The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  * This code is derived from software contributed to Berkeley by
   10  * the Systems Programming Group of the University of Utah Computer
   11  * Science Department and William Jolitz of UUNET Technologies Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   42  * $FreeBSD: releng/5.1/sys/amd64/amd64/pmap.c 115251 2003-05-23 05:04:54Z peter $
   43  */
   44 /*-
   45  * Copyright (c) 2003 Networks Associates Technology, Inc.
   46  * All rights reserved.
   47  *
   48  * This software was developed for the FreeBSD Project by Jake Burkholder,
   49  * Safeport Network Services, and Network Associates Laboratories, the
   50  * Security Research Division of Network Associates, Inc. under
   51  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   52  * CHATS research program.
   53  *
   54  * Redistribution and use in source and binary forms, with or without
   55  * modification, are permitted provided that the following conditions
   56  * are met:
   57  * 1. Redistributions of source code must retain the above copyright
   58  *    notice, this list of conditions and the following disclaimer.
   59  * 2. Redistributions in binary form must reproduce the above copyright
   60  *    notice, this list of conditions and the following disclaimer in the
   61  *    documentation and/or other materials provided with the distribution.
   62  *
   63  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   73  * SUCH DAMAGE.
   74  */
   75 
   76 /*
   77  *      Manages physical address maps.
   78  *
   79  *      In addition to hardware address maps, this
   80  *      module is called upon to provide software-use-only
   81  *      maps which may or may not be stored in the same
   82  *      form as hardware maps.  These pseudo-maps are
   83  *      used to store intermediate results from copy
   84  *      operations to and from address spaces.
   85  *
   86  *      Since the information managed by this module is
   87  *      also stored by the logical address mapping module,
   88  *      this module may throw away valid virtual-to-physical
   89  *      mappings at almost any time.  However, invalidations
   90  *      of virtual-to-physical mappings must be done as
   91  *      requested.
   92  *
   93  *      In order to cope with hardware architectures which
   94  *      make virtual-to-physical map invalidates expensive,
   95  *      this module may delay invalidate or reduced protection
   96  *      operations until such time as they are actually
   97  *      necessary.  This module is given full information as
   98  *      to which processors are currently using which maps,
   99  *      and to when physical maps must be made correct.
  100  */
  101 
  102 #include "opt_msgbuf.h"
  103 #include "opt_kstack_pages.h"
  104 
  105 #include <sys/param.h>
  106 #include <sys/systm.h>
  107 #include <sys/kernel.h>
  108 #include <sys/lock.h>
  109 #include <sys/mman.h>
  110 #include <sys/msgbuf.h>
  111 #include <sys/mutex.h>
  112 #include <sys/proc.h>
  113 #include <sys/sx.h>
  114 #include <sys/user.h>
  115 #include <sys/vmmeter.h>
  116 #include <sys/sysctl.h>
  117 
  118 #include <vm/vm.h>
  119 #include <vm/vm_param.h>
  120 #include <vm/vm_kern.h>
  121 #include <vm/vm_page.h>
  122 #include <vm/vm_map.h>
  123 #include <vm/vm_object.h>
  124 #include <vm/vm_extern.h>
  125 #include <vm/vm_pageout.h>
  126 #include <vm/vm_pager.h>
  127 #include <vm/uma.h>
  128 #include <vm/uma_int.h>
  129 
  130 #include <machine/cpu.h>
  131 #include <machine/cputypes.h>
  132 #include <machine/md_var.h>
  133 #include <machine/specialreg.h>
  134 
  135 #define PMAP_KEEP_PDIRS
  136 #ifndef PMAP_SHPGPERPROC
  137 #define PMAP_SHPGPERPROC 200
  138 #endif
  139 
  140 #if defined(DIAGNOSTIC)
  141 #define PMAP_DIAGNOSTIC
  142 #endif
  143 
  144 #define MINPV 2048
  145 
  146 #if !defined(PMAP_DIAGNOSTIC)
  147 #define PMAP_INLINE __inline
  148 #else
  149 #define PMAP_INLINE
  150 #endif
  151 
  152 /*
  153  * Given a map and a machine independent protection code,
  154  * convert to a vax protection code.
  155  */
  156 #define pte_prot(m, p)  (protection_codes[p])
  157 static pt_entry_t protection_codes[8];
  158 
  159 struct pmap kernel_pmap_store;
  160 LIST_HEAD(pmaplist, pmap);
  161 static struct pmaplist allpmaps;
  162 static struct mtx allpmaps_lock;
  163 
  164 vm_paddr_t avail_start;         /* PA of first available physical page */
  165 vm_paddr_t avail_end;           /* PA of last available physical page */
  166 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  167 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  168 static boolean_t pmap_initialized = FALSE;      /* Has pmap_init completed? */
  169 
  170 static int nkpt;
  171 static int ndmpdp;
  172 vm_offset_t kernel_vm_end;
  173 
  174 static u_int64_t        KPTphys;        /* phys addr of kernel level 1 */
  175 static u_int64_t        KPDphys;        /* phys addr of kernel level 2 */
  176 static u_int64_t        KPDPphys;       /* phys addr of kernel level 3 */
  177 u_int64_t               KPML4phys;      /* phys addr of kernel level 4 */
  178 
  179 static u_int64_t        DMPDphys;       /* phys addr of direct mapped level 2 */
  180 static u_int64_t        DMPDPphys;      /* phys addr of direct mapped level 3 */
  181 
  182 /*
  183  * Data for the pv entry allocation mechanism
  184  */
  185 static uma_zone_t pvzone;
  186 static struct vm_object pvzone_obj;
  187 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  188 int pmap_pagedaemon_waken;
  189 
  190 /*
  191  * All those kernel PT submaps that BSD is so fond of
  192  */
  193 pt_entry_t *CMAP1 = 0;
  194 static pt_entry_t *ptmmap;
  195 caddr_t CADDR1 = 0, ptvmmap = 0;
  196 static pt_entry_t *msgbufmap;
  197 struct msgbuf *msgbufp = 0;
  198 
  199 /*
  200  * Crashdump maps.
  201  */
  202 static pt_entry_t *pt_crashdumpmap;
  203 static caddr_t crashdumpmap;
  204 
  205 static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
  206 static pv_entry_t get_pv_entry(void);
  207 static void     amd64_protection_init(void);
  208 static __inline void    pmap_changebit(vm_page_t m, int bit, boolean_t setem);
  209 
  210 static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
  211                                       vm_page_t m, vm_page_t mpte);
  212 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
  213 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  214 static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  215                                         vm_offset_t va);
  216 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
  217                 vm_page_t mpte, vm_page_t m);
  218 
  219 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
  220 
  221 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex);
  222 static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
  223 static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
  224 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  225 static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
  226 
  227 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  228 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  229 
  230 /*
  231  * Move the kernel virtual free pointer to the next
  232  * 2MB.  This is used to help improve performance
  233  * by using a large (2MB) page for much of the kernel
  234  * (.text, .data, .bss)
  235  */
  236 static vm_offset_t
  237 pmap_kmem_choose(vm_offset_t addr)
  238 {
  239         vm_offset_t newaddr = addr;
  240 
  241         newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
  242         return newaddr;
  243 }
  244 
  245 /********************/
  246 /* Inline functions */
  247 /********************/
  248 
  249 /* Return a non-clipped PD index for a given VA */
  250 static __inline vm_pindex_t
  251 pmap_pde_pindex(vm_offset_t va)
  252 {
  253         return va >> PDRSHIFT;
  254 }
  255 
  256 
  257 /* Return various clipped indexes for a given VA */
  258 static __inline vm_pindex_t
  259 pmap_pte_index(vm_offset_t va)
  260 {
  261 
  262         return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
  263 }
  264 
  265 static __inline vm_pindex_t
  266 pmap_pde_index(vm_offset_t va)
  267 {
  268 
  269         return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
  270 }
  271 
  272 static __inline vm_pindex_t
  273 pmap_pdpe_index(vm_offset_t va)
  274 {
  275 
  276         return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
  277 }
  278 
  279 static __inline vm_pindex_t
  280 pmap_pml4e_index(vm_offset_t va)
  281 {
  282 
  283         return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
  284 }
  285 
  286 /* Return a pointer to the PML4 slot that corresponds to a VA */
  287 static __inline pml4_entry_t *
  288 pmap_pml4e(pmap_t pmap, vm_offset_t va)
  289 {
  290 
  291         if (!pmap)
  292                 return NULL;
  293         return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
  294 }
  295 
  296 /* Return a pointer to the PDP slot that corresponds to a VA */
  297 static __inline pdp_entry_t *
  298 pmap_pdpe(pmap_t pmap, vm_offset_t va)
  299 {
  300         pml4_entry_t *pml4e;
  301         pdp_entry_t *pdpe;
  302 
  303         pml4e = pmap_pml4e(pmap, va);
  304         if (pml4e == NULL || (*pml4e & PG_V) == 0)
  305                 return NULL;
  306         pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
  307         return (&pdpe[pmap_pdpe_index(va)]);
  308 }
  309 
  310 /* Return a pointer to the PD slot that corresponds to a VA */
  311 static __inline pd_entry_t *
  312 pmap_pde(pmap_t pmap, vm_offset_t va)
  313 {
  314         pdp_entry_t *pdpe;
  315         pd_entry_t *pde;
  316 
  317         pdpe = pmap_pdpe(pmap, va);
  318         if (pdpe == NULL || (*pdpe & PG_V) == 0)
  319                  return NULL;
  320         pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
  321         return (&pde[pmap_pde_index(va)]);
  322 }
  323 
  324 /* Return a pointer to the PT slot that corresponds to a VA */
  325 static __inline pt_entry_t *
  326 pmap_pte(pmap_t pmap, vm_offset_t va)
  327 {
  328         pd_entry_t *pde;
  329         pt_entry_t *pte;
  330 
  331         pde = pmap_pde(pmap, va);
  332         if (pde == NULL || (*pde & PG_V) == 0)
  333                 return NULL;
  334         pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
  335         return (&pte[pmap_pte_index(va)]);
  336 }
  337 
  338 
  339 PMAP_INLINE pt_entry_t *
  340 vtopte(vm_offset_t va)
  341 {
  342         u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
  343 
  344         return (PTmap + (amd64_btop(va) & mask));
  345 }
  346 
  347 static u_int64_t
  348 allocpages(int n)
  349 {
  350         u_int64_t ret;
  351 
  352         ret = avail_start;
  353         bzero((void *)ret, n * PAGE_SIZE);
  354         avail_start += n * PAGE_SIZE;
  355         return (ret);
  356 }
  357 
  358 static void
  359 create_pagetables(void)
  360 {
  361         int i;
  362 
  363         /* Allocate pages */
  364         KPTphys = allocpages(NKPT);
  365         KPML4phys = allocpages(1);
  366         KPDPphys = allocpages(NKPML4E);
  367         KPDphys = allocpages(NKPDPE);
  368 
  369         ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
  370         if (ndmpdp < 1)
  371                 ndmpdp = 1;
  372         DMPDPphys = allocpages(NDMPML4E);
  373         DMPDphys = allocpages(ndmpdp);
  374 
  375         /* Fill in the underlying page table pages */
  376         /* Read-only from zero to physfree */
  377         /* XXX not fully used, underneath 2M pages */
  378         for (i = 0; (i << PAGE_SHIFT) < avail_start; i++) {
  379                 ((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
  380                 ((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V;
  381         }
  382 
  383         /* Now map the page tables at their location within PTmap */
  384         for (i = 0; i < NKPT; i++) {
  385                 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
  386                 ((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
  387         }
  388 
  389 #if 0
  390         /* Map from zero to end of allocations under 2M pages */
  391         /* This replaces some of the KPTphys entries above */
  392         for (i = 0; (i << PDRSHIFT) < avail_start; i++) {
  393                 ((pd_entry_t *)KPDphys)[i] = i << PDRSHIFT;
  394                 ((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V | PG_PS;
  395         }
  396 #endif
  397 
  398         /* And connect up the PD to the PDP */
  399         for (i = 0; i < NKPDPE; i++) {
  400                 ((pdp_entry_t *)KPDPphys)[i + KPDPI] = KPDphys + (i << PAGE_SHIFT);
  401                 ((pdp_entry_t *)KPDPphys)[i + KPDPI] |= PG_RW | PG_V | PG_U;
  402         }
  403 
  404 
  405         /* Now set up the direct map space using 2MB pages */
  406         for (i = 0; i < NPDEPG * ndmpdp; i++) {
  407                 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
  408                 ((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS;
  409         }
  410 
  411         /* And the direct map space's PDP */
  412         for (i = 0; i < ndmpdp; i++) {
  413                 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys + (i << PAGE_SHIFT);
  414                 ((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
  415         }
  416 
  417         /* And recursively map PML4 to itself in order to get PTmap */
  418         ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
  419         ((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
  420 
  421         /* Connect the Direct Map slot up to the PML4 */
  422         ((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
  423         ((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
  424 
  425         /* Connect the KVA slot up to the PML4 */
  426         ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
  427         ((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
  428 }
  429 
  430 /*
  431  *      Bootstrap the system enough to run with virtual memory.
