 1027          * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
 1028          * recognized after hardware RESET or INIT IPI.
 1029          */
 1030 
 1031         lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
 1032             APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
 1033             vector, apic_id);
 1034         lapic_ipi_wait(-1);
 1035         DELAY(200);             /* wait ~200uS */
 1036 
 1037         /* Wait up to 5 seconds for it to start. */
 1038         for (ms = 0; ms < 5000; ms++) {
 1039                 if (mp_naps > cpus)
 1040                         return 1;       /* return SUCCESS */
 1041                 DELAY(1000);
 1042         }
 1043         return 0;               /* return FAILURE */
 1044 }
 1045 
 1046 #ifdef COUNT_XINVLTLB_HITS
 1047 u_int xhits_gbl[MAXCPU];
 1048 u_int xhits_pg[MAXCPU];
 1049 u_int xhits_rng[MAXCPU];
 1050 static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
 1051 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
 1052     sizeof(xhits_gbl), "IU", "");
 1053 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
 1054     sizeof(xhits_pg), "IU", "");
 1055 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
 1056     sizeof(xhits_rng), "IU", "");
 1057 
 1058 u_int ipi_global;
 1059 u_int ipi_page;
 1060 u_int ipi_range;
 1061 u_int ipi_range_size;
 1062 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
 1063 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
 1064 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
 1065 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
 1066     &ipi_range_size, 0, "");
 1067 
 1068 u_int ipi_masked_global;
 1069 u_int ipi_masked_page;
 1070 u_int ipi_masked_range;
 1071 u_int ipi_masked_range_size;
 1072 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
 1073     &ipi_masked_global, 0, "");
 1074 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
 1075     &ipi_masked_page, 0, "");
 1076 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
 1077     &ipi_masked_range, 0, "");
 1078 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
 1079     &ipi_masked_range_size, 0, "");
 1080 #endif /* COUNT_XINVLTLB_HITS */
 1081 
 1082 /*
 1083  * Send an IPI to specified CPU handling the bitmap logic.
 1084  */
 1085 static void
 1086 ipi_send_cpu(int cpu, u_int ipi)
 1087 {
 1088         u_int bitmap, old_pending, new_pending;
 1089 
 1090         KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
 1091 
 1092         if (IPI_IS_BITMAPED(ipi)) {
 1093                 bitmap = 1 << ipi;
 1094                 ipi = IPI_BITMAP_VECTOR;
 1095                 do {
 1096                         old_pending = cpu_ipi_pending[cpu];
 1097                         new_pending = old_pending | bitmap;
 1098                 } while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
 1099                     old_pending, new_pending)); 
 1100                 if (old_pending)
 1101                         return;
 1102         }
 1103         lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
 1104 }
 1105 
 1106 /*
 1107  * Flush the TLB on all other CPU's
 1108  */
 1109 static void
 1110 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1111 {
 1112         u_int ncpu;
 1113 
 1114         ncpu = mp_ncpus - 1;    /* does not shootdown self */
 1115         if (ncpu < 1)
 1116                 return;         /* no other cpus */
 1117         if (!(read_rflags() & PSL_I))
 1118                 panic("%s: interrupts disabled", __func__);
 1119         mtx_lock_spin(&smp_ipi_mtx);
 1120         smp_tlb_addr1 = addr1;
 1121         smp_tlb_addr2 = addr2;
 1122         atomic_store_rel_int(&smp_tlb_wait, 0);
 1123         ipi_all_but_self(vector);
 1124         while (smp_tlb_wait < ncpu)
 1125                 ia32_pause();
 1126         mtx_unlock_spin(&smp_ipi_mtx);
 1127 }
 1128 
 1129 static void
 1130 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
 1131 {
 1132         int cpu, ncpu, othercpus;
 1133 
 1134         othercpus = mp_ncpus - 1;
 1135         if (CPU_ISFULLSET(&mask)) {
 1136                 if (othercpus < 1)
 1137                         return;
 1138         } else {
 1139                 CPU_CLR(PCPU_GET(cpuid), &mask);
 1140                 if (CPU_EMPTY(&mask))
 1141                         return;
 1142         }
 1143         if (!(read_rflags() & PSL_I))
