The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/include/pmap.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2003 Peter Wemm.
    5  * Copyright (c) 1991 Regents of the University of California.
    6  * All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department and William Jolitz of UUNET Technologies Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  * Derived from hp300 version by Mike Hibler, this version by William
   37  * Jolitz uses a recursive map [a pde points to the page directory] to
   38  * map the page tables using the pagetables themselves. This is done to
   39  * reduce the impact on kernel virtual memory for lots of sparse address
   40  * space, and to reduce the cost of memory to each process.
   41  *
   42  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
   43  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
   44  * $FreeBSD: releng/12.0/sys/amd64/include/pmap.h 339432 2018-10-18 20:49:16Z kib $
   45  */
   46 
   47 #ifndef _MACHINE_PMAP_H_
   48 #define _MACHINE_PMAP_H_
   49 
   50 /*
   51  * Page-directory and page-table entries follow this format, with a few
   52  * of the fields not present here and there, depending on a lot of things.
   53  */
   54                                 /* ---- Intel Nomenclature ---- */
   55 #define X86_PG_V        0x001   /* P    Valid                   */
   56 #define X86_PG_RW       0x002   /* R/W  Read/Write              */
   57 #define X86_PG_U        0x004   /* U/S  User/Supervisor         */
   58 #define X86_PG_NC_PWT   0x008   /* PWT  Write through           */
   59 #define X86_PG_NC_PCD   0x010   /* PCD  Cache disable           */
   60 #define X86_PG_A        0x020   /* A    Accessed                */
   61 #define X86_PG_M        0x040   /* D    Dirty                   */
   62 #define X86_PG_PS       0x080   /* PS   Page size (0=4k,1=2M)   */
   63 #define X86_PG_PTE_PAT  0x080   /* PAT  PAT index               */
   64 #define X86_PG_G        0x100   /* G    Global                  */
   65 #define X86_PG_AVAIL1   0x200   /*    / Available for system    */
   66 #define X86_PG_AVAIL2   0x400   /*   <  programmers use         */
   67 #define X86_PG_AVAIL3   0x800   /*    \                         */
   68 #define X86_PG_PDE_PAT  0x1000  /* PAT  PAT index               */
   69 #define X86_PG_NX       (1ul<<63) /* No-execute */
   70 #define X86_PG_AVAIL(x) (1ul << (x))
   71 
   72 /* Page level cache control fields used to determine the PAT type */
   73 #define X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
   74 #define X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
   75 
   76 /*
   77  * Intel extended page table (EPT) bit definitions.
   78  */
   79 #define EPT_PG_READ             0x001   /* R    Read            */
   80 #define EPT_PG_WRITE            0x002   /* W    Write           */
   81 #define EPT_PG_EXECUTE          0x004   /* X    Execute         */
   82 #define EPT_PG_IGNORE_PAT       0x040   /* IPAT Ignore PAT      */
   83 #define EPT_PG_PS               0x080   /* PS   Page size       */
   84 #define EPT_PG_A                0x100   /* A    Accessed        */
   85 #define EPT_PG_M                0x200   /* D    Dirty           */
   86 #define EPT_PG_MEMORY_TYPE(x)   ((x) << 3) /* MT Memory Type    */
   87 
   88 /*
   89  * Define the PG_xx macros in terms of the bits on x86 PTEs.