  432  *
  433  *      On amd64 this is called after mapping has already been enabled
  434  *      and just syncs the pmap module with what has already been done.
  435  *      [We can't call it easily with mapping off since the kernel is not
  436  *      mapped with PA == VA, hence we would have to relocate every address
  437  *      from the linked base (virtual) address "KERNBASE" to the actual
  438  *      (physical) address starting relative to 0]
  439  */
  440 void
  441 pmap_bootstrap(firstaddr)
  442         vm_paddr_t *firstaddr;
  443 {
  444         vm_offset_t va;
  445         pt_entry_t *pte;
  446 
  447         avail_start = *firstaddr;
  448 
  449         /*
  450          * Create an initial set of page tables to run the kernel in.
  451          */
  452         create_pagetables();
  453         *firstaddr = avail_start;
  454 
  455         virtual_avail = (vm_offset_t) KERNBASE + avail_start;
  456         virtual_avail = pmap_kmem_choose(virtual_avail);
  457 
  458         virtual_end = VM_MAX_KERNEL_ADDRESS;
  459 
  460 
  461         /* XXX do %cr0 as well */
  462         load_cr4(rcr4() | CR4_PGE | CR4_PSE);
  463         load_cr3(KPML4phys);
  464 
  465         /*
  466          * Initialize protection array.
  467          */
  468         amd64_protection_init();
  469 
  470         /*
  471          * Initialize the kernel pmap (which is statically allocated).
  472          */
  473         kernel_pmap->pm_pml4 = (pdp_entry_t *) (KERNBASE + KPML4phys);
  474         kernel_pmap->pm_active = -1;    /* don't allow deactivation */
  475         TAILQ_INIT(&kernel_pmap->pm_pvlist);
  476         LIST_INIT(&allpmaps);
  477         mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
  478         mtx_lock_spin(&allpmaps_lock);
  479         LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
  480         mtx_unlock_spin(&allpmaps_lock);
  481         nkpt = NKPT;
  482 
  483         /*
  484          * Reserve some special page table entries/VA space for temporary
  485          * mapping of pages.
  486          */
  487 #define SYSMAP(c, p, v, n)      \
  488         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  489 
  490         va = virtual_avail;
  491         pte = vtopte(va);
  492 
  493         /*
  494          * CMAP1 is only used for the memory test.
  495          */
  496         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  497 
  498         /*
  499          * Crashdump maps.
  500          */
  501         SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
  502 
  503         /*
  504          * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
  505          * XXX ptmmap is not used.
  506          */
  507         SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
  508 
  509         /*
  510          * msgbufp is used to map the system message buffer.
  511          * XXX msgbufmap is not used.
  512          */
  513         SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
  514                atop(round_page(MSGBUF_SIZE)))
  515 
  516         virtual_avail = va;
  517 
  518         *CMAP1 = 0;
  519 
  520         invltlb();
  521 }
  522 
  523 static void *
  524 pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  525 {
  526         *flags = UMA_SLAB_PRIV;
  527         return (void *)kmem_alloc(kernel_map, bytes);
  528 }
  529 
  530 void *
  531 uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  532 {
  533         static vm_pindex_t colour;
  534         vm_page_t m;
  535         int pflags;
  536         void *va;
  537 
  538         *flags = UMA_SLAB_PRIV;
  539 
  540         if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
  541                 pflags = VM_ALLOC_INTERRUPT;
  542         else
  543                 pflags = VM_ALLOC_SYSTEM;
  544 
  545         if (wait & M_ZERO)
  546                 pflags |= VM_ALLOC_ZERO;
  547 
  548         for (;;) {
  549                 m = vm_page_alloc(NULL, colour++, pflags | VM_ALLOC_NOOBJ);
  550                 if (m == NULL) {
  551                         if (wait & M_NOWAIT)
  552                                 return (NULL);
  553                         else
  554                                 VM_WAIT;
  555                 } else
  556                         break;
  557         }
  558 
  559         va = (void *)PHYS_TO_DMAP(m->phys_addr);
  560         if ((m->flags & PG_ZERO) == 0)
  561                 pagezero(va);
  562         return (va);
  563 }
  564 
  565 void
  566 uma_small_free(void *mem, int size, u_int8_t flags)
  567 {
  568         vm_page_t m;
  569 
  570         m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)mem));
  571         vm_page_lock_queues();
  572         vm_page_free(m);
  573         vm_page_unlock_queues();
  574 }
  575 
  576 /*
  577  *      Initialize the pmap module.
  578  *      Called by vm_init, to initialize any structures that the pmap
  579  *      system needs to map virtual memory.
  580  *      pmap_init has been enhanced to support in a fairly consistant
  581  *      way, discontiguous physical memory.
  582  */
  583 void
  584 pmap_init(phys_start, phys_end)
  585         vm_paddr_t phys_start, phys_end;
  586 {
  587         int i;
  588         int initial_pvs;
  589 
  590         /*
  591          * Allocate memory for random pmap data structures.  Includes the
  592          * pv_head_table.
  593          */
  594 
  595         for(i = 0; i < vm_page_array_size; i++) {
  596                 vm_page_t m;
  597 
  598                 m = &vm_page_array[i];
  599                 TAILQ_INIT(&m->md.pv_list);
  600                 m->md.pv_list_count = 0;
  601         }
  602 
  603         /*
  604          * init the pv free list
  605          */
  606         initial_pvs = vm_page_array_size;
  607         if (initial_pvs < MINPV)
  608                 initial_pvs = MINPV;
  609         pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL, 
  610             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
  611         uma_zone_set_allocf(pvzone, pmap_pv_allocf);
  612         uma_prealloc(pvzone, initial_pvs);
  613 
  614         /*
  615          * Now it is safe to enable pv_table recording.
  616          */
  617         pmap_initialized = TRUE;
  618 }
  619 
  620 /*
  621  * Initialize the address space (zone) for the pv_entries.  Set a
  622  * high water mark so that the system can recover from excessive
  623  * numbers of pv entries.
  624  */
  625 void
  626 pmap_init2()
  627 {
  628         int shpgperproc = PMAP_SHPGPERPROC;
  629 
  630         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  631         pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
  632         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  633         pv_entry_high_water = 9 * (pv_entry_max / 10);
  634         uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
  635 }
  636 
  637 
  638 /***************************************************
  639  * Low level helper routines.....
  640  ***************************************************/
  641 
  642 #if defined(PMAP_DIAGNOSTIC)
  643 
  644 /*
  645  * This code checks for non-writeable/modified pages.
  646  * This should be an invalid condition.
  647  */
  648 static int
  649 pmap_nw_modified(pt_entry_t ptea)
  650 {
  651         int pte;
  652 
  653         pte = (int) ptea;
  654 
  655         if ((pte & (PG_M|PG_RW)) == PG_M)
  656                 return 1;
  657         else
  658                 return 0;
  659 }
  660 #endif
  661 
  662 
  663 /*
  664  * this routine defines the region(s) of memory that should
  665  * not be tested for the modified bit.
  666  */
  667 static PMAP_INLINE int
  668 pmap_track_modified(vm_offset_t va)
  669 {
  670         if ((va < kmi.clean_sva) || (va >= kmi.clean_eva)) 
  671                 return 1;
  672         else
  673                 return 0;
  674 }
  675 
  676 /*
  677  * Normal invalidation functions.
  678  * We inline these within pmap.c for speed.
  679  */
  680 PMAP_INLINE void
  681 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  682 {
  683 
  684         if (pmap == kernel_pmap || pmap->pm_active)
  685                 invlpg(va);
  686 }
  687 
  688 PMAP_INLINE void
  689 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  690 {
  691         vm_offset_t addr;
  692 
  693         if (pmap == kernel_pmap || pmap->pm_active)
  694                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  695                         invlpg(addr);
  696 }
  697 
  698 PMAP_INLINE void
  699 pmap_invalidate_all(pmap_t pmap)
  700 {
  701 
  702         if (pmap == kernel_pmap || pmap->pm_active)
  703                 invltlb();
  704 }
  705 
  706 /*
  707  * Are we current address space or kernel?
  708  */
  709 static __inline int
  710 pmap_is_current(pmap_t pmap)
  711 {
  712         return (pmap == kernel_pmap ||
  713             (pmap->pm_pml4[PML4PML4I] & PG_FRAME) == (PML4pml4e[0] & PG_FRAME));
  714 }
  715 
  716 /*
  717  *      Routine:        pmap_extract
  718  *      Function:
  719  *              Extract the physical page address associated
  720  *              with the given map/virtual_address pair.
  721  */
  722 vm_paddr_t 
  723 pmap_extract(pmap, va)
  724         register pmap_t pmap;
  725         vm_offset_t va;
  726 {
  727         vm_paddr_t rtval;
  728         pt_entry_t *pte;
  729         pd_entry_t pde, *pdep;
  730 
  731         if (pmap == 0)
  732                 return 0;
  733         pdep = pmap_pde(pmap, va);
  734         if (pdep) {
  735                 pde = *pdep;
  736                 if (pde) {
  737                         if ((pde & PG_PS) != 0) {
  738                                 rtval = (pde & ~PDRMASK) | (va & PDRMASK);
  739                                 return rtval;
  740                         }
  741                         pte = pmap_pte(pmap, va);
  742                         rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
  743                         return rtval;
  744                 }
  745         }
  746         return 0;
  747 
  748 }
  749 
  750 vm_paddr_t
  751 pmap_kextract(vm_offset_t va)
  752 {
  753         pd_entry_t *pde;
  754         vm_paddr_t pa;
  755 
  756         if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
  757                 pa = DMAP_TO_PHYS(va);
  758         } else {
  759                 pde = pmap_pde(kernel_pmap, va);
  760                 if (*pde & PG_PS) {
  761                         pa = (*pde & ~(NBPDR - 1)) | (va & (NBPDR - 1));
  762                 } else {
  763                         pa = *vtopte(va);
  764                         pa = (pa & PG_FRAME) | (va & PAGE_MASK);
  765                 }
  766         }
  767         return pa;
  768 }
  769 
  770 /***************************************************
  771  * Low level mapping routines.....
  772  ***************************************************/
  773 
  774 /*
  775  * Add a wired page to the kva.
  776  * Note: not SMP coherent.
  777  */
  778 PMAP_INLINE void 
  779 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  780 {
  781         pt_entry_t *pte;
  782 
  783         pte = vtopte(va);
  784         pte_store(pte, pa | PG_RW | PG_V | PG_G);
  785 }
  786 
  787 /*
  788  * Remove a page from the kernel pagetables.
  789  * Note: not SMP coherent.
  790  */
  791 PMAP_INLINE void
  792 pmap_kremove(vm_offset_t va)
  793 {
  794         pt_entry_t *pte;
  795 
  796         pte = vtopte(va);
  797         pte_clear(pte);
  798 }
  799 
  800 /*
  801  *      Used to map a range of physical addresses into kernel
  802  *      virtual address space.
  803  *
  804  *      The value passed in '*virt' is a suggested virtual address for
  805  *      the mapping. Architectures which can support a direct-mapped
  806  *      physical to virtual region can return the appropriate address
  807  *      within that region, leaving '*virt' unchanged. Other
  808  *      architectures should map the pages starting at '*virt' and
  809  *      update '*virt' with the first usable address after the mapped
  810  *      region.
  811  */
  812 vm_offset_t
  813 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
  814 {
  815         vm_offset_t va, sva;
  816 
  817         va = sva = *virt;
  818         while (start < end) {
  819                 pmap_kenter(va, start);
  820                 va += PAGE_SIZE;
  821                 start += PAGE_SIZE;
  822         }
  823         pmap_invalidate_range(kernel_pmap, sva, va);
  824         *virt = va;
  825         return (sva);
  826 }
  827 
  828 
  829 /*
  830  * Add a list of wired pages to the kva
  831  * this routine is only used for temporary
  832  * kernel mappings that do not need to have
  833  * page modification or references recorded.
  834  * Note that old mappings are simply written
  835  * over.  The page *must* be wired.
  836  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  837  */
  838 void
  839 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
  840 {
  841         vm_offset_t va;
  842 
  843         va = sva;
  844         while (count-- > 0) {
  845                 pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
  846                 va += PAGE_SIZE;
  847                 m++;
  848         }
  849         pmap_invalidate_range(kernel_pmap, sva, va);
  850 }
  851 
  852 /*
  853  * This routine tears out page mappings from the
  854  * kernel -- it is meant only for temporary mappings.
