The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/include/pmap.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003 Peter Wemm.
    3  * Copyright (c) 1991 Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * the Systems Programming Group of the University of Utah Computer
    8  * Science Department and William Jolitz of UUNET Technologies Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  * Derived from hp300 version by Mike Hibler, this version by William
   35  * Jolitz uses a recursive map [a pde points to the page directory] to
   36  * map the page tables using the pagetables themselves. This is done to
   37  * reduce the impact on kernel virtual memory for lots of sparse address
   38  * space, and to reduce the cost of memory to each process.
   39  *
   40  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
   41  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
   42  * $FreeBSD: releng/11.2/sys/amd64/include/pmap.h 331722 2018-03-29 02:50:57Z eadler $
   43  */
   44 
   45 #ifndef _MACHINE_PMAP_H_
   46 #define _MACHINE_PMAP_H_
   47 
   48 /*
   49  * Page-directory and page-table entries follow this format, with a few
   50  * of the fields not present here and there, depending on a lot of things.
   51  */
   52                                 /* ---- Intel Nomenclature ---- */
   53 #define X86_PG_V        0x001   /* P    Valid                   */
   54 #define X86_PG_RW       0x002   /* R/W  Read/Write              */
   55 #define X86_PG_U        0x004   /* U/S  User/Supervisor         */
   56 #define X86_PG_NC_PWT   0x008   /* PWT  Write through           */
   57 #define X86_PG_NC_PCD   0x010   /* PCD  Cache disable           */
   58 #define X86_PG_A        0x020   /* A    Accessed                */
   59 #define X86_PG_M        0x040   /* D    Dirty                   */
   60 #define X86_PG_PS       0x080   /* PS   Page size (0=4k,1=2M)   */
   61 #define X86_PG_PTE_PAT  0x080   /* PAT  PAT index               */
   62 #define X86_PG_G        0x100   /* G    Global                  */
   63 #define X86_PG_AVAIL1   0x200   /*    / Available for system    */
   64 #define X86_PG_AVAIL2   0x400   /*   <  programmers use         */
   65 #define X86_PG_AVAIL3   0x800   /*    \                         */
   66 #define X86_PG_PDE_PAT  0x1000  /* PAT  PAT index               */
   67 #define X86_PG_NX       (1ul<<63) /* No-execute */
   68 #define X86_PG_AVAIL(x) (1ul << (x))
   69 
   70 /* Page level cache control fields used to determine the PAT type */
   71 #define X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
   72 #define X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
   73 
   74 /*
   75  * Intel extended page table (EPT) bit definitions.
   76  */
   77 #define EPT_PG_READ             0x001   /* R    Read            */
   78 #define EPT_PG_WRITE            0x002   /* W    Write           */
   79 #define EPT_PG_EXECUTE          0x004   /* X    Execute         */
   80 #define EPT_PG_IGNORE_PAT       0x040   /* IPAT Ignore PAT      */
   81 #define EPT_PG_PS               0x080   /* PS   Page size       */
   82 #define EPT_PG_A                0x100   /* A    Accessed        */
   83 #define EPT_PG_M                0x200   /* D    Dirty           */
   84 #define EPT_PG_MEMORY_TYPE(x)   ((x) << 3) /* MT Memory Type    */
   85 
   86 /*
   87  * Define the PG_xx macros in terms of the bits on x86 PTEs.