 1144                 panic("%s: interrupts disabled", __func__);
 1145         mtx_lock_spin(&smp_ipi_mtx);
 1146         smp_tlb_addr1 = addr1;
 1147         smp_tlb_addr2 = addr2;
 1148         atomic_store_rel_int(&smp_tlb_wait, 0);
 1149         if (CPU_ISFULLSET(&mask)) {
 1150                 ncpu = othercpus;
 1151                 ipi_all_but_self(vector);
 1152         } else {
 1153                 ncpu = 0;
 1154                 while ((cpu = CPU_FFS(&mask)) != 0) {
 1155                         cpu--;
 1156                         CPU_CLR(cpu, &mask);
 1157                         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__,
 1158                             cpu, vector);
 1159                         ipi_send_cpu(cpu, vector);
 1160                         ncpu++;
 1161                 }
 1162         }
 1163         while (smp_tlb_wait < ncpu)
 1164                 ia32_pause();
 1165         mtx_unlock_spin(&smp_ipi_mtx);
 1166 }
 1167 
 1168 void
 1169 smp_cache_flush(void)
 1170 {
 1171 
 1172         if (smp_started)
 1173                 smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
 1174 }
 1175 
 1176 void
 1177 smp_invltlb(void)
 1178 {
 1179 
 1180         if (smp_started) {
 1181                 smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
 1182 #ifdef COUNT_XINVLTLB_HITS
 1183                 ipi_global++;
 1184 #endif
 1185         }
 1186 }
 1187 
 1188 void
 1189 smp_invlpg(vm_offset_t addr)
 1190 {
 1191 
 1192         if (smp_started) {
 1193                 smp_tlb_shootdown(IPI_INVLPG, addr, 0);
 1194 #ifdef COUNT_XINVLTLB_HITS
 1195                 ipi_page++;
 1196 #endif
 1197         }
 1198 }
 1199 
 1200 void
 1201 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
 1202 {
 1203 
 1204         if (smp_started) {
 1205                 smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
 1206 #ifdef COUNT_XINVLTLB_HITS
 1207                 ipi_range++;
 1208                 ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
 1209 #endif
 1210         }
 1211 }
 1212 
 1213 void
 1214 smp_masked_invltlb(cpuset_t mask)
 1215 {
 1216 
 1217         if (smp_started) {
 1218                 smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
 1219 #ifdef COUNT_XINVLTLB_HITS
 1220                 ipi_masked_global++;
 1221 #endif
 1222         }
 1223 }
 1224 
 1225 void
 1226 smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
 1227 {
 1228 
 1229         if (smp_started) {
 1230                 smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
 1231 #ifdef COUNT_XINVLTLB_HITS
 1232                 ipi_masked_page++;
 1233 #endif
 1234         }
 1235 }
 1236 
 1237 void
 1238 smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
 1239 {
 1240 
 1241         if (smp_started) {
 1242                 smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
 1243 #ifdef COUNT_XINVLTLB_HITS
 1244                 ipi_masked_range++;
 1245                 ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
 1246 #endif
 1247         }
 1248 }
 1249 
 1250 void
 1251 ipi_bitmap_handler(struct trapframe frame)
 1252 {
 1253         struct trapframe *oldframe;
 1254         struct thread *td;
 1255         int cpu = PCPU_GET(cpuid);
 1256         u_int ipi_bitmap;
 1257 
 1258         critical_enter();
 1259         td = curthread;
 1260         td->td_intr_nesting_level++;
 1261         oldframe = td->td_intr_frame;
 1262         td->td_intr_frame = &frame;
 1263         ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
 1264         if (ipi_bitmap & (1 << IPI_PREEMPT)) {
 1265 #ifdef COUNT_IPIS
 1266                 (*ipi_preempt_counts[cpu])++;
 1267 #endif
 1268                 sched_preempt(td);
 1269         }
 1270         if (ipi_bitmap & (1 << IPI_AST)) {
 1271 #ifdef COUNT_IPIS
 1272                 (*ipi_ast_counts[cpu])++;
 1273 #endif
 1274                 /* Nothing to do for AST */
 1275         }
 1276         if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
 1277 #ifdef COUNT_IPIS
 1278                 (*ipi_hardclock_counts[cpu])++;
 1279 #endif
 1280                 hardclockintr();
 1281         }
 1282         td->td_intr_frame = oldframe;
 1283         td->td_intr_nesting_level--;
 1284         critical_exit();
 1285 }
 1286 
 1287 /*
 1288  * send an IPI to a set of cpus.