  855  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  856  */
  857 void
  858 pmap_qremove(vm_offset_t sva, int count)
  859 {
  860         vm_offset_t va;
  861 
  862         va = sva;
  863         while (count-- > 0) {
  864                 pmap_kremove(va);
  865                 va += PAGE_SIZE;
  866         }
  867         pmap_invalidate_range(kernel_pmap, sva, va);
  868 }
  869 
  870 static vm_page_t
  871 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
  872 {
  873         vm_page_t m;
  874 
  875 retry:
  876         m = vm_page_lookup(object, pindex);
  877         if (m != NULL) {
  878                 vm_page_lock_queues();
  879                 if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
  880                         goto retry;
  881                 vm_page_unlock_queues();
  882         }
  883         return m;
  884 }
  885 
  886 #ifndef KSTACK_MAX_PAGES
  887 #define KSTACK_MAX_PAGES 32
  888 #endif
  889 
  890 /*
  891  * Create the kernel stack (including pcb for amd64) for a new thread.
  892  * This routine directly affects the fork perf for a process and
  893  * create performance for a thread.
  894  */
  895 void
  896 pmap_new_thread(struct thread *td, int pages)
  897 {
  898         int i;
  899         vm_page_t ma[KSTACK_MAX_PAGES];
  900         vm_object_t ksobj;
  901         vm_page_t m;
  902         vm_offset_t ks;
  903 
  904         /* Bounds check */
  905         if (pages <= 1)
  906                 pages = KSTACK_PAGES;
  907         else if (pages > KSTACK_MAX_PAGES)
  908                 pages = KSTACK_MAX_PAGES;
  909 
  910         /*
  911          * allocate object for the kstack
  912          */
  913         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  914         td->td_kstack_obj = ksobj;
  915 
  916         /* get a kernel virtual address for the kstack for this thread */
  917 #ifdef KSTACK_GUARD
  918         ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
  919         if (ks == 0)
  920                 panic("pmap_new_thread: kstack allocation failed");
  921         if (*vtopte(ks) != 0)
  922                 pmap_qremove(ks, 1);
  923         ks += PAGE_SIZE;
  924         td->td_kstack = ks;
  925 #else
  926         /* get a kernel virtual address for the kstack for this thread */
  927         ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
  928         if (ks == 0)
  929                 panic("pmap_new_thread: kstack allocation failed");
  930         td->td_kstack = ks;
  931 #endif
  932         /*
  933          * Knowing the number of pages allocated is useful when you
  934          * want to deallocate them.
  935          */
  936         td->td_kstack_pages = pages;
  937 
  938         /* 
  939          * For the length of the stack, link in a real page of ram for each
  940          * page of stack.
  941          */
  942         for (i = 0; i < pages; i++) {
  943                 /*
  944                  * Get a kernel stack page
  945                  */
  946                 m = vm_page_grab(ksobj, i,
  947                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  948                 ma[i] = m;
  949 
  950                 vm_page_lock_queues();
  951                 vm_page_wakeup(m);
  952                 vm_page_flag_clear(m, PG_ZERO);
  953                 m->valid = VM_PAGE_BITS_ALL;
  954                 vm_page_unlock_queues();
  955         }
  956         pmap_qenter(ks, ma, pages);
  957 }
  958 
  959 /*
  960  * Dispose the kernel stack for a thread that has exited.
  961  * This routine directly impacts the exit perf of a process and thread.
  962  */
  963 void
  964 pmap_dispose_thread(td)
  965         struct thread *td;
  966 {
  967         int i;
  968         int pages;
  969         vm_object_t ksobj;
  970         vm_offset_t ks;
  971         vm_page_t m;
  972 
  973         pages = td->td_kstack_pages;
  974         ksobj = td->td_kstack_obj;
  975         ks = td->td_kstack;
  976         pmap_qremove(ks, pages);
  977         for (i = 0; i < pages; i++) {
  978                 m = vm_page_lookup(ksobj, i);
  979                 if (m == NULL)
  980                         panic("pmap_dispose_thread: kstack already missing?");
  981                 vm_page_lock_queues();
  982                 vm_page_busy(m);
  983                 vm_page_unwire(m, 0);
  984                 vm_page_free(m);
  985                 vm_page_unlock_queues();
  986         }
  987         /*
  988          * Free the space that this stack was mapped to in the kernel
  989          * address map.
  990          */
  991 #ifdef KSTACK_GUARD
  992         kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
  993 #else
  994         kmem_free(kernel_map, ks, pages * PAGE_SIZE);
  995 #endif
  996         vm_object_deallocate(ksobj);
  997 }
  998 
  999 /*
 1000  * Set up a variable sized alternate kstack.  Though it may look MI, it may
 1001  * need to be different on certain arches like ia64.
 1002  */
 1003 void
 1004 pmap_new_altkstack(struct thread *td, int pages)
 1005 {
 1006         /* shuffle the original stack */
 1007         td->td_altkstack_obj = td->td_kstack_obj;
 1008         td->td_altkstack = td->td_kstack;
 1009         td->td_altkstack_pages = td->td_kstack_pages;
 1010 
 1011         pmap_new_thread(td, pages);
 1012 }
 1013 
 1014 void
 1015 pmap_dispose_altkstack(td)
 1016         struct thread *td;
 1017 {
 1018         pmap_dispose_thread(td);
 1019 
 1020         /* restore the original kstack */
 1021         td->td_kstack = td->td_altkstack;
 1022         td->td_kstack_obj = td->td_altkstack_obj;
 1023         td->td_kstack_pages = td->td_altkstack_pages;
 1024         td->td_altkstack = 0;
 1025         td->td_altkstack_obj = NULL;
 1026         td->td_altkstack_pages = 0;
 1027 }
 1028 
 1029 /*
 1030  * Allow the Kernel stack for a thread to be prejudicially paged out.
 1031  */
 1032 void
 1033 pmap_swapout_thread(td)
 1034         struct thread *td;
 1035 {
 1036         int i;
 1037         int pages;
 1038         vm_object_t ksobj;
 1039         vm_offset_t ks;
 1040         vm_page_t m;
 1041 
 1042         pages = td->td_kstack_pages;
 1043         ksobj = td->td_kstack_obj;
 1044         ks = td->td_kstack;
 1045         pmap_qremove(ks, pages);
 1046         for (i = 0; i < pages; i++) {
 1047                 m = vm_page_lookup(ksobj, i);
 1048                 if (m == NULL)
 1049                         panic("pmap_swapout_thread: kstack already missing?");
 1050                 vm_page_lock_queues();
 1051                 vm_page_dirty(m);
 1052                 vm_page_unwire(m, 0);
 1053                 vm_page_unlock_queues();
 1054         }
 1055 }
 1056 
 1057 /*
 1058  * Bring the kernel stack for a specified thread back in.
 1059  */
 1060 void
 1061 pmap_swapin_thread(td)
 1062         struct thread *td;
 1063 {
 1064         int i, rv;
 1065         int pages;
 1066         vm_page_t ma[KSTACK_MAX_PAGES];
 1067         vm_object_t ksobj;
 1068         vm_offset_t ks;
 1069         vm_page_t m;
 1070 
 1071         pages = td->td_kstack_pages;
 1072         ksobj = td->td_kstack_obj;
 1073         ks = td->td_kstack;
 1074         for (i = 0; i < pages; i++) {
 1075                 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
 1076                 if (m->valid != VM_PAGE_BITS_ALL) {
 1077                         rv = vm_pager_get_pages(ksobj, &m, 1, 0);
 1078                         if (rv != VM_PAGER_OK)
 1079                                 panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
 1080                         m = vm_page_lookup(ksobj, i);
 1081                         m->valid = VM_PAGE_BITS_ALL;
 1082                 }
 1083                 ma[i] = m;
 1084                 vm_page_lock_queues();
 1085                 vm_page_wire(m);
 1086                 vm_page_wakeup(m);
 1087                 vm_page_unlock_queues();
 1088         }
 1089         pmap_qenter(ks, ma, pages);
 1090 }
 1091 
 1092 /***************************************************
 1093  * Page table page management routines.....
 1094  ***************************************************/
 1095 
 1096 /*
 1097  * This routine unholds page table pages, and if the hold count
 1098  * drops to zero, then it decrements the wire count.
 1099  */
 1100 static int 
 1101 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1102 {
 1103 
 1104         while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
 1105                 vm_page_lock_queues();
 1106 
 1107         if (m->hold_count == 0) {
 1108                 vm_offset_t pteva;
 1109                 /*
 1110                  * unmap the page table page
 1111                  */
 1112                 if (m->pindex >= (NUPDE + NUPDPE)) {
 1113                         /* PDP page */
 1114                         pml4_entry_t *pml4;
 1115                         pml4 = pmap_pml4e(pmap, va);
 1116                         pteva = (vm_offset_t) PDPmap + amd64_ptob(m->pindex - (NUPDE + NUPDPE));
 1117                         *pml4 = 0;
 1118                 } else if (m->pindex >= NUPDE) {
 1119                         /* PD page */
 1120                         pdp_entry_t *pdp;
 1121                         pdp = pmap_pdpe(pmap, va);
 1122                         pteva = (vm_offset_t) PDmap + amd64_ptob(m->pindex - NUPDE);
 1123                         *pdp = 0;
 1124                 } else {
 1125                         /* PTE page */
 1126                         pd_entry_t *pd;
 1127                         pd = pmap_pde(pmap, va);
 1128                         pteva = (vm_offset_t) PTmap + amd64_ptob(m->pindex);
 1129                         *pd = 0;
 1130                 }
 1131                 --pmap->pm_stats.resident_count;
 1132                 if (m->pindex < NUPDE) {
 1133                         /* Unhold the PD page */
 1134                         vm_page_t pdpg;
 1135                         pdpg = vm_page_lookup(pmap->pm_pteobj, NUPDE + pmap_pdpe_index(va));
 1136                         while (vm_page_sleep_if_busy(pdpg, FALSE, "pulook"))
 1137                                 vm_page_lock_queues();
 1138                         vm_page_unhold(pdpg);
 1139                         if (pdpg->hold_count == 0)
 1140                                 _pmap_unwire_pte_hold(pmap, va, pdpg);
 1141                 }
 1142                 if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
 1143                         /* Unhold the PDP page */
 1144                         vm_page_t pdppg;
 1145                         pdppg = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + pmap_pml4e_index(va));
 1146                         while (vm_page_sleep_if_busy(pdppg, FALSE, "pulooK"))
 1147                                 vm_page_lock_queues();
 1148                         vm_page_unhold(pdppg);
 1149                         if (pdppg->hold_count == 0)
 1150                                 _pmap_unwire_pte_hold(pmap, va, pdppg);
 1151                 }
 1152                 if (pmap_is_current(pmap)) {
 1153                         /*
 1154                          * Do an invltlb to make the invalidated mapping
 1155                          * take effect immediately.
 1156                          */
 1157                         pmap_invalidate_page(pmap, pteva);
 1158                 }
 1159 
 1160                 /*
 1161                  * If the page is finally unwired, simply free it.
 1162                  */
 1163                 --m->wire_count;
 1164                 if (m->wire_count == 0) {
 1165                         vm_page_busy(m);
 1166                         vm_page_free_zero(m);
 1167                         atomic_subtract_int(&cnt.v_wire_count, 1);
 1168                 }
 1169                 return 1;
 1170         }
 1171         return 0;
 1172 }
 1173 
 1174 static PMAP_INLINE int
 1175 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1176 {
 1177         vm_page_unhold(m);
 1178         if (m->hold_count == 0)
 1179                 return _pmap_unwire_pte_hold(pmap, va, m);
 1180         else
 1181                 return 0;
 1182 }
 1183 
 1184 /*
 1185  * After removing a page table entry, this routine is used to
 1186  * conditionally free the page, and manage the hold/wire counts.
 1187  */
 1188 static int
 1189 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
 1190 {
 1191         vm_pindex_t ptepindex;
 1192 
 1193         if (va >= VM_MAXUSER_ADDRESS)
 1194                 return 0;
 1195 
 1196         if (mpte == NULL) {
 1197                 ptepindex = pmap_pde_pindex(va);
 1198                 if (pmap->pm_pteobj->root &&
 1199                     pmap->pm_pteobj->root->pindex == ptepindex) {
 1200                         mpte = pmap->pm_pteobj->root;
 1201                 } else {
 1202                         while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
 1203                             vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
 1204                                 vm_page_lock_queues();
 1205                 }
 1206         }
 1207 
 1208         return pmap_unwire_pte_hold(pmap, va, mpte);
 1209 }
 1210 
 1211 void
 1212 pmap_pinit0(pmap)
 1213         struct pmap *pmap;
 1214 {
 1215 
 1216         pmap->pm_pml4 = (pml4_entry_t *)(KERNBASE + KPML4phys);
 1217         pmap->pm_active = 0;
 1218         TAILQ_INIT(&pmap->pm_pvlist);
 1219         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1220         mtx_lock_spin(&allpmaps_lock);
 1221         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1222         mtx_unlock_spin(&allpmaps_lock);
 1223 }
 1224 
 1225 /*
 1226  * Initialize a preallocated and zeroed pmap structure,
 1227  * such as one in a vmspace structure.