   90  */
   91 #define PG_V            X86_PG_V
   92 #define PG_RW           X86_PG_RW
   93 #define PG_U            X86_PG_U
   94 #define PG_NC_PWT       X86_PG_NC_PWT
   95 #define PG_NC_PCD       X86_PG_NC_PCD
   96 #define PG_A            X86_PG_A
   97 #define PG_M            X86_PG_M
   98 #define PG_PS           X86_PG_PS
   99 #define PG_PTE_PAT      X86_PG_PTE_PAT
  100 #define PG_G            X86_PG_G
  101 #define PG_AVAIL1       X86_PG_AVAIL1
  102 #define PG_AVAIL2       X86_PG_AVAIL2
  103 #define PG_AVAIL3       X86_PG_AVAIL3
  104 #define PG_PDE_PAT      X86_PG_PDE_PAT
  105 #define PG_NX           X86_PG_NX
  106 #define PG_PDE_CACHE    X86_PG_PDE_CACHE
  107 #define PG_PTE_CACHE    X86_PG_PTE_CACHE
  108 
  109 /* Our various interpretations of the above */
  110 #define PG_W            X86_PG_AVAIL3   /* "Wired" pseudoflag */
  111 #define PG_MANAGED      X86_PG_AVAIL2
  112 #define EPT_PG_EMUL_V   X86_PG_AVAIL(52)
  113 #define EPT_PG_EMUL_RW  X86_PG_AVAIL(53)
  114 #define PG_PROMOTED     X86_PG_AVAIL(54)        /* PDE only */
  115 #define PG_FRAME        (0x000ffffffffff000ul)
  116 #define PG_PS_FRAME     (0x000fffffffe00000ul)
  117 
  118 /*
  119  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
  120  * (PTE) page mappings have identical settings for the following fields:
  121  */
  122 #define PG_PTE_PROMOTE  (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
  123             PG_M | PG_A | PG_U | PG_RW | PG_V)
  124 
  125 /*
  126  * Page Protection Exception bits
  127  */
  128 
  129 #define PGEX_P          0x01    /* Protection violation vs. not present */
  130 #define PGEX_W          0x02    /* during a Write cycle */
  131 #define PGEX_U          0x04    /* access from User mode (UPL) */
  132 #define PGEX_RSV        0x08    /* reserved PTE field is non-zero */
  133 #define PGEX_I          0x10    /* during an instruction fetch */
  134 
  135 /* 
  136  * undef the PG_xx macros that define bits in the regular x86 PTEs that
  137  * have a different position in nested PTEs. This is done when compiling
  138  * code that needs to be aware of the differences between regular x86 and
  139  * nested PTEs.
  140  *
  141  * The appropriate bitmask will be calculated at runtime based on the pmap
  142  * type.
  143  */
  144 #ifdef AMD64_NPT_AWARE
  145 #undef PG_AVAIL1                /* X86_PG_AVAIL1 aliases with EPT_PG_M */
  146 #undef PG_G
  147 #undef PG_A
  148 #undef PG_M
  149 #undef PG_PDE_PAT
  150 #undef PG_PDE_CACHE
  151 #undef PG_PTE_PAT
  152 #undef PG_PTE_CACHE
  153 #undef PG_RW
  154 #undef PG_V
  155 #endif
  156 
  157 /*
  158  * Pte related macros.  This is complicated by having to deal with
  159  * the sign extension of the 48th bit.
  160  */
  161 #define KVADDR(l4, l3, l2, l1) ( \
  162         ((unsigned long)-1 << 47) | \
  163         ((unsigned long)(l4) << PML4SHIFT) | \
  164         ((unsigned long)(l3) << PDPSHIFT) | \
  165         ((unsigned long)(l2) << PDRSHIFT) | \
  166         ((unsigned long)(l1) << PAGE_SHIFT))
  167 
  168 #define UVADDR(l4, l3, l2, l1) ( \
  169         ((unsigned long)(l4) << PML4SHIFT) | \
  170         ((unsigned long)(l3) << PDPSHIFT) | \
  171         ((unsigned long)(l2) << PDRSHIFT) | \
  172         ((unsigned long)(l1) << PAGE_SHIFT))
  173 
  174 /*
  175  * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
  176  * but setting it larger than NDMPML4E makes no sense.
  177  *
  178  * Each slot provides .5 TB of kernel virtual space.
  179  */
  180 #define NKPML4E         4
  181 
  182 #define NUPML4E         (NPML4EPG/2)    /* number of userland PML4 pages */
  183 #define NUPDPE          (NUPML4E*NPDPEPG)/* number of userland PDP pages */
  184 #define NUPDE           (NUPDPE*NPDEPