The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/6.0/sys/amd64/amd64/vm_machdep.c 147889 2005-07-10 23:31:11Z davidxu $");
   45 
   46 #include "opt_isa.h"
   47 #include "opt_cpu.h"
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bio.h>
   52 #include <sys/buf.h>
   53 #include <sys/kse.h>
   54 #include <sys/kernel.h>
   55 #include <sys/ktr.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mbuf.h>
   59 #include <sys/mutex.h>
   60 #include <sys/pioctl.h>
   61 #include <sys/proc.h>
   62 #include <sys/sf_buf.h>
   63 #include <sys/smp.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/unistd.h>
   66 #include <sys/vnode.h>
   67 #include <sys/vmmeter.h>
   68 
   69 #include <machine/cpu.h>
   70 #include <machine/md_var.h>
   71 #include <machine/pcb.h>
   72 
   73 #include <vm/vm.h>
   74 #include <vm/vm_extern.h>
   75 #include <vm/vm_kern.h>
   76 #include <vm/vm_page.h>
   77 #include <vm/vm_map.h>
   78 #include <vm/vm_param.h>
   79 
   80 #include <amd64/isa/isa.h>
   81 
   82 static void     cpu_reset_real(void);
   83 #ifdef SMP
   84 static void     cpu_reset_proxy(void);
   85 static u_int    cpu_reset_proxyid;
   86 static volatile u_int   cpu_reset_proxy_active;
   87 #endif
   88 
   89 /*
   90  * Finish a fork operation, with process p2 nearly set up.
   91  * Copy and update the pcb, set up the stack so that the child
   92  * ready to run and return to user mode.
   93  */
   94 void
   95 cpu_fork(td1, p2, td2, flags)
   96         register struct thread *td1;
   97         register struct proc *p2;
   98         struct thread *td2;
   99         int flags;
  100 {
  101         register struct proc *p1;
  102         struct pcb *pcb2;
  103         struct mdproc *mdp2;
  104 
  105         p1 = td1->td_proc;
  106         if ((flags & RFPROC) == 0)
  107                 return;
  108 
  109         /* Ensure that p1's pcb is up to date. */
  110         fpuexit(td1);
  111 
  112         /* Point the pcb to the top of the stack */
  113         pcb2 = (struct pcb *)(td2->td_kstack +
  114             td2->td_kstack_pages * PAGE_SIZE) - 1;
  115         td2->td_pcb = pcb2;
  116 
  117         /* Copy p1's pcb */
  118         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  119 
  120         /* Point mdproc and then copy over td1's contents */
  121         mdp2 = &p2->p_md;
  122         bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
  123 
  124         /*
  125          * Create a new fresh stack for the new process.
  126          * Copy the trap frame for the return to user mode as if from a
  127          * syscall.  This copies most of the user mode register values.
  128          */
  129         td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
  130         bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
  131 
  132         td2->td_frame->tf_rax = 0;              /* Child returns zero */
  133         td2->td_frame->tf_rflags &= ~PSL_C;     /* success */
  134         td2->td_frame->tf_rdx = 1;
  135 
  136         /*
  137          * If the parent process has the trap bit set (i.e. a debugger had
  138          * single stepped the process to the system call), we need to clear
  139          * the trap flag from the new frame unless the debugger had set PF_FORK
  140          * on the parent.  Otherwise, the child will receive a (likely
  141          * unexpected) SIGTRAP when it executes the first instruction after
  142          * returning  to userland.
  143          */
  144         if ((p1->p_pfsflags & PF_FORK) == 0)
  145                 td2->td_frame->tf_rflags &= ~PSL_T;
  146 
  147         /*
  148          * Set registers for trampoline to user mode.  Leave space for the
  149          * return address on stack.  These are the kernel mode register values.