 1228  */
 1229 void
 1230 pmap_pinit(pmap)
 1231         register struct pmap *pmap;
 1232 {
 1233         vm_page_t pml4pg;
 1234 
 1235         /*
 1236          * allocate object for the ptes
 1237          */
 1238         if (pmap->pm_pteobj == NULL)
 1239                 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + NUPML4E + 1);
 1240 
 1241         /*
 1242          * allocate the page directory page
 1243          */
 1244         pml4pg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + NUPML4E,
 1245             VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 1246         vm_page_lock_queues();
 1247         vm_page_flag_clear(pml4pg, PG_BUSY);
 1248         pml4pg->valid = VM_PAGE_BITS_ALL;
 1249         vm_page_unlock_queues();
 1250 
 1251         pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
 1252 
 1253         if ((pml4pg->flags & PG_ZERO) == 0)
 1254                 bzero(pmap->pm_pml4, PAGE_SIZE);
 1255 
 1256         mtx_lock_spin(&allpmaps_lock);
 1257         LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
 1258         mtx_unlock_spin(&allpmaps_lock);
 1259 
 1260         /* Wire in kernel global address entries. */
 1261         pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
 1262         pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
 1263 
 1264         /* install self-referential address mapping entry(s) */
 1265         pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | PG_V | PG_RW | PG_A | PG_M;
 1266 
 1267         pmap->pm_active = 0;
 1268         TAILQ_INIT(&pmap->pm_pvlist);
 1269         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1270 }
 1271 
 1272 /*
 1273  * Wire in kernel global address entries.  To avoid a race condition
 1274  * between pmap initialization and pmap_growkernel, this procedure
 1275  * should be called after the vmspace is attached to the process
 1276  * but before this pmap is activated.
 1277  */
 1278 void
 1279 pmap_pinit2(pmap)
 1280         struct pmap *pmap;
 1281 {
 1282         /* XXX: Remove this stub when no longer called */
 1283 }
 1284 
 1285 /*
 1286  * this routine is called if the page table page is not
 1287  * mapped correctly.
 1288  */
 1289 static vm_page_t
 1290 _pmap_allocpte(pmap, ptepindex)
 1291         pmap_t  pmap;
 1292         vm_pindex_t ptepindex;
 1293 {
 1294         vm_page_t m, pdppg, pdpg;
 1295 
 1296         /*
 1297          * Find or fabricate a new pagetable page
 1298          */
 1299         m = vm_page_grab(pmap->pm_pteobj, ptepindex,
 1300             VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
 1301 
 1302         KASSERT(m->queue == PQ_NONE,
 1303                 ("_pmap_allocpte: %p->queue != PQ_NONE", m));
 1304 
 1305         /*
 1306          * Increment the hold count for the page table page
 1307          * (denoting a new mapping.)
 1308          */
 1309         m->hold_count++;
 1310 
 1311         /*
 1312          * Map the pagetable page into the process address space, if
 1313          * it isn't already there.
 1314          */
 1315 
 1316         pmap->pm_stats.resident_count++;
 1317 
 1318         if (ptepindex >= (NUPDE + NUPDPE)) {
 1319                 pml4_entry_t *pml4;
 1320                 vm_pindex_t pml4index;
 1321 
 1322                 /* Wire up a new PDPE page */
 1323                 pml4index = ptepindex - (NUPDE + NUPDPE);
 1324                 pml4 = &pmap->pm_pml4[pml4index];
 1325                 *pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 1326 
 1327         } else if (ptepindex >= NUPDE) {
 1328                 vm_pindex_t pml4index;
 1329                 vm_pindex_t pdpindex;
 1330                 pml4_entry_t *pml4;
 1331                 pdp_entry_t *pdp;
 1332 
 1333                 /* Wire up a new PDE page */
 1334                 pdpindex = ptepindex - NUPDE;
 1335                 pml4index = pdpindex >> NPML4EPGSHIFT;
 1336 
 1337                 pml4 = &pmap->pm_pml4[pml4index];
 1338                 if ((*pml4 & PG_V) == 0) {
 1339                         /* Have to allocate a new pdp, recurse */
 1340                         _pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index);
 1341                 } else {
 1342                         /* Add reference to pdp page */
 1343                         pdppg = pmap_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + pml4index);
 1344                         pdppg->hold_count++;
 1345                 }
 1346                 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 1347 
 1348                 /* Now find the pdp page */
 1349                 pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
 1350                 *pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 1351 
 1352         } else {
 1353                 vm_pindex_t pml4index;
 1354                 vm_pindex_t pdpindex;
 1355                 pml4_entry_t *pml4;
 1356                 pdp_entry_t *pdp;
 1357                 pd_entry_t *pd;
 1358 
 1359                 /* Wire up a new PTE page */
 1360                 pdpindex = ptepindex >> NPDPEPGSHIFT;
 1361                 pml4index = pdpindex >> NPML4EPGSHIFT;
 1362 
 1363                 /* First, find the pdp and check that its valid. */
 1364                 pml4 = &pmap->pm_pml4[pml4index];
 1365                 if ((*pml4 & PG_V) == 0) {
 1366                         /* Have to allocate a new pd, recurse */
 1367                         _pmap_allocpte(pmap, NUPDE + pdpindex);
 1368                         pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 1369                         pdp = &pdp[pdpindex];
 1370                 } else {
 1371                         pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 1372                         pdp = &pdp[pdpindex];
 1373                         if ((*pdp & PG_V) == 0) {
 1374                                 /* Have to allocate a new pd, recurse */
 1375                                 _pmap_allocpte(pmap, NUPDE + pdpindex);
 1376                         } else {
 1377                                 /* Add reference to the pd page */
 1378                                 pdpg = pmap_page_lookup(pmap->pm_pteobj, NUPDE + pdpindex);
 1379                                 pdpg->hold_count++;
 1380                         }
 1381                 }
 1382                 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
 1383 
 1384                 /* Now we know where the page directory page is */
 1385                 pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
 1386                 *pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 1387         }
 1388 
 1389         /*
 1390          * Try to use the new mapping, but if we cannot, then
 1391          * do it with the routine that maps the page explicitly.
 1392          */
 1393         if ((m->flags & PG_ZERO) == 0)
 1394                 pmap_zero_page(m);
 1395         vm_page_lock_queues();
 1396         m->valid = VM_PAGE_BITS_ALL;
 1397         vm_page_flag_clear(m, PG_ZERO);
 1398         vm_page_wakeup(m);
 1399         vm_page_unlock_queues();
 1400 
 1401         return m;
 1402 }
 1403 
 1404 static vm_page_t
 1405 pmap_allocpte(pmap_t pmap, vm_offset_t va)
 1406 {
 1407         vm_pindex_t ptepindex;
 1408         pd_entry_t *pd;
 1409         vm_page_t m;
 1410 
 1411         /*
 1412          * Calculate pagetable page index
 1413          */
 1414         ptepindex = pmap_pde_pindex(va);
 1415 
 1416         /*
 1417          * Get the page directory entry
 1418          */
 1419         pd = pmap_pde(pmap, va);
 1420 
 1421         /*
 1422          * This supports switching from a 2MB page to a
 1423          * normal 4K page.
 1424          */
 1425         if (pd != 0 && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
 1426                 *pd = 0;
 1427                 pd = 0;
 1428                 pmap_invalidate_all(kernel_pmap);
 1429         }
 1430 
 1431         /*
 1432          * If the page table page is mapped, we just increment the
 1433          * hold count, and activate it.
 1434          */
 1435         if (pd != 0 && (*pd & PG_V) != 0) {
 1436                 /*
 1437                  * In order to get the page table page, try the
 1438                  * hint first.
 1439                  */
 1440                 if (pmap->pm_pteobj->root &&
 1441                         (pmap->pm_pteobj->root->pindex == ptepindex)) {
 1442                         m = pmap->pm_pteobj->root;
 1443                 } else {
 1444                         m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
 1445                 }
 1446                 m->hold_count++;
 1447                 return m;
 1448         }
 1449         /*
 1450          * Here if the pte page isn't mapped, or if it has been deallocated.
 1451          */
 1452         m = _pmap_allocpte(pmap, ptepindex);
 1453         return m;
 1454 }
 1455 
 1456 
 1457 /***************************************************
 1458 * Pmap allocation/deallocation routines.
 1459  ***************************************************/
 1460 
 1461 /*
 1462  * Release any resources held by the given physical map.
 1463  * Called when a pmap initialized by pmap_pinit is being released.
 1464  * Should only be called if the map contains no valid mappings.
 1465  */
 1466 void
 1467 pmap_release(pmap_t pmap)
 1468 {
 1469         vm_object_t object;
 1470         vm_page_t m;
 1471 
 1472         object = pmap->pm_pteobj;
 1473 
 1474         KASSERT(object->ref_count == 1,
 1475             ("pmap_release: pteobj reference count %d != 1",
 1476             object->ref_count));
 1477         KASSERT(pmap->pm_stats.resident_count == 0,
 1478             ("pmap_release: pmap resident count %ld != 0",
 1479             pmap->pm_stats.resident_count));
 1480 
 1481         mtx_lock_spin(&allpmaps_lock);
 1482         LIST_REMOVE(pmap, pm_list);
 1483         mtx_unlock_spin(&allpmaps_lock);
 1484 
 1485         vm_page_lock_queues();
 1486         while ((m = TAILQ_FIRST(&object->memq)) != NULL) {
 1487                 m->wire_count--;
 1488                 atomic_subtract_int(&cnt.v_wire_count, 1);
 1489                 vm_page_busy(m);
 1490                 vm_page_free(m);
 1491         }
 1492         KASSERT(TAILQ_EMPTY(&object->memq),
 1493             ("pmap_release: leaking page table pages"));
 1494         vm_page_unlock_queues();
 1495 }
 1496 
 1497 static int
 1498 kvm_size(SYSCTL_HANDLER_ARGS)
 1499 {
 1500         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1501 
 1502         return sysctl_handle_long(oidp, &ksize, 0, req);
 1503 }
 1504 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1505     0, 0, kvm_size, "IU", "Size of KVM");
 1506 
 1507 static int
 1508 kvm_free(SYSCTL_HANDLER_ARGS)
 1509 {
 1510         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1511 
 1512         return sysctl_handle_long(oidp, &kfree, 0, req);
 1513 }
 1514 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1515     0, 0, kvm_free, "IU", "Amount of KVM free");
 1516 
 1517 /*
 1518  * grow the number of kernel page table entries, if needed
 1519  */
 1520 void
 1521 pmap_growkernel(vm_offset_t addr)
 1522 {
 1523         int s;
 1524         vm_paddr_t ptppaddr;
 1525         vm_page_t nkpg;
 1526         pd_entry_t newpdir;
 1527 
 1528         s = splhigh();
 1529         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1530         if (kernel_vm_end == 0) {
 1531                 kernel_vm_end = KERNBASE;
 1532                 nkpt = 0;
 1533                 while ((*pmap_pde(kernel_pmap, kernel_vm_end) & PG_V) != 0) {
 1534                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1535                         nkpt++;
 1536                 }
 1537         }
 1538         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 1539         while (kernel_vm_end < addr) {
 1540                 if ((*pmap_pde(kernel_pmap, kernel_vm_end) & PG_V) != 0) {
 1541                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1542                         continue;
 1543                 }
 1544 
 1545                 /*
 1546                  * This index is bogus, but out of the way
 1547                  */
 1548                 nkpg = vm_page_alloc(NULL, nkpt,
 1549                     VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 1550                 if (!nkpg)
 1551                         panic("pmap_growkernel: no memory to grow kernel");
 1552 
 1553                 nkpt++;
 1554 
 1555                 pmap_zero_page(nkpg);
 1556                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
 1557                 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
 1558                 *pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
 1559 
 1560                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1561         }
 1562         splx(s);
 1563 }
 1564 
 1565 
 1566 /***************************************************
 1567  * page management routines.
 1568  ***************************************************/
 1569 
 1570 /*
 1571  * free the pv_entry back to the free list
 1572  */
 1573 static PMAP_INLINE void
 1574 free_pv_entry(pv_entry_t pv)
 1575 {
 1576         pv_entry_count--;
 1577         uma_zfree(pvzone, pv);
 1578 }
 1579 
 1580 /*
 1581  * get a new pv_entry, allocating a block from the system
 1582  * when needed.
 1583  * the memory allocation is performed bypassing the malloc code
 1584  * because of the possibility of allocations at interrupt time.
 1585  */
 1586 static pv_entry_t
 1587 get_pv_entry(void)
 1588 {
 1589         pv_entry_count++;
 1590         if (pv_entry_high_water &&
 1591                 (pv_entry_count > pv_entry_high_water) &&
 1592                 (pmap_pagedaemon_waken == 0)) {
 1593                 pmap_pagedaemon_waken = 1;
 1594                 wakeup (&vm_pages_needed);
 1595         }
 1596         return uma_zalloc(pvzone, M_NOWAIT);
 1597 }
 1598 
 1599 /*
 1600  * If it is the first entry on the list, it is actually
 1601  * in the header and we must copy the following entry up
 1602  * to the header.  Otherwise we must search the list for
 1603  * the entry.  In either case we free the now unused entry.
