The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/amd64/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/8.0/sys/amd64/amd64/vm_machdep.c 195486 2009-07-09 09:34:11Z kib $");
   45 
   46 #include "opt_isa.h"
   47 #include "opt_cpu.h"
   48 #include "opt_compat.h"
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/bio.h>
   53 #include <sys/buf.h>
   54 #include <sys/kernel.h>
   55 #include <sys/ktr.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mbuf.h>
   59 #include <sys/mutex.h>
   60 #include <sys/pioctl.h>
   61 #include <sys/proc.h>
   62 #include <sys/sf_buf.h>
   63 #include <sys/smp.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/sysent.h>
   66 #include <sys/unistd.h>
   67 #include <sys/vnode.h>
   68 #include <sys/vmmeter.h>
   69 
   70 #include <machine/cpu.h>
   71 #include <machine/md_var.h>
   72 #include <machine/pcb.h>
   73 #include <machine/specialreg.h>
   74 #include <machine/tss.h>
   75 
   76 #include <vm/vm.h>
   77 #include <vm/vm_extern.h>
   78 #include <vm/vm_kern.h>
   79 #include <vm/vm_page.h>
   80 #include <vm/vm_map.h>
   81 #include <vm/vm_param.h>
   82 
   83 #include <amd64/isa/isa.h>
   84 
   85 static void     cpu_reset_real(void);
   86 #ifdef SMP
   87 static void     cpu_reset_proxy(void);
   88 static u_int    cpu_reset_proxyid;
   89 static volatile u_int   cpu_reset_proxy_active;
   90 #endif
   91 
   92 /*
   93  * Finish a fork operation, with process p2 nearly set up.
   94  * Copy and update the pcb, set up the stack so that the child
   95  * ready to run and return to user mode.
   96  */
   97 void
   98 cpu_fork(td1, p2, td2, flags)
   99         register struct thread *td1;
  100         register struct proc *p2;
  101         struct thread *td2;
  102         int flags;
  103 {
  104         register struct proc *p1;
  105         struct pcb *pcb2;
  106         struct mdproc *mdp1, *mdp2;
  107         struct proc_ldt *pldt;
  108         pmap_t pmap2;
  109 
  110         p1 = td1->td_proc;
  111         if ((flags & RFPROC) == 0) {
  112                 if ((flags & RFMEM) == 0) {
  113                         /* unshare user LDT */
  114                         mdp1 = &p1->p_md;
  115                         mtx_lock(&dt_lock);
  116                         if ((pldt = mdp1->md_ldt) != NULL &&
  117                             pldt->ldt_refcnt > 1 &&
  118                             user_ldt_alloc(p1, 1) == NULL)
  119                                 panic("could not copy LDT");
  120                         mtx_unlock(&dt_lock);
  121                 }
  122                 return;
  123         }
  124 
  125         /* Ensure that p1's pcb is up to date. */
  126         fpuexit(td1);
  127 
  128         /* Point the pcb to the top of the stack */
  129         pcb2 = (struct pcb *)(td2->td_kstack +
  130             td2->td_kstack_pages * PAGE_SIZE) - 1;
  131         td2->td_pcb = pcb2;
  132 
  133         /* Copy p1's pcb */
  134         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  135 
  136         /* Point mdproc and then copy over td1's contents */
  137         mdp2 = &p2->p_md;
  138         bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
  139 
  140         /*
  141          * Create a new fresh stack for the new process.
  142          * Copy the trap frame for the return to user mode as if from a
  143          * syscall.  This copies most of the user mode register values.
  144          */
  145         td2->td_frame = (struct trapframe *)td2->td_pcb - 1;
  146         bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
  147 
  148         td2->td_frame->tf_rax = 0;              /* Child returns zero */
  149         td2->td_frame->tf_rflags &= ~PSL_C;     /* success */
  150         td2->td_frame->tf_rdx = 1;
  151 
  152         /*
  153          * If the parent process has the trap bit set (i.e. a debugger had
  154          * single stepped the process to the system call), we need to clear
  155          * the trap flag from the new frame unless the debugger had set PF_FORK
  156          * on the parent.  Otherwise, the child will receive a (likely
  157          * unexpected) SIGTRAP when it executes the first instruction after
  158          * returning  to userland.
  159          */
  160         if ((p1->p_pfsflags & PF_FORK) == 0)
  161                 td2->td_frame->tf_rflags &= ~PSL_T;
  162 
  163         /*
  164          * Set registers for trampoline to user mode.  Leave space for the
  165          * return address on stack.  These are the kernel mode register values.
  166          */
  167         pmap2 = vmspace_pmap(p2->p_vmspace);
  168         pcb2->pcb_cr3 = DMAP_TO_PHYS((vm_offset_t)pmap2->pm_pml4);
  169         pcb2->pcb_r12 = (register_t)fork_return;        /* fork_trampoline argument */
  170         pcb2->pcb_rbp = 0;
  171         pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *);
  172         pcb2->pcb_rbx = (register_t)td2;                /* fork_trampoline argument */
  173         pcb2->pcb_rip = (register_t)fork_trampoline;
  174         /*-
  175          * pcb2->pcb_dr*:       cloned above.
  176          * pcb2->pcb_savefpu:   cloned above.
  177          * pcb2->pcb_flags:     cloned above.
  178          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  179          * pcb2->pcb_[fg]sbase: cloned above
  180          */
  181 
  182         /* Setup to release spin count in fork_exit(). */
  183         td2->td_md.md_spinlock_count = 1;
  184         td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  185 
  186         /* As an i386, do not copy io permission bitmap. */
  187         pcb2->pcb_tssp = NULL;
  188 
  189         /* New segment registers. */
  190         pcb2->pcb_full_iret = 1;
  191 
  192         /* Copy the LDT, if necessary. */
  193         mdp1 = &td1->td_proc->p_md;
  194         mdp2 = &p2->p_md;
  195         mtx_lock(&dt_lock);
  196         if (mdp1->md_ldt != NULL) {
  197                 if (flags & RFMEM) {
  198                         mdp1->md_ldt->ldt_refcnt++;
  199                         mdp2->md_ldt = mdp1->md_ldt;
  200                         bcopy(&mdp1->md_ldt_sd, &mdp2->md_ldt_sd, sizeof(struct
  201                             system_segment_descriptor));
  202                 } else {
  203                         mdp2->md_ldt = NULL;
  204                         mdp2->md_ldt = user_ldt_alloc(p2, 0);
  205                         if (mdp2->md_ldt == NULL)
  206                                 panic("could not copy LDT");
  207                         amd64_set_ldt_data(td2, 0, max_ldt_segment,
  208                             (struct user_segment_descriptor *)
  209                             mdp1->md_ldt->ldt_base);
  210                 }
  211         } else
  212                 mdp2->md_ldt = NULL;
  213         mtx_unlock(&dt_lock);
  214 
  215         /*
  216          * Now, cpu_switch() can schedule the new process.
  217          * pcb_rsp is loaded pointing to the cpu_switch() stack frame
  218          * containing the return address when exiting cpu_switch.
  219          * This will normally be to fork_trampoline(), which will have
  220          * %ebx loaded with the new proc's pointer.  fork_trampoline()
  221          * will set up a stack to call fork_return(p, frame); to complete
  222          * the return to user-mode.
  223          */
  224 }
  225 
  226 /*
  227  * Intercept the return address from a freshly forked process that has NOT
  228  * been scheduled yet.
  229  *
  230  * This is needed to make kernel threads stay in kernel mode.
  231  */
  232 void
  233 cpu_set_fork_handler(td, func, arg)
  234         struct thread *td;
  235         void (*func)(void *);
  236         void *arg;
  237 {
  238         /*
  239          * Note that the trap frame follows the args, so the function
  240          * is really called like this:  func(arg, frame);
  241          */
  242         td->td_pcb->pcb_r12 = (long) func;      /* function */
  243         td->td_pcb->pcb_rbx = (long) arg;       /* first arg */
  244 }
  245 
  246 void
  247 cpu_exit(struct thread *td)
  248 {
  249 
  250         /*
  251          * If this process has a custom LDT, release it.
