The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  * Copyright (c) 2003 Peter Wemm
    9  * All rights reserved.
   10  *
   11  * This code is derived from software contributed to Berkeley by
   12  * the Systems Programming Group of the University of Utah Computer
   13  * Science Department and William Jolitz of UUNET Technologies Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
   44  */
   45 /*-
   46  * Copyright (c) 2003 Networks Associates Technology, Inc.
   47  * All rights reserved.
   48  *
   49  * This software was developed for the FreeBSD Project by Jake Burkholder,
   50  * Safeport Network Services, and Network Associates Laboratories, the
   51  * Security Research Division of Network Associates, Inc. under
   52  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
   53  * CHATS research program.
   54  *
   55  * Redistribution and use in source and binary forms, with or without
   56  * modification, are permitted provided that the following conditions
   57  * are met:
   58  * 1. Redistributions of source code must retain the above copyright
   59  *    notice, this list of conditions and the following disclaimer.
   60  * 2. Redistributions in binary form must reproduce the above copyright
   61  *    notice, this list of conditions and the following disclaimer in the
   62  *    documentation and/or other materials provided with the distribution.
   63  *
   64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   67  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   68  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   74  * SUCH DAMAGE.
   75  */
   76 
   77 #include <sys/cdefs.h>
   78 __FBSDID("$FreeBSD: releng/6.0/sys/amd64/amd64/pmap.c 151793 2005-10-28 06:49:49Z ade $");
   79 
   80 /*
   81  *      Manages physical address maps.
   82  *
   83  *      In addition to hardware address maps, this
   84  *      module is called upon to provide software-use-only
   85  *      maps which may or may not be stored in the same
   86  *      form as hardware maps.  These pseudo-maps are
   87  *      used to store intermediate results from copy
   88  *      operations to and from address spaces.
   89  *
   90  *      Since the information managed by this module is
   91  *      also stored by the logical address mapping module,
   92  *      this module may throw away valid virtual-to-physical
   93  *      mappings at almost any time.  However, invalidations
   94  *      of virtual-to-physical mappings must be done as
   95  *      requested.
   96  *
   97  *      In order to cope with hardware architectures which
   98  *      make virtual-to-physical map invalidates expensive,
   99  *      this module may delay invalidate or reduced protection
  100  *      operations until such time as they are actually
  101  *      necessary.  This module is given full information as
  102  *      to which processors are currently using which maps,
  103  *      and to when physical maps must be made correct.
  104  */
  105 
  106 #include "opt_msgbuf.h"
  107 #include "opt_kstack_pages.h"
  108 
  109 #include <sys/param.h>
  110 #include <sys/systm.h>
  111 #include <sys/kernel.h>
  112 #include <sys/lock.h>
  113 #include <sys/malloc.h>
  114 #include <sys/mman.h>
  115 #include <sys/msgbuf.h>
  116 #include <sys/mutex.h>
  117 #include <sys/proc.h>
  118 #include <sys/sx.h>
  119 #include <sys/vmmeter.h>
  120 #include <sys/sched.h>
  121 #include <sys/sysctl.h>
  122 #ifdef SMP
  123 #include <sys/smp.h>
  124 #endif
  125 
  126 #include <vm/vm.h>
  127 #include <vm/vm_param.h>
  128 #include <vm/vm_kern.h>
  129 #include <vm/vm_page.h>
  130 #include <vm/vm_map.h>
  131 #include <vm/vm_object.h>
  132 #include <vm/vm_extern.h>
  133 #include <vm/vm_pageout.h>
  134 #include <vm/vm_pager.h>
  135 #include <vm/uma.h>
  136 
  137 #include <machine/cpu.h>
  138 #include <machine/cputypes.h>
  139 #include <machine/md_var.h>
  140 #include <machine/pcb.h>
  141 #include <machine/specialreg.h>
  142 #ifdef SMP
  143 #include <machine/smp.h>
  144 #endif
  145 
  146 #ifndef PMAP_SHPGPERPROC
  147 #define PMAP_SHPGPERPROC 200
  148 #endif
  149 
  150 #if defined(DIAGNOSTIC)
  151 #define PMAP_DIAGNOSTIC
  152 #endif
  153 
  154 #define MINPV 2048
  155 
  156 #if !defined(PMAP_DIAGNOSTIC)
  157 #define PMAP_INLINE __inline
  158 #else
  159 #define PMAP_INLINE
  160 #endif
  161 
  162 struct pmap kernel_pmap_store;
  163 
  164 vm_paddr_t avail_start;         /* PA of first available physical page */
  165 vm_paddr_t avail_end;           /* PA of last available physical page */
  166 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  167 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  168 
  169 static int nkpt;
  170 static int ndmpdp;
  171 static vm_paddr_t dmaplimit;
  172 vm_offset_t kernel_vm_end;
  173 pt_entry_t pg_nx;
  174 
  175 static u_int64_t        KPTphys;        /* phys addr of kernel level 1 */
  176 static u_int64_t        KPDphys;        /* phys addr of kernel level 2 */
  177 static u_int64_t        KPDPphys;       /* phys addr of kernel level 3 */
  178 u_int64_t               KPML4phys;      /* phys addr of kernel level 4 */
  179 
  180 static u_int64_t        DMPDphys;       /* phys addr of direct mapped level 2 */
  181 static u_int64_t        DMPDPphys;      /* phys addr of direct mapped level 3 */
  182 
  183 /*
  184  * Data for the pv entry allocation mechanism
  185  */
  186 static uma_zone_t pvzone;
  187 static struct vm_object pvzone_obj;
  188 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  189 int pmap_pagedaemon_waken;
  190 
  191 /*
  192  * All those kernel PT submaps that BSD is so fond of
  193  */
  194 pt_entry_t *CMAP1 = 0;
  195 caddr_t CADDR1 = 0;
  196 struct msgbuf *msgbufp = 0;
  197 
  198 /*
  199  * Crashdump maps.
  200  */
  201 static caddr_t crashdumpmap;
  202 
  203 static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
  204 static pv_entry_t get_pv_entry(void);
  205 static void     pmap_clear_ptes(vm_page_t m, long bit);
  206 
  207 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq,
  208                 vm_offset_t sva, pd_entry_t ptepde);
  209 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
  210 static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
  211                 vm_offset_t va, pd_entry_t ptepde);
  212 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
  213 
  214 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
  215 
  216 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, int flags);
  217 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
  218 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
  219 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
  220 
  221 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
  222 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
  223 
  224 /*
  225  * Move the kernel virtual free pointer to the next
  226  * 2MB.  This is used to help improve performance
  227  * by using a large (2MB) page for much of the kernel
  228  * (.text, .data, .bss)
  229  */
  230 static vm_offset_t
  231 pmap_kmem_choose(vm_offset_t addr)
  232 {
  233         vm_offset_t newaddr = addr;
  234 
  235         newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
  236         return newaddr;
  237 }
  238 
  239 /********************/
  240 /* Inline functions */
  241 /********************/
  242 
  243 /* Return a non-clipped PD index for a given VA */
  244 static __inline vm_pindex_t
  245 pmap_pde_pindex(vm_offset_t va)
  246 {
  247         return va >> PDRSHIFT;
  248 }
  249 
  250 
  251 /* Return various clipped indexes for a given VA */
  252 static __inline vm_pindex_t
  253 pmap_pte_index(vm_offset_t va)
  254 {
  255 
  256         return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
  257 }
  258 
  259 static __inline vm_pindex_t
  260 pmap_pde_index(vm_offset_t va)
  261 {
  262 
  263         return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
  264 }
  265 
  266 static __inline vm_pindex_t
  267 pmap_pdpe_index(vm_offset_t va)
  268 {
  269 
  270         return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
  271 }
  272 
  273 static __inline vm_pindex_t
  274 pmap_pml4e_index(vm_offset_t va)
  275 {
  276 
  277         return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
  278 }
  279 
  280 /* Return a pointer to the PML4 slot that corresponds to a VA */
  281 static __inline pml4_entry_t *
  282 pmap_pml4e(pmap_t pmap, vm_offset_t va)
  283 {
  284 
  285         if (!pmap)
  286                 return NULL;
  287         return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
  288 }
  289 
  290 /* Return a pointer to the PDP slot that corresponds to a VA */
  291 static __inline pdp_entry_t *
  292 pmap_pdpe(pmap_t pmap, vm_offset_t va)
  293 {
  294         pml4_entry_t *pml4e;
  295         pdp_entry_t *pdpe;
  296 
  297         pml4e = pmap_pml4e(pmap, va);
  298         if (pml4e == NULL || (*pml4e & PG_V) == 0)
  299                 return NULL;
  300         pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
  301         return (&pdpe[pmap_pdpe_index(va)]);
  302 }
  303 
  304 /* Return a pointer to the PD slot that corresponds to a VA */
  305 static __inline pd_entry_t *
  306 pmap_pde(pmap_t pmap, vm_offset_t va)
  307 {
  308         pdp_entry_t *pdpe;
  309         pd_entry_t *pde;
  310 
  311         pdpe = pmap_pdpe(pmap, va);
  312         if (pdpe == NULL || (*pdpe & PG_V) == 0)
  313                  return NULL;
  314         pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
  315         return (&pde[pmap_pde_index(va)]);
  316 }
  317 
  318 /* Return a pointer to the PT slot that corresponds to a VA */
  319 static __inline pt_entry_t *
  320 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
  321 {
  322         pt_entry_t *pte;
  323 
  324         pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
  325         return (&pte[pmap_pte_index(va)]);
  326 }
  327 
  328 /* Return a pointer to the PT slot that corresponds to a VA */
  329 static __inline pt_entry_t *
  330 pmap_pte(pmap_t pmap, vm_offset_t va)
  331 {
  332         pd_entry_t *pde;
  333 
  334         pde = pmap_pde(pmap, va);
  335         if (pde == NULL || (*pde & PG_V) == 0)
  336                 return NULL;
  337         if ((*pde & PG_PS) != 0)        /* compat with i386 pmap_pte() */
  338                 return ((pt_entry_t *)pde);
  339         return (pmap_pde_to_pte(pde, va));
  340 }
  341 
  342 
  343 static __inline pt_entry_t *
  344 pmap_pte_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *ptepde)
  345 {
  346         pd_entry_t *pde;
  347 
  348         pde = pmap_pde(pmap, va);
  349         if (pde == NULL || (*pde & PG_V) == 0)
  350                 return NULL;
  351         *ptepde = *pde;
  352         if ((*pde & PG_PS) != 0)        /* compat with i386 pmap_pte() */
  353                 return ((pt_entry_t *)pde);
  354         return (pmap_pde_to_pte(pde, va));
  355 }
  356 
  357 
  358 PMAP_INLINE pt_entry_t *
  359 vtopte(vm_offset_t va)
  360 {
  361         u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
  362 
  363         return (PTmap + ((va >> PAGE_SHIFT) & mask));
  364 }
  365 
  366 static __inline pd_entry_t *
  367 vtopde(vm_offset_t va)
  368 {
  369         u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
  370 
  371         return (PDmap + ((va >> PDRSHIFT) & mask));
  372 }
  373 
  374 static u_int64_t
  375 allocpages(int n)
  376 {
  377         u_int64_t ret;
  378 
  379         ret = avail_start;
  380         bzero((void *)ret, n * PAGE_SIZE);
  381         avail_start += n * PAGE_SIZE;
  382         return (ret);
  383 }
  384 
  385 static void
  386 create_pagetables(void)
  387 {
  388         int i;
  389 
  390         /* Allocate pages */
  391         KPTphys = allocpages(NKPT);
  392         KPML4phys = allocpages(1);
  393         KPDPphys = allocpages(NKPML4E);
  394         KPDphys = allocpages(NKPDPE);
  395 
  396         ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
  397         if (ndmpdp < 4)         /* Minimum 4GB of dirmap */
  398                 ndmpdp = 4;
  399         DMPDPphys = allocpages(NDMPML4E);
  400         DMPDphys = allocpages(ndmpdp);
  401         dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
  402 
  403         /* Fill in the underlying page table pages */
  404         /* Read-only from zero to physfree */
  405         /* XXX not fully used, underneath 2M pages */
  406         for (i = 0; (i << PAGE_SHIFT) < avail_start; i++) {
  407                 ((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
  408                 ((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V | PG_G;
  409         }
  410 
  411         /* Now map the page tables at their location within PTmap */
  412         for (i = 0; i < NKPT; i++) {
  413                 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
  414                 ((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
  415         }
  416 
  417         /* Map from zero to end of allocations under 2M pages */
  418         /* This replaces some of the KPTphys entries above */
  419         for (i = 0; (i << PDRSHIFT) < avail_start; i++) {
  420                 ((pd_entry_t *)KPDphys)[i] = i << PDRSHIFT;
  421                 ((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
  422         }
  423 
  424         /* And connect up the PD to the PDP */
  425         for (i = 0; i < NKPDPE; i++) {
  426                 ((pdp_entry_t *)KPDPphys)[i + KPDPI] = KPDphys + (i << PAGE_SHIFT);
  427                 ((pdp_entry_t *)KPDPphys)[i + KPDPI] |= PG_RW | PG_V | PG_U;
  428         }
  429 
  430 
  431         /* Now set up the direct map space using 2MB pages */
  432         for (i = 0; i < NPDEPG * ndmpdp; i++) {
  433                 ((pd_entry_t *)DMPDphys)[i] = (vm_paddr_t)i << PDRSHIFT;
  434                 ((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
  435         }
  436 
  437         /* And the direct map space's PDP */
  438         for (i = 0; i < ndmpdp; i++) {
  439                 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys + (i << PAGE_SHIFT);
  440                 ((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
  441         }
  442 
  443         /* And recursively map PML4 to itself in order to get PTmap */
  444         ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
  445         ((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
  446 
  447         /* Connect the Direct Map slot up to the PML4 */
  448         ((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
  449         ((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
  450 
  451         /* Connect the KVA slot up to the PML4 */
  452         ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
  453         ((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
  454 }
  455 
  456 /*
  457  *      Bootstrap the system enough to run with virtual memory.
