The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/include/pmap.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2003 Peter Wemm.
    5  * Copyright (c) 1991 Regents of the University of California.
    6  * All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department and William Jolitz of UUNET Technologies Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  * Derived from hp300 version by Mike Hibler, this version by William
   37  * Jolitz uses a recursive map [a pde points to the page directory] to
   38  * map the page tables using the pagetables themselves. This is done to
   39  * reduce the impact on kernel virtual memory for lots of sparse address
   40  * space, and to reduce the cost of memory to each process.
   41  *
   42  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
   43  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
   44  * $FreeBSD$
   45  */
   46 
   47 #ifdef __i386__
   48 #include <i386/pmap.h>
   49 #else /* !__i386__ */
   50 
   51 #ifndef _MACHINE_PMAP_H_
   52 #define _MACHINE_PMAP_H_
   53 
   54 /*
   55  * Page-directory and page-table entries follow this format, with a few
   56  * of the fields not present here and there, depending on a lot of things.
   57  */
   58                                 /* ---- Intel Nomenclature ---- */
   59 #define X86_PG_V        0x001   /* P    Valid                   */
   60 #define X86_PG_RW       0x002   /* R/W  Read/Write              */
   61 #define X86_PG_U        0x004   /* U/S  User/Supervisor         */
   62 #define X86_PG_NC_PWT   0x008   /* PWT  Write through           */
   63 #define X86_PG_NC_PCD   0x010   /* PCD  Cache disable           */
   64 #define X86_PG_A        0x020   /* A    Accessed                */
   65 #define X86_PG_M        0x040   /* D    Dirty                   */
   66 #define X86_PG_PS       0x080   /* PS   Page size (0=4k,1=2M)   */
   67 #define X86_PG_PTE_PAT  0x080   /* PAT  PAT index               */
   68 #define X86_PG_G        0x100   /* G    Global                  */
   69 #define X86_PG_AVAIL1   0x200   /*    / Available for system    */
   70 #define X86_PG_AVAIL2   0x400   /*   <  programmers use         */
   71 #define X86_PG_AVAIL3   0x800   /*    \                         */
   72 #define X86_PG_PDE_PAT  0x1000  /* PAT  PAT index               */
   73 #define X86_PG_PKU(idx) ((pt_entry_t)idx << 59)
   74 #define X86_PG_NX       (1ul<<63) /* No-execute */
   75 #define X86_PG_AVAIL(x) (1ul << (x))
   76 
   77 /* Page level cache control fields used to determine the PAT type */
   78 #define X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
   79 #define X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
   80 
   81 /* Protection keys indexes */
   82 #define PMAP_MAX_PKRU_IDX       0xf
   83 #define X86_PG_PKU_MASK         X86_PG_PKU(PMAP_MAX_PKRU_IDX)
   84 
   85 /*
   86  * Intel extended page table (EPT) bit definitions.
   87  */
   88 #define EPT_PG_READ             0x001   /* R    Read            */
   89 #define EPT_PG_WRITE            0x002   /* W    Write           */
   90 #define EPT_PG_EXECUTE          0x004   /* X    Execute         */
   91 #define EPT_PG_IGNORE_PAT       0x040   /* IPAT Ignore PAT      */
   92 #define EPT_PG_PS               0x080   /* PS   Page size       */
   93 #define EPT_PG_A                0x100   /* A    Accessed        */
   94 #define EPT_PG_M                0x200   /* D    Dirty           */
   95 #define EPT_PG_MEMORY_TYPE(x)   ((x) << 3) /* MT Memory Type    */
   96 
   97 /*
   98  * Define the PG_xx macros in terms of the bits on x86 PTEs.