  252          */
  253         mtx_lock(&dt_lock);
  254         if (td->td_proc->p_md.md_ldt != 0)
  255                 user_ldt_free(td);
  256         else
  257                 mtx_unlock(&dt_lock);
  258 }
  259 
  260 void
  261 cpu_thread_exit(struct thread *td)
  262 {
  263         struct pcb *pcb;
  264 
  265         if (td == PCPU_GET(fpcurthread))
  266                 fpudrop();
  267 
  268         pcb = td->td_pcb;
  269 
  270         /* Disable any hardware breakpoints. */
  271         if (pcb->pcb_flags & PCB_DBREGS) {
  272                 reset_dbregs();
  273                 pcb->pcb_flags &= ~PCB_DBREGS;
  274         }
  275 }
  276 
  277 void
  278 cpu_thread_clean(struct thread *td)
  279 {
  280         struct pcb *pcb;
  281 
  282         pcb = td->td_pcb;
  283 
  284         /*
  285          * Clean TSS/iomap
  286          */
  287         if (pcb->pcb_tssp != NULL) {
  288                 kmem_free(kernel_map, (vm_offset_t)pcb->pcb_tssp,
  289                     ctob(IOPAGES + 1));
  290                 pcb->pcb_tssp = NULL;
  291         }
  292 }
  293 
  294 void
  295 cpu_thread_swapin(struct thread *td)
  296 {
  297 }
  298 
  299 void
  300 cpu_thread_swapout(struct thread *td)
  301 {
  302 }
  303 
  304 void
  305 cpu_thread_alloc(struct thread *td)
  306 {
  307 
  308         td->td_pcb = (struct pcb *)(td->td_kstack +
  309             td->td_kstack_pages * PAGE_SIZE) - 1;
  310         td->td_frame = (struct trapframe *)td->td_pcb - 1;
  311 }
  312 
  313 void
  314 cpu_thread_free(struct thread *td)
  315 {
  316 
  317         cpu_thread_clean(td);
  318 }
  319 
  320 /*
  321  * Initialize machine state (pcb and trap frame) for a new thread about to
  322  * upcall. Put enough state in the new thread's PCB to get it to go back 
  323  * userret(), where we can intercept it again to set the return (upcall)
  324  * Address and stack, along with those from upcals that are from other sources
  325  * such as those generated in thread_userret() itself.
  326  */
  327 void
  328 cpu_set_upcall(struct thread *td, struct thread *td0)
  329 {
  330         struct pcb *pcb2;
  331 
  332         /* Point the pcb to the top of the stack. */
  333         pcb2 = td->td_pcb;
  334 
  335         /*
  336          * Copy the upcall pcb.  This loads kernel regs.
  337          * Those not loaded individually below get their default
  338          * values here.
  339          */
  340         bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
  341         pcb2->pcb_flags &= ~PCB_FPUINITDONE;
  342         pcb2->pcb_full_iret = 1;
  343 
  344         /*
  345          * Create a new fresh stack for the new thread.
  346          */
  347         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  348 
  349         /* If the current thread has the trap bit set (i.e. a debugger had
  350          * single stepped the process to the system call), we need to clear
  351          * the trap flag from the new frame. Otherwise, the new thread will
  352          * receive a (likely unexpected) SIGTRAP when it executes the first
  353          * instruction after returning to userland.
  354          */
  355         td->td_frame->tf_rflags &= ~PSL_T;
  356 
  357         /*
  358          * Set registers for trampoline to user mode.  Leave space for the
  359          * return address on stack.  These are the kernel mode register values.
  360          */
  361         pcb2->pcb_r12 = (register_t)fork_return;            /* trampoline arg */
  362         pcb2->pcb_rbp = 0;
  363         pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *);      /* trampoline arg */
  364         pcb2->pcb_rbx = (register_t)td;                     /* trampoline arg */
  365         pcb2->pcb_rip = (register_t)fork_trampoline;
  366         /*
  367          * If we didn't copy the pcb, we'd need to do the following registers:
  368          * pcb2->pcb_cr3:       cloned above.
  369          * pcb2->pcb_dr*:       cloned above.
  370          * pcb2->pcb_savefpu:   cloned above.
  371          * pcb2->pcb_onfault:   cloned above (always NULL here?).
  372          * pcb2->pcb_[fg]sbase: cloned above
  373          */
  374 
  375         /* Setup to release spin count in fork_exit(). */
  376         td->td_md.md_spinlock_count = 1;
  377         td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
  378 }
  379 
  380 /*
  381  * Set that machine state for performing an upcall that has to
  382  * be done in thread_userret() so that those upcalls generated
  383  * in thread_userret() itself can be done as well.