 1289  */
 1290 void
 1291 ipi_selected(cpuset_t cpus, u_int ipi)
 1292 {
 1293         int cpu;
 1294 
 1295         /*
 1296          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1297          * of help in order to understand what is the source.
 1298          * Set the mask of receiving CPUs for this purpose.
 1299          */
 1300         if (ipi == IPI_STOP_HARD)
 1301                 CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
 1302 
 1303         while ((cpu = CPU_FFS(&cpus)) != 0) {
 1304                 cpu--;
 1305                 CPU_CLR(cpu, &cpus);
 1306                 CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1307                 ipi_send_cpu(cpu, ipi);
 1308         }
 1309 }
 1310 
 1311 /*
 1312  * send an IPI to a specific CPU.
 1313  */
 1314 void
 1315 ipi_cpu(int cpu, u_int ipi)
 1316 {
 1317 
 1318         /*
 1319          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1320          * of help in order to understand what is the source.
 1321          * Set the mask of receiving CPUs for this purpose.
 1322          */
 1323         if (ipi == IPI_STOP_HARD)
 1324                 CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
 1325 
 1326         CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
 1327         ipi_send_cpu(cpu, ipi);
 1328 }
 1329 
 1330 /*
 1331  * send an IPI to all CPUs EXCEPT myself
 1332  */
 1333 void
 1334 ipi_all_but_self(u_int ipi)
 1335 {
 1336         cpuset_t other_cpus;
 1337 
 1338         other_cpus = all_cpus;
 1339         CPU_CLR(PCPU_GET(cpuid), &other_cpus);
 1340 
 1341         if (IPI_IS_BITMAPED(ipi)) {
 1342                 ipi_selected(other_cpus, ipi);
 1343                 return;
 1344         }
 1345 
 1346         /*
 1347          * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
 1348          * of help in order to understand what is the source.
 1349          * Set the mask of receiving CPUs for this purpose.
 1350          */
 1351         if (ipi == IPI_STOP_HARD)
 1352                 CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
 1353 
 1354         CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
 1355         lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
 1356 }
 1357 
 1358 int
 1359 ipi_nmi_handler()
 1360 {
 1361         u_int cpuid;
 1362 
 1363         /*
 1364          * As long as there is not a simple way to know about a NMI's
 1365          * source, if the bitmask for the current CPU is present in
 1366          * the global pending bitword an IPI_STOP_HARD has been issued
 1367          * and should be handled.
 1368          */
 1369         cpuid = PCPU_GET(cpuid);
 1370         if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
 1371                 return (1);
 1372 
 1373         CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
 1374         cpustop_handler();
 1375         return (0);
 1376 }
 1377      
 1378 /*
 1379  * Handle an IPI_STOP by saving our current context and spinning until we
 1380  * are resumed.