  458  *
  459  *      On amd64 this is called after mapping has already been enabled
  460  *      and just syncs the pmap module with what has already been done.
  461  *      [We can't call it easily with mapping off since the kernel is not
  462  *      mapped with PA == VA, hence we would have to relocate every address
  463  *      from the linked base (virtual) address "KERNBASE" to the actual
  464  *      (physical) address starting relative to 0]
  465  */
  466 void
  467 pmap_bootstrap(firstaddr)
  468         vm_paddr_t *firstaddr;
  469 {
  470         vm_offset_t va;
  471         pt_entry_t *pte, *unused;
  472 
  473         avail_start = *firstaddr;
  474 
  475         /*
  476          * Create an initial set of page tables to run the kernel in.
  477          */
  478         create_pagetables();
  479         *firstaddr = avail_start;
  480 
  481         virtual_avail = (vm_offset_t) KERNBASE + avail_start;
  482         virtual_avail = pmap_kmem_choose(virtual_avail);
  483 
  484         virtual_end = VM_MAX_KERNEL_ADDRESS;
  485 
  486 
  487         /* XXX do %cr0 as well */
  488         load_cr4(rcr4() | CR4_PGE | CR4_PSE);
  489         load_cr3(KPML4phys);
  490 
  491         /*
  492          * Initialize the kernel pmap (which is statically allocated).
  493          */
  494         PMAP_LOCK_INIT(kernel_pmap);
  495         kernel_pmap->pm_pml4 = (pdp_entry_t *) (KERNBASE + KPML4phys);
  496         kernel_pmap->pm_active = -1;    /* don't allow deactivation */
  497         TAILQ_INIT(&kernel_pmap->pm_pvlist);
  498         nkpt = NKPT;
  499 
  500         /*
  501          * Reserve some special page table entries/VA space for temporary
  502          * mapping of pages.
  503          */
  504 #define SYSMAP(c, p, v, n)      \
  505         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
  506 
  507         va = virtual_avail;
  508         pte = vtopte(va);
  509 
  510         /*
  511          * CMAP1 is only used for the memory test.
  512          */
  513         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
  514 
  515         /*
  516          * Crashdump maps.
  517          */
  518         SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
  519 
  520         /*
  521          * msgbufp is used to map the system message buffer.
  522          */
  523         SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
  524 
  525         virtual_avail = va;
  526 
  527         *CMAP1 = 0;
  528 
  529         invltlb();
  530 }
  531 
  532 /*
  533  *      Initialize a vm_page's machine-dependent fields.
  534  */
  535 void
  536 pmap_page_init(vm_page_t m)
  537 {
  538 
  539         TAILQ_INIT(&m->md.pv_list);
  540         m->md.pv_list_count = 0;
  541 }
  542 
  543 /*
  544  *      Initialize the pmap module.
  545  *      Called by vm_init, to initialize any structures that the pmap
  546  *      system needs to map virtual memory.
  547  */
  548 void
  549 pmap_init(void)
  550 {
  551 
  552         /*
  553          * init the pv free list
  554          */
  555         pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL, 
  556             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
  557         uma_prealloc(pvzone, MINPV);
  558 }
  559 
  560 /*
  561  * Initialize the address space (zone) for the pv_entries.  Set a
  562  * high water mark so that the system can recover from excessive
  563  * numbers of pv entries.
  564  */
  565 void
  566 pmap_init2()
  567 {
  568         int shpgperproc = PMAP_SHPGPERPROC;
  569 
  570         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
  571         pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
  572         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
  573         pv_entry_high_water = 9 * (pv_entry_max / 10);
  574         uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
  575 }
  576 
  577 
  578 /***************************************************
  579  * Low level helper routines.....
  580  ***************************************************/
  581 
  582 #if defined(PMAP_DIAGNOSTIC)
  583 
  584 /*
  585  * This code checks for non-writeable/modified pages.
  586  * This should be an invalid condition.
  587  */
  588 static int
  589 pmap_nw_modified(pt_entry_t ptea)
  590 {
  591         int pte;
  592 
  593         pte = (int) ptea;
  594 
  595         if ((pte & (PG_M|PG_RW)) == PG_M)
  596                 return 1;
  597         else
  598                 return 0;
  599 }
  600 #endif
  601 
  602 
  603 /*
  604  * this routine defines the region(s) of memory that should
  605  * not be tested for the modified bit.
  606  */
  607 static PMAP_INLINE int
  608 pmap_track_modified(vm_offset_t va)
  609 {
  610         if ((va < kmi.clean_sva) || (va >= kmi.clean_eva)) 
  611                 return 1;
  612         else
  613                 return 0;
  614 }
  615 
  616 #ifdef SMP
  617 /*
  618  * For SMP, these functions have to use the IPI mechanism for coherence.
  619  */
  620 void
  621 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  622 {
  623         u_int cpumask;
  624         u_int other_cpus;
  625 
  626         if (smp_started) {
  627                 if (!(read_rflags() & PSL_I))
  628                         panic("%s: interrupts disabled", __func__);
  629                 mtx_lock_spin(&smp_ipi_mtx);
  630         } else
  631                 critical_enter();
  632         /*
  633          * We need to disable interrupt preemption but MUST NOT have
  634          * interrupts disabled here.
  635          * XXX we may need to hold schedlock to get a coherent pm_active
  636          * XXX critical sections disable interrupts again
  637          */
  638         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  639                 invlpg(va);
  640                 smp_invlpg(va);
  641         } else {
  642                 cpumask = PCPU_GET(cpumask);
  643                 other_cpus = PCPU_GET(other_cpus);
  644                 if (pmap->pm_active & cpumask)
  645                         invlpg(va);
  646                 if (pmap->pm_active & other_cpus)
  647                         smp_masked_invlpg(pmap->pm_active & other_cpus, va);
  648         }
  649         if (smp_started)
  650                 mtx_unlock_spin(&smp_ipi_mtx);
  651         else
  652                 critical_exit();
  653 }
  654 
  655 void
  656 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  657 {
  658         u_int cpumask;
  659         u_int other_cpus;
  660         vm_offset_t addr;
  661 
  662         if (smp_started) {
  663                 if (!(read_rflags() & PSL_I))
  664                         panic("%s: interrupts disabled", __func__);
  665                 mtx_lock_spin(&smp_ipi_mtx);
  666         } else
  667                 critical_enter();
  668         /*
  669          * We need to disable interrupt preemption but MUST NOT have
  670          * interrupts disabled here.
  671          * XXX we may need to hold schedlock to get a coherent pm_active
  672          * XXX critical sections disable interrupts again
  673          */
  674         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  675                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  676                         invlpg(addr);
  677                 smp_invlpg_range(sva, eva);
  678         } else {
  679                 cpumask = PCPU_GET(cpumask);
  680                 other_cpus = PCPU_GET(other_cpus);
  681                 if (pmap->pm_active & cpumask)
  682                         for (addr = sva; addr < eva; addr += PAGE_SIZE)
  683                                 invlpg(addr);
  684                 if (pmap->pm_active & other_cpus)
  685                         smp_masked_invlpg_range(pmap->pm_active & other_cpus,
  686                             sva, eva);
  687         }
  688         if (smp_started)
  689                 mtx_unlock_spin(&smp_ipi_mtx);
  690         else
  691                 critical_exit();
  692 }
  693 
  694 void
  695 pmap_invalidate_all(pmap_t pmap)
  696 {
  697         u_int cpumask;
  698         u_int other_cpus;
  699 
  700         if (smp_started) {
  701                 if (!(read_rflags() & PSL_I))
  702                         panic("%s: interrupts disabled", __func__);
  703                 mtx_lock_spin(&smp_ipi_mtx);
  704         } else
  705                 critical_enter();
  706         /*
  707          * We need to disable interrupt preemption but MUST NOT have
  708          * interrupts disabled here.
  709          * XXX we may need to hold schedlock to get a coherent pm_active
  710          * XXX critical sections disable interrupts again
  711          */
  712         if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
  713                 invltlb();
  714                 smp_invltlb();
  715         } else {
  716                 cpumask = PCPU_GET(cpumask);
  717                 other_cpus = PCPU_GET(other_cpus);
  718                 if (pmap->pm_active & cpumask)
  719                         invltlb();
  720                 if (pmap->pm_active & other_cpus)
  721                         smp_masked_invltlb(pmap->pm_active & other_cpus);
  722         }
  723         if (smp_started)
  724                 mtx_unlock_spin(&smp_ipi_mtx);
  725         else
  726                 critical_exit();
  727 }
  728 #else /* !SMP */
  729 /*
  730  * Normal, non-SMP, invalidation functions.
  731  * We inline these within pmap.c for speed.
  732  */
  733 PMAP_INLINE void
  734 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
  735 {
  736 
  737         if (pmap == kernel_pmap || pmap->pm_active)
  738                 invlpg(va);
  739 }
  740 
  741 PMAP_INLINE void
  742 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
  743 {
  744         vm_offset_t addr;
  745 
  746         if (pmap == kernel_pmap || pmap->pm_active)
  747                 for (addr = sva; addr < eva; addr += PAGE_SIZE)
  748                         invlpg(addr);
  749 }
  750 
  751 PMAP_INLINE void
  752 pmap_invalidate_all(pmap_t pmap)
  753 {
  754 
  755         if (pmap == kernel_pmap || pmap->pm_active)
  756                 invltlb();
  757 }
  758 #endif /* !SMP */
  759 
  760 /*
  761  * Are we current address space or kernel?
  762  */
  763 static __inline int
  764 pmap_is_current(pmap_t pmap)
  765 {
  766         return (pmap == kernel_pmap ||
  767             (pmap->pm_pml4[PML4PML4I] & PG_FRAME) == (PML4pml4e[0] & PG_FRAME));
  768 }
  769 
  770 /*
  771  *      Routine:        pmap_extract
  772  *      Function:
  773  *              Extract the physical page address associated
  774  *              with the given map/virtual_address pair.
  775  */
  776 vm_paddr_t 
  777 pmap_extract(pmap_t pmap, vm_offset_t va)
  778 {
  779         vm_paddr_t rtval;
  780         pt_entry_t *pte;
  781         pd_entry_t pde, *pdep;
  782 
  783         rtval = 0;
  784         PMAP_LOCK(pmap);
  785         pdep = pmap_pde(pmap, va);
  786         if (pdep != NULL) {
  787                 pde = *pdep;
  788                 if (pde) {
  789                         if ((pde & PG_PS) != 0) {
  790                                 rtval = (pde & ~PDRMASK) | (va & PDRMASK);
  791                                 PMAP_UNLOCK(pmap);
  792                                 return rtval;
  793                         }
  794                         pte = pmap_pde_to_pte(pdep, va);
  795                         rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
  796                 }
  797         }
  798         PMAP_UNLOCK(pmap);
  799         return (rtval);
  800 }
  801 
  802 /*
  803  *      Routine:        pmap_extract_and_hold
  804  *      Function:
  805  *              Atomically extract and hold the physical page
  806  *              with the given pmap and virtual address pair
  807  *              if that mapping permits the given protection.
  808  */
  809 vm_page_t
  810 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
  811 {
  812         pd_entry_t pde, *pdep;
  813         pt_entry_t pte;
  814         vm_page_t m;
  815 
  816         m = NULL;
  817         vm_page_lock_queues();
  818         PMAP_LOCK(pmap);
  819         pdep = pmap_pde(pmap, va);
  820         if (pdep != NULL && (pde = *pdep)) {
  821                 if (pde & PG_PS) {
  822                         if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
  823                                 m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
  824                                     (va & PDRMASK));
  825                                 vm_page_hold(m);
  826                         }
  827                 } else {
  828                         pte = *pmap_pde_to_pte(pdep, va);
  829                         if ((pte & PG_V) &&
  830                             ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
  831                                 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
  832                                 vm_page_hold(m);
  833                         }
  834                 }
  835         }
  836         vm_page_unlock_queues();
  837         PMAP_UNLOCK(pmap);
  838         return (m);
  839 }
  840 
  841 vm_paddr_t
  842 pmap_kextract(vm_offset_t va)
  843 {
  844         pd_entry_t *pde;
  845         vm_paddr_t pa;
  846 
  847         if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
  848                 pa = DMAP_TO_PHYS(va);
  849         } else {
  850                 pde = vtopde(va);
  851                 if (*pde & PG_PS) {
  852                         pa = (*pde & ~(NBPDR - 1)) | (va & (NBPDR - 1));
  853                 } else {
  854                         pa = *vtopte(va);
  855                         pa = (pa & PG_FRAME) | (va & PAGE_MASK);
  856                 }
  857         }
  858         return pa;
  859 }
  860 
  861 /***************************************************
  862  * Low level mapping routines.....
  863  ***************************************************/
  864 
  865 /*
  866  * Add a wired page to the kva.
  867  * Note: not SMP coherent.
  868  */
  869 PMAP_INLINE void 
  870 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
  871 {
  872         pt_entry_t *pte;
  873 
  874         pte = vtopte(va);
  875         pte_store(pte, pa | PG_RW | PG_V | PG_G);
  876 }
  877 
  878 /*
  879  * Remove a page from the kernel pagetables.
  880  * Note: not SMP coherent.
  881  */
  882 PMAP_INLINE void
  883 pmap_kremove(vm_offset_t va)
  884 {
  885         pt_entry_t *pte;
  886 
  887         pte = vtopte(va);
  888         pte_clear(pte);
  889 }
  890 
  891 /*
  892  *      Used to map a range of physical addresses into kernel
  893  *      virtual address space.
  894  *
  895  *      The value passed in '*virt' is a suggested virtual address for
  896  *      the mapping. Architectures which can support a direct-mapped
  897  *      physical to virtual region can return the appropriate address
  898  *      within that region, leaving '*virt' unchanged. Other
  899  *      architectures should map the pages starting at '*virt' and
  900  *      update '*virt' with the first usable address after the mapped
  901  *      region.
  902  */
  903 vm_offset_t
  904 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
  905 {
  906         return PHYS_TO_DMAP(start);
  907 }
  908 
  909 
  910 /*
  911  * Add a list of wired pages to the kva
  912  * this routine is only used for temporary
  913  * kernel mappings that do not need to have
  914  * page modification or references recorded.
  915  * Note that old mappings are simply written
  916  * over.  The page *must* be wired.
  917  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  918  */
  919 void
  920 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
  921 {
  922         vm_offset_t va;
  923 
  924         va = sva;
  925         while (count-- > 0) {
  926                 pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
  927                 va += PAGE_SIZE;
  928                 m++;
  929         }
  930         pmap_invalidate_range(kernel_pmap, sva, va);
  931 }
  932 
  933 /*
  934  * This routine tears out page mappings from the
  935  * kernel -- it is meant only for temporary mappings.
  936  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  937  */
  938 void
  939 pmap_qremove(vm_offset_t sva, int count)
  940 {
  941         vm_offset_t va;
  942 
  943         va = sva;
  944         while (count-- > 0) {
  945                 pmap_kremove(va);
  946                 va += PAGE_SIZE;
  947         }
  948         pmap_invalidate_range(kernel_pmap, sva, va);
  949 }
  950 
  951 /***************************************************
  952  * Page table page management routines.....
  953  ***************************************************/
  954 
  955 /*
  956  * This routine unholds page table pages, and if the hold count
  957  * drops to zero, then it decrements the wire count.
  958  */
  959 static PMAP_INLINE int
  960 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
  961 {
  962 
  963         --m->wire_count;
  964         if (m->wire_count == 0)
  965                 return _pmap_unwire_pte_hold(pmap, va, m);
  966         else
  967                 return 0;
  968 }
  969 
  970 static int 
  971 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
  972 {
  973         vm_offset_t pteva;
  974 
  975         /*
  976          * unmap the page table page
  977          */
  978         if (m->pindex >= (NUPDE + NUPDPE)) {
  979                 /* PDP page */
  980                 pml4_entry_t *pml4;
  981                 pml4 = pmap_pml4e(pmap, va);
  982                 pteva = (vm_offset_t) PDPmap + amd64_ptob(m->pindex - (NUPDE + NUPDPE));
  983                 *pml4 = 0;
  984         } else if (m->pindex >= NUPDE) {
  985                 /* PD page */
  986                 pdp_entry_t *pdp;
  987                 pdp = pmap_pdpe(pmap, va);
  988                 pteva = (vm_offset_t) PDmap + amd64_ptob(m->pindex - NUPDE);
  989                 *pdp = 0;
  990         } else {
  991                 /* PTE page */
  992                 pd_entry_t *pd;
  993                 pd = pmap_pde(pmap, va);
  994                 pteva = (vm_offset_t) PTmap + amd64_ptob(m->pindex);
  995                 *pd = 0;
  996         }
  997         --pmap->pm_stats.resident_count;
  998         if (m->pindex < NUPDE) {
  999                 /* We just released a PT, unhold the matching PD */
 1000                 vm_page_t pdpg;
 1001 
 1002                 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
 1003                 pmap_unwire_pte_hold(pmap, va, pdpg);
 1004         }
 1005         if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
 1006                 /* We just released a PD, unhold the matching PDP */
 1007                 vm_page_t pdppg;
 1008 
 1009                 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
 1010                 pmap_unwire_pte_hold(pmap, va, pdppg);
 1011         }
 1012 
 1013         /*
 1014          * Do an invltlb to make the invalidated mapping
 1015          * take effect immediately.
 1016          */
 1017         pmap_invalidate_page(pmap, pteva);
 1018 
 1019         vm_page_free_zero(m);
 1020         atomic_subtract_int(&cnt.v_wire_count, 1);
 1021         return 1;
 1022 }
 1023 
 1024 /*
 1025  * After removing a page table entry, this routine is used to
 1026  * conditionally free the page, and manage the hold/wire counts.
 1027  */
 1028 static int
 1029 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde)
 1030 {
 1031         vm_page_t mpte;
 1032 
 1033         if (va >= VM_MAXUSER_ADDRESS)
 1034                 return 0;
 1035         KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
 1036         mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 1037         return pmap_unwire_pte_hold(pmap, va, mpte);
 1038 }
 1039 
 1040 void
 1041 pmap_pinit0(pmap)
 1042         struct pmap *pmap;
 1043 {
 1044 
 1045         PMAP_LOCK_INIT(pmap);
 1046         pmap->pm_pml4 = (pml4_entry_t *)(KERNBASE + KPML4phys);
 1047         pmap->pm_active = 0;
 1048         TAILQ_INIT(&pmap->pm_pvlist);
 1049         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1050 }
 1051 
 1052 /*
 1053  * Initialize a preallocated and zeroed pmap structure,
 1054  * such as one in a vmspace structure.
 1055  */
 1056 void
 1057 pmap_pinit(pmap)
 1058         register struct pmap *pmap;
 1059 {
 1060         vm_page_t pml4pg;
 1061         static vm_pindex_t color;
 1062 
 1063         PMAP_LOCK_INIT(pmap);
 1064 
 1065         /*
 1066          * allocate the page directory page
 1067          */
 1068         while ((pml4pg = vm_page_alloc(NULL, color++, VM_ALLOC_NOOBJ |
 1069             VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
 1070                 VM_WAIT;
 1071 
 1072         pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
 1073 
 1074         if ((pml4pg->flags & PG_ZERO) == 0)
 1075                 pagezero(pmap->pm_pml4);
 1076 
 1077         /* Wire in kernel global address entries. */
 1078         pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
 1079         pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
 1080 
 1081         /* install self-referential address mapping entry(s) */
 1082         pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | PG_V | PG_RW | PG_A | PG_M;
 1083 
 1084         pmap->pm_active = 0;
 1085         TAILQ_INIT(&pmap->pm_pvlist);
 1086         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 1087 }
 1088 
 1089 /*
 1090  * this routine is called if the page table page is not
 1091  * mapped correctly.
 1092  *
 1093  * Note: If a page allocation fails at page table level two or three,
 1094  * one or two pages may be held during the wait, only to be released
 1095  * afterwards.  This conservative approach is easily argued to avoid
 1096  * race conditions.
 1097  */
 1098 static vm_page_t
 1099 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, int flags)
 1100 {
 1101         vm_page_t m, pdppg, pdpg;
 1102 
 1103         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1104             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1105             ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1106 
 1107         /*
 1108          * Allocate a page table page.
 1109          */
 1110         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 1111             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 1112                 if (flags & M_WAITOK) {
 1113                         PMAP_UNLOCK(pmap);
 1114                         vm_page_unlock_queues();
 1115                         VM_WAIT;
 1116                         vm_page_lock_queues();
 1117                         PMAP_LOCK(pmap);
 1118                 }
 1119 
 1120                 /*
 1121                  * Indicate the need to retry.  While waiting, the page table
 1122                  * page may have been allocated.
 1123                  */
 1124                 return (NULL);
 1125         }
 1126         if ((m->flags & PG_ZERO) == 0)
 1127                 pmap_zero_page(m);
 1128 
 1129         /*
 1130          * Map the pagetable page into the process address space, if
 1131          * it isn't already there.
