The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/6.1/sys/amd64/amd64/vm_machdep.c 158179 2006-04-30 16:44:43Z cvs2svn $");
   45 
   46 #include "opt_isa.h"
   47 #include "opt_cpu.h"
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/bio.h>
   52 #include <sys/buf.h>
   53 #include <sys/kse.h>
   54 #include <sys/kernel.h>
   55 #include <sys/ktr.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mbuf.h>
   59 #include <sys/mutex.h>
   60 #include <sys/pioctl.h>
   61 #include <sys/proc.h>
   62 #include <sys/sf_buf.h>
   63 #include <sys/smp.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/unistd.h>
   66 #include <sys/vnode.h>
   67 #include <sys/vmmeter.h>
   68 
   69 #include <machine/cpu.h>
   70 #include <machine/md_var.h>
   71 #include <machine/pcb.h>
   72 
   73 #include <vm/vm.h>
   74 #include <vm/vm_extern.h>
   75 #include <vm/vm_kern.h>
   76 #include <vm/vm_page.h>
   77 #include <vm/vm_map.h>
   78 #include <vm/vm_param.h>
   79 
   80 #include <amd64/isa/isa.h>
   81 
   82 static void     cpu_reset_real(void);
   83 #ifdef SMP
   84 static void     cpu_reset_proxy(void);
   85 static u_int    cpu_reset_proxyid;
   86 static volatile u_int   cpu_reset_proxy_active;
   87 #endif
   88 
   89 /*
   90  * Finish a fork operation, with process p2 nearly set up.
   91  * Copy and update the pcb, set up the stack so that the child
   92  * ready to run and return to user mode.
   93  */
   94 void
   95 cpu_fork(td1, p2, td2, flags)
   96         register struct thread *td1;
   97         register struct proc *p2;
   98         struct thread *td2;
   99         int flags;
  100 {
  101         register struct proc *p1;
  102         struct pcb *pcb2;
  103         struct mdproc *mdp2;
  104 
  105         p1 = td1->td_proc;
  106         if ((flags & RFPROC) == 0)
  107                 return;
  108 
  109         /* Ensure that p1's pcb is up to date. */
  110         fpuexit(td1);
  111 
  112         /* Point the pcb to the top of the stack */
  113         pcb2 = (struct pcb *)(td2->td_kstack +
  114             td2->td_kstack_pages * PAGE_SIZE) - 1;
  115         td2->td_pcb = pcb2;
  116 
  117         /* Copy p1's pcb */
  118         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  119 
  120         /* Point mdproc and then copy over td1's contents */
  121         mdp2 = &p2->p_md;
  122         bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
  123 
  124         /*
  125          * Create a new fresh stack for the new process.
  126          * Copy the trap frame for the return to user mode as if from a
  127          * syscall.  This copies most of the user mode register values.
  128          */
  129         td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
  130         bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
  131 
  132         td2->td_frame->tf_rax = 0;              /* Child returns zero */
  133         td2->td_frame->tf_rflags &= ~PSL_C;     /* success */
  134         td2->td_frame->tf_rdx = 1;
  135 
  136         /*
  137          * If the parent process has the trap bit set (i.e. a debugger had
  138          * single stepped the process to the system call), we need to clear
  139          * the trap flag from the new frame unless the debugger had set PF_FORK
  140          * on the parent.  Otherwise, the child will receive a (likely
  141          * unexpected) SIGTRAP when it executes the first instruction after
  142          * returning  to userland.
  143          */
  144         if ((p1->p_pfsflags & PF_FORK) == 0)
  145                 td2->td_frame->tf_rflags &= ~PSL_T;
  146 
  147         /*
  148          * Set registers for trampoline to user mode.  Leave space for the
  149          * return address on stack.  These are the kernel mode register values.