  384  */
  385 void
  386 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  387         stack_t *stack)
  388 {
  389 
  390         /* 
  391          * Do any extra cleaning that needs to be done.
  392          * The thread may have optional components
  393          * that are not present in a fresh thread.
  394          * This may be a recycled thread so make it look
  395          * as though it's newly allocated.
  396          */
  397         cpu_thread_clean(td);
  398 
  399 #ifdef COMPAT_IA32
  400         if (td->td_proc->p_sysent->sv_flags & SV_ILP32) {
  401                 /*
  402                  * Set the trap frame to point at the beginning of the uts
  403                  * function.
  404                  */
  405                 td->td_frame->tf_rbp = 0;
  406                 td->td_frame->tf_rsp =
  407                    (((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
  408                 td->td_frame->tf_rip = (uintptr_t)entry;
  409 
  410                 /*
  411                  * Pass the address of the mailbox for this kse to the uts
  412                  * function as a parameter on the stack.
  413                  */
  414                 suword32((void *)(td->td_frame->tf_rsp + sizeof(int32_t)),
  415                     (uint32_t)(uintptr_t)arg);
  416 
  417                 return;
  418         }
  419 #endif
  420 
  421         /*
  422          * Set the trap frame to point at the beginning of the uts
  423          * function.
  424          */
  425         td->td_frame->tf_rbp = 0;
  426         td->td_frame->tf_rsp =
  427             ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f;
  428         td->td_frame->tf_rsp -= 8;
  429         td->td_frame->tf_rip = (register_t)entry;
  430         td->td_frame->tf_ds = _udatasel;
  431         td->td_frame->tf_es = _udatasel;
  432         td->td_frame->tf_fs = _ufssel;
  433         td->td_frame->tf_gs = _ugssel;
  434         td->td_frame->tf_flags = TF_HASSEGS;
  435 
  436         /*
  437          * Pass the address of the mailbox for this kse to the uts
  438          * function as a parameter on the stack.
  439          */
  440         td->td_frame->tf_rdi = (register_t)arg;
  441 }
  442 
  443 int
  444 cpu_set_user_tls(struct thread *td, void *tls_base)
  445 {
  446 
  447         if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS)
  448                 return (EINVAL);
  449 
  450 #ifdef COMPAT_IA32
  451         if (td->td_proc->p_sysent->sv_flags & SV_ILP32) {
  452                 td->td_pcb->pcb_gsbase = (register_t)tls_base;
  453                 return (0);
  454         }
  455 #endif
  456         td->td_pcb->pcb_fsbase = (register_t)tls_base;
  457         td->td_pcb->pcb_full_iret = 1;
  458         return (0);
  459 }
  460 
  461 #ifdef SMP
  462 static void
  463 cpu_reset_proxy()
  464 {
  465 
  466         cpu_reset_proxy_active = 1;
  467         while (cpu_reset_proxy_active == 1)
  468                 ;       /* Wait for other cpu to see that we've started */
  469         stop_cpus((1<<cpu_reset_proxyid));
  470         printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
  471         DELAY(1000000);
  472         cpu_reset_real();
  473 }
  474 #endif
  475 
  476 void
  477 cpu_reset()
  478 {
  479 #ifdef SMP
  480         u_int cnt, map;
  481 
  482         if (smp_active) {
  483                 map = PCPU_GET(other_cpus) & ~stopped_cpus;
  484                 if (map != 0) {
  485                         printf("cpu_reset: Stopping other CPUs\n");
  486                         stop_cpus(map);
  487                 }
  488 
  489                 if (PCPU_GET(cpuid) != 0) {
  490                         cpu_reset_proxyid = PCPU_GET(cpuid);
  491                         cpustop_restartfunc = cpu_reset_proxy;
  492                         cpu_reset_proxy_active = 0;
  493                         printf("cpu_reset: Restarting BSP\n");
  494 
  495                         /* Restart CPU #0. */
  496                         atomic_store_rel_int(&started_cpus, 1 << 0);
  497 
  498                         cnt = 0;
  499                         while (cpu_reset_proxy_active == 0 && cnt < 10000000)
  500                                 cnt++;  /* Wait for BSP to announce restart */
  501                         if (cpu_reset_proxy_active == 0)
  502                                 printf("cpu_reset: Failed to restart BSP\n");
  503                         enable_intr();
  504                         cpu_reset_proxy_active = 2;
  505 
  506                         while (1);
  507                         /* NOTREACHED */
  508                 }
  509 
  510                 DELAY(1000000);
  511         }
  512 #endif
  513         cpu_reset_real();
  514         /* NOTREACHED */
  515 }
  516 
  517 static void
  518 cpu_reset_real()
  519 {
  520         struct region_descriptor null_idt;
  521         int b;
  522 
  523         disable_intr();
  524 
  525         /*
  526          * Attempt to do a CPU reset via the keyboard controller,
  527          * do not turn off GateA20, as any machine that fails
  528          * to do the reset here would then end up in no man's land.