 1132          */
 1133 
 1134         pmap->pm_stats.resident_count++;
 1135 
 1136         if (ptepindex >= (NUPDE + NUPDPE)) {
 1137                 pml4_entry_t *pml4;
 1138                 vm_pindex_t pml4index;
 1139 
 1140                 /* Wire up a new PDPE page */
 1141                 pml4index = ptepindex - (NUPDE + NUPDPE);
 1142                 pml4 = &pmap->pm_pml4[pml4index];
 1143                 *pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 1144 
 1145         } else if (ptepindex >= NUPDE) {
 1146                 vm_pindex_t pml4index;
 1147                 vm_pindex_t pdpindex;
 1148                 pml4_entry_t *pml4;
 1149                 pdp_entry_t *pdp;
 1150 
 1151                 /* Wire up a new PDE page */
 1152                 pdpindex = ptepindex - NUPDE;
 1153                 pml4index = pdpindex >> NPML4EPGSHIFT;
 1154 
 1155                 pml4 = &pmap->pm_pml4[pml4index];
 1156                 if ((*pml4 & PG_V) == 0) {
 1157                         /* Have to allocate a new pdp, recurse */
 1158                         if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
 1159                             flags) == NULL) {
 1160                                 --m->wire_count;
 1161                                 vm_page_free(m);
 1162                                 return (NULL);
 1163                         }
 1164                 } else {
 1165                         /* Add reference to pdp page */
 1166                         pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
 1167                         pdppg->wire_count++;
 1168                 }
 1169                 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 1170 
 1171                 /* Now find the pdp page */
 1172                 pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
 1173                 *pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 1174 
 1175         } else {
 1176                 vm_pindex_t pml4index;
 1177                 vm_pindex_t pdpindex;
 1178                 pml4_entry_t *pml4;
 1179                 pdp_entry_t *pdp;
 1180                 pd_entry_t *pd;
 1181 
 1182                 /* Wire up a new PTE page */
 1183                 pdpindex = ptepindex >> NPDPEPGSHIFT;
 1184                 pml4index = pdpindex >> NPML4EPGSHIFT;
 1185 
 1186                 /* First, find the pdp and check that its valid. */
 1187                 pml4 = &pmap->pm_pml4[pml4index];
 1188                 if ((*pml4 & PG_V) == 0) {
 1189                         /* Have to allocate a new pd, recurse */
 1190                         if (_pmap_allocpte(pmap, NUPDE + pdpindex,
 1191                             flags) == NULL) {
 1192                                 --m->wire_count;
 1193                                 vm_page_free(m);
 1194                                 return (NULL);
 1195                         }
 1196                         pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 1197                         pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
 1198                 } else {
 1199                         pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 1200                         pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
 1201                         if ((*pdp & PG_V) == 0) {
 1202                                 /* Have to allocate a new pd, recurse */
 1203                                 if (_pmap_allocpte(pmap, NUPDE + pdpindex,
 1204                                     flags) == NULL) {
 1205                                         --m->wire_count;
 1206                                         vm_page_free(m);
 1207                                         return (NULL);
 1208                                 }
 1209                         } else {
 1210                                 /* Add reference to the pd page */
 1211                                 pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
 1212                                 pdpg->wire_count++;
 1213                         }
 1214                 }
 1215                 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
 1216 
 1217                 /* Now we know where the page directory page is */
 1218                 pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
 1219                 *pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 1220         }
 1221 
 1222         return m;
 1223 }
 1224 
 1225 static vm_page_t
 1226 pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
 1227 {
 1228         vm_pindex_t ptepindex;
 1229         pd_entry_t *pd;
 1230         vm_page_t m;
 1231 
 1232         KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
 1233             (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
 1234             ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
 1235 
 1236         /*
 1237          * Calculate pagetable page index
 1238          */
 1239         ptepindex = pmap_pde_pindex(va);
 1240 retry:
 1241         /*
 1242          * Get the page directory entry
 1243          */
 1244         pd = pmap_pde(pmap, va);
 1245 
 1246         /*
 1247          * This supports switching from a 2MB page to a
 1248          * normal 4K page.
 1249          */
 1250         if (pd != 0 && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
 1251                 *pd = 0;
 1252                 pd = 0;
 1253                 pmap_invalidate_all(kernel_pmap);
 1254         }
 1255 
 1256         /*
 1257          * If the page table page is mapped, we just increment the
 1258          * hold count, and activate it.
 1259          */
 1260         if (pd != 0 && (*pd & PG_V) != 0) {
 1261                 m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
 1262                 m->wire_count++;
 1263         } else {
 1264                 /*
 1265                  * Here if the pte page isn't mapped, or if it has been
 1266                  * deallocated.
 1267                  */
 1268                 m = _pmap_allocpte(pmap, ptepindex, flags);
 1269                 if (m == NULL && (flags & M_WAITOK))
 1270                         goto retry;
 1271         }
 1272         return (m);
 1273 }
 1274 
 1275 
 1276 /***************************************************
 1277  * Pmap allocation/deallocation routines.
 1278  ***************************************************/
 1279 
 1280 /*
 1281  * Release any resources held by the given physical map.
 1282  * Called when a pmap initialized by pmap_pinit is being released.
 1283  * Should only be called if the map contains no valid mappings.
 1284  */
 1285 void
 1286 pmap_release(pmap_t pmap)
 1287 {
 1288         vm_page_t m;
 1289 
 1290         KASSERT(pmap->pm_stats.resident_count == 0,
 1291             ("pmap_release: pmap resident count %ld != 0",
 1292             pmap->pm_stats.resident_count));
 1293 
 1294         m = PHYS_TO_VM_PAGE(pmap->pm_pml4[PML4PML4I] & PG_FRAME);
 1295 
 1296         pmap->pm_pml4[KPML4I] = 0;      /* KVA */
 1297         pmap->pm_pml4[DMPML4I] = 0;     /* Direct Map */
 1298         pmap->pm_pml4[PML4PML4I] = 0;   /* Recursive Mapping */
 1299 
 1300         vm_page_lock_queues();
 1301         m->wire_count--;
 1302         atomic_subtract_int(&cnt.v_wire_count, 1);
 1303         vm_page_free_zero(m);
 1304         vm_page_unlock_queues();
 1305         PMAP_LOCK_DESTROY(pmap);
 1306 }
 1307 
 1308 static int
 1309 kvm_size(SYSCTL_HANDLER_ARGS)
 1310 {
 1311         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
 1312 
 1313         return sysctl_handle_long(oidp, &ksize, 0, req);
 1314 }
 1315 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
 1316     0, 0, kvm_size, "IU", "Size of KVM");
 1317 
 1318 static int
 1319 kvm_free(SYSCTL_HANDLER_ARGS)
 1320 {
 1321         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 1322 
 1323         return sysctl_handle_long(oidp, &kfree, 0, req);
 1324 }
 1325 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
 1326     0, 0, kvm_free, "IU", "Amount of KVM free");
 1327 
 1328 /*
 1329  * grow the number of kernel page table entries, if needed
 1330  */
 1331 void
 1332 pmap_growkernel(vm_offset_t addr)
 1333 {
 1334         vm_paddr_t paddr;
 1335         vm_page_t nkpg;
 1336         pd_entry_t *pde, newpdir;
 1337         pdp_entry_t newpdp;
 1338 
 1339         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 1340         if (kernel_vm_end == 0) {
 1341                 kernel_vm_end = KERNBASE;
 1342                 nkpt = 0;
 1343                 while ((*pmap_pde(kernel_pmap, kernel_vm_end) & PG_V) != 0) {
 1344                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1345                         nkpt++;
 1346                 }
 1347         }
 1348         addr = roundup2(addr, PAGE_SIZE * NPTEPG);
 1349         while (kernel_vm_end < addr) {
 1350                 pde = pmap_pde(kernel_pmap, kernel_vm_end);
 1351                 if (pde == NULL) {
 1352                         /* We need a new PDP entry */
 1353                         nkpg = vm_page_alloc(NULL, nkpt,
 1354                             VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 1355                         if (!nkpg)
 1356                                 panic("pmap_growkernel: no memory to grow kernel");
 1357                         pmap_zero_page(nkpg);
 1358                         paddr = VM_PAGE_TO_PHYS(nkpg);
 1359                         newpdp = (pdp_entry_t)
 1360                                 (paddr | PG_V | PG_RW | PG_A | PG_M);
 1361                         *pmap_pdpe(kernel_pmap, kernel_vm_end) = newpdp;
 1362                         continue; /* try again */
 1363                 }
 1364                 if ((*pde & PG_V) != 0) {
 1365                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1366                         continue;
 1367                 }
 1368 
 1369                 /*
 1370                  * This index is bogus, but out of the way
 1371                  */
 1372                 nkpg = vm_page_alloc(NULL, nkpt,
 1373                     VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 1374                 if (!nkpg)
 1375                         panic("pmap_growkernel: no memory to grow kernel");
 1376 
 1377                 nkpt++;
 1378 
 1379                 pmap_zero_page(nkpg);
 1380                 paddr = VM_PAGE_TO_PHYS(nkpg);
 1381                 newpdir = (pd_entry_t) (paddr | PG_V | PG_RW | PG_A | PG_M);
 1382                 *pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
 1383 
 1384                 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
 1385         }
 1386 }
 1387 
 1388 
 1389 /***************************************************
 1390  * page management routines.
 1391  ***************************************************/
 1392 
 1393 /*
 1394  * free the pv_entry back to the free list
 1395  */
 1396 static PMAP_INLINE void
 1397 free_pv_entry(pv_entry_t pv)
 1398 {
 1399         pv_entry_count--;
 1400         uma_zfree(pvzone, pv);
 1401 }
 1402 
 1403 /*
 1404  * get a new pv_entry, allocating a block from the system
 1405  * when needed.
 1406  * the memory allocation is performed bypassing the malloc code
 1407  * because of the possibility of allocations at interrupt time.
 1408  */
 1409 static pv_entry_t
 1410 get_pv_entry(void)
 1411 {
 1412         pv_entry_count++;
 1413         if (pv_entry_high_water &&
 1414                 (pv_entry_count > pv_entry_high_water) &&
 1415                 (pmap_pagedaemon_waken == 0)) {
 1416                 pmap_pagedaemon_waken = 1;
 1417                 wakeup (&vm_pages_needed);
 1418         }
 1419         return uma_zalloc(pvzone, M_NOWAIT);
 1420 }
 1421 
 1422 
 1423 static int
 1424 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va, pd_entry_t ptepde)
 1425 {
 1426         pv_entry_t pv;
 1427         int rtval;
 1428 
 1429         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1430         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1431         if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
 1432                 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 1433                         if (pmap == pv->pv_pmap && va == pv->pv_va) 
 1434                                 break;
 1435                 }
 1436         } else {
 1437                 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
 1438                         if (va == pv->pv_va) 
 1439                                 break;
 1440                 }
 1441         }
 1442 
 1443         rtval = 0;
 1444         if (pv) {
 1445                 rtval = pmap_unuse_pt(pmap, va, ptepde);
 1446                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1447                 m->md.pv_list_count--;
 1448                 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
 1449                         vm_page_flag_clear(m, PG_WRITEABLE);
 1450 
 1451                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 1452                 free_pv_entry(pv);
 1453         }
 1454                         
 1455         return rtval;
 1456 }
 1457 
 1458 /*
 1459  * Create a pv entry for page at pa for
 1460  * (pmap, va).
 1461  */
 1462 static void
 1463 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
 1464 {
 1465         pv_entry_t pv;
 1466 
 1467         pv = get_pv_entry();
 1468         if (pv == NULL)
 1469                 panic("no pv entries: increase vm.pmap.shpgperproc");
 1470         pv->pv_va = va;
 1471         pv->pv_pmap = pmap;
 1472 
 1473         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1474         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1475         TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
 1476         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 1477         m->md.pv_list_count++;
 1478 }
 1479 
 1480 /*
 1481  * pmap_remove_pte: do the things to unmap a page in a process
 1482  */
 1483 static int
 1484 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, pd_entry_t ptepde)
 1485 {
 1486         pt_entry_t oldpte;
 1487         vm_page_t m;
 1488 
 1489         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1490         oldpte = pte_load_clear(ptq);
 1491         if (oldpte & PG_W)
 1492                 pmap->pm_stats.wired_count -= 1;
 1493         /*
 1494          * Machines that don't support invlpg, also don't support
 1495          * PG_G.
 1496          */
 1497         if (oldpte & PG_G)
 1498                 pmap_invalidate_page(kernel_pmap, va);
 1499         pmap->pm_stats.resident_count -= 1;
 1500         if (oldpte & PG_MANAGED) {
 1501                 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 1502                 if (oldpte & PG_M) {
 1503 #if defined(PMAP_DIAGNOSTIC)
 1504                         if (pmap_nw_modified((pt_entry_t) oldpte)) {
 1505                                 printf(
 1506         "pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
 1507                                     va, oldpte);
 1508                         }
 1509 #endif
 1510                         if (pmap_track_modified(va))
 1511                                 vm_page_dirty(m);
 1512                 }
 1513                 if (oldpte & PG_A)
 1514                         vm_page_flag_set(m, PG_REFERENCED);
 1515                 return pmap_remove_entry(pmap, m, va, ptepde);
 1516         } else {
 1517                 return pmap_unuse_pt(pmap, va, ptepde);
 1518         }
 1519 }
 1520 
 1521 /*
 1522  * Remove a single page from a process address space
 1523  */
 1524 static void
 1525 pmap_remove_page(pmap_t pmap, vm_offset_t va)
 1526 {
 1527         pd_entry_t ptepde;
 1528         pt_entry_t *pte;
 1529 
 1530         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1531         pte = pmap_pte_pde(pmap, va, &ptepde);
 1532         if (pte == NULL || (*pte & PG_V) == 0)
 1533                 return;
 1534         pmap_remove_pte(pmap, pte, va, ptepde);
 1535         pmap_invalidate_page(pmap, va);
 1536 }
 1537 
 1538 /*
 1539  *      Remove the given range of addresses from the specified map.
 1540  *
 1541  *      It is assumed that the start and end are properly
 1542  *      rounded to the page size.
 1543  */
 1544 void
 1545 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1546 {
 1547         vm_offset_t va_next;
 1548         pml4_entry_t *pml4e;
 1549         pdp_entry_t *pdpe;
 1550         pd_entry_t ptpaddr, *pde;
 1551         pt_entry_t *pte;
 1552         int anyvalid;
 1553 
 1554         /*
 1555          * Perform an unsynchronized read.  This is, however, safe.
 1556          */
 1557         if (pmap->pm_stats.resident_count == 0)
 1558                 return;
 1559 
 1560         anyvalid = 0;
 1561 
 1562         vm_page_lock_queues();
 1563         PMAP_LOCK(pmap);
 1564 
 1565         /*
 1566          * special handling of removing one page.  a very
 1567          * common operation and easy to short circuit some
 1568          * code.
 1569          */
 1570         if (sva + PAGE_SIZE == eva) {
 1571                 pde = pmap_pde(pmap, sva);
 1572                 if (pde && (*pde & PG_PS) == 0) {
 1573                         pmap_remove_page(pmap, sva);
 1574                         goto out;
 1575                 }
 1576         }
 1577 
 1578         for (; sva < eva; sva = va_next) {
 1579 
 1580                 if (pmap->pm_stats.resident_count == 0)
 1581                         break;
 1582 
 1583                 pml4e = pmap_pml4e(pmap, sva);
 1584                 if (pml4e == 0) {
 1585                         va_next = (sva + NBPML4) & ~PML4MASK;
 1586                         continue;
 1587                 }
 1588 
 1589                 pdpe = pmap_pdpe(pmap, sva);
 1590                 if (pdpe == 0) {
 1591                         va_next = (sva + NBPDP) & ~PDPMASK;
 1592                         continue;
 1593                 }
 1594 
 1595                 /*
 1596                  * Calculate index for next page table.
 1597                  */
 1598                 va_next = (sva + NBPDR) & ~PDRMASK;
 1599 
 1600                 pde = pmap_pde(pmap, sva);
 1601                 if (pde == 0)
 1602                         continue;
 1603                 ptpaddr = *pde;
 1604 
 1605                 /*
 1606                  * Weed out invalid mappings.
 1607                  */
 1608                 if (ptpaddr == 0)
 1609                         continue;
 1610 
 1611                 /*
 1612                  * Check for large page.
 1613                  */
 1614                 if ((ptpaddr & PG_PS) != 0) {
 1615                         *pde = 0;
 1616                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1617                         anyvalid = 1;
 1618                         continue;
 1619                 }
 1620 
 1621                 /*
 1622                  * Limit our scan to either the end of the va represented
 1623                  * by the current page table page, or to the end of the
 1624                  * range being removed.
 1625                  */
 1626                 if (va_next > eva)
 1627                         va_next = eva;
 1628 
 1629                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1630                     sva += PAGE_SIZE) {
 1631                         if (*pte == 0)
 1632                                 continue;
 1633                         anyvalid = 1;
 1634                         if (pmap_remove_pte(pmap, pte, sva, ptpaddr))
 1635                                 break;
 1636                 }
 1637         }
 1638 out:
 1639         vm_page_unlock_queues();
 1640         if (anyvalid)
 1641                 pmap_invalidate_all(pmap);
 1642         PMAP_UNLOCK(pmap);
 1643 }
 1644 
 1645 /*
 1646  *      Routine:        pmap_remove_all
 1647  *      Function:
 1648  *              Removes this physical page from
 1649  *              all physical maps in which it resides.
 1650  *              Reflects back modify bits to the pager.
 1651  *
 1652  *      Notes:
 1653  *              Original versions of this routine were very
 1654  *              inefficient because they iteratively called
 1655  *              pmap_remove (slow...)
 1656  */
 1657 
 1658 void
 1659 pmap_remove_all(vm_page_t m)
 1660 {
 1661         register pv_entry_t pv;
 1662         pt_entry_t *pte, tpte;
 1663         pd_entry_t ptepde;
 1664 
 1665 #if defined(PMAP_DIAGNOSTIC)
 1666         /*
 1667          * XXX This makes pmap_remove_all() illegal for non-managed pages!
 1668          */
 1669         if (m->flags & PG_FICTITIOUS) {
 1670                 panic("pmap_remove_all: illegal for unmanaged page, va: 0x%lx",
 1671                     VM_PAGE_TO_PHYS(m));
 1672         }
 1673 #endif
 1674         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1675         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 1676                 PMAP_LOCK(pv->pv_pmap);
 1677                 pv->pv_pmap->pm_stats.resident_count--;
 1678                 pte = pmap_pte_pde(pv->pv_pmap, pv->pv_va, &ptepde);
 1679                 tpte = pte_load_clear(pte);
 1680                 if (tpte & PG_W)
 1681                         pv->pv_pmap->pm_stats.wired_count--;
 1682                 if (tpte & PG_A)
 1683                         vm_page_flag_set(m, PG_REFERENCED);
 1684 
 1685                 /*
 1686                  * Update the vm_page_t clean and reference bits.
 1687                  */
 1688                 if (tpte & PG_M) {
 1689 #if defined(PMAP_DIAGNOSTIC)
 1690                         if (pmap_nw_modified((pt_entry_t) tpte)) {
 1691                                 printf(
 1692         "pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
 1693                                     pv->pv_va, tpte);
 1694                         }
 1695 #endif
 1696                         if (pmap_track_modified(pv->pv_va))
 1697                                 vm_page_dirty(m);
 1698                 }
 1699                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 1700                 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
 1701                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 1702                 m->md.pv_list_count--;
 1703                 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, ptepde);
 1704                 PMAP_UNLOCK(pv->pv_pmap);
 1705                 free_pv_entry(pv);
 1706         }
 1707         vm_page_flag_clear(m, PG_WRITEABLE);
 1708 }
 1709 
 1710 /*
 1711  *      Set the physical protection on the
 1712  *      specified range of this map as requested.
 1713  */
 1714 void
 1715 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1716 {
 1717         vm_offset_t va_next;
 1718         pml4_entry_t *pml4e;
 1719         pdp_entry_t *pdpe;
 1720         pd_entry_t ptpaddr, *pde;
 1721         pt_entry_t *pte;
 1722         int anychanged;
 1723 
 1724         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1725                 pmap_remove(pmap, sva, eva);
 1726                 return;
 1727         }
 1728 
 1729         if (prot & VM_PROT_WRITE)
 1730                 return;
 1731 
 1732         anychanged = 0;
 1733 
 1734         vm_page_lock_queues();
 1735         PMAP_LOCK(pmap);
 1736         for (; sva < eva; sva = va_next) {
 1737 
 1738                 pml4e = pmap_pml4e(pmap, sva);
 1739                 if (pml4e == 0) {
 1740                         va_next = (sva + NBPML4) & ~PML4MASK;
 1741                         continue;
 1742                 }
 1743 
 1744                 pdpe = pmap_pdpe(pmap, sva);
 1745                 if (pdpe == 0) {
 1746                         va_next = (sva + NBPDP) & ~PDPMASK;
 1747                         continue;
 1748                 }
 1749 
 1750                 va_next = (sva + NBPDR) & ~PDRMASK;
 1751 
 1752                 pde = pmap_pde(pmap, sva);
 1753                 if (pde == NULL)
 1754                         continue;
 1755                 ptpaddr = *pde;
 1756 
 1757                 /*
 1758                  * Weed out invalid mappings.
 1759                  */
 1760                 if (ptpaddr == 0)
 1761                         continue;
 1762 
 1763                 /*
 1764                  * Check for large page.
 1765                  */
 1766                 if ((ptpaddr & PG_PS) != 0) {
 1767                         *pde &= ~(PG_M|PG_RW);
 1768                         pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
 1769                         anychanged = 1;
 1770                         continue;
 1771                 }
 1772 
 1773                 if (va_next > eva)
 1774                         va_next = eva;
 1775 
 1776                 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 1777                     sva += PAGE_SIZE) {
 1778                         pt_entry_t obits, pbits;
 1779                         vm_page_t m;
 1780 
 1781 retry:
 1782                         obits = pbits = *pte;
 1783                         if (pbits & PG_MANAGED) {
 1784                                 m = NULL;
 1785                                 if (pbits & PG_A) {
 1786                                         m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 1787                                         vm_page_flag_set(m, PG_REFERENCED);
 1788                                         pbits &= ~PG_A;
 1789                                 }
 1790                                 if ((pbits & PG_M) != 0 &&
 1791                                     pmap_track_modified(sva)) {
 1792                                         if (m == NULL)
 1793                                                 m = PHYS_TO_VM_PAGE(pbits &
 1794                                                     PG_FRAME);
 1795                                         vm_page_dirty(m);
 1796                                 }
 1797                         }
 1798 
 1799                         pbits &= ~(PG_RW | PG_M);
 1800 
 1801                         if (pbits != obits) {
 1802                                 if (!atomic_cmpset_long(pte, obits, pbits))
 1803                                         goto retry;
 1804                                 if (obits & PG_G)
 1805                                         pmap_invalidate_page(pmap, sva);
 1806                                 else
 1807                                         anychanged = 1;
 1808                         }
 1809                 }
 1810         }
 1811         vm_page_unlock_queues();
 1812         if (anychanged)
 1813                 pmap_invalidate_all(pmap);
 1814         PMAP_UNLOCK(pmap);
 1815 }
 1816 
 1817 /*
 1818  *      Insert the given physical page (p) at
 1819  *      the specified virtual address (v) in the
 1820  *      target physical map with the protection requested.
 1821  *
 1822  *      If specified, the page will be wired down, meaning
 1823  *      that the related pte can not be reclaimed.
 1824  *
 1825  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 1826  *      or lose information.  That is, this routine must actually
 1827  *      insert this page into the given map NOW.
 1828  */
 1829 void
 1830 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 1831            boolean_t wired)
 1832 {
 1833         vm_paddr_t pa;
 1834         register pt_entry_t *pte;
 1835         vm_paddr_t opa;
 1836         pd_entry_t ptepde;
 1837         pt_entry_t origpte, newpte;
 1838         vm_page_t mpte, om;
 1839 
 1840         va = trunc_page(va);
 1841 #ifdef PMAP_DIAGNOSTIC
 1842         if (va > VM_MAX_KERNEL_ADDRESS)
 1843                 panic("pmap_enter: toobig");
 1844         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
 1845                 panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va);
 1846 #endif
 1847 
 1848         mpte = NULL;
 1849 
 1850         vm_page_lock_queues();
 1851         PMAP_LOCK(pmap);
 1852 
 1853         /*
 1854          * In the case that a page table page is not
 1855          * resident, we are creating it here.
 1856          */
 1857         if (va < VM_MAXUSER_ADDRESS) {
 1858                 mpte = pmap_allocpte(pmap, va, M_WAITOK);
 1859         }
 1860 #if 0 && defined(PMAP_DIAGNOSTIC)
 1861         else {
 1862                 pd_entry_t *pdeaddr = pmap_pde(pmap, va);
 1863                 origpte = *pdeaddr;
 1864                 if ((origpte & PG_V) == 0) { 
 1865                         panic("pmap_enter: invalid kernel page table page, pde=%p, va=%p\n",
 1866                                 origpte, va);
 1867                 }
 1868         }
 1869 #endif
 1870 
 1871         pte = pmap_pte_pde(pmap, va, &ptepde);
 1872 
 1873         /*
 1874          * Page Directory table entry not valid, we need a new PT page
 1875          */
 1876         if (pte == NULL)
 1877                 panic("pmap_enter: invalid page directory va=%#lx\n", va);
 1878 
 1879         pa = VM_PAGE_TO_PHYS(m);
 1880         om = NULL;
 1881         origpte = *pte;
 1882         opa = origpte & PG_FRAME;
 1883 
 1884         if (origpte & PG_PS)
 1885                 panic("pmap_enter: attempted pmap_enter on 2MB page");
 1886 
 1887         /*
 1888          * Mapping has not changed, must be protection or wiring change.