  150          */
  151         pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pml4);
  152         pcb2->pcb_r12 = (register_t)fork_return;        /* fork_trampoline argument */
  153         pcb2->pcb_rbp = 0;
  154         pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
  155         pcb2->pcb_rbx = (register_t)td2;                /* fork_trampoline argument */
  156         pcb2->pcb_rip = (register_t)fork_trampoline;
  157         /*-
  158          * pcb2->pcb_dr*:       cloned above.
  159          * pcb2->pcb_savefpu:   cloned above.
  160          * pcb2->pcb_flags:     cloned above.
  161          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  162          * pcb2->pcb_[fg]sbase: cloned above
  163          */
  164 
  165         /* Setup to release sched_lock in fork_exit(). */
  166         td2->td_md.md_spinlock_count = 1;
  167         td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  168 
  169         /*
  170          * Now, cpu_switch() can schedule the new process.
  171          * pcb_rsp is loaded pointing to the cpu_switch() stack frame
  172          * containing the return address when exiting cpu_switch.
  173          * This will normally be to fork_trampoline(), which will have
  174          * %ebx loaded with the new proc's pointer.  fork_trampoline()
  175          * will set up a stack to call fork_return(p, frame); to complete
  176          * the return to user-mode.
  177          */
  178 }
  179 
  180 /*
  181  * Intercept the return address from a freshly forked process that has NOT
  182  * been scheduled yet.
  183  *
  184  * This is needed to make kernel threads stay in kernel mode.
  185  */
  186 void
  187 cpu_set_fork_handler(td, func, arg)
  188         struct thread *td;
  189         void (*func)(void *);
  190         void *arg;
  191 {
  192         /*
  193          * Note that the trap frame follows the args, so the function
  194          * is really called like this:  func(arg, frame);
  195          */
  196         td->td_pcb->pcb_r12 = (long) func;      /* function */
  197         td->td_pcb->pcb_rbx = (long) arg;       /* first arg */
  198 }
  199 
  200 void
  201 cpu_exit(struct thread *td)
  202 {
  203 }
  204 
  205 void
  206 cpu_thread_exit(struct thread *td)
  207 {
  208 
  209         if (td == PCPU_GET(fpcurthread))
  210                 fpudrop();
  211 
  212         /* Disable any hardware breakpoints. */
  213         if (td->td_pcb->pcb_flags & PCB_DBREGS) {
  214                 reset_dbregs();
  215                 td->td_pcb->pcb_flags &= ~PCB_DBREGS;
  216         }
  217 }
  218 
  219 void
  220 cpu_thread_clean(struct thread *td)
  221 {
  222 }
  223 
  224 void
  225 cpu_thread_swapin(struct thread *td)
  226 {
  227 }
  228 
  229 void
  230 cpu_thread_swapout(struct thread *td)
  231 {
  232 }
  233 
  234 void
  235 cpu_thread_setup(struct thread *td)
  236 {
  237 
  238         td->td_pcb = (struct pcb *)(td->td_kstack +
  239             td->td_kstack_pages * PAGE_SIZE) - 1;
  240         td->td_frame = (struct trapframe *)td->td_pcb - 1;
  241 }
  242 
  243 /*
  244  * Initialize machine state (pcb and trap frame) for a new thread about to
  245  * upcall. Put enough state in the new thread's PCB to get it to go back 
  246  * userret(), where we can intercept it again to set the return (upcall)
  247  * Address and stack, along with those from upcals that are from other sources
  248  * such as those generated in thread_userret() itself.
  249  */
  250 void
  251 cpu_set_upcall(struct thread *td, struct thread *td0)
  252 {
  253         struct pcb *pcb2;
  254 
  255         /* Point the pcb to the top of the stack. */
  256         pcb2 = td->td_pcb;
  257 
  258         /*
  259          * Copy the upcall pcb.  This loads kernel regs.
  260          * Those not loaded individually below get their default
  261          * values here.
  262          *
  263          * XXXKSE It might be a good idea to simply skip this as
  264          * the values of the other registers may be unimportant.