   88  */
   89 #define PG_V            X86_PG_V
   90 #define PG_RW           X86_PG_RW
   91 #define PG_U            X86_PG_U
   92 #define PG_NC_PWT       X86_PG_NC_PWT
   93 #define PG_NC_PCD       X86_PG_NC_PCD
   94 #define PG_A            X86_PG_A
   95 #define PG_M            X86_PG_M
   96 #define PG_PS           X86_PG_PS
   97 #define PG_PTE_PAT      X86_PG_PTE_PAT
   98 #define PG_G            X86_PG_G
   99 #define PG_AVAIL1       X86_PG_AVAIL1
  100 #define PG_AVAIL2       X86_PG_AVAIL2
  101 #define PG_AVAIL3       X86_PG_AVAIL3
  102 #define PG_PDE_PAT      X86_PG_PDE_PAT
  103 #define PG_NX           X86_PG_NX
  104 #define PG_PDE_CACHE    X86_PG_PDE_CACHE
  105 #define PG_PTE_CACHE    X86_PG_PTE_CACHE
  106 
  107 /* Our various interpretations of the above */
  108 #define PG_W            X86_PG_AVAIL3   /* "Wired" pseudoflag */
  109 #define PG_MANAGED      X86_PG_AVAIL2
  110 #define EPT_PG_EMUL_V   X86_PG_AVAIL(52)
  111 #define EPT_PG_EMUL_RW  X86_PG_AVAIL(53)
  112 #define PG_PROMOTED     X86_PG_AVAIL(54)        /* PDE only */
  113 #define PG_FRAME        (0x000ffffffffff000ul)
  114 #define PG_PS_FRAME     (0x000fffffffe00000ul)
  115 
  116 /*
  117  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
  118  * (PTE) page mappings have identical settings for the following fields:
  119  */
  120 #define PG_PTE_PROMOTE  (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
  121             PG_M | PG_A | PG_U | PG_RW | PG_V)
  122 
  123 /*
  124  * Page Protection Exception bits
  125  */
  126 
  127 #define PGEX_P          0x01    /* Protection violation vs. not present */
  128 #define PGEX_W          0x02    /* during a Write cycle */
  129 #define PGEX_U          0x04    /* access from User mode (UPL) */
  130 #define PGEX_RSV        0x08    /* reserved PTE field is non-zero */
  131 #define PGEX_I          0x10    /* during an instruction fetch */
  132 
  133 /* 
  134  * undef the PG_xx macros that define bits in the regular x86 PTEs that
  135  * have a different position in nested PTEs. This is done when compiling
  136  * code that needs to be aware of the differences between regular x86 and
  137  * nested PTEs.
  138  *
  139  * The appropriate bitmask will be calculated at runtime based on the pmap
  140  * type.
  141  */
  142 #ifdef AMD64_NPT_AWARE
  143 #undef PG_AVAIL1                /* X86_PG_AVAIL1 aliases with EPT_PG_M */
  144 #undef PG_G
  145 #undef PG_A
  146 #undef PG_M
  147 #undef PG_PDE_PAT
  148 #undef PG_PDE_CACHE
  149 #undef PG_PTE_PAT
  150 #undef PG_PTE_CACHE
  151 #undef PG_RW
  152 #undef PG_V
  153 #endif
  154 
  155 /*
  156  * Pte related macros.  This is complicated by having to deal with
  157  * the sign extension of the 48th bit.
  158  */
  159 #define KVADDR(l4, l3, l2, l1) ( \
  160         ((unsigned long)-1 << 47) | \
  161         ((unsigned long)(l4) << PML4SHIFT) | \
  162         ((unsigned long)(l3) << PDPSHIFT) | \
  163         ((unsigned long)(l2) << PDRSHIFT) | \
  164         ((unsigned long)(l1) << PAGE_SHIFT))
  165 
  166 #define UVADDR(l4, l3, l2, l1) ( \
  167         ((unsigned long)(l4) << PML4SHIFT) | \
  168         ((unsigned long)(l3) << PDPSHIFT) | \
  169         ((unsigned long)(l2) << PDRSHIFT) | \
  170         ((unsigned long)(l1) << PAGE_SHIFT))
  171 
  172 /*
  173  * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
  174  * but setting it larger than NDMPML4E makes no sense.
  175  *
  176  * Each slot provides .5 TB of kernel virtual space.
  177  */
  178 #define NKPML4E         4
  179 
  180 #define NUPML4E         (NPML4EPG/2)    /* number of userland PML4 pages */
  181 #define NUPDPE          (NUPML4E*NPDPEPG)/* number of userland PDP pages */
  182 #define NUPDE           (NUPDPE*NPDEPG) /* number of userland PD entries */
  183 
  184 /*
  185  * NDMPML4E is the maximum number of PML4 entries that will be
  186  * used to implement the direct map.  It must be a power of two,
  187  * and should generally exceed NKPML4E.  The maximum possible
  188  * value is 64; using 128 will make the direct map intrude into
  189  * the recursive page table map.
  190  */
  191 #define NDMPML4E        8
  192 
  193 /*
  194  * These values control the layout of virtual memory.  The starting address
  195  * of the direct map, which is controlled by DMPML4I, must be a multiple of
  196  * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
  197  *
  198  * Note: KPML4I is the index of the (single) level 4 page that maps
  199  * the KVA that holds KERNBASE, while KPML4BASE is the index of the
  200  * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
  201  * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
  202  * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
  203  * KERNBASE.
  204  *
  205  * (KPML4I combines with KPDPI to choose where KERNBASE starts.
  206  * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
  207  * and KPDPI provides bits 30..38.)
  208  */
  209 #define PML4PML4I       (NPML4EPG/2)    /* Index of recursive pml4 mapping */
  210 
  211 #define KPML4BASE       (NPML4EPG-NKPML4E) /* KVM at highest addresses */
  212 #define DMPML4I         rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
  213 
  214 #define KPML4I          (NPML4EPG-1)
  215 #define KPDPI           (NPDPEPG-2)     /* kernbase at -2GB */
  216 
  217 /*
  218  * XXX doesn't really belong here I guess...
  219  */
  220 #define ISA_HOLE_START    0xa0000
  221 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
  222 
  223 #define PMAP_PCID_NONE          0xffffffff
  224 #define PMAP_PCID_KERN          0
  225 #define PMAP_PCID_OVERMAX       0x1000
  226 #define PMAP_PCID_OVERMAX_KERN  0x800
  227 #define PMAP_PCID_USER_PT       0x800
  228 
  229 #define PMAP_NO_CR3             (~0UL)
  230 
  231 #ifndef LOCORE
  232 
  233 #include <sys/queue.h>
  234 #include <sys/_cpuset.h>
  235 #include <sys/_lock.h>
  236 #include <sys/_mutex.h>
  237 
  238 #include <vm/_vm_radix.h>
  239 
  240 typedef u_int64_t pd_entry_t;
  241 typedef u_int64_t pt_entry_t;
  242 typedef u_int64_t pdp_entry_t;
  243 typedef u_int64_t pml4_entry_t;
  244 
  245 /*
  246  * Address of current address space page table maps and directories.
  247  */
  248 #ifdef _KERNEL
  249 #define addr_PTmap      (KVADDR(PML4PML4I, 0, 0, 0))
  250 #define addr_PDmap      (KVADDR(PML4PML4I, PML4PML4I, 0, 0))
  251 #define addr_PDPmap     (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
  252 #define addr_PML4map    (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
  253 #define addr_PML4pml4e  (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
  254 #define PTmap           ((pt_entry_t *)(addr_PTmap))
  255 #define PDmap           ((pd_entry_t *)(addr_PDmap))
  256 #define PDPmap          ((pd_entry_t *)(addr_PDPmap))
  257 #define PML4map         ((pd_entry_t *)(addr_PML4map))
  258 #define PML4pml4e       ((pd_entry_t *)(addr_PML4pml4e))
  259 
  260 extern int nkpt;                /* Initial number of kernel page tables */
  261 extern u_int64_t KPDPphys;      /* physical address of kernel level 3 */
  262 extern u_int64_t KPML4phys;     /* physical address of kernel level 4 */
  263 
  264 /*
  265  * virtual address to page table entry and
  266  * to physical address.
  267  * Note: these work recursively, thus vtopte of a pte will give
  268  * the corresponding pde that in turn maps it.
  269  */
  270 pt_entry_t *vtopte(vm_offset_t);
  271 #define vtophys(va)     pmap_kextract(((vm_offset_t) (va)))
  272 
  273 #define pte_load_store(ptep, pte)       atomic_swap_long(ptep, pte)
  274 #define pte_load_clear(ptep)            atomic_swap_long(ptep, 0)
  275 #define pte_store(ptep, pte) do { \
  276         *(u_long *)(ptep) = (u_long)(pte); \
  277 } while (0)
  278 #define pte_clear(ptep)                 pte_store(ptep, 0)
  279 
  280 #define pde_store(pdep, pde)            pte_store(pdep, pde)
  281 
  282 extern pt_entry_t pg_nx;
  283 
  284 #endif /* _KERNEL */
  285 
  286 /*
  287  * Pmap stuff
  288  */
  289 struct  pv_entry;
  290 struct  pv_chunk;
  291 
  292 /*
  293  * Locks
  294  * (p) PV list lock
  295  */
  296 struct md_page {
  297         TAILQ_HEAD(, pv_entry)  pv_list;  /* (p) */
  298         int                     pv_gen;   /* (p) */
  299         int                     pat_mode;
  300 };
  301 
  302 enum pmap_type {
  303         PT_X86,                 /* regular x86 page tables */
  304         PT_EPT,                 /* Intel's nested page tables */
  305         PT_RVI,                 /* AMD's nested page tables */
  306 };
  307 
  308 struct pmap_pcids {
  309         uint32_t        pm_pcid;
  310         uint32_t        pm_gen;
  311 };
  312 
  313 /*
  314  * The kernel virtual address (KVA) of the level 4 page table page is always
  315  * within the direct map (DMAP) region.
  316  */
  317 struct pmap {
  318         struct mtx              pm_mtx;
  319         pml4_entry_t            *pm_pml4;       /* KVA of level 4 page table */
  320         pml4_entry_t            *pm_pml4u;      /* KVA of user l4 page table */
  321         uint64_t                pm_cr3;
  322         uint64_t                pm_ucr3;
  323         TAILQ_HEAD(,pv_chunk)   pm_pvchunk;     /* list of mappings in pmap */
  324         cpuset_t                pm_active;      /* active on cpus */
  325         enum pmap_type          pm_type;        /* regular or nested tables */
  326         struct pmap_statistics  pm_stats;       /* pmap statistics */
  327         struct vm_radix         pm_root;        /* spare page table pages */
  328         long                    pm_eptgen;      /* EPT pmap generation id */
  329         int                     pm_flags;
  330         struct pmap_pcids       pm_pcids[MAXCPU];
  331 };
  332 
  333 /* flags */
  334 #define PMAP_NESTED_IPIMASK     0xff
  335 #define PMAP_PDE_SUPERPAGE      (1 << 8)        /* supports 2MB superpages */
  336 #define PMAP_EMULATE_AD_BITS    (1 << 9)        /* needs A/D bits emulation */
  337 #define PMAP_SUPPORTS_EXEC_ONLY (1 << 10)       /* execute only mappings ok */
  338 
  339 typedef struct pmap     *pmap_t;
  340 
  341 #ifdef _KERNEL
  342 extern struct pmap      kernel_pmap_store;
  343 #define kernel_pmap     (&kernel_pmap_store)
  344 
  345 #define PMAP_LOCK(pmap)         mtx_lock(&(pmap)->pm_mtx)
  346 #define PMAP_LOCK_ASSERT(pmap, type) \
  347                                 mtx_assert(&(pmap)->pm_mtx, (type))
  348 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
  349 #define PMAP_LOCK_INIT(pmap)    mtx_init(&(pmap)->pm_mtx, "pmap", \
  350                                     NULL, MTX_DEF | MTX_DUPOK)
  351 #define PMAP_LOCKED(pmap)       mtx_owned(&(pmap)->pm_mtx)
  352 #define PMAP_MTX(pmap)          (&(pmap)->pm_mtx)
  353 #define PMAP_TRYLOCK(pmap)      mtx_trylock(&(pmap)->pm_mtx)
  354 #define PMAP_UNLOCK(pmap)       mtx_unlock(&(pmap)->pm_mtx)
  355 
  356 int     pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
  357 int     pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
  358 #endif
  359 
  360 /*
  361  * For each vm_page_t, there is a list of all currently valid virtual
  362  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
  363  */
  364 typedef struct pv_entry {
  365         vm_offset_t     pv_va;          /* virtual address for mapping */
  366         TAILQ_ENTRY(pv_entry)   pv_next;
  367 } *pv_entry_t;
  368 
  369 /*
  370  * pv_entries are allocated in chunks per-process.  This avoids the
  371  * need to track per-pmap assignments.