 1604  */
 1605 
 1606 static int
 1607 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
 1608 {
 1609         pv_entry_t pv;
 1610         int rtval;
 1611         int s;
 1612 
 1613         s = splvm();
 1614         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1615         if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
 1616                 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 1617                         if (pmap == pv->pv_pmap && va == pv->pv_va) 
 1618                                 break;
 1619                 }
 1620         } else {
 1621                 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
 1622                         if (va == pv->pv_va) 
 1623                                 break;
 1624                 }
 1625         }
 1626 
 1627         rtval = 0;
 1628         if (pv) {
 1629                 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
 1630                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1631                 m->md.pv_list_count--;
 1632                 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
 1633                         vm_page_flag_clear(m, PG_WRITEABLE);
 1634 
 1635                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1636                 free_pv_entry(pv);
 1637         }
 1638                         
 1639         splx(s);
 1640         return rtval;
 1641 }
 1642 
 1643 /*
 1644  * Create a pv entry for page at pa for
 1645  * (pmap, va).
 1646  */
 1647 static void
 1648 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
 1649 {
 1650 
 1651         int s;
 1652         pv_entry_t pv;
 1653 
 1654         s = splvm();
 1655         pv = get_pv_entry();
 1656         pv->pv_va = va;
 1657         pv->pv_pmap = pmap;
 1658         pv->pv_ptem = mpte;
 1659 
 1660         TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1661         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1662         m->md.pv_list_count++;
 1663 
 1664         splx(s);
 1665 }
 1666 
 1667 /*
 1668  * pmap_remove_pte: do the things to unmap a page in a process
 1669  */
 1670 static int
 1671 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
 1672 {
 1673         pt_entry_t oldpte;
 1674         vm_page_t m;
 1675 
 1676         oldpte = pte_load_clear(ptq);
 1677         if (oldpte & PG_W)
 1678                 pmap->pm_stats.wired_count -= 1;
 1679         /*
 1680          * Machines that don't support invlpg, also don't support
 1681          * PG_G.
 1682          */
 1683         if (oldpte & PG_G)
 1684                 pmap_invalidate_page(kernel_pmap, va);
 1685         pmap->pm_stats.resident_count -= 1;
 1686         if (oldpte & PG_MANAGED) {
 1687                 m = PHYS_TO_VM_PAGE(oldpte);
 1688                 if (oldpte & PG_M) {
 1689 #if defined(PMAP_DIAGNOSTIC)
 1690                         if (pmap_nw_modified((pt_entry_t) oldpte)) {
 1691                                 printf(
 1692         "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
 1693                                     va, oldpte);
 1694                         }
 1695 #endif
 1696                         if (pmap_track_modified(va))
 1697                                 vm_page_dirty(m);
 1698                 }
 1699                 if (oldpte & PG_A)
 1700                         vm_page_flag_set(m, PG_REFERENCED);
 1701                 return pmap_remove_entry(pmap, m, va);
 1702         } else {
 1703                 return pmap_unuse_pt(pmap, va, NULL);
 1704         }
 1705 
 1706         return 0;
 1707 }
 1708 
 1709 /*
 1710  * Remove a single page from a process address space
 1711  */
 1712 static void
 1713 pmap_remove_page(pmap_t pmap, vm_offset_t va)
 1714 {
 1715         pt_entry_t *pte;
 1716 
 1717         pte = pmap_pte(pmap, va);
 1718         if (pte == NULL || (*pte & PG_V) == 0)
 1719                 return;
 1720         pmap_remove_pte(pmap, pte, va);
 1721         pmap_invalidate_page(pmap, va);
 1722 }
 1723 
 1724 /*
 1725  *      Remove the given range of addresses from the specified map.
 1726  *
 1727  *      It is assumed that the start and end are properly
 1728  *      rounded to the page size.
 1729  */
 1730 void
 1731 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1732 {
 1733         vm_offset_t pdnxt;
 1734         pd_entry_t ptpaddr, *pde;
 1735         pt_entry_t *pte;
 1736         int anyvalid;
 1737 
 1738         if (pmap == NULL)
 1739                 return;
 1740 
 1741         if (pmap->pm_stats.resident_count == 0)
 1742                 return;
 1743 
 1744         /*
 1745          * special handling of removing one page.  a very
 1746          * common operation and easy to short circuit some
 1747          * code.
 1748          */
 1749         if (sva + PAGE_SIZE == eva) {
 1750                 pde = pmap_pde(pmap, sva);
 1751                 if (pde && (*pde & PG_PS) == 0) {
 1752                         pmap_remove_page(pmap, sva);
 1753                         return;
 1754                 }
 1755         }
 1756 
 1757         anyvalid = 0;
 1758 
 1759         for (; sva < eva; sva = pdnxt) {
 1760 
 1761                 if (pmap->pm_stats.resident_count == 0)
 1762                         break;
 1763 
 1764                 /*
 1765                  * Calculate index for next page table.
 1766                  */
 1767                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 1768 
 1769                 pde = pmap_pde(pmap, sva);
 1770                 if (pde == 0)
 1771                         continue;
 1772                 ptpaddr = *pde;
 1773 
 1774                 /*
 1775                  * Weed out invalid mappings. Note: we assume that the page
 1776                  * directory table is always allocated, and in kernel virtual.
 1777                  */
 1778                 if (ptpaddr == 0)
 1779                         continue;
 1780 
 1781                 /*
 1782                  * Check for large page.
 1783                  */
 1784                 if ((ptpaddr & PG_PS) != 0) {
 1785                         *pde = 0;
 1786                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1787                         anyvalid = 1;
 1788                         continue;
 1789                 }
 1790 
 1791                 /*
 1792                  * Limit our scan to either the end of the va represented
 1793                  * by the current page table page, or to the end of the
 1794                  * range being removed.
 1795                  */
 1796                 if (pdnxt > eva)
 1797                         pdnxt = eva;
 1798 
 1799                 for (; sva != pdnxt; sva += PAGE_SIZE) {
 1800                         pte = pmap_pte(pmap, sva);
 1801                         if (pte == NULL || *pte == 0)
 1802                                 continue;
 1803                         anyvalid = 1;
 1804                         if (pmap_remove_pte(pmap, pte, sva))
 1805                                 break;
 1806                 }
 1807         }
 1808 
 1809         if (anyvalid)
 1810                 pmap_invalidate_all(pmap);
 1811 }
 1812 
 1813 /*
 1814  *      Routine:        pmap_remove_all
 1815  *      Function:
 1816  *              Removes this physical page from
 1817  *              all physical maps in which it resides.
 1818  *              Reflects back modify bits to the pager.
 1819  *
 1820  *      Notes:
 1821  *              Original versions of this routine were very
 1822  *              inefficient because they iteratively called
 1823  *              pmap_remove (slow...)
 1824  */
 1825 
 1826 void
 1827 pmap_remove_all(vm_page_t m)
 1828 {
 1829         register pv_entry_t pv;
 1830         pt_entry_t *pte, tpte;
 1831         int s;
 1832 
 1833 #if defined(PMAP_DIAGNOSTIC)
 1834         /*
 1835          * XXX This makes pmap_remove_all() illegal for non-managed pages!
 1836          */
 1837         if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
 1838                 panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
 1839                     VM_PAGE_TO_PHYS(m));
 1840         }
 1841 #endif
 1842         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1843         s = splvm();
 1844         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1845                 pv->pv_pmap->pm_stats.resident_count--;
 1846                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 1847                 tpte = pte_load_clear(pte);
 1848                 if (tpte & PG_W)
 1849                         pv->pv_pmap->pm_stats.wired_count--;
 1850                 if (tpte & PG_A)
 1851                         vm_page_flag_set(m, PG_REFERENCED);
 1852 
 1853                 /*
 1854                  * Update the vm_page_t clean and reference bits.
 1855                  */
 1856                 if (tpte & PG_M) {
 1857 #if defined(PMAP_DIAGNOSTIC)
 1858                         if (pmap_nw_modified((pt_entry_t) tpte)) {
 1859                                 printf(
 1860         "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
 1861                                     pv->pv_va, tpte);
 1862                         }
 1863 #endif
 1864                         if (pmap_track_modified(pv->pv_va))
 1865                                 vm_page_dirty(m);
 1866                 }
 1867                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 1868                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 1869                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1870                 m->md.pv_list_count--;
 1871                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 1872                 free_pv_entry(pv);
 1873         }
 1874         vm_page_flag_clear(m, PG_WRITEABLE);
 1875         splx(s);
 1876 }
 1877 
 1878 /*
 1879  *      Set the physical protection on the
 1880  *      specified range of this map as requested.
 1881  */
 1882 void
 1883 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1884 {
 1885         vm_offset_t pdnxt;
 1886         pd_entry_t ptpaddr, *pde;
 1887         int anychanged;
 1888 
 1889         if (pmap == NULL)
 1890                 return;
 1891 
 1892         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1893                 pmap_remove(pmap, sva, eva);
 1894                 return;
 1895         }
 1896 
 1897         if (prot & VM_PROT_WRITE)
 1898                 return;
 1899 
 1900         anychanged = 0;
 1901 
 1902         for (; sva < eva; sva = pdnxt) {
 1903 
 1904                 pdnxt = (sva + NBPDR) & ~PDRMASK;
 1905 
 1906                 pde = pmap_pde(pmap, sva);
 1907                 if (pde == NULL)
 1908                         continue;
 1909                 ptpaddr = *pde;
 1910 
 1911                 /*
 1912                  * Weed out invalid mappings. Note: we assume that the page
 1913                  * directory table is always allocated, and in kernel virtual.
 1914                  */
 1915                 if (ptpaddr == 0)
 1916                         continue;
 1917 
 1918                 /*
 1919                  * Check for large page.
 1920                  */
 1921                 if ((ptpaddr & PG_PS) != 0) {
 1922                         *pde &= ~(PG_M|PG_RW);
 1923                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1924                         anychanged = 1;
 1925                         continue;
 1926                 }
 1927 
 1928                 if (pdnxt > eva)
 1929                         pdnxt = eva;
 1930 
 1931                 for (; sva != pdnxt; sva += PAGE_SIZE) {
 1932                         pt_entry_t pbits;
 1933                         pt_entry_t *pte;
 1934                         vm_page_t m;
 1935 
 1936                         pte = pmap_pte(pmap, sva);
 1937                         if (pte == NULL)
 1938                                 continue;
 1939                         pbits = *pte;
 1940                         if (pbits & PG_MANAGED) {
 1941                                 m = NULL;
 1942                                 if (pbits & PG_A) {
 1943                                         m = PHYS_TO_VM_PAGE(pbits);
 1944                                         vm_page_flag_set(m, PG_REFERENCED);
 1945                                         pbits &= ~PG_A;
 1946                                 }
 1947                                 if ((pbits & PG_M) != 0 &&
 1948                                     pmap_track_modified(sva)) {
 1949                                         if (m == NULL)
 1950                                                 m = PHYS_TO_VM_PAGE(pbits);
 1951                                         vm_page_dirty(m);
 1952                                         pbits &= ~PG_M;
 1953                                 }
 1954                         }
 1955 
 1956                         pbits &= ~PG_RW;
 1957 
 1958                         if (pbits != *pte) {
 1959                                 pte_store(pte, pbits);
 1960                                 anychanged = 1;
 1961                         }
 1962                 }
 1963         }
 1964         if (anychanged)
 1965                 pmap_invalidate_all(pmap);
 1966 }
 1967 
 1968 /*
 1969  *      Insert the given physical page (p) at
 1970  *      the specified virtual address (v) in the
 1971  *      target physical map with the protection requested.
 1972  *
 1973  *      If specified, the page will be wired down, meaning
 1974  *      that the related pte can not be reclaimed.
 1975  *
 1976  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 1977  *      or lose information.  That is, this routine must actually
 1978  *      insert this page into the given map NOW.
 1979  */
 1980 void
 1981 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 1982            boolean_t wired)
 1983 {
 1984         vm_paddr_t pa;
 1985         register pt_entry_t *pte;
 1986         vm_paddr_t opa;
 1987         pt_entry_t origpte, newpte;
 1988         vm_page_t mpte;
 1989 
 1990         if (pmap == NULL)
 1991                 return;
 1992 
 1993         va &= PG_FRAME;
 1994 #ifdef PMAP_DIAGNOSTIC
 1995         if (va > VM_MAX_KERNEL_ADDRESS)
 1996                 panic("pmap_enter: toobig");
 1997         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
 1998                 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
 1999 #endif
 2000 
 2001         mpte = NULL;
 2002         /*
 2003          * In the case that a page table page is not
 2004          * resident, we are creating it here.