 1889          */
 1890         if (origpte && (opa == pa)) {
 1891                 /*
 1892                  * Wiring change, just update stats. We don't worry about
 1893                  * wiring PT pages as they remain resident as long as there
 1894                  * are valid mappings in them. Hence, if a user page is wired,
 1895                  * the PT page will be also.
 1896                  */
 1897                 if (wired && ((origpte & PG_W) == 0))
 1898                         pmap->pm_stats.wired_count++;
 1899                 else if (!wired && (origpte & PG_W))
 1900                         pmap->pm_stats.wired_count--;
 1901 
 1902 #if defined(PMAP_DIAGNOSTIC)
 1903                 if (pmap_nw_modified((pt_entry_t) origpte)) {
 1904                         printf(
 1905         "pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
 1906                             va, origpte);
 1907                 }
 1908 #endif
 1909 
 1910                 /*
 1911                  * Remove extra pte reference
 1912                  */
 1913                 if (mpte)
 1914                         mpte->wire_count--;
 1915 
 1916                 /*
 1917                  * We might be turning off write access to the page,
 1918                  * so we go ahead and sense modify status.
 1919                  */
 1920                 if (origpte & PG_MANAGED) {
 1921                         om = m;
 1922                         pa |= PG_MANAGED;
 1923                 }
 1924                 goto validate;
 1925         } 
 1926         /*
 1927          * Mapping has changed, invalidate old range and fall through to
 1928          * handle validating new mapping.
 1929          */
 1930         if (opa) {
 1931                 int err;
 1932                 if (origpte & PG_W)
 1933                         pmap->pm_stats.wired_count--;
 1934                 if (origpte & PG_MANAGED) {
 1935                         om = PHYS_TO_VM_PAGE(opa);
 1936                         err = pmap_remove_entry(pmap, om, va, ptepde);
 1937                 } else
 1938                         err = pmap_unuse_pt(pmap, va, ptepde);
 1939                 if (err)
 1940                         panic("pmap_enter: pte vanished, va: 0x%lx", va);
 1941         } else
 1942                 pmap->pm_stats.resident_count++;
 1943 
 1944         /*
 1945          * Enter on the PV list if part of our managed memory. Note that we
 1946          * raise IPL while manipulating pv_table since pmap_enter can be
 1947          * called at interrupt time.
 1948          */
 1949         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
 1950                 pmap_insert_entry(pmap, va, m);
 1951                 pa |= PG_MANAGED;
 1952         }
 1953 
 1954         /*
 1955          * Increment counters
 1956          */
 1957         if (wired)
 1958                 pmap->pm_stats.wired_count++;
 1959 
 1960 validate:
 1961         /*
 1962          * Now validate mapping with desired protection/wiring.
 1963          */
 1964         newpte = (pt_entry_t)(pa | PG_V);
 1965         if ((prot & VM_PROT_WRITE) != 0)
 1966                 newpte |= PG_RW;
 1967         if ((prot & VM_PROT_EXECUTE) == 0)
 1968                 newpte |= pg_nx;
 1969         if (wired)
 1970                 newpte |= PG_W;
 1971         if (va < VM_MAXUSER_ADDRESS)
 1972                 newpte |= PG_U;
 1973         if (pmap == kernel_pmap)
 1974                 newpte |= PG_G;
 1975 
 1976         /*
 1977          * if the mapping or permission bits are different, we need
 1978          * to update the pte.
 1979          */
 1980         if ((origpte & ~(PG_M|PG_A)) != newpte) {
 1981                 if (origpte & PG_MANAGED) {
 1982                         origpte = pte_load_store(pte, newpte | PG_A);
 1983                         if ((origpte & PG_M) && pmap_track_modified(va))
 1984                                 vm_page_dirty(om);
 1985                         if (origpte & PG_A)
 1986                                 vm_page_flag_set(om, PG_REFERENCED);
 1987                 } else
 1988                         pte_store(pte, newpte | PG_A);
 1989                 if (origpte) {
 1990                         pmap_invalidate_page(pmap, va);
 1991                 }
 1992         }
 1993         vm_page_unlock_queues();
 1994         PMAP_UNLOCK(pmap);
 1995 }
 1996 
 1997 /*
 1998  * this code makes some *MAJOR* assumptions:
 1999  * 1. Current pmap & pmap exists.
 2000  * 2. Not wired.
 2001  * 3. Read access.
 2002  * 4. No page table pages.
 2003  * 6. Page IS managed.
 2004  * but is *MUCH* faster than pmap_enter...
 2005  */
 2006 
 2007 vm_page_t
 2008 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
 2009 {
 2010         pt_entry_t *pte;
 2011         vm_paddr_t pa;
 2012 
 2013         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2014         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 2015         PMAP_LOCK(pmap);
 2016 
 2017         /*
 2018          * In the case that a page table page is not
 2019          * resident, we are creating it here.
 2020          */
 2021         if (va < VM_MAXUSER_ADDRESS) {
 2022                 vm_pindex_t ptepindex;
 2023                 pd_entry_t *ptepa;
 2024 
 2025                 /*
 2026                  * Calculate pagetable page index
 2027                  */
 2028                 ptepindex = pmap_pde_pindex(va);
 2029                 if (mpte && (mpte->pindex == ptepindex)) {
 2030                         mpte->wire_count++;
 2031                 } else {
 2032         retry:
 2033                         /*
 2034                          * Get the page directory entry
 2035                          */
 2036                         ptepa = pmap_pde(pmap, va);
 2037 
 2038                         /*
 2039                          * If the page table page is mapped, we just increment
 2040                          * the hold count, and activate it.
 2041                          */
 2042                         if (ptepa && (*ptepa & PG_V) != 0) {
 2043                                 if (*ptepa & PG_PS)
 2044                                         panic("pmap_enter_quick: unexpected mapping into 2MB page");
 2045                                 mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
 2046                                 mpte->wire_count++;
 2047                         } else {
 2048                                 mpte = _pmap_allocpte(pmap, ptepindex,
 2049                                     M_NOWAIT);
 2050                                 if (mpte == NULL) {
 2051                                         PMAP_UNLOCK(pmap);
 2052                                         vm_page_busy(m);
 2053                                         vm_page_unlock_queues();
 2054                                         VM_OBJECT_UNLOCK(m->object);
 2055                                         VM_WAIT;
 2056                                         VM_OBJECT_LOCK(m->object);
 2057                                         vm_page_lock_queues();
 2058                                         vm_page_wakeup(m);
 2059                                         PMAP_LOCK(pmap);
 2060                                         goto retry;
 2061                                 }
 2062                         }
 2063                 }
 2064         } else {
 2065                 mpte = NULL;
 2066         }
 2067 
 2068         /*
 2069          * This call to vtopte makes the assumption that we are
 2070          * entering the page into the current pmap.  In order to support
 2071          * quick entry into any pmap, one would likely use pmap_pte.
 2072          * But that isn't as quick as vtopte.
 2073          */
 2074         pte = vtopte(va);
 2075         if (*pte) {
 2076                 if (mpte != NULL) {
 2077                         pmap_unwire_pte_hold(pmap, va, mpte);
 2078                         mpte = NULL;
 2079                 }
 2080                 goto out;
 2081         }
 2082 
 2083         /*
 2084          * Enter on the PV list if part of our managed memory. Note that we
 2085          * raise IPL while manipulating pv_table since pmap_enter can be
 2086          * called at interrupt time.
 2087          */
 2088         if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
 2089                 pmap_insert_entry(pmap, va, m);
 2090 
 2091         /*
 2092          * Increment counters
 2093          */
 2094         pmap->pm_stats.resident_count++;
 2095 
 2096         pa = VM_PAGE_TO_PHYS(m);
 2097 
 2098         /*
 2099          * Now validate mapping with RO protection
 2100          */
 2101         if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
 2102                 pte_store(pte, pa | PG_V | PG_U);
 2103         else
 2104                 pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 2105 out:
 2106         PMAP_UNLOCK(pmap);
 2107         return mpte;
 2108 }
 2109 
 2110 /*
 2111  * Make a temporary mapping for a physical address.  This is only intended
 2112  * to be used for panic dumps.
 2113  */
 2114 void *
 2115 pmap_kenter_temporary(vm_paddr_t pa, int i)
 2116 {
 2117         vm_offset_t va;
 2118 
 2119         va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 2120         pmap_kenter(va, pa);
 2121         invlpg(va);
 2122         return ((void *)crashdumpmap);
 2123 }
 2124 
 2125 /*
 2126  * This code maps large physical mmap regions into the
 2127  * processor address space.  Note that some shortcuts
 2128  * are taken, but the code works.
 2129  */
 2130 void
 2131 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2132                     vm_object_t object, vm_pindex_t pindex,
 2133                     vm_size_t size)
 2134 {
 2135         vm_page_t p;
 2136 
 2137         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2138         KASSERT(object->type == OBJT_DEVICE,
 2139             ("pmap_object_init_pt: non-device object"));
 2140         if (((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
 2141                 int i;
 2142                 vm_page_t m[1];
 2143                 int npdes;
 2144                 pd_entry_t ptepa, *pde;
 2145 
 2146                 PMAP_LOCK(pmap);
 2147                 pde = pmap_pde(pmap, addr);
 2148                 if (pde != 0 && (*pde & PG_V) != 0)
 2149                         goto out;
 2150                 PMAP_UNLOCK(pmap);
 2151 retry:
 2152                 p = vm_page_lookup(object, pindex);
 2153                 if (p != NULL) {
 2154                         vm_page_lock_queues();
 2155                         if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
 2156                                 goto retry;
 2157                 } else {
 2158                         p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
 2159                         if (p == NULL)
 2160                                 return;
 2161                         m[0] = p;
 2162 
 2163                         if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
 2164                                 vm_page_lock_queues();
 2165                                 vm_page_free(p);
 2166                                 vm_page_unlock_queues();
 2167                                 return;
 2168                         }
 2169 
 2170                         p = vm_page_lookup(object, pindex);
 2171                         vm_page_lock_queues();
 2172                         vm_page_wakeup(p);
 2173                 }
 2174                 vm_page_unlock_queues();
 2175 
 2176                 ptepa = VM_PAGE_TO_PHYS(p);
 2177                 if (ptepa & (NBPDR - 1))
 2178                         return;
 2179 
 2180                 p->valid = VM_PAGE_BITS_ALL;
 2181 
 2182                 PMAP_LOCK(pmap);
 2183                 pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
 2184                 npdes = size >> PDRSHIFT;
 2185                 for(i = 0; i < npdes; i++) {
 2186                         pde_store(pde, ptepa | PG_U | PG_RW | PG_V | PG_PS);
 2187                         ptepa += NBPDR;
 2188                         pde++;
 2189                 }
 2190                 pmap_invalidate_all(pmap);
 2191 out:
 2192                 PMAP_UNLOCK(pmap);
 2193         }
 2194 }
 2195 
 2196 /*
 2197  *      Routine:        pmap_change_wiring
 2198  *      Function:       Change the wiring attribute for a map/virtual-address
 2199  *                      pair.
 2200  *      In/out conditions:
 2201  *                      The mapping must already exist in the pmap.
 2202  */
 2203 void
 2204 pmap_change_wiring(pmap, va, wired)
 2205         register pmap_t pmap;
 2206         vm_offset_t va;
 2207         boolean_t wired;
 2208 {
 2209         register pt_entry_t *pte;
 2210 
 2211         /*
 2212          * Wiring is not a hardware characteristic so there is no need to
 2213          * invalidate TLB.
 2214          */
 2215         PMAP_LOCK(pmap);
 2216         pte = pmap_pte(pmap, va);
 2217         if (wired && (*pte & PG_W) == 0) {
 2218                 pmap->pm_stats.wired_count++;
 2219                 atomic_set_long(pte, PG_W);
 2220         } else if (!wired && (*pte & PG_W) != 0) {
 2221                 pmap->pm_stats.wired_count--;
 2222                 atomic_clear_long(pte, PG_W);
 2223         }
 2224         PMAP_UNLOCK(pmap);
 2225 }
 2226 
 2227 
 2228 
 2229 /*
 2230  *      Copy the range specified by src_addr/len
 2231  *      from the source map to the range dst_addr/len
 2232  *      in the destination map.
 2233  *
 2234  *      This routine is only advisory and need not do anything.
 2235  */
 2236 
 2237 void
 2238 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
 2239           vm_offset_t src_addr)
 2240 {
 2241         vm_offset_t addr;
 2242         vm_offset_t end_addr = src_addr + len;
 2243         vm_offset_t va_next;
 2244         vm_page_t m;
 2245 
 2246         if (dst_addr != src_addr)
 2247                 return;
 2248 
 2249         if (!pmap_is_current(src_pmap))
 2250                 return;
 2251 
 2252         vm_page_lock_queues();
 2253         if (dst_pmap < src_pmap) {
 2254                 PMAP_LOCK(dst_pmap);
 2255                 PMAP_LOCK(src_pmap);
 2256         } else {
 2257                 PMAP_LOCK(src_pmap);
 2258                 PMAP_LOCK(dst_pmap);
 2259         }
 2260         for (addr = src_addr; addr < end_addr; addr = va_next) {
 2261                 pt_entry_t *src_pte, *dst_pte;
 2262                 vm_page_t dstmpte, srcmpte;
 2263                 pml4_entry_t *pml4e;
 2264                 pdp_entry_t *pdpe;
 2265                 pd_entry_t srcptepaddr, *pde;
 2266 
 2267                 if (addr >= UPT_MIN_ADDRESS)
 2268                         panic("pmap_copy: invalid to pmap_copy page tables");
 2269 
 2270                 /*
 2271                  * Don't let optional prefaulting of pages make us go
 2272                  * way below the low water mark of free pages or way
 2273                  * above high water mark of used pv entries.
 2274                  */
 2275                 if (cnt.v_free_count < cnt.v_free_reserved ||
 2276                     pv_entry_count > pv_entry_high_water)
 2277                         break;
 2278                 
 2279                 pml4e = pmap_pml4e(src_pmap, addr);
 2280                 if (pml4e == 0) {
 2281                         va_next = (addr + NBPML4) & ~PML4MASK;
 2282                         continue;
 2283                 }
 2284 
 2285                 pdpe = pmap_pdpe(src_pmap, addr);
 2286                 if (pdpe == 0) {
 2287                         va_next = (addr + NBPDP) & ~PDPMASK;
 2288                         continue;
 2289                 }
 2290 
 2291                 va_next = (addr + NBPDR) & ~PDRMASK;
 2292 
 2293                 pde = pmap_pde(src_pmap, addr);
 2294                 if (pde)
 2295                         srcptepaddr = *pde;
 2296                 else
 2297                         continue;
 2298                 if (srcptepaddr == 0)
 2299                         continue;
 2300                         
 2301                 if (srcptepaddr & PG_PS) {
 2302                         pde = pmap_pde(dst_pmap, addr);
 2303                         if (pde == 0) {
 2304                                 /*
 2305                                  * XXX should do an allocpte here to
 2306                                  * instantiate the pde
 2307                                  */
 2308                                 continue;
 2309                         }
 2310                         if (*pde == 0) {
 2311                                 *pde = srcptepaddr;
 2312                                 dst_pmap->pm_stats.resident_count +=
 2313                                     NBPDR / PAGE_SIZE;
 2314                         }
 2315                         continue;
 2316                 }
 2317 
 2318                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
 2319                 if (srcmpte->wire_count == 0)
 2320                         panic("pmap_copy: source page table page is unused");
 2321 
 2322                 if (va_next > end_addr)
 2323                         va_next = end_addr;
 2324 
 2325                 src_pte = vtopte(addr);
 2326                 while (addr < va_next) {
 2327                         pt_entry_t ptetemp;
 2328                         ptetemp = *src_pte;
 2329                         /*
 2330                          * we only virtual copy managed pages
 2331                          */
 2332                         if ((ptetemp & PG_MANAGED) != 0) {
 2333                                 /*
 2334                                  * We have to check after allocpte for the
 2335                                  * pte still being around...  allocpte can
 2336                                  * block.
 2337                                  */
 2338                                 dstmpte = pmap_allocpte(dst_pmap, addr,
 2339                                     M_NOWAIT);
 2340                                 if (dstmpte == NULL)
 2341                                         break;
 2342                                 dst_pte = (pt_entry_t *)
 2343                                     PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
 2344                                 dst_pte = &dst_pte[pmap_pte_index(addr)];
 2345                                 if (*dst_pte == 0) {
 2346                                         /*
 2347                                          * Clear the modified and
 2348                                          * accessed (referenced) bits
 2349                                          * during the copy.
 2350                                          */
 2351                                         m = PHYS_TO_VM_PAGE(ptetemp & PG_FRAME);
 2352                                         *dst_pte = ptetemp & ~(PG_M | PG_A);
 2353                                         dst_pmap->pm_stats.resident_count++;
 2354                                         pmap_insert_entry(dst_pmap, addr, m);
 2355                                 } else
 2356                                         pmap_unwire_pte_hold(dst_pmap, addr, dstmpte);
 2357                                 if (dstmpte->wire_count >= srcmpte->wire_count)
 2358                                         break;
 2359                         }
 2360                         addr += PAGE_SIZE;
 2361                         src_pte++;
 2362                 }
 2363         }
 2364         vm_page_unlock_queues();
 2365         PMAP_UNLOCK(src_pmap);
 2366         PMAP_UNLOCK(dst_pmap);
 2367 }       
 2368 
 2369 /*
 2370  *      pmap_zero_page zeros the specified hardware page by mapping 
 2371  *      the page into KVM and using bzero to clear its contents.
 2372  */
 2373 void
 2374 pmap_zero_page(vm_page_t m)
 2375 {
 2376         vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 2377 
 2378         pagezero((void *)va);
 2379 }
 2380 
 2381 /*
 2382  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 2383  *      the page into KVM and using bzero to clear its contents.
 2384  *
 2385  *      off and size may not cover an area beyond a single hardware page.
 2386  */
 2387 void
 2388 pmap_zero_page_area(vm_page_t m, int off, int size)
 2389 {
 2390         vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 2391 
 2392         if (off == 0 && size == PAGE_SIZE)
 2393                 pagezero((void *)va);
 2394         else
 2395                 bzero((char *)va + off, size);
 2396 }
 2397 
 2398 /*
 2399  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 2400  *      the page into KVM and using bzero to clear its contents.  This
 2401  *      is intended to be called from the vm_pagezero process only and
 2402  *      outside of Giant.
 2403  */
 2404 void
 2405 pmap_zero_page_idle(vm_page_t m)
 2406 {
 2407         vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 2408 
 2409         pagezero((void *)va);
 2410 }
 2411 
 2412 /*
 2413  *      pmap_copy_page copies the specified (machine independent)
 2414  *      page by mapping the page into virtual memory and using
 2415  *      bcopy to copy the page, one machine dependent page at a
 2416  *      time.
 2417  */
 2418 void
 2419 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
 2420 {
 2421         vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
 2422         vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
 2423 
 2424         pagecopy((void *)src, (void *)dst);
 2425 }
 2426 
 2427 /*
 2428  * Returns true if the pmap's pv is one of the first
 2429  * 16 pvs linked to from this page.  This count may
 2430  * be changed upwards or downwards in the future; it
 2431  * is only necessary that true be returned for a small
 2432  * subset of pmaps for proper page aging.
 2433  */
 2434 boolean_t
 2435 pmap_page_exists_quick(pmap, m)
 2436         pmap_t pmap;
 2437         vm_page_t m;
 2438 {
 2439         pv_entry_t pv;
 2440         int loops = 0;
 2441 
 2442         if (m->flags & PG_FICTITIOUS)
 2443                 return FALSE;
 2444 
 2445         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2446         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2447                 if (pv->pv_pmap == pmap) {
 2448                         return TRUE;
 2449                 }
 2450                 loops++;
 2451                 if (loops >= 16)
 2452                         break;
 2453         }
 2454         return (FALSE);
 2455 }
 2456 
 2457 #define PMAP_REMOVE_PAGES_CURPROC_ONLY
 2458 /*
 2459  * Remove all pages from specified address space
 2460  * this aids process exit speeds.  Also, this code
 2461  * is special cased for current process only, but
 2462  * can have the more generic (and slightly slower)
 2463  * mode enabled.  This is much faster than pmap_remove
 2464  * in the case of running down an entire address space.
 2465  */
 2466 void
 2467 pmap_remove_pages(pmap, sva, eva)
 2468         pmap_t pmap;
 2469         vm_offset_t sva, eva;
 2470 {
 2471         pt_entry_t *pte, tpte;
 2472         vm_page_t m;
 2473         pv_entry_t pv, npv;
 2474 
 2475 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2476         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
 2477                 printf("warning: pmap_remove_pages called with non-current pmap\n");
 2478                 return;
 2479         }
 2480 #endif
 2481         vm_page_lock_queues();
 2482         PMAP_LOCK(pmap);
 2483         for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
 2484 
 2485                 if (pv->pv_va >= eva || pv->pv_va < sva) {
 2486                         npv = TAILQ_NEXT(pv, pv_plist);
 2487                         continue;
 2488                 }
 2489 
 2490 #ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
 2491                 pte = vtopte(pv->pv_va);
 2492 #else
 2493                 pte = pmap_pte(pmap, pv->pv_va);
 2494 #endif
 2495                 tpte = *pte;
 2496 
 2497                 if (tpte == 0) {
 2498                         printf("TPTE at %p  IS ZERO @ VA %08lx\n",
 2499                                                         pte, pv->pv_va);
 2500                         panic("bad pte");
 2501                 }
 2502 
 2503 /*
 2504  * We cannot remove wired pages from a process' mapping at this time
 2505  */
 2506                 if (tpte & PG_W) {
 2507                         npv = TAILQ_NEXT(pv, pv_plist);
 2508                         continue;
 2509                 }
 2510 
 2511                 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 2512                 KASSERT(m->phys_addr == (tpte & PG_FRAME),
 2513                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 2514                     m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
 2515 
 2516                 KASSERT(m < &vm_page_array[vm_page_array_size],
 2517                         ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
 2518 
 2519                 pmap->pm_stats.resident_count--;
 2520 
 2521                 pte_clear(pte);
 2522 
 2523                 /*
 2524                  * Update the vm_page_t clean and reference bits.
 2525                  */
 2526                 if (tpte & PG_M) {
 2527                         vm_page_dirty(m);
 2528                 }
 2529 
 2530                 npv = TAILQ_NEXT(pv, pv_plist);
 2531                 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
 2532 
 2533                 m->md.pv_list_count--;
 2534                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2535                 if (TAILQ_EMPTY(&m->md.pv_list))
 2536                         vm_page_flag_clear(m, PG_WRITEABLE);
 2537 
 2538                 pmap_unuse_pt(pmap, pv->pv_va, *vtopde(pv->pv_va));
 2539                 free_pv_entry(pv);
 2540         }
 2541         pmap_invalidate_all(pmap);
 2542         PMAP_UNLOCK(pmap);
 2543         vm_page_unlock_queues();
 2544 }
 2545 
 2546 /*
 2547  *      pmap_is_modified:
 2548  *
 2549  *      Return whether or not the specified physical page was modified
 2550  *      in any physical maps.
 2551  */
 2552 boolean_t
 2553 pmap_is_modified(vm_page_t m)
 2554 {
 2555         pv_entry_t pv;
 2556         pt_entry_t *pte;
 2557         boolean_t rv;
 2558 
 2559         rv = FALSE;
 2560         if (m->flags & PG_FICTITIOUS)
 2561                 return (rv);
 2562 
 2563         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2564         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2565                 /*
 2566                  * if the bit being tested is the modified bit, then
 2567                  * mark clean_map and ptes as never
 2568                  * modified.