  150          */
  151         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pml4);
  152         pcb2->pcb_r12 = (register_t)fork_return;        /* fork_trampoline argument */
  153         pcb2->pcb_rbp = 0;
  154         pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
  155         pcb2->pcb_rbx = (register_t)td2;                /* fork_trampoline argument */
  156         pcb2->pcb_rip = (register_t)fork_trampoline;
  157         pcb2->pcb_rflags = td2->td_frame->tf_rflags & ~PSL_I; /* ints disabled */
  158         /*-
  159          * pcb2->pcb_dr*:       cloned above.
  160          * pcb2->pcb_savefpu:   cloned above.
  161          * pcb2->pcb_flags:     cloned above.
  162          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  163          * pcb2->pcb_[fg]sbase: cloned above
  164          */
  165 
  166         /* Setup to release sched_lock in fork_exit(). */
  167         td2->td_md.md_spinlock_count = 1;
  168         td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  169 
  170         /*
  171          * Now, cpu_switch() can schedule the new process.
  172          * pcb_rsp is loaded pointing to the cpu_switch() stack frame
  173          * containing the return address when exiting cpu_switch.
  174          * This will normally be to fork_trampoline(), which will have
  175          * %ebx loaded with the new proc's pointer.  fork_trampoline()
  176          * will set up a stack to call fork_return(p, frame); to complete
  177          * the return to user-mode.
  178          */
  179 }
  180 
  181 /*
  182  * Intercept the return address from a freshly forked process that has NOT
  183  * been scheduled yet.
  184  *
  185  * This is needed to make kernel threads stay in kernel mode.
  186  */
  187 void
  188 cpu_set_fork_handler(td, func, arg)
  189         struct thread *td;
  190         void (*func)(void *);
  191         void *arg;
  192 {
  193         /*
  194          * Note that the trap frame follows the args, so the function
  195          * is really called like this:  func(arg, frame);
  196          */
  197         td->td_pcb->pcb_r12 = (long) func;      /* function */
  198         td->td_pcb->pcb_rbx = (long) arg;       /* first arg */
  199 }
  200 
  201 void
  202 cpu_exit(struct thread *td)
  203 {
  204 }
  205 
  206 void
  207 cpu_thread_exit(struct thread *td)
  208 {
  209 
  210         if (td == PCPU_GET(fpcurthread))
  211                 fpudrop();
  212 
  213         /* Disable any hardware breakpoints. */
  214         if (td->td_pcb->pcb_flags & PCB_DBREGS) {
  215                 reset_dbregs();
  216                 td->td_pcb->pcb_flags &= ~PCB_DBREGS;
  217         }
  218 }
  219 
  220 void
  221 cpu_thread_clean(struct thread *td)
  222 {
  223 }
  224 
  225 void
  226 cpu_thread_swapin(struct thread *td)
  227 {
  228 }
  229 
  230 void
  231 cpu_thread_swapout(struct thread *td)
  232 {
  233 }
  234 
  235 void
  236 cpu_thread_setup(struct thread *td)
  237 {
  238 
  239         td->td_pcb = (struct pcb *)(td->td_kstack +
  240             td->td_kstack_pages * PAGE_SIZE) - 1;
  241         td->td_frame = (struct trapframe *)td->td_pcb - 1;
  242 }
  243 
  244 /*
  245  * Initialize machine state (pcb and trap frame) for a new thread about to
  246  * upcall. Put enough state in the new thread's PCB to get it to go back 
  247  * userret(), where we can intercept it again to set the return (upcall)
  248  * Address and stack, along with those from upcals that are from other sources
  249  * such as those generated in thread_userret() itself.
  250  */
  251 void
  252 cpu_set_upcall(struct thread *td, struct thread *td0)
  253 {
  254         struct pcb *pcb2;
  255 
  256         /* Point the pcb to the top of the stack. */
  257         pcb2 = td->td_pcb;
  258 
  259         /*
  260          * Copy the upcall pcb.  This loads kernel regs.
  261          * Those not loaded individually below get their default
  262          * values here.
  263          *
  264          * XXXKSE It might be a good idea to simply skip this as
  265          * the values of the other registers may be unimportant.
  266          * This would remove any requirement for knowing the KSE
  267          * at this time (see the matching comment below for
  268          * more analysis) (need a good safe default).
  269          */
  270         bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
  271         pcb2->pcb_flags &= ~PCB_FPUINITDONE;
  272 
  273         /*
  274          * Create a new fresh stack for the new thread.
  275          * Don't forget to set this stack value into whatever supplies
  276          * the address for the fault handlers.
  277          * The contexts are filled in at the time we actually DO the
  278          * upcall as only then do we know which KSE we got.
  279          */
  280         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  281 
  282         /*
  283          * Set registers for trampoline to user mode.  Leave space for the
  284          * return address on stack.  These are the kernel mode register values.
  285          */
  286         pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pml4);
  287         pcb2->pcb_r12 = (register_t)fork_return;            /* trampoline arg */
  288         pcb2->pcb_rbp = 0;
  289         pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);      /* trampoline arg */
  290         pcb2->pcb_rbx = (register_t)td;                     /* trampoline arg */
  291         pcb2->pcb_rip = (register_t)fork_trampoline;
  292         pcb2->pcb_rflags = PSL_KERNEL; /* ints disabled */
  293         /*
  294          * If we didn't copy the pcb, we'd need to do the following registers:
  295          * pcb2->pcb_dr*:       cloned above.
  296          * pcb2->pcb_savefpu:   cloned above.
  297          * pcb2->pcb_rflags:    cloned above.
  298          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  299          * pcb2->pcb_[fg]sbase: cloned above
  300          */
  301 
  302         /* Setup to release sched_lock in fork_exit(). */
  303         td->td_md.md_spinlock_count = 1;
  304         td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  305 }
  306 
  307 /*
  308  * Set that machine state for performing an upcall that has to
  309  * be done in thread_userret() so that those upcalls generated
  310  * in thread_userret() itself can be done as well.
  311  */
  312 void
  313 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  314         stack_t *stack)
  315 {
  316 
  317         /* 
  318          * Do any extra cleaning that needs to be done.
  319          * The thread may have optional components
  320          * that are not present in a fresh thread.
  321          * This may be a recycled thread so make it look
  322          * as though it's newly allocated.
  323          */
  324         cpu_thread_clean(td);
  325 
  326         /*
  327          * Set the trap frame to point at the beginning of the uts
  328          * function.
  329          */
  330         td->td_frame->tf_rbp = 0;
  331         td->td_frame->tf_rsp =
  332             ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f;
  333         td->td_frame->tf_rsp -= 8;
  334         td->td_frame->tf_rbp = 0;
  335         td->td_frame->tf_rip = (register_t)entry;
  336 
  337         /*
  338          * Pass the address of the mailbox for this kse to the uts
  339          * function as a parameter on the stack.
  340          */
  341         td->td_frame->tf_rdi = (register_t)arg;
  342 }
  343 
  344 int
  345 cpu_set_user_tls(struct thread *td, void *tls_base)
  346 {
  347 
  348         if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS)
  349                 return (EINVAL);
  350 
  351         if (td == curthread) {
  352                 critical_enter();
  353                 td->td_pcb->pcb_fsbase = (register_t)tls_base;
  354                 wrmsr(MSR_FSBASE, td->td_pcb->pcb_fsbase);
  355                 critical_exit();
  356         } else {
  357                 td->td_pcb->pcb_fsbase = (register_t)tls_base;
  358         }
  359         return (0);
  360 }
  361 
  362 #ifdef SMP
  363 static void
  364 cpu_reset_proxy()
  365 {
  366 
  367         cpu_reset_proxy_active = 1;
  368         while (cpu_reset_proxy_active == 1)
  369                 ;       /* Wait for other cpu to see that we've started */
  370         stop_cpus((1<<cpu_reset_proxyid));
  371         printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
  372         DELAY(1000000);
  373         cpu_reset_real();
  374 }
  375 #endif
  376 
  377 void
  378 cpu_reset()
  379 {
  380 #ifdef SMP
  381         u_int cnt, map;
  382 
  383         if (smp_active) {
  384                 map = PCPU_GET(other_cpus) & ~stopped_cpus;
  385                 if (map != 0) {
  386                         printf("cpu_reset: Stopping other CPUs\n");
  387                         stop_cpus(map);
  388                 }
  389 
  390                 if (PCPU_GET(cpuid) != 0) {
  391                         cpu_reset_proxyid = PCPU_GET(cpuid);
  392                         cpustop_restartfunc = cpu_reset_proxy;
  393                         cpu_reset_proxy_active = 0;
  394                         printf("cpu_reset: Restarting BSP\n");
  395                         started_cpus = (1<<0);          /* Restart CPU #0 */
  396 
  397                         cnt = 0;
  398                         while (cpu_reset_proxy_active == 0 && cnt < 10000000)
  399                                 cnt++;  /* Wait for BSP to announce restart */
  400                         if (cpu_reset_proxy_active == 0)
  401                                 printf("cpu_reset: Failed to restart BSP\n");
  402                         enable_intr();
  403                         cpu_reset_proxy_active = 2;
  404 
  405                         while (1);
  406                         /* NOTREACHED */
  407                 }
  408 
  409                 DELAY(1000000);
  410         }
  411 #endif
  412         cpu_reset_real();
  413         /* NOTREACHED */
  414 }
  415 
  416 static void
  417 cpu_reset_real()
  418 {
  419 
  420         /*
  421          * Attempt to do a CPU reset via the keyboard controller,
  422          * do not turn off GateA20, as any machine that fails
  423          * to do the reset here would then end up in no man's land.
  424          */
  425         outb(IO_KBD + 4, 0xFE);
  426         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  427         printf("Keyboard reset did not work, attempting CPU shutdown\n");
  428         DELAY(1000000); /* wait 1 sec for printf to complete */
  429 
  430         /* Force a shutdown by unmapping entire address space. */
  431         bzero((caddr_t)PML4map, PAGE_SIZE);
  432 
  433         /* "good night, sweet prince .... <THUNK!>" */
  434         invltlb();
  435         /* NOTREACHED */
  436         while(1);
  437 }
  438 
  439 /*
  440  * Allocate an sf_buf for the given vm_page.  On this machine, however, there
  441  * is no sf_buf object.  Instead, an opaque pointer to the given vm_page is
  442  * returned.
  443  */
  444 struct sf_buf *
  445 sf_buf_alloc(struct vm_page *m, int pri)
  446 {
  447 
  448         return ((struct sf_buf *)m);
  449 }
  450 
  451 /*
  452  * Free the sf_buf.  In fact, do nothing because there are no resources
  453  * associated with the sf_buf.
  454  */
  455 void
  456 sf_buf_free(struct sf_buf *sf)
  457 {
  458 }
  459 
  460 /*
  461  * Software interrupt handler for queued VM system processing.
  462  */   
  463 void  
  464 swi_vm(void *dummy) 
  465 {     
  466         if (busdma_swi_pending != 0)
  467                 busdma_swi();
  468 }
  469 
  470 /*
  471  * Tell whether this address is in some physical memory region.
  472  * Currently used by the kernel coredump code in order to avoid
  473  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
  474  * or other unpredictable behaviour.
  475  */
  476 
  477 int
  478 is_physical_memory(vm_paddr_t addr)
  479 {
  480 
  481 #ifdef DEV_ISA
  482         /* The ISA ``memory hole''. */
  483         if (addr >= 0xa0000 && addr < 0x100000)
  484                 return 0;
  485 #endif
  486 
  487         /*
  488          * stuff other tests for known memory-mapped devices (PCI?)
  489          * here
  490          */
  491 
  492         return 1;
  493 }

Cache object: 38298a8d6e31c56cd1f99d3bfeb32edc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.