   99  */
  100 #define PG_V            X86_PG_V
  101 #define PG_RW           X86_PG_RW
  102 #define PG_U            X86_PG_U
  103 #define PG_NC_PWT       X86_PG_NC_PWT
  104 #define PG_NC_PCD       X86_PG_NC_PCD
  105 #define PG_A            X86_PG_A
  106 #define PG_M            X86_PG_M
  107 #define PG_PS           X86_PG_PS
  108 #define PG_PTE_PAT      X86_PG_PTE_PAT
  109 #define PG_G            X86_PG_G
  110 #define PG_AVAIL1       X86_PG_AVAIL1
  111 #define PG_AVAIL2       X86_PG_AVAIL2
  112 #define PG_AVAIL3       X86_PG_AVAIL3
  113 #define PG_PDE_PAT      X86_PG_PDE_PAT
  114 #define PG_NX           X86_PG_NX
  115 #define PG_PDE_CACHE    X86_PG_PDE_CACHE
  116 #define PG_PTE_CACHE    X86_PG_PTE_CACHE
  117 
  118 /* Our various interpretations of the above */
  119 #define PG_W            X86_PG_AVAIL3   /* "Wired" pseudoflag */
  120 #define PG_MANAGED      X86_PG_AVAIL2
  121 #define EPT_PG_EMUL_V   X86_PG_AVAIL(52)
  122 #define EPT_PG_EMUL_RW  X86_PG_AVAIL(53)
  123 #define PG_PROMOTED     X86_PG_AVAIL(54)        /* PDE only */
  124 #define PG_FRAME        (0x000ffffffffff000ul)
  125 #define PG_PS_FRAME     (0x000fffffffe00000ul)
  126 #define PG_PS_PDP_FRAME (0x000fffffc0000000ul)
  127 
  128 /*
  129  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
  130  * (PTE) page mappings have identical settings for the following fields:
  131  */
  132 #define PG_PTE_PROMOTE  (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
  133             PG_M | PG_A | PG_U | PG_RW | PG_V | PG_PKU_MASK)
  134 
  135 /*
  136  * Page Protection Exception bits
  137  */
  138 
  139 #define PGEX_P          0x01    /* Protection violation vs. not present */
  140 #define PGEX_W          0x02    /* during a Write cycle */
  141 #define PGEX_U          0x04    /* access from User mode (UPL) */
  142 #define PGEX_RSV        0x08    /* reserved PTE field is non-zero */
  143 #define PGEX_I          0x10    /* during an instruction fetch */
  144 #define PGEX_PK         0x20    /* protection key violation */
  145 #define PGEX_SGX        0x8000  /* SGX-related */
  146 
  147 /* 
  148  * undef the PG_xx macros that define bits in the regular x86 PTEs that
  149  * have a different position in nested PTEs. This is done when compiling
  150  * code that needs to be aware of the differences between regular x86 and
  151  * nested PTEs.
  152  *
  153  * The appropriate bitmask will be calculated at runtime based on the pmap
  154  * type.
  155  */
  156 #ifdef AMD64_NPT_AWARE
  157 #undef PG_AVAIL1                /* X86_PG_AVAIL1 aliases with EPT_PG_M */
  158 #undef PG_G
  159 #undef PG_A
  160 #undef PG_M
  161 #undef PG_PDE_PAT
  162 #undef PG_PDE_CACHE
  163 #undef PG_PTE_PAT
  164 #undef PG_PTE_CACHE
  165 #undef PG_RW
  166 #undef PG_V
  167 #endif
  168 
  169 /*
  170  * Pte related macros.  This is complicated by having to deal with
  171  * the sign extension of the 48th bit.
  172  */
  173 #define KV4ADDR(l4, l3, l2, l1) ( \
  174         ((unsigned long)-1 << 47) | \
  175         ((unsigned long)(l4) << PML4SHIFT) | \
  176         ((unsigned long)(l3) << PDPSHIFT) | \
  177         ((unsigned long)(l2) << PDRSHIFT) | \
  178         ((unsigned long)(l1) << PAGE_SHIFT))
  179 #define KV5ADDR(l5, l4, l3, l2, l1) (           \
  180         ((unsigned long)-1 << 56) | \
  181         ((unsigned long)(l5) << PML5SHIFT) | \
  182         ((unsigned long)(l4) << PML4SHIFT) | \
  183         ((unsigned long)(l3) << PDPSHIFT) | \
  184         ((unsigned long)(l2) << PDRSHIFT) | \
  185         ((unsigned long)(l1) << PAGE_SHIFT))
  186 
  187 #define UVADDR(l5, l4, l3, l2, l1) (         \
  188         ((unsigned long)(l5) << PML5SHIFT) | \
  189         ((unsigned long)(l4) << PML4SHIFT) | \
  190         ((unsigned long)(l3) << PDPSHIFT) | \
  191         ((unsigned long)(l2) << PDRSHIFT) | \
  192         ((unsigned long)(l1) << PAGE_SHIFT))
  193 
  194 /*
  195  * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
  196  * but setting it larger than NDMPML4E makes no sense.
  197  *
  198  * Each slot provides .5 TB of kernel virtual space.
  199  */
  200 #define NKPML4E         4
  201 
  202 /*
  203  * Number of PML4 slots for the KASAN shadow map.  It requires 1 byte of memory
  204  * for every 8 bytes of the kernel address space.
  205  */
  206 #define NKASANPML4E     ((NKPML4E + 7) / 8)
  207 
  208 /*
  209  * Number of PML4 slots for the KMSAN shadow and origin maps.  These are
  210  * one-to-one with the kernel map.
  211  */
  212 #define NKMSANSHADPML4E NKPML4E
  213 #define NKMSANORIGPML4E NKPML4E
  214 
  215 /*
  216  * We use the same numbering of the page table pages for 5-level and
  217  * 4-level paging structures.
  218  */
  219 #define NUPML5E         (NPML5EPG / 2)          /* number of userland PML5
  220                                                    pages */
  221 #define NUPML4E         (NUPML5E * NPML4EPG)    /* number of userland PML4
  222                                                    pages */
  223 #define NUPDPE          (NUPML4E * NPDPEPG)     /* number of userland PDP
  224                                                    pages */
  225 #define NUPDE           (NUPDPE * NPDEPG)       /* number of userland PD
  226                                                    entries */
  227 #define NUP4ML4E        (NPML4EPG / 2)
  228 
  229 /*
  230  * NDMPML4E is the maximum number of PML4 entries that will be
  231  * used to implement the direct map.  It must be a power of two,
  232  * and should generally exceed NKPML4E.  The maximum possible
  233  * value is 64; using 128 will make the direct map intrude into
  234  * the recursive page table map.
  235  */
  236 #define NDMPML4E        8
  237 
  238 /*
  239  * These values control the layout of virtual memory.  The starting address
  240  * of the direct map, which is controlled by DMPML4I, must be a multiple of
  241  * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
  242  *
  243  * Note: KPML4I is the index of the (single) level 4 page that maps
  244  * the KVA that holds KERNBASE, while KPML4BASE is the index of the
  245  * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
  246  * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
  247  * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
  248  * KERNBASE.
  249  *
  250  * (KPML4I combines with KPDPI to choose where KERNBASE starts.
  251  * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
  252  * and KPDPI provides bits 30..38.)
  253  */
  254 #define PML4PML4I       (NPML4EPG / 2)  /* Index of recursive pml4 mapping */
  255 #define PML5PML5I       (NPML5EPG / 2)  /* Index of recursive pml5 mapping */
  256 
  257 #define KPML4BASE       (NPML4EPG-NKPML4E) /* KVM at highest addresses */
  258 #define DMPML4I         rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
  259 
  260 #define KPML4I          (NPML4EPG-1)
  261 #define KPDPI           (NPDPEPG-2)     /* kernbase at -2GB */
  262 
  263 #define KASANPML4I      (DMPML4I - NKASANPML4E) /* Below the direct map */
  264 
  265 #define KMSANSHADPML4I  (KPML4BASE - NKMSANSHADPML4E)
  266 #define KMSANORIGPML4I  (DMPML4I - NKMSANORIGPML4E)
  267 
  268 /* Large map: index of the first and max last pml4 entry */
  269 #define LMSPML4I        (PML4PML4I + 1)
  270 #define LMEPML4I        (KASANPML4I - 1)
  271 
  272 /*
  273  * XXX doesn't really belong here I guess...
  274  */
  275 #define ISA_HOLE_START    0xa0000
  276 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
  277 
  278 #define PMAP_PCID_NONE          0xffffffff
  279 #define PMAP_PCID_KERN          0
  280 #define PMAP_PCID_OVERMAX       0x1000
  281 #define PMAP_PCID_OVERMAX_KERN  0x800
  282 #define PMAP_PCID_USER_PT       0x800
  283 
  284 #define PMAP_NO_CR3             0xffffffffffffffff
  285 #define PMAP_UCR3_NOMASK        0xffffffffffffffff
  286 
  287 #ifndef LOCORE
  288 
  289 #include <sys/queue.h>
  290 #include <sys/_cpuset.h>
  291 #include <sys/_lock.h>
  292 #include <sys/_mutex.h>
  293 #include <sys/_pctrie.h>
  294 #include <sys/_pv_entry.h>
  295 #include <sys/_rangeset.h>
  296 #include <sys/_smr.h>
  297 
  298 #include <vm/_vm_radix.h>
  299 
  300 typedef u_int64_t pd_entry_t;
  301 typedef u_int64_t pt_entry_t;
  302 typedef u_int64_t pdp_entry_t;
  303 typedef u_int64_t pml4_entry_t;
  304 typedef u_int64_t pml5_entry_t;
  305 
  306 /*
  307  * Address of current address space page table maps and directories.
  308  */
  309 #ifdef _KERNEL
  310 #define addr_P4Tmap     (KV4ADDR(PML4PML4I, 0, 0, 0))
  311 #define addr_P4Dmap     (KV4ADDR(PML4PML4I, PML4PML4I, 0, 0))
  312 #define addr_P4DPmap    (KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
  313 #define addr_P4ML4map   (KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
  314 #define addr_P4ML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
  315 #define P4Tmap          ((pt_entry_t *)(addr_P4Tmap))
  316 #define P4Dmap          ((pd_entry_t *)(addr_P4Dmap))
  317 
  318 #define addr_P5Tmap     (KV5ADDR(PML5PML5I, 0, 0, 0, 0))
  319 #define addr_P5Dmap     (KV5ADDR(PML5PML5I, PML5PML5I, 0, 0, 0))
  320 #define addr_P5DPmap    (KV5ADDR(PML5PML5I, PML5PML5I, PML5PML5I, 0, 0))
  321 #define addr_P5ML4map   (KV5ADDR(PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I, 0))
  322 #define addr_P5ML5map   \
  323     (KVADDR(PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I))
  324 #define addr_P5ML5pml5e (addr_P5ML5map + (PML5PML5I * sizeof(pml5_entry_t)))
  325 #define P5Tmap          ((pt_entry_t *)(addr_P5Tmap))
  326 #define P5Dmap          ((pd_entry_t *)(addr_P5Dmap))
  327 
  328 extern int nkpt;                /* Initial number of kernel page tables */
  329 extern u_int64_t KPML4phys;     /* physical address of kernel level 4 */
  330 extern u_int64_t KPML5phys;     /* physical address of kernel level 5 */
  331 
  332 /*
  333  * virtual address to page table entry and
  334  * to physical address.
  335  * Note: these work recursively, thus vtopte of a pte will give
  336  * the corresponding pde that in turn maps it.
  337  */
  338 pt_entry_t *vtopte(vm_offset_t);
  339 #define vtophys(va)     pmap_kextract(((vm_offset_t) (va)))
  340 
  341 #define pte_load_store(ptep, pte)       atomic_swap_long(ptep, pte)
  342 #define pte_load_clear(ptep)            atomic_swap_long(ptep, 0)
  343 #define pte_store(ptep, pte) do { \
  344         *(u_long *)(ptep) = (u_long)(pte); \
  345 } while (0)
  346 #define pte_clear(ptep)                 pte_store(ptep, 0)
  347 
  348 #define pde_store(pdep, pde)            pte_store(pdep, pde)
  349 
  350 extern pt_entry_t pg_nx;
  351 
  352 #endif /* _KERNEL */
  353 
  354 /*
  355  * Pmap stuff
  356  */
  357 
  358 /*
  359  * Locks
  360  * (p) PV list lock
  361  */
  362 struct md_page {
  363         TAILQ_HEAD(, pv_entry)  pv_list;  /* (p) */
  364         int                     pv_gen;   /* (p) */
  365         int                     pat_mode;
  366 };
  367 
  368 enum pmap_type {
  369         PT_X86,                 /* regular x86 page tables */
  370         PT_EPT,                 /* Intel's nested page tables */
  371         PT_RVI,                 /* AMD's nested page tables */
  372 };
  373 
  374 struct pmap_pcids {
  375         uint32_t        pm_pcid;
  376         uint32_t        pm_gen;
  377 };
  378 
  379 /*
  380  * The kernel virtual address (KVA) of the level 4 page table page is always
  381  * within the direct map (DMAP) region.
  382  */
  383 struct pmap {
  384         struct mtx              pm_mtx;
  385         pml4_entry_t            *pm_pmltop;     /* KVA of top level page table */
  386         pml4_entry_t            *pm_pmltopu;    /* KVA of user top page table */
  387         uint64_t                pm_cr3;
  388         uint64_t                pm_ucr3;
  389         TAILQ_HEAD(,pv_chunk)   pm_pvchunk;     /* list of mappings in pmap */
  390         cpuset_t                pm_active;      /* active on cpus */
  391         enum pmap_type          pm_type;        /* regular or nested tables */
  392         struct pmap_statistics  pm_stats;       /* pmap statistics */
  393         struct vm_radix         pm_root;        /* spare page table pages */
  394         long                    pm_eptgen;      /* EPT pmap generation id */
  395         smr_t                   pm_eptsmr;
  396         int                     pm_flags;
  397         struct pmap_pcids       pm_pcids[MAXCPU];
  398         struct rangeset         pm_pkru;
  399 };
  400 
  401 /* flags */
  402 #define PMAP_NESTED_IPIMASK     0xff
  403 #define PMAP_PDE_SUPERPAGE      (1 << 8)        /* supports 2MB superpages */
  404 #define PMAP_EMULATE_AD_BITS    (1 << 9)        /* needs A/D bits emulation */
  405 #define PMAP_SUPPORTS_EXEC_ONLY (1 << 10)       /* execute only mappings ok */
  406 
  407 typedef struct pmap     *pmap_t;
  408 
  409 #ifdef _KERNEL
  410 extern struct pmap      kernel_pmap_store;
  411 #define kernel_pmap     (&kernel_pmap_store)
  412 
  413 #define PMAP_LOCK(pmap)         mtx_lock(&(pmap)->pm_mtx)
  414 #define PMAP_LOCK_ASSERT(pmap, type) \
  415                                 mtx_assert(&(pmap)->pm_mtx, (type))
  416 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
  417 #define PMAP_LOCK_INIT(pmap)    mtx_init(&(pmap)->pm_mtx, "pmap", \
  418                                     NULL, MTX_DEF | MTX_DUPOK)
  419 #define PMAP_LOCKED(pmap)       mtx_owned(&(pmap)->pm_mtx)
  420 #define PMAP_MTX(pmap)          (&(pmap)->pm_mtx)
  421 #define PMAP_TRYLOCK(pmap)      mtx_trylock(&(pmap)->pm_mtx)
  422 #define PMAP_UNLOCK(pmap)       mtx_unlock(&(pmap)->pm_mtx)
  423 
  424 int     pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
  425 int     pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
  426 
  427 extern caddr_t  CADDR1;
  428 extern pt_entry_t *CMAP1;
  429 extern vm_offset_t virtual_avail;
  430 extern vm_offset_t virtual_end;
  431 extern vm_paddr_t dmaplimit;
  432 extern int pmap_pcid_enabled;
  433 extern int invpcid_works;
  434 extern int pmap_pcid_invlpg_workaround;
  435 extern int pmap_pcid_invlpg_workaround_uena;
  436 
  437 #define pmap_page_get_memattr(m)        ((vm_memattr_t)(m)->md.pat_mode)
  438 #define pmap_page_is_write_mapped(m)    (((m)->a.flags & PGA_WRITEABLE) != 0)
  439 #define pmap_unmapbios(va, sz)          pmap_unmapdev((va), (sz))
  440 
  441 #define pmap_vm_page_alloc_check(m)                                     \
  442         KASSERT(m->phys_addr < kernphys ||                              \
  443             m->phys_addr >= kernphys + (vm_offset_t)&_end - KERNSTART,  \
  444             ("allocating kernel page %p pa %#lx kernphys %#lx end %p", \
  445             m, m->phys_addr, kernphys, &_end));
  446 
  447 struct thread;
  448 
  449 void    pmap_activate_boot(pmap_t pmap);
  450 void    pmap_activate_sw(struct thread *);
  451 void    pmap_allow_2m_x_ept_recalculate(void);
  452 void    pmap_bootstrap(vm_paddr_t *);
  453 int     pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde);
  454 int     pmap_change_attr(vm_offset_t, vm_size_t, int);
  455 int     pmap_change_prot(vm_offset_t, vm_size_t, vm_prot_t);
  456 void    pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
  457 void    pmap_flush_cache_range(vm_offset_t, vm_offset_t);
  458 void    pmap_flush_cache_phys_range(vm_paddr_t, vm_paddr_t, vm_memattr_t);
  459 void    pmap_init_pat(void);
  460 void    pmap_kenter(vm_offset_t va, vm_paddr_t pa);
  461 void    *pmap_kenter_temporary(vm_paddr_t pa, int i);
  462 vm_paddr_t pmap_kextract(vm_offset_t);
  463 void    pmap_kremove(vm_offset_t);
  464 int     pmap_large_map(vm_paddr_t, vm_size_t, void **, vm_memattr_t);
  465 void    pmap_large_map_wb(void *sva, vm_size_t len);
  466 void    pmap_large_unmap(void *sva, vm_size_t len);
  467 void    *pmap_mapbios(vm_paddr_t, vm_size_t);
  468 void    *pmap_mapdev(vm_paddr_t, vm_size_t);
  469 void    *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
  470 void    *pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size);
  471 bool    pmap_not_in_di(void);
  472 boolean_t pmap_page_is_mapped(vm_page_t m);
  473 void    pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
  474 void    pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma);
  475 void    pmap_pinit_pml4(vm_page_t);
  476 void    pmap_pinit_pml5(vm_page_t);
  477 bool    pmap_ps_enabled(pmap_t pmap);
  478 void    pmap_unmapdev(void *, vm_size_t);
  479 void    pmap_invalidate_page(pmap_t, vm_offset_t);
  480 void    pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
  481 void    pmap_invalidate_all(pmap_t);
  482 void    pmap_invalidate_cache(void);
  483 void    pmap_invalidate_cache_pages(vm_page_t *pages, int count);
  484 void    pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
  485 void    pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
  486 void    pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
  487 boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
  488 void    pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
  489 void    pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec);
  490 void    pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva);
  491 void    pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3);
  492 void    pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va);
  493 void    pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva,
  494             vm_offset_t eva);
  495 int     pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
  496 int     pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
  497             u_int keyidx, int flags);
  498 void    pmap_thread_init_invl_gen(struct thread *td);
  499 int     pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap);
  500 void    pmap_page_array_startup(long count);
  501 vm_page_t pmap_page_alloc_below_4g(bool zeroed);
  502 
  503 #if defined(KASAN) || defined(KMSAN)
  504 void    pmap_san_bootstrap(void);
  505 void    pmap_san_enter(vm_offset_t);
  506 #endif
  507 
  508 /*
  509  * Returns a pointer to a set of CPUs on which the pmap is currently active.
  510  * Note that the set can be modified without any mutual exclusion, so a copy
  511  * must be made if a stable value is required.
  512  */
  513 static __inline volatile cpuset_t *
  514 pmap_invalidate_cpu_mask(pmap_t pmap)
  515 {
  516         return (&pmap->pm_active);
  517 }
  518 
  519 #if defined(_SYS_PCPU_H_) && defined(_MACHINE_CPUFUNC_H_)
  520 /*
  521  * It seems that AlderLake+ small cores have some microarchitectural
  522  * bug, which results in the INVLPG instruction failing to flush all
  523  * global TLB entries when PCID is enabled.  Work around it for now,
  524  * by doing global invalidation on small cores instead of INVLPG.
  525  */
  526 static __inline void
  527 pmap_invlpg(pmap_t pmap, vm_offset_t va)
  528 {
  529         if (pmap == kernel_pmap && PCPU_GET(pcid_invlpg_workaround)) {
  530                 struct invpcid_descr d = { 0 };
  531 
  532                 invpcid(&d, INVPCID_CTXGLOB);
  533         } else {
  534                 invlpg(va);
  535         }
  536 }
  537 #endif /* sys/pcpu.h && machine/cpufunc.h */
  538 
  539 #endif /* _KERNEL */
  540 
  541 /* Return various clipped indexes for a given VA */
  542 static __inline vm_pindex_t
  543 pmap_pte_index(vm_offset_t va)
  544 {
  545 
  546         return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
  547 }
  548 
  549 static __inline vm_pindex_t
  550 pmap_pde_index(vm_offset_t va)
  551 {
  552 
  553         return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
  554 }
  555 
  556 static __inline vm_pindex_t
  557 pmap_pdpe_index(vm_offset_t va)
  558 {
  559 
  560         return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
  561 }
  562 
  563 static __inline vm_pindex_t
  564 pmap_pml4e_index(vm_offset_t va)
  565 {
  566 
  567         return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
  568 }
  569 
  570 static __inline vm_pindex_t
  571 pmap_pml5e_index(vm_offset_t va)
  572 {
  573 
  574         return ((va >> PML5SHIFT) & ((1ul << NPML5EPGSHIFT) - 1));
  575 }
  576 
  577 #endif /* !LOCORE */
  578 
  579 #endif /* !_MACHINE_PMAP_H_ */
  580 
  581 #endif /* __i386__ */

Cache object: 532a2e8ee05fe37bc8030a85f084dfb1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.