 2005          */
 2006         if (va < VM_MAXUSER_ADDRESS) {
 2007                 mpte = pmap_allocpte(pmap, va);
 2008         }
 2009 #if 0 && defined(PMAP_DIAGNOSTIC)
 2010         else {
 2011                 pd_entry_t *pdeaddr = pmap_pde(pmap, va);
 2012                 origpte = *pdeaddr;
 2013                 if ((origpte & PG_V) == 0) { 
 2014                         panic("pmap_enter: invalid kernel page table page, pde=%p, va=%p\n",
 2015                                 origpte, va);
 2016                 }
 2017         }
 2018 #endif
 2019 
 2020         pte = pmap_pte(pmap, va);
 2021 
 2022         /*
 2023          * Page Directory table entry not valid, we need a new PT page
 2024          */
 2025         if (pte == NULL)
 2026                 panic("pmap_enter: invalid page directory va=%#lx\n", va);
 2027 
 2028         pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
 2029         origpte = *pte;
 2030         opa = origpte & PG_FRAME;
 2031 
 2032         if (origpte & PG_PS)
 2033                 panic("pmap_enter: attempted pmap_enter on 2MB page");
 2034 
 2035         /*
 2036          * Mapping has not changed, must be protection or wiring change.
 2037          */
 2038         if (origpte && (opa == pa)) {
 2039                 /*
 2040                  * Wiring change, just update stats. We don't worry about
 2041                  * wiring PT pages as they remain resident as long as there
 2042                  * are valid mappings in them. Hence, if a user page is wired,
 2043                  * the PT page will be also.
 2044                  */
 2045                 if (wired && ((origpte & PG_W) == 0))
 2046                         pmap->pm_stats.wired_count++;
 2047                 else if (!wired && (origpte & PG_W))
 2048                         pmap->pm_stats.wired_count--;
 2049 
 2050 #if defined(PMAP_DIAGNOSTIC)
 2051                 if (pmap_nw_modified((pt_entry_t) origpte)) {
 2052                         printf(
 2053         "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
 2054                             va, origpte);
 2055                 }
 2056 #endif
 2057 
 2058                 /*
 2059                  * Remove extra pte reference
 2060                  */
 2061                 if (mpte)
 2062                         mpte->hold_count--;
 2063 
 2064                 if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
 2065                         if ((origpte & PG_RW) == 0) {
 2066                                 pte_store(pte, origpte | PG_RW);
 2067                                 pmap_invalidate_page(pmap, va);
 2068                         }
 2069                         return;
 2070                 }
 2071 
 2072                 /*
 2073                  * We might be turning off write access to the page,
 2074                  * so we go ahead and sense modify status.
 2075                  */
 2076                 if (origpte & PG_MANAGED) {
 2077                         if ((origpte & PG_M) && pmap_track_modified(va)) {
 2078                                 vm_page_t om;
 2079                                 om = PHYS_TO_VM_PAGE(opa);
 2080                                 vm_page_dirty(om);
 2081                         }
 2082                         pa |= PG_MANAGED;
 2083                 }
 2084                 goto validate;
 2085         } 
 2086         /*
 2087          * Mapping has changed, invalidate old range and fall through to
 2088          * handle validating new mapping.
 2089          */
 2090         if (opa) {
 2091                 int err;
 2092                 vm_page_lock_queues();
 2093                 err = pmap_remove_pte(pmap, pte, va);
 2094                 vm_page_unlock_queues();
 2095                 if (err)
 2096                         panic("pmap_enter: pte vanished, va: 0x%lx", va);
 2097         }
 2098 
 2099         /*
 2100          * Enter on the PV list if part of our managed memory. Note that we
 2101          * raise IPL while manipulating pv_table since pmap_enter can be
 2102          * called at interrupt time.
 2103          */
 2104         if (pmap_initialized && 
 2105             (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
 2106                 pmap_insert_entry(pmap, va, mpte, m);
 2107                 pa |= PG_MANAGED;
 2108         }
 2109 
 2110         /*
 2111          * Increment counters
 2112          */
 2113         pmap->pm_stats.resident_count++;
 2114         if (wired)
 2115                 pmap->pm_stats.wired_count++;
 2116 
 2117 validate:
 2118         /*
 2119          * Now validate mapping with desired protection/wiring.
 2120          */
 2121         newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
 2122 
 2123         if (wired)
 2124                 newpte |= PG_W;
 2125         if (va < VM_MAXUSER_ADDRESS)
 2126                 newpte |= PG_U;
 2127         if (pmap == kernel_pmap)
 2128                 newpte |= PG_G;
 2129 
 2130         /*
 2131          * if the mapping or permission bits are different, we need
 2132          * to update the pte.
 2133          */
 2134         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 2135                 pte_store(pte, newpte | PG_A);
 2136                 /*if (origpte)*/ {
 2137                         pmap_invalidate_page(pmap, va);
 2138                 }
 2139         }
 2140 }
 2141 
 2142 /*
 2143  * this code makes some *MAJOR* assumptions:
 2144  * 1. Current pmap & pmap exists.
 2145  * 2. Not wired.
 2146  * 3. Read access.
 2147  * 4. No page table pages.
 2148  * 5. Tlbflush is deferred to calling procedure.
 2149  * 6. Page IS managed.
 2150  * but is *MUCH* faster than pmap_enter...
 2151  */
 2152 
 2153 static vm_page_t
 2154 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
 2155 {
 2156         pt_entry_t *pte;
 2157         vm_paddr_t pa;
 2158 
 2159         /*
 2160          * In the case that a page table page is not
 2161          * resident, we are creating it here.
 2162          */
 2163         if (va < VM_MAXUSER_ADDRESS) {
 2164                 vm_pindex_t ptepindex;
 2165                 pd_entry_t *ptepa;
 2166 
 2167                 /*
 2168                  * Calculate pagetable page index
 2169                  */
 2170                 ptepindex = pmap_pde_pindex(va);
 2171                 if (mpte && (mpte->pindex == ptepindex)) {
 2172                         mpte->hold_count++;
 2173                 } else {
 2174 retry:
 2175                         /*
 2176                          * Get the page directory entry
 2177                          */
 2178                         ptepa = pmap_pde(pmap, va);
 2179 
 2180                         /*
 2181                          * If the page table page is mapped, we just increment
 2182                          * the hold count, and activate it.
 2183                          */
 2184                         if (ptepa && (*ptepa & PG_V) != 0) {
 2185                                 if (*ptepa & PG_PS)
 2186                                         panic("pmap_enter_quick: unexpected mapping into 2MB page");
 2187                                 if (pmap->pm_pteobj->root &&
 2188                                         (pmap->pm_pteobj->root->pindex == ptepindex)) {
 2189                                         mpte = pmap->pm_pteobj->root;
 2190                                 } else {
 2191                                         mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
 2192                                 }
 2193                                 if (mpte == NULL)
 2194                                         goto retry;
 2195                                 mpte->hold_count++;
 2196                         } else {
 2197                                 mpte = _pmap_allocpte(pmap, ptepindex);
 2198                         }
 2199                 }
 2200         } else {
 2201                 mpte = NULL;
 2202         }
 2203 
 2204         /*
 2205          * This call to vtopte makes the assumption that we are
 2206          * entering the page into the current pmap.  In order to support
 2207          * quick entry into any pmap, one would likely use pmap_pte.
 2208          * But that isn't as quick as vtopte.
 2209          */
 2210         pte = vtopte(va);
 2211         if (*pte) {
 2212                 if (mpte != NULL) {
 2213                         vm_page_lock_queues();
 2214                         pmap_unwire_pte_hold(pmap, va, mpte);
 2215                         vm_page_unlock_queues();
 2216                 }
 2217                 return 0;
 2218         }
 2219 
 2220         /*
 2221          * Enter on the PV list if part of our managed memory. Note that we
 2222          * raise IPL while manipulating pv_table since pmap_enter can be
 2223          * called at interrupt time.
 2224          */
 2225         if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
 2226                 pmap_insert_entry(pmap, va, mpte, m);
 2227 
 2228         /*
 2229          * Increment counters
 2230          */
 2231         pmap->pm_stats.resident_count++;
 2232 
 2233         pa = VM_PAGE_TO_PHYS(m);
 2234 
 2235         /*
 2236          * Now validate mapping with RO protection
 2237          */
 2238         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 2239                 pte_store(pte, pa | PG_V | PG_U);
 2240         else
 2241                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 2242 
 2243         return mpte;
 2244 }
 2245 
 2246 /*
 2247  * Make a temporary mapping for a physical address.  This is only intended
 2248  * to be used for panic dumps.
 2249  */
 2250 void *
 2251 pmap_kenter_temporary(vm_offset_t pa, int i)
 2252 {
 2253         vm_offset_t va;
 2254 
 2255         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 2256         pmap_kenter(va, pa);
 2257         invlpg(va);
 2258         return ((void *)crashdumpmap);
 2259 }
 2260 
 2261 #define MAX_INIT_PT (96)
 2262 /*
 2263  * pmap_object_init_pt preloads the ptes for a given object
 2264  * into the specified pmap.  This eliminates the blast of soft
 2265  * faults on process startup and immediately after an mmap.
 2266  */
 2267 void
 2268 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2269                     vm_object_t object, vm_pindex_t pindex,
 2270                     vm_size_t size, int limit)
 2271 {
 2272         vm_pindex_t tmpidx;
 2273         int psize;
 2274         vm_page_t p, mpte;
 2275 
 2276         if (pmap == NULL || object == NULL)
 2277                 return;
 2278 
 2279         /*
 2280          * This code maps large physical mmap regions into the
 2281          * processor address space.  Note that some shortcuts
 2282          * are taken, but the code works.
 2283          */
 2284         if ((object->type == OBJT_DEVICE) &&
 2285             ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
 2286                 int i;
 2287                 vm_page_t m[1];
 2288                 int npdes;
 2289                 pd_entry_t ptepa, *pde;
 2290 
 2291                 pde = pmap_pde(pmap, addr);
 2292                 if (pde != 0 && (*pde & PG_V) != 0)
 2293                         return;
 2294 retry:
 2295                 p = vm_page_lookup(object, pindex);
 2296                 if (p != NULL) {
 2297                         vm_page_lock_queues();
 2298                         if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
 2299                                 goto retry;
 2300                 } else {
 2301                         p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 2302                         if (p == NULL)
 2303                                 return;
 2304                         m[0] = p;
 2305 
 2306                         if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
 2307                                 vm_page_lock_queues();
 2308                                 vm_page_free(p);
 2309                                 vm_page_unlock_queues();
 2310                                 return;
 2311                         }
 2312 
 2313                         p = vm_page_lookup(object, pindex);
 2314                         vm_page_lock_queues();
 2315                         vm_page_wakeup(p);
 2316                 }
 2317                 vm_page_unlock_queues();
 2318 
 2319                 ptepa = VM_PAGE_TO_PHYS(p);
 2320                 if (ptepa & (NBPDR - 1)) {
 2321                         return;
 2322                 }
 2323 
 2324                 p->valid = VM_PAGE_BITS_ALL;
 2325 
 2326                 pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
 2327                 npdes = size >> PDRSHIFT;
 2328                 for(i = 0; i < npdes; i++) {
 2329                         pde_store(pde, ptepa | PG_U | PG_RW | PG_V | PG_PS);
 2330                         ptepa += NBPDR;
 2331                         pde++;
 2332                 }
 2333                 pmap_invalidate_all(kernel_pmap);
 2334                 return;
 2335         }
 2336 
 2337         psize = amd64_btop(size);
 2338 
 2339         if ((object->type != OBJT_VNODE) ||
 2340             ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
 2341              (object->resident_page_count > MAX_INIT_PT))) {
 2342                 return;
 2343         }
 2344 
 2345         if (psize + pindex > object->size) {
 2346                 if (object->size < pindex)
 2347                         return;
 2348                 psize = object->size - pindex;
 2349         }
 2350 
 2351         mpte = NULL;
 2352 
 2353         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
 2354                 if (p->pindex < pindex) {
 2355                         p = vm_page_splay(pindex, object->root);
 2356                         if ((object->root = p)->pindex < pindex)
 2357                                 p = TAILQ_NEXT(p, listq);
 2358                 }
 2359         }
 2360         /*
 2361          * Assert: the variable p is either (1) the page with the
 2362          * least pindex greater than or equal to the parameter pindex
 2363          * or (2) NULL.
 2364          */
 2365         for (;
 2366              p != NULL && (tmpidx = p->pindex - pindex) < psize;
 2367              p = TAILQ_NEXT(p, listq)) {
 2368                 /*
 2369                  * don't allow an madvise to blow away our really
 2370                  * free pages allocating pv entries.
 2371                  */
 2372                 if ((limit & MAP_PREFAULT_MADVISE) &&
 2373                     cnt.v_free_count < cnt.v_free_reserved) {
 2374                         break;
 2375                 }
 2376                 vm_page_lock_queues();
 2377                 if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
 2378                     (p->busy == 0) &&
 2379                     (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
 2380                         if ((p->queue - p->pc) == PQ_CACHE)
 2381                                 vm_page_deactivate(p);
 2382                         vm_page_busy(p);
 2383                         vm_page_unlock_queues();
 2384                         mpte = pmap_enter_quick(pmap, 
 2385                                 addr + amd64_ptob(tmpidx), p, mpte);
 2386                         vm_page_lock_queues();
 2387                         vm_page_wakeup(p);
 2388                 }
 2389                 vm_page_unlock_queues();
 2390         }
 2391 }
 2392 
 2393 /*
 2394  * pmap_prefault provides a quick way of clustering
 2395  * pagefaults into a processes address space.  It is a "cousin"
 2396  * of pmap_object_init_pt, except it runs at page fault time instead
 2397  * of mmap time.
 2398  */
 2399 #define PFBAK 4
 2400 #define PFFOR 4
 2401 #define PAGEORDER_SIZE (PFBAK+PFFOR)
 2402 
 2403 static int pmap_prefault_pageorder[] = {
 2404         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
 2405         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
 2406         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
 2407         -4 * PAGE_SIZE, 4 * PAGE_SIZE
 2408 };
 2409 
 2410 void
 2411 pmap_prefault(pmap, addra, entry)
 2412         pmap_t pmap;
 2413         vm_offset_t addra;
 2414         vm_map_entry_t entry;
 2415 {
 2416         int i;
 2417         vm_offset_t starta;
 2418         vm_offset_t addr;
 2419         vm_pindex_t pindex;
 2420         vm_page_t m, mpte;
 2421         vm_object_t object;
 2422         pd_entry_t *pde;
 2423 
 2424         if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
 2425                 return;
 2426 
 2427         object = entry->object.vm_object;
 2428 
 2429         starta = addra - PFBAK * PAGE_SIZE;
 2430         if (starta < entry->start) {
 2431                 starta = entry->start;
 2432         } else if (starta > addra) {
 2433                 starta = 0;
 2434         }
 2435 
 2436         mpte = NULL;
 2437         for (i = 0; i < PAGEORDER_SIZE; i++) {
 2438                 vm_object_t lobject;
 2439                 pt_entry_t *pte;
 2440 
 2441                 addr = addra + pmap_prefault_pageorder[i];
 2442                 if (addr > addra + (PFFOR * PAGE_SIZE))
 2443                         addr = 0;
 2444 
 2445                 if (addr < starta || addr >= entry->end)
 2446                         continue;
 2447 
 2448                 pde = pmap_pde(pmap, addr);
 2449                 if (pde == NULL || (*pde & PG_V) == 0) 
 2450                         continue;
 2451 
 2452                 pte = vtopte(addr);
 2453                 if ((*pte & PG_V) == 0)
 2454                         continue;
 2455 
 2456                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 2457                 lobject = object;
 2458                 for (m = vm_page_lookup(lobject, pindex);
 2459                     (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
 2460                     lobject = lobject->backing_object) {
 2461                         if (lobject->backing_object_offset & PAGE_MASK)
 2462                                 break;
 2463                         pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
 2464                         m = vm_page_lookup(lobject->backing_object, pindex);
 2465                 }
 2466 
 2467                 /*
 2468                  * give-up when a page is not in memory
 2469                  */
 2470                 if (m == NULL)
 2471                         break;
 2472                 vm_page_lock_queues();
 2473                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
 2474                         (m->busy == 0) &&
 2475                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
 2476 
 2477                         if ((m->queue - m->pc) == PQ_CACHE) {
 2478                                 vm_page_deactivate(m);
 2479                         }
 2480                         vm_page_busy(m);
 2481                         vm_page_unlock_queues();
 2482                         mpte = pmap_enter_quick(pmap, addr, m, mpte);
 2483                         vm_page_lock_queues();
 2484                         vm_page_wakeup(m);
 2485                 }
 2486                 vm_page_unlock_queues();
 2487         }
 2488 }
 2489 
 2490 /*
 2491  *      Routine:        pmap_change_wiring
 2492  *      Function:       Change the wiring attribute for a map/virtual-address
 2493  *                      pair.
 2494  *      In/out conditions:
 2495  *                      The mapping must already exist in the pmap.
 2496  */
 2497 void
 2498 pmap_change_wiring(pmap, va, wired)
 2499         register pmap_t pmap;
 2500         vm_offset_t va;
 2501         boolean_t wired;
 2502 {
 2503         register pt_entry_t *pte;
 2504 
 2505         if (pmap == NULL)
 2506                 return;
 2507 
 2508         /*
 2509          * Wiring is not a hardware characteristic so there is no need to
 2510          * invalidate TLB.
 2511          */
 2512         pte = pmap_pte(pmap, va);
 2513         if (wired && (*pte & PG_W) == 0) {
 2514                 pmap->pm_stats.wired_count++;
 2515                 *pte |= PG_W;
 2516         } else if (!wired && (*pte & PG_W) != 0) {
 2517                 pmap->pm_stats.wired_count--;
 2518                 *pte &= ~PG_W;
 2519         }
 2520 }
 2521 
 2522 
 2523 
 2524 /*
 2525  *      Copy the range specified by src_addr/len
 2526  *      from the source map to the range dst_addr/len
 2527  *      in the destination map.
 2528  *
 2529  *      This routine is only advisory and need not do anything.
 2530  */
 2531 
 2532 void
 2533 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 2534           vm_offset_t src_addr)
 2535 {
 2536         vm_offset_t addr;
 2537         vm_offset_t end_addr = src_addr + len;
 2538         vm_offset_t pdnxt;
 2539         vm_page_t m;
 2540 
 2541         if (dst_addr != src_addr)
 2542                 return;
 2543 
 2544         if (!pmap_is_current(src_pmap))
 2545                 return;
 2546 
 2547         for (addr = src_addr; addr < end_addr; addr = pdnxt) {
 2548                 pt_entry_t *src_pte, *dst_pte;
 2549                 vm_page_t dstmpte, srcmpte;
 2550                 pd_entry_t srcptepaddr, *pde;
 2551                 vm_pindex_t ptepindex;
 2552 
 2553                 if (addr >= UPT_MIN_ADDRESS)
 2554                         panic("pmap_copy: invalid to pmap_copy page tables\n");
 2555 
 2556                 /*
 2557                  * Don't let optional prefaulting of pages make us go
 2558                  * way below the low water mark of free pages or way
 2559                  * above high water mark of used pv entries.
 2560                  */
 2561                 if (cnt.v_free_count < cnt.v_free_reserved ||
 2562                     pv_entry_count > pv_entry_high_water)
 2563                         break;
 2564                 
 2565                 pdnxt = (addr + NBPDR) & ~PDRMASK;
 2566                 ptepindex = pmap_pde_pindex(addr);
 2567 
 2568                 pde = pmap_pde(src_pmap, addr);
 2569                 if (pde)
 2570                         srcptepaddr = *pde;
 2571                 else
 2572                         continue;
 2573                 if (srcptepaddr == 0)
 2574                         continue;
 2575                         
 2576                 if (srcptepaddr & PG_PS) {
 2577                         pde = pmap_pde(dst_pmap, addr);
 2578                         if (pde == 0) {
 2579                                 /*
 2580                                  * XXX should do an allocpte here to
 2581                                  * instantiate the pde
 2582                                  */
 2583                                 continue;
 2584                         }
 2585                         if (*pde == 0) {
 2586                                 *pde = srcptepaddr;
 2587                                 dst_pmap->pm_stats.resident_count +=
 2588                                     NBPDR / PAGE_SIZE;
 2589                         }
 2590                         continue;
 2591                 }
 2592 
 2593                 srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
 2594                 if ((srcmpte == NULL) ||
 2595                     (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
 2596                         continue;
 2597 
 2598                 if (pdnxt > end_addr)
 2599                         pdnxt = end_addr;
 2600 
 2601                 src_pte = vtopte(addr);
 2602                 while (addr < pdnxt) {
 2603                         pt_entry_t ptetemp;
 2604                         ptetemp = *src_pte;
 2605                         /*
 2606                          * we only virtual copy managed pages
 2607                          */
 2608                         if ((ptetemp & PG_MANAGED) != 0) {
 2609                                 /*
 2610                                  * We have to check after allocpte for the
 2611                                  * pte still being around...  allocpte can
 2612                                  * block.
 2613                                  */
 2614                                 dstmpte = pmap_allocpte(dst_pmap, addr);
 2615                                 dst_pte = pmap_pte(dst_pmap, addr);
 2616                                 if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
 2617                                         /*
 2618                                          * Clear the modified and
 2619                                          * accessed (referenced) bits
 2620                                          * during the copy.
 2621                                          */
 2622                                         m = PHYS_TO_VM_PAGE(ptetemp);
 2623                                         *dst_pte = ptetemp & ~(PG_M | PG_A);
 2624                                         dst_pmap->pm_stats.resident_count++;
 2625                                         pmap_insert_entry(dst_pmap, addr,
 2626                                                 dstmpte, m);
 2627                                 } else {
 2628                                         vm_page_lock_queues();
 2629                                         pmap_unwire_pte_hold(dst_pmap, addr, dstmpte);
 2630                                         vm_page_unlock_queues();
 2631                                 }
 2632                                 if (dstmpte->hold_count >= srcmpte->hold_count)
 2633                                         break;
 2634                         }
 2635                         addr += PAGE_SIZE;
 2636                         src_pte++;
 2637                 }
 2638         }
 2639 }       
 2640 
 2641 /*
 2642  *      pmap_zero_page zeros the specified hardware page by mapping 
 2643  *      the page into KVM and using bzero to clear its contents.
 2644  */
 2645 void
 2646 pmap_zero_page(vm_page_t m)
 2647 {
 2648         vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 2649 
 2650         pagezero((void *)va);
 2651 }
 2652 
 2653 /*
 2654  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 2655  *      the page into KVM and using bzero to clear its contents.
 2656  *
 2657  *      off and size may not cover an area beyond a single hardware page.
 2658  */
 2659 void
 2660 pmap_zero_page_area(vm_page_t m, int off, int size)
 2661 {
 2662         vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 2663 
 2664         if (off == 0 && size == PAGE_SIZE)
 2665                 pagezero((void *)va);
 2666         else
 2667                 bzero((char *)va + off, size);
 2668 }
 2669 
 2670 /*
 2671  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 2672  *      the page into KVM and using bzero to clear its contents.  This
 2673  *      is intended to be called from the vm_pagezero process only and
 2674  *      outside of Giant.
 2675  */
 2676 void
 2677 pmap_zero_page_idle(vm_page_t m)
 2678 {
 2679         vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 2680 
 2681         pagezero((void *)va);
 2682 }
 2683 
 2684 /*
 2685  *      pmap_copy_page copies the specified (machine independent)
 2686  *      page by mapping the page into virtual memory and using
 2687  *      bcopy to copy the page, one machine dependent page at a
 2688  *      time.
 2689  */
 2690 void
 2691 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
 2692 {
 2693         vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
 2694         vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
 2695 
 2696         bcopy((void *)src, (void *)dst, PAGE_SIZE);
 2697 }
 2698 
 2699 /*
 2700  * Returns true if the pmap's pv is one of the first
 2701  * 16 pvs linked to from this page.  This count may
 2702  * be changed upwards or downwards in the future; it
 2703  * is only necessary that true be returned for a small
 2704  * subset of pmaps for proper page aging.
 2705  */
 2706 boolean_t
 2707 pmap_page_exists_quick(pmap, m)
 2708         pmap_t pmap;
 2709         vm_page_t m;
 2710 {
 2711         pv_entry_t pv;
 2712         int loops = 0;
 2713         int s;
 2714 
 2715         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
 2716                 return FALSE;
 2717 
 2718         s = splvm();
 2719         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2720         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2721                 if (pv->pv_pmap == pmap) {
 2722                         splx(s);
 2723                         return TRUE;
 2724                 }
 2725                 loops++;
 2726                 if (loops >= 16)
 2727                         break;
 2728         }
 2729         splx(s);
 2730         return (FALSE);
 2731 }
 2732 
 2733 #define PMAP_REMOVE_PAGES_CURPROC_ONLY
 2734 /*
 2735  * Remove all pages from specified address space
 2736  * this aids process exit speeds.  Also, this code
 2737  * is special cased for current process only, but
 2738  * can have the more generic (and slightly slower)
 2739  * mode enabled.  This is much faster than pmap_remove
 2740  * in the case of running down an entire address space.
 2741  */
 2742 void
 2743 pmap_remove_pages(pmap, sva, eva)
 2744         pmap_t pmap;
 2745         vm_offset_t sva, eva;
 2746 {
 2747         pt_entry_t *pte, tpte;
 2748         vm_page_t m;
 2749         pv_entry_t pv, npv;
 2750         int s;
 2751 
 2752 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2753         if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
 2754                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2755                 return;
 2756         }
 2757 #endif
 2758         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2759         s = splvm();
 2760         for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
 2761 
 2762                 if (pv->pv_va >= eva || pv->pv_va < sva) {
 2763                         npv = TAILQ_NEXT(pv, pv_plist);
 2764                         continue;
 2765                 }
 2766 
 2767 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2768                 pte = vtopte(pv->pv_va);
 2769 #else
 2770                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2771 #endif
 2772                 tpte = *pte;
 2773 
 2774                 if (tpte == 0) {
 2775                         printf("TPTE at %p  IS ZERO @ VA %08lx\n",
 2776                                                         pte, pv->pv_va);
 2777                         panic("bad pte");
 2778                 }
 2779 
 2780 /*
 2781  * We cannot remove wired pages from a process' mapping at this time
 2782  */
 2783                 if (tpte & PG_W) {
 2784                         npv = TAILQ_NEXT(pv, pv_plist);
 2785                         continue;
 2786                 }
 2787 
 2788                 m = PHYS_TO_VM_PAGE(tpte);
 2789                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 2790                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 2791                     m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
 2792 
 2793                 KASSERT(m < &vm_page_array[vm_page_array_size],
 2794                         ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
 2795 
 2796                 pv->pv_pmap->pm_stats.resident_count--;
 2797 
 2798                 pte_clear(pte);
 2799 
 2800                 /*
 2801                  * Update the vm_page_t clean and reference bits.
 2802                  */
 2803                 if (tpte & PG_M) {
 2804                         vm_page_dirty(m);
 2805                 }
 2806 
 2807                 npv = TAILQ_NEXT(pv, pv_plist);
 2808                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 2809 
 2810                 m->md.pv_list_count--;
 2811                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2812                 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
 2813                         vm_page_flag_clear(m, PG_WRITEABLE);
 2814                 }
 2815 
 2816                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
 2817                 free_pv_entry(pv);
 2818         }
 2819         splx(s);
 2820         pmap_invalidate_all(pmap);
 2821 }
 2822 
 2823 /*
 2824  *      pmap_is_modified:
 2825  *
 2826  *      Return whether or not the specified physical page was modified
 2827  *      in any physical maps.
 2828  */
 2829 boolean_t
 2830 pmap_is_modified(vm_page_t m)
 2831 {
 2832         pv_entry_t pv;
 2833         pt_entry_t *pte;
 2834         int s;
 2835 
 2836         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
 2837                 return FALSE;
 2838 
 2839         s = splvm();
 2840         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2841         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2842                 /*
 2843                  * if the bit being tested is the modified bit, then
 2844                  * mark clean_map and ptes as never
 2845                  * modified.
 2846                  */
 2847                 if (!pmap_track_modified(pv->pv_va))
 2848                         continue;
 2849 #if defined(PMAP_DIAGNOSTIC)
 2850                 if (!pv->pv_pmap) {
 2851                         printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
 2852                         continue;
 2853                 }
 2854 #endif
 2855                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2856                 if (*pte & PG_M) {
 2857                         splx(s);
 2858                         return TRUE;
 2859                 }
 2860         }
 2861         splx(s);
 2862         return (FALSE);
 2863 }
 2864 
 2865 /*
 2866  * this routine is used to modify bits in ptes
 2867  */
 2868 static __inline void
 2869 pmap_changebit(vm_page_t m, int bit, boolean_t setem)
 2870 {
 2871         register pv_entry_t pv;
 2872         register pt_entry_t *pte;
 2873         int s;
 2874 
 2875         if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
 2876             (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
 2877                 return;
 2878 
 2879         s = splvm();
 2880         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2881         /*
 2882          * Loop over all current mappings setting/clearing as appropos If
 2883          * setting RO do we need to clear the VAC?
 2884          */
 2885         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2886                 /*
 2887                  * don't write protect pager mappings
 2888                  */
 2889                 if (!setem && (bit == PG_RW)) {
 2890                         if (!pmap_track_modified(pv->pv_va))
 2891                                 continue;
 2892                 }
 2893 
 2894 #if defined(PMAP_DIAGNOSTIC)
 2895                 if (!pv->pv_pmap) {
 2896                         printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
 2897                         continue;
 2898                 }
 2899 #endif
 2900 
 2901                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2902 
 2903                 if (setem) {
 2904                         *pte |= bit;
 2905                         pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2906                 } else {
 2907                         pt_entry_t pbits = *pte;
 2908                         if (pbits & bit) {
 2909                                 if (bit == PG_RW) {
 2910                                         if (pbits & PG_M) {
 2911                                                 vm_page_dirty(m);
 2912                                         }
 2913                                         pte_store(pte, pbits & ~(PG_M|PG_RW));
 2914                                 } else {
 2915                                         pte_store(pte, pbits & ~bit);
 2916                                 }
 2917                                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2918                         }
 2919                 }
 2920         }
 2921         if (!setem && bit == PG_RW)
 2922                 vm_page_flag_clear(m, PG_WRITEABLE);
 2923         splx(s);
 2924 }
 2925 
 2926 /*
 2927  *      pmap_page_protect:
 2928  *
 2929  *      Lower the permission for all mappings to a given page.
 2930  */
 2931 void
 2932 pmap_page_protect(vm_page_t m, vm_prot_t prot)
 2933 {
 2934         if ((prot & VM_PROT_WRITE) == 0) {
 2935                 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
 2936                         pmap_changebit(m, PG_RW, FALSE);
 2937                 } else {
 2938                         pmap_remove_all(m);
 2939                 }
 2940         }
 2941 }
 2942 
 2943 /*
 2944  *      pmap_ts_referenced:
 2945  *
 2946  *      Return a count of reference bits for a page, clearing those bits.
 2947  *      It is not necessary for every reference bit to be cleared, but it
 2948  *      is necessary that 0 only be returned when there are truly no
 2949  *      reference bits set.
 2950  *
 2951  *      XXX: The exact number of bits to check and clear is a matter that
 2952  *      should be tested and standardized at some point in the future for
 2953  *      optimal aging of shared pages.
 2954  */
 2955 int
 2956 pmap_ts_referenced(vm_page_t m)
 2957 {
 2958         register pv_entry_t pv, pvf, pvn;
 2959         pt_entry_t *pte;
 2960         pt_entry_t v;
 2961         int s;
 2962         int rtval = 0;
 2963 
 2964         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
 2965                 return (rtval);
 2966 
 2967         s = splvm();
 2968         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2969         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2970 
 2971                 pvf = pv;
 2972 
 2973                 do {
 2974                         pvn = TAILQ_NEXT(pv, pv_list);
 2975 
 2976                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2977 
 2978                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2979 
 2980                         if (!pmap_track_modified(pv->pv_va))
 2981                                 continue;
 2982 
 2983                         pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2984 
 2985                         if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
 2986                                 pte_store(pte, v & ~PG_A);
 2987                                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2988 
 2989                                 rtval++;
 2990                                 if (rtval > 4) {
 2991                                         break;
 2992                                 }
 2993                         }
 2994                 } while ((pv = pvn) != NULL && pv != pvf);
 2995         }
 2996         splx(s);
 2997 
 2998         return (rtval);
 2999 }
 3000 
 3001 /*
 3002  *      Clear the modify bits on the specified physical page.
 3003  */
 3004 void
 3005 pmap_clear_modify(vm_page_t m)
 3006 {
 3007         pmap_changebit(m, PG_M, FALSE);
 3008 }
 3009 
 3010 /*
 3011  *      pmap_clear_reference:
 3012  *
 3013  *      Clear the reference bit on the specified physical page.
 3014  */
 3015 void
 3016 pmap_clear_reference(vm_page_t m)
 3017 {
 3018         pmap_changebit(m, PG_A, FALSE);
 3019 }
 3020 
 3021 /*
 3022  * Miscellaneous support routines follow
 3023  */
 3024 
 3025 static void
 3026 amd64_protection_init()
 3027 {
 3028         register long *kp, prot;
 3029 
 3030 #if 0
 3031 #define PG_NX (1ul << 63)
 3032 #else
 3033 #define PG_NX 0
 3034 #endif
 3035 
 3036         kp = protection_codes;
 3037         for (prot = 0; prot < 8; prot++) {
 3038                 switch (prot) {
 3039                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
 3040                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
 3041                         *kp++ = PG_NX;
 3042                         break;
 3043                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
 3044                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
 3045                         *kp++ = 0;
 3046                         break;
 3047                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
 3048                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
 3049                         *kp++ = PG_RW | PG_NX;
 3050                         break;
 3051                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
 3052                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
 3053                         *kp++ = PG_RW;
 3054                         break;
 3055                 }
 3056         }
 3057 }
 3058 
 3059 /*
 3060  * Map a set of physical memory pages into the kernel virtual
 3061  * address space. Return a pointer to where it is mapped. This
 3062  * routine is intended to be used for mapping device memory,
 3063  * NOT real memory.
 3064  */
 3065 void *
 3066 pmap_mapdev(pa, size)
 3067         vm_paddr_t pa;
 3068         vm_size_t size;
 3069 {
 3070         vm_offset_t va, tmpva, offset;
 3071 
 3072         offset = pa & PAGE_MASK;
 3073         size = roundup(offset + size, PAGE_SIZE);
 3074 
 3075         GIANT_REQUIRED;
 3076 
 3077         va = kmem_alloc_pageable(kernel_map, size);
 3078         if (!va)
 3079                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 3080 
 3081         pa = pa & PG_FRAME;
 3082         for (tmpva = va; size > 0; ) {
 3083                 pmap_kenter(tmpva, pa);
 3084                 size -= PAGE_SIZE;
 3085                 tmpva += PAGE_SIZE;
 3086                 pa += PAGE_SIZE;
 3087         }
 3088         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3089         return ((void *)(va + offset));
 3090 }
 3091 
 3092 void
 3093 pmap_unmapdev(va, size)
 3094         vm_offset_t va;
 3095         vm_size_t size;
 3096 {
 3097         vm_offset_t base, offset, tmpva;
 3098         pt_entry_t *pte;
 3099 
 3100         base = va & PG_FRAME;
 3101         offset = va & PAGE_MASK;
 3102         size = roundup(offset + size, PAGE_SIZE);
 3103         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
 3104                 pte = vtopte(tmpva);
 3105                 pte_clear(pte);
 3106         }
 3107         pmap_invalidate_range(kernel_pmap, va, tmpva);
 3108         kmem_free(kernel_map, base, size);
 3109 }
 3110 
 3111 /*
 3112  * perform the pmap work for mincore
 3113  */
 3114 int
 3115 pmap_mincore(pmap, addr)
 3116         pmap_t pmap;
 3117         vm_offset_t addr;
 3118 {
 3119         pt_entry_t *ptep, pte;
 3120         vm_page_t m;
 3121         int val = 0;
 3122         
 3123         ptep = pmap_pte(pmap, addr);
 3124         if (ptep == 0) {
 3125                 return 0;
 3126         }
 3127 
 3128         if ((pte = *ptep) != 0) {
 3129                 vm_paddr_t pa;
 3130 
 3131                 val = MINCORE_INCORE;
 3132                 if ((pte & PG_MANAGED) == 0)
 3133                         return val;
 3134 
 3135                 pa = pte & PG_FRAME;
 3136 
 3137                 m = PHYS_TO_VM_PAGE(pa);
 3138 
 3139                 /*
 3140                  * Modified by us
 3141                  */
 3142                 if (pte & PG_M)
 3143                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 3144                 else {
 3145                         /*
 3146                          * Modified by someone else
 3147                          */
 3148                         vm_page_lock_queues();
 3149                         if (m->dirty || pmap_is_modified(m))
 3150                                 val |= MINCORE_MODIFIED_OTHER;
 3151                         vm_page_unlock_queues();
 3152                 }
 3153                 /*
 3154                  * Referenced by us
 3155                  */
 3156                 if (pte & PG_A)
 3157                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 3158                 else {
 3159                         /*
 3160                          * Referenced by someone else
 3161                          */
 3162                         vm_page_lock_queues();
 3163                         if ((m->flags & PG_REFERENCED) ||
 3164                             pmap_ts_referenced(m)) {
 3165                                 val |= MINCORE_REFERENCED_OTHER;
 3166                                 vm_page_flag_set(m, PG_REFERENCED);
 3167                         }
 3168                         vm_page_unlock_queues();
 3169                 }
 3170         } 
 3171         return val;
 3172 }
 3173 
 3174 void
 3175 pmap_activate(struct thread *td)
 3176 {
 3177         struct proc *p = td->td_proc;
 3178         pmap_t  pmap;
 3179         u_int64_t  cr3;
 3180 
 3181         critical_enter();
 3182         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 3183         pmap->pm_active |= PCPU_GET(cpumask);
 3184         cr3 = vtophys(pmap->pm_pml4);
 3185         /* XXXKSE this is wrong.
 3186          * pmap_activate is for the current thread on the current cpu
 3187          */
 3188         if (p->p_flag & P_THREADED) {
 3189                 /* Make sure all other cr3 entries are updated. */
 3190                 /* what if they are running?  XXXKSE (maybe abort them) */
 3191                 FOREACH_THREAD_IN_PROC(p, td) {
 3192                         td->td_pcb->pcb_cr3 = cr3;
 3193                 }
 3194         } else {
 3195                 td->td_pcb->pcb_cr3 = cr3;
 3196         }
 3197         load_cr3(cr3);
 3198         critical_exit();
 3199 }
 3200 
 3201 vm_offset_t
 3202 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
 3203 {
 3204 
 3205         if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
 3206                 return addr;
 3207         }
 3208 
 3209         addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
 3210         return addr;
 3211 }

Cache object: 6f525f22ea6dd81fa6a3a9c8dce1ac34


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.