 1381  */
 1382 void
 1383 cpustop_handler(void)
 1384 {
 1385         u_int cpu;
 1386 
 1387         cpu = PCPU_GET(cpuid);
 1388 
 1389         savectx(&stoppcbs[cpu]);
 1390 
 1391         /* Indicate that we are stopped */
 1392         CPU_SET_ATOMIC(cpu, &stopped_cpus);
 1393 
 1394         /* Wait for restart */
 1395         while (!CPU_ISSET(cpu, &started_cpus))
 1396             ia32_pause();
 1397 
 1398         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1399         CPU_CLR_ATOMIC(cpu, &stopped_cpus);
 1400 
 1401 #ifdef DDB
 1402         amd64_db_resume_dbreg();
 1403 #endif
 1404 
 1405         if (cpu == 0 && cpustop_restartfunc != NULL) {
 1406                 cpustop_restartfunc();
 1407                 cpustop_restartfunc = NULL;
 1408         }
 1409 }
 1410 
 1411 /*
 1412  * Handle an IPI_SUSPEND by saving our current context and spinning until we
 1413  * are resumed.
 1414  */
 1415 void
 1416 cpususpend_handler(void)
 1417 {
 1418         u_int cpu;
 1419 
 1420         cpu = PCPU_GET(cpuid);
 1421 
 1422         if (savectx(susppcbs[cpu])) {
 1423                 fpususpend(suspfpusave[cpu]);
 1424                 wbinvd();
 1425                 CPU_SET_ATOMIC(cpu, &stopped_cpus);
 1426         } else {
 1427                 pmap_init_pat();
 1428                 load_cr3(susppcbs[cpu]->pcb_cr3);
 1429                 initializecpu();
 1430                 PCPU_SET(switchtime, 0);
 1431                 PCPU_SET(switchticks, ticks);
 1432         }
 1433 
 1434         /* Wait for resume */
 1435         while (!CPU_ISSET(cpu, &started_cpus))
 1436                 ia32_pause();
 1437 
 1438         /* Resume MCA and local APIC */
 1439         mca_resume();
 1440         lapic_setup(0);
 1441 
 1442         CPU_CLR_ATOMIC(cpu, &started_cpus);
 1443         CPU_CLR_ATOMIC(cpu, &stopped_cpus);
 1444 }
 1445 
 1446 /*
 1447  * This is called once the rest of the system is up and running and we're
 1448  * ready to let the AP's out of the pen.
 1449  */
 1450 static void
 1451 release_aps(void *dummy __unused)
 1452 {
 1453 
 1454         if (mp_ncpus == 1) 
 1455                 return;
 1456         atomic_store_rel_int(&aps_ready, 1);
 1457         while (smp_started == 0)
 1458                 ia32_pause();
 1459 }
 1460 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
 1461 
 1462 #ifdef COUNT_IPIS
 1463 /*
 1464  * Setup interrupt counters for IPI handlers.
 1465  */
 1466 static void
 1467 mp_ipi_intrcnt(void *dummy)
 1468 {
 1469         char buf[64];
 1470         int i;
 1471 
 1472         CPU_FOREACH(i) {
 1473                 snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
 1474                 intrcnt_add(buf, &ipi_invltlb_counts[i]);
 1475                 snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
 1476                 intrcnt_add(buf, &ipi_invlrng_counts[i]);
 1477                 snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
 1478                 intrcnt_add(buf, &ipi_invlpg_counts[i]);
 1479                 snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
 1480                 intrcnt_add(buf, &ipi_invlcache_counts[i]);
 1481                 snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
 1482                 intrcnt_add(buf, &ipi_preempt_counts[i]);
 1483                 snprintf(buf, sizeof(buf), "cpu%d:ast", i);
 1484                 intrcnt_add(buf, &ipi_ast_counts[i]);
 1485                 snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
 1486                 intrcnt_add(buf, &ipi_rendezvous_counts[i]);
 1487                 snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
 1488                 intrcnt_add(buf, &ipi_hardclock_counts[i]);
 1489         }
 1490 }
 1491 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
 1492 #endif
 1493 

Cache object: d22ac49b92905356b3d5c8bc61bb1cbd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.