  372  */
  373 #define _NPCM   3
  374 #define _NPCPV  168
  375 #define PV_CHUNK_HEADER                                                 \
  376         pmap_t                  pc_pmap;                                \
  377         TAILQ_ENTRY(pv_chunk)   pc_list;                                \
  378         uint64_t                pc_map[_NPCM];  /* bitmap; 1 = free */  \
  379         TAILQ_ENTRY(pv_chunk)   pc_lru;
  380 
  381 struct pv_chunk_header {
  382         PV_CHUNK_HEADER
  383 };
  384 
  385 struct pv_chunk {
  386         PV_CHUNK_HEADER
  387         struct pv_entry         pc_pventry[_NPCPV];
  388 };
  389 
  390 #ifdef  _KERNEL
  391 
  392 extern caddr_t  CADDR1;
  393 extern pt_entry_t *CMAP1;
  394 extern vm_paddr_t phys_avail[];
  395 extern vm_paddr_t dump_avail[];
  396 extern vm_offset_t virtual_avail;
  397 extern vm_offset_t virtual_end;
  398 extern vm_paddr_t dmaplimit;
  399 extern int pmap_pcid_enabled;
  400 extern int invpcid_works;
  401 
  402 #define pmap_page_get_memattr(m)        ((vm_memattr_t)(m)->md.pat_mode)
  403 #define pmap_page_is_write_mapped(m)    (((m)->aflags & PGA_WRITEABLE) != 0)
  404 #define pmap_unmapbios(va, sz)  pmap_unmapdev((va), (sz))
  405 
  406 struct thread;
  407 
  408 void    pmap_activate_sw(struct thread *);
  409 void    pmap_bootstrap(vm_paddr_t *);
  410 int     pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde);
  411 int     pmap_change_attr(vm_offset_t, vm_size_t, int);
  412 void    pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
  413 void    pmap_init_pat(void);
  414 void    pmap_kenter(vm_offset_t va, vm_paddr_t pa);
  415 void    *pmap_kenter_temporary(vm_paddr_t pa, int i);
  416 vm_paddr_t pmap_kextract(vm_offset_t);
  417 void    pmap_kremove(vm_offset_t);
  418 void    *pmap_mapbios(vm_paddr_t, vm_size_t);
  419 void    *pmap_mapdev(vm_paddr_t, vm_size_t);
  420 void    *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
  421 boolean_t pmap_page_is_mapped(vm_page_t m);
  422 void    pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
  423 void    pmap_pinit_pml4(vm_page_t);
  424 bool    pmap_ps_enabled(pmap_t pmap);
  425 void    pmap_unmapdev(vm_offset_t, vm_size_t);
  426 void    pmap_invalidate_page(pmap_t, vm_offset_t);
  427 void    pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
  428 void    pmap_invalidate_all(pmap_t);
  429 void    pmap_invalidate_cache(void);
  430 void    pmap_invalidate_cache_pages(vm_page_t *pages, int count);
  431 void    pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva,
  432             boolean_t force);
  433 void    pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
  434 boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
  435 void    pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
  436 void    pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec);
  437 void    pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva);
  438 void    pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3);
  439 void    pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va);
  440 void    pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva,
  441             vm_offset_t eva);
  442 #endif /* _KERNEL */
  443 
  444 /* Return various clipped indexes for a given VA */
  445 static __inline vm_pindex_t
  446 pmap_pte_index(vm_offset_t va)
  447 {
  448 
  449         return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
  450 }
  451 
  452 static __inline vm_pindex_t
  453 pmap_pde_index(vm_offset_t va)
  454 {
  455 
  456         return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
  457 }
  458 
  459 static __inline vm_pindex_t
  460 pmap_pdpe_index(vm_offset_t va)
  461 {
  462 
  463         return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
  464 }
  465 
  466 static __inline vm_pindex_t
  467 pmap_pml4e_index(vm_offset_t va)
  468 {
  469 
  470         return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
  471 }
  472 
  473 #endif /* !LOCORE */
  474 
  475 #endif /* !_MACHINE_PMAP_H_ */

Cache object: 863c7631bdc68f5545b9e970346f938a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.