  529          */
  530         outb(IO_KBD + 4, 0xFE);
  531         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  532 
  533         /*
  534          * Attempt to force a reset via the Reset Control register at
  535          * I/O port 0xcf9.  Bit 2 forces a system reset when it
  536          * transitions from 0 to 1.  Bit 1 selects the type of reset
  537          * to attempt: 0 selects a "soft" reset, and 1 selects a
  538          * "hard" reset.  We try a "hard" reset.  The first write sets
  539          * bit 1 to select a "hard" reset and clears bit 2.  The
  540          * second write forces a 0 -> 1 transition in bit 2 to trigger
  541          * a reset.
  542          */
  543         outb(0xcf9, 0x2);
  544         outb(0xcf9, 0x6);
  545         DELAY(500000);  /* wait 0.5 sec to see if that did it */
  546 
  547         /*
  548          * Attempt to force a reset via the Fast A20 and Init register
  549          * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
  550          * Bit 0 asserts INIT# when set to 1.  We are careful to only
  551          * preserve bit 1 while setting bit 0.  We also must clear bit
  552          * 0 before setting it if it isn't already clear.
  553          */
  554         b = inb(0x92);
  555         if (b != 0xff) {
  556                 if ((b & 0x1) != 0)
  557                         outb(0x92, b & 0xfe);
  558                 outb(0x92, b | 0x1);
  559                 DELAY(500000);  /* wait 0.5 sec to see if that did it */
  560         }
  561 
  562         printf("No known reset method worked, attempting CPU shutdown\n");
  563         DELAY(1000000); /* wait 1 sec for printf to complete */
  564 
  565         /* Wipe the IDT. */
  566         null_idt.rd_limit = 0;
  567         null_idt.rd_base = 0;
  568         lidt(&null_idt);
  569 
  570         /* "good night, sweet prince .... <THUNK!>" */
  571         breakpoint();
  572 
  573         /* NOTREACHED */
  574         while(1);
  575 }
  576 
  577 /*
  578  * Allocate an sf_buf for the given vm_page.  On this machine, however, there
  579  * is no sf_buf object.  Instead, an opaque pointer to the given vm_page is
  580  * returned.
  581  */
  582 struct sf_buf *
  583 sf_buf_alloc(struct vm_page *m, int pri)
  584 {
  585 
  586         return ((struct sf_buf *)m);
  587 }
  588 
  589 /*
  590  * Free the sf_buf.  In fact, do nothing because there are no resources
  591  * associated with the sf_buf.
  592  */
  593 void
  594 sf_buf_free(struct sf_buf *sf)
  595 {
  596 }
  597 
  598 /*
  599  * Software interrupt handler for queued VM system processing.
  600  */   
  601 void  
  602 swi_vm(void *dummy) 
  603 {     
  604         if (busdma_swi_pending != 0)
  605                 busdma_swi();
  606 }
  607 
  608 /*
  609  * Tell whether this address is in some physical memory region.
  610  * Currently used by the kernel coredump code in order to avoid
  611  * dumping the ``ISA memory hole'' which could cause indefinite hangs,
  612  * or other unpredictable behaviour.
  613  */
  614 
  615 int
  616 is_physical_memory(vm_paddr_t addr)
  617 {
  618 
  619 #ifdef DEV_ISA
  620         /* The ISA ``memory hole''. */
  621         if (addr >= 0xa0000 && addr < 0x100000)
  622                 return 0;
  623 #endif
  624 
  625         /*
  626          * stuff other tests for known memory-mapped devices (PCI?)
  627          * here
  628          */
  629 
  630         return 1;
  631 }

Cache object: c196709f9eb6bfc6e68e749aa4fa71e3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.