 2569                  */
 2570                 if (!pmap_track_modified(pv->pv_va))
 2571                         continue;
 2572 #if defined(PMAP_DIAGNOSTIC)
 2573                 if (!pv->pv_pmap) {
 2574                         printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
 2575                         continue;
 2576                 }
 2577 #endif
 2578                 PMAP_LOCK(pv->pv_pmap);
 2579                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2580                 rv = (*pte & PG_M) != 0;
 2581                 PMAP_UNLOCK(pv->pv_pmap);
 2582                 if (rv)
 2583                         break;
 2584         }
 2585         return (rv);
 2586 }
 2587 
 2588 /*
 2589  *      pmap_is_prefaultable:
 2590  *
 2591  *      Return whether or not the specified virtual address is elgible
 2592  *      for prefault.
 2593  */
 2594 boolean_t
 2595 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 2596 {
 2597         pd_entry_t *pde;
 2598         pt_entry_t *pte;
 2599         boolean_t rv;
 2600 
 2601         rv = FALSE;
 2602         PMAP_LOCK(pmap);
 2603         pde = pmap_pde(pmap, addr);
 2604         if (pde != NULL && (*pde & PG_V)) {
 2605                 pte = vtopte(addr);
 2606                 rv = (*pte & PG_V) == 0;
 2607         }
 2608         PMAP_UNLOCK(pmap);
 2609         return (rv);
 2610 }
 2611 
 2612 /*
 2613  *      Clear the given bit in each of the given page's ptes.
 2614  */
 2615 static __inline void
 2616 pmap_clear_ptes(vm_page_t m, long bit)
 2617 {
 2618         register pv_entry_t pv;
 2619         pt_entry_t pbits, *pte;
 2620 
 2621         if ((m->flags & PG_FICTITIOUS) ||
 2622             (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
 2623                 return;
 2624 
 2625         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2626         /*
 2627          * Loop over all current mappings setting/clearing as appropos If
 2628          * setting RO do we need to clear the VAC?
 2629          */
 2630         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
 2631                 /*
 2632                  * don't write protect pager mappings
 2633                  */
 2634                 if (bit == PG_RW) {
 2635                         if (!pmap_track_modified(pv->pv_va))
 2636                                 continue;
 2637                 }
 2638 
 2639 #if defined(PMAP_DIAGNOSTIC)
 2640                 if (!pv->pv_pmap) {
 2641                         printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
 2642                         continue;
 2643                 }
 2644 #endif
 2645 
 2646                 PMAP_LOCK(pv->pv_pmap);
 2647                 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2648 retry:
 2649                 pbits = *pte;
 2650                 if (pbits & bit) {
 2651                         if (bit == PG_RW) {
 2652                                 if (!atomic_cmpset_long(pte, pbits,
 2653                                     pbits & ~(PG_RW | PG_M)))
 2654                                         goto retry;
 2655                                 if (pbits & PG_M) {
 2656                                         vm_page_dirty(m);
 2657                                 }
 2658                         } else {
 2659                                 atomic_clear_long(pte, bit);
 2660                         }
 2661                         pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2662                 }
 2663                 PMAP_UNLOCK(pv->pv_pmap);
 2664         }
 2665         if (bit == PG_RW)
 2666                 vm_page_flag_clear(m, PG_WRITEABLE);
 2667 }
 2668 
 2669 /*
 2670  *      pmap_page_protect:
 2671  *
 2672  *      Lower the permission for all mappings to a given page.
 2673  */
 2674 void
 2675 pmap_page_protect(vm_page_t m, vm_prot_t prot)
 2676 {
 2677         if ((prot & VM_PROT_WRITE) == 0) {
 2678                 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
 2679                         pmap_clear_ptes(m, PG_RW);
 2680                 } else {
 2681                         pmap_remove_all(m);
 2682                 }
 2683         }
 2684 }
 2685 
 2686 /*
 2687  *      pmap_ts_referenced:
 2688  *
 2689  *      Return a count of reference bits for a page, clearing those bits.
 2690  *      It is not necessary for every reference bit to be cleared, but it
 2691  *      is necessary that 0 only be returned when there are truly no
 2692  *      reference bits set.
 2693  *
 2694  *      XXX: The exact number of bits to check and clear is a matter that
 2695  *      should be tested and standardized at some point in the future for
 2696  *      optimal aging of shared pages.
 2697  */
 2698 int
 2699 pmap_ts_referenced(vm_page_t m)
 2700 {
 2701         register pv_entry_t pv, pvf, pvn;
 2702         pt_entry_t *pte;
 2703         pt_entry_t v;
 2704         int rtval = 0;
 2705 
 2706         if (m->flags & PG_FICTITIOUS)
 2707                 return (rtval);
 2708 
 2709         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 2710         if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 2711 
 2712                 pvf = pv;
 2713 
 2714                 do {
 2715                         pvn = TAILQ_NEXT(pv, pv_list);
 2716 
 2717                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
 2718 
 2719                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
 2720 
 2721                         if (!pmap_track_modified(pv->pv_va))
 2722                                 continue;
 2723 
 2724                         PMAP_LOCK(pv->pv_pmap);
 2725                         pte = pmap_pte(pv->pv_pmap, pv->pv_va);
 2726 
 2727                         if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
 2728                                 atomic_clear_long(pte, PG_A);
 2729                                 pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
 2730 
 2731                                 rtval++;
 2732                                 if (rtval > 4) {
 2733                                         PMAP_UNLOCK(pv->pv_pmap);
 2734                                         break;
 2735                                 }
 2736                         }
 2737                         PMAP_UNLOCK(pv->pv_pmap);
 2738                 } while ((pv = pvn) != NULL && pv != pvf);
 2739         }
 2740 
 2741         return (rtval);
 2742 }
 2743 
 2744 /*
 2745  *      Clear the modify bits on the specified physical page.
 2746  */
 2747 void
 2748 pmap_clear_modify(vm_page_t m)
 2749 {
 2750         pmap_clear_ptes(m, PG_M);
 2751 }
 2752 
 2753 /*
 2754  *      pmap_clear_reference:
 2755  *
 2756  *      Clear the reference bit on the specified physical page.
 2757  */
 2758 void
 2759 pmap_clear_reference(vm_page_t m)
 2760 {
 2761         pmap_clear_ptes(m, PG_A);
 2762 }
 2763 
 2764 /*
 2765  * Miscellaneous support routines follow
 2766  */
 2767 
 2768 /*
 2769  * Map a set of physical memory pages into the kernel virtual
 2770  * address space. Return a pointer to where it is mapped. This
 2771  * routine is intended to be used for mapping device memory,
 2772  * NOT real memory.
 2773  */
 2774 void *
 2775 pmap_mapdev(pa, size)
 2776         vm_paddr_t pa;
 2777         vm_size_t size;
 2778 {
 2779         vm_offset_t va, tmpva, offset;
 2780 
 2781         /* If this fits within the direct map window, use it */
 2782         if (pa < dmaplimit && (pa + size) < dmaplimit)
 2783                 return ((void *)PHYS_TO_DMAP(pa));
 2784         offset = pa & PAGE_MASK;
 2785         size = roundup(offset + size, PAGE_SIZE);
 2786         va = kmem_alloc_nofault(kernel_map, size);
 2787         if (!va)
 2788                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 2789         pa = trunc_page(pa);
 2790         for (tmpva = va; size > 0; ) {
 2791                 pmap_kenter(tmpva, pa);
 2792                 size -= PAGE_SIZE;
 2793                 tmpva += PAGE_SIZE;
 2794                 pa += PAGE_SIZE;
 2795         }
 2796         pmap_invalidate_range(kernel_pmap, va, tmpva);
 2797         return ((void *)(va + offset));
 2798 }
 2799 
 2800 void
 2801 pmap_unmapdev(va, size)
 2802         vm_offset_t va;
 2803         vm_size_t size;
 2804 {
 2805         vm_offset_t base, offset, tmpva;
 2806 
 2807         /* If we gave a direct map region in pmap_mapdev, do nothing */
 2808         if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
 2809                 return;
 2810         base = trunc_page(va);
 2811         offset = va & PAGE_MASK;
 2812         size = roundup(offset + size, PAGE_SIZE);
 2813         for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
 2814                 pmap_kremove(tmpva);
 2815         pmap_invalidate_range(kernel_pmap, va, tmpva);
 2816         kmem_free(kernel_map, base, size);
 2817 }
 2818 
 2819 /*
 2820  * perform the pmap work for mincore
 2821  */
 2822 int
 2823 pmap_mincore(pmap, addr)
 2824         pmap_t pmap;
 2825         vm_offset_t addr;
 2826 {
 2827         pt_entry_t *ptep, pte;
 2828         vm_page_t m;
 2829         int val = 0;
 2830         
 2831         PMAP_LOCK(pmap);
 2832         ptep = pmap_pte(pmap, addr);
 2833         pte = (ptep != NULL) ? *ptep : 0;
 2834         PMAP_UNLOCK(pmap);
 2835 
 2836         if (pte != 0) {
 2837                 vm_paddr_t pa;
 2838 
 2839                 val = MINCORE_INCORE;
 2840                 if ((pte & PG_MANAGED) == 0)
 2841                         return val;
 2842 
 2843                 pa = pte & PG_FRAME;
 2844 
 2845                 m = PHYS_TO_VM_PAGE(pa);
 2846 
 2847                 /*
 2848                  * Modified by us
 2849                  */
 2850                 if (pte & PG_M)
 2851                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
 2852                 else {
 2853                         /*
 2854                          * Modified by someone else
 2855                          */
 2856                         vm_page_lock_queues();
 2857                         if (m->dirty || pmap_is_modified(m))
 2858                                 val |= MINCORE_MODIFIED_OTHER;
 2859                         vm_page_unlock_queues();
 2860                 }
 2861                 /*
 2862                  * Referenced by us
 2863                  */
 2864                 if (pte & PG_A)
 2865                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
 2866                 else {
 2867                         /*
 2868                          * Referenced by someone else
 2869                          */
 2870                         vm_page_lock_queues();
 2871                         if ((m->flags & PG_REFERENCED) ||
 2872                             pmap_ts_referenced(m)) {
 2873                                 val |= MINCORE_REFERENCED_OTHER;
 2874                                 vm_page_flag_set(m, PG_REFERENCED);
 2875                         }
 2876                         vm_page_unlock_queues();
 2877                 }
 2878         } 
 2879         return val;
 2880 }
 2881 
 2882 void
 2883 pmap_activate(struct thread *td)
 2884 {
 2885         struct proc *p = td->td_proc;
 2886         pmap_t  pmap, oldpmap;
 2887         u_int64_t  cr3;
 2888 
 2889         critical_enter();
 2890         pmap = vmspace_pmap(td->td_proc->p_vmspace);
 2891         oldpmap = PCPU_GET(curpmap);
 2892 #ifdef SMP
 2893 if (oldpmap)    /* XXX FIXME */
 2894         atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
 2895         atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
 2896 #else
 2897 if (oldpmap)    /* XXX FIXME */
 2898         oldpmap->pm_active &= ~PCPU_GET(cpumask);
 2899         pmap->pm_active |= PCPU_GET(cpumask);
 2900 #endif
 2901         cr3 = vtophys(pmap->pm_pml4);
 2902         /* XXXKSE this is wrong.
 2903          * pmap_activate is for the current thread on the current cpu
 2904          */
 2905         if (p->p_flag & P_SA) {
 2906                 /* Make sure all other cr3 entries are updated. */
 2907                 /* what if they are running?  XXXKSE (maybe abort them) */
 2908                 FOREACH_THREAD_IN_PROC(p, td) {
 2909                         td->td_pcb->pcb_cr3 = cr3;
 2910                 }
 2911         } else {
 2912                 td->td_pcb->pcb_cr3 = cr3;
 2913         }
 2914         load_cr3(cr3);
 2915         critical_exit();
 2916 }
 2917 
 2918 vm_offset_t
 2919 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
 2920 {
 2921 
 2922         if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
 2923                 return addr;
 2924         }
 2925 
 2926         addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
 2927         return addr;
 2928 }

Cache object: aa7a9c337051842eeccf0f0eb58655cb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.