  265          * This would remove any requirement for knowing the KSE
  266          * at this time (see the matching comment below for
  267          * more analysis) (need a good safe default).
  268          */
  269         bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
  270         pcb2->pcb_flags &= ~PCB_FPUINITDONE;
  271 
  272         /*
  273          * Create a new fresh stack for the new thread.
  274          * Don't forget to set this stack value into whatever supplies
  275          * the address for the fault handlers.
  276          * The contexts are filled in at the time we actually DO the
  277          * upcall as only then do we know which KSE we got.
  278          */
  279         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  280 
  281         /*
  282          * Set registers for trampoline to user mode.  Leave space for the
  283          * return address on stack.  These are the kernel mode register values.
  284          */
  285         pcb2->pcb_cr3 = vtophys(vmspace_pmap(td->td_proc->p_vmspace)->pm_pml4);
  286         pcb2->pcb_r12 = (register_t)fork_return;            /* trampoline arg */
  287         pcb2->pcb_rbp = 0;
  288         pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);      /* trampoline arg */
  289         pcb2->pcb_rbx = (register_t)td;                     /* trampoline arg */
  290         pcb2->pcb_rip = (register_t)fork_trampoline;
  291         /*
  292          * If we didn't copy the pcb, we'd need to do the following registers:
  293          * pcb2->pcb_dr*:       cloned above.
  294          * pcb2->pcb_savefpu:   cloned above.
  295          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  296          * pcb2->pcb_[fg]sbase: cloned above
  297          */
  298 
  299         /* Setup to release sched_lock in fork_exit(). */
  300         td->td_md.md_spinlock_count = 1;
  301         td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  302 }
  303 
  304 /*
  305  * Set that machine state for performing an upcall that has to
  306  * be done in thread_userret() so that those upcalls generated
  307  * in thread_userret() itself can be done as well.
  308  */
  309 void
  310 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  311         stack_t *stack)
  312 {
  313 
  314         /* 
  315          * Do any extra cleaning that needs to be done.
  316          * The thread may have optional components
  317          * that are not present in a fresh thread.
  318          * This may be a recycled thread so make it look
  319          * as though it's newly allocated.
  320          */
  321         cpu_thread_clean(td);
  322 
  323         /*
  324          * Set the trap frame to point at the beginning of the uts
  325          * function.
  326          */
  327         td->td_frame->tf_rbp = 0;
  328         td->td_frame->tf_rsp =
  329             ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f;
  330         td->td_frame->tf_rsp -= 8;
  331         td->td_frame->tf_rbp = 0;
  332         td->td_frame->tf_rip = (register_t)entry;
  333 
  334         /*
  335          * Pass the address of the mailbox for this kse to the uts
  336          * function as a parameter on the stack.
  337          */
  338         td->td_frame->tf_rdi = (register_t)arg;
  339 }
  340 
  341 int
  342 cpu_set_user_tls(struct thread *td, void *tls_base)
  343 {
  344 
  345         if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS)
  346                 return (EINVAL);
  347 
  348         if (td == curthread) {
  349                 critical_enter();
  350                 td->td_pcb->pcb_fsbase = (register_t)tls_base;
  351                 wrmsr(MSR_FSBASE, td->td_pcb->pcb_fsbase);
  352                 critical_exit();
  353         } else {
  354                 td->td_pcb->pcb_fsbase = (register_t)tls_base;
  355         }
  356         return (0);
  357 }
  358 
  359 #ifdef SMP
  360 static void
  361 cpu_reset_proxy()
  362 {
  363 
  364         cpu_reset_proxy_active = 1;
  365         while (cpu_reset_proxy_active == 1)
  366                 ;       /* Wait for other cpu to see that we've started */
  367         stop_cpus((1<<cpu_reset_proxyid));
  368         printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
  369         DELAY(1000000);
  370         cpu_reset_real();
  371 }
  372 #endif
  373 
  374 void
  375 cpu_reset()
  376 {
  377 #ifdef SMP
  378         u_int cnt, map;
  379 
  380         if (smp_active) {
  381                 map = PCPU_GET(other_cpus) & ~stopped_cpus;
  382                 if (map != 0) {
  383                         printf("cpu_reset: Stopping other CPUs\n");
  384                         stop_cpus(map);
  385                 }
  386 
  387                 if (PCPU_GET(cpuid) != 0) {
  388                         cpu_reset_proxyid = PCPU_GET(cpuid);
  389                         cpustop_restartfunc = cpu_reset_proxy;
  390                         cpu_reset_proxy_active = 0;
  391                         printf("cpu_reset: Restarting BSP\n");
  392                         started_cpus = (1<<0);          /* Restart CPU #0 */
  393 
  394                         cnt = 0;
  395                         while (cpu_reset_proxy_active == 0 && cnt < 10000000)
  396                                 cnt++;  /* Wait for BSP to announce restart */
  397                         if (cpu_reset_proxy_active == 0)
  398                                 printf("cpu_reset: Failed to restart BSP\n");
  399                         enable_intr();
  400                         cpu_reset_proxy_active = 2;
  401 
  402                         while (1);
  403                         /* NOTREACHED */
  404                 }
  405 
  406                 DELAY(1000000);
  407         }
  408 #endif
  409         cpu_reset_real();
  410         /* NOTREACHED */
  411 }
  412 
  413 static void
  414 cpu_reset_real()
  415 {
  416 
  417         /*
  418          * Attempt to do a CPU reset via the keyboard controller,
  419          * do not turn off GateA20, as any machine that fails
  420          * to do the reset here would then end up in no man's land.
  421          */
  422         outb(IO_KBD + 4, 0xFE);
  423         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  424         printf("Keyboard reset did not work, attempting CPU shutdown\n");
  425         DELAY(1000000); /* wait 1 sec for printf to complete */
  426 
  427         /* Force a shutdown by unmapping entire address space. */
  428         bzero((caddr_t)PML4map, PAGE_SIZE);
  429 
  430         /* "good night, sweet prince .... <THUNK!>" */
  431         invltlb();
  432         /* NOTREACHED */
  433         while(1);
  434 }
  435 
  436 /*
  437  * Allocate an sf_buf for the given vm_page.  On this machine, however, there
  438  * is no sf_buf object.  Instead, an opaque pointer to the given vm_page is
  439  * returned.
  440  */
  441 struct sf_buf *
  442 sf_buf_alloc(struct vm_page *m, int pri)
  443 {
  444 
  445         return ((struct sf_buf *)m);
  446 }
  447 
  448 /*
  449  * Free the sf_buf.  In fact, do nothing because there are no resources
  450  * associated with the sf_buf.
  451  */
  452 void
  453 sf_buf_free(struct sf_buf *sf)
  454 {
  455 }
  456 
  457 /*
  458  * Software interrupt handler for queued VM system processing.
  459  */   
  460 void  
  461 swi_vm(void *dummy) 
  462 {     
  463         if (busdma_swi_pending != 0)
  464                 busdma_swi();
  465 }
  466 
  467 /*
  468  * Tell whether this address is in some physical memory region.
  469  * Currently used by the kernel coredump code in order to avoid
  470  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
  471  * or other unpredictable behaviour.
  472  */
  473 
  474 int
  475 is_physical_memory(vm_paddr_t addr)
  476 {
  477 
  478 #ifdef DEV_ISA
  479         /* The ISA ``memory hole''. */
  480         if (addr >= 0xa0000 && addr < 0x100000)
  481                 return 0;
  482 #endif
  483 
  484         /*
  485          * stuff other tests for known memory-mapped devices (PCI?)
  486          * here
  487          */
  488 
  489         return 1;
  490 }

Cache object: 9c48a49baba884075ae3d4d5bdb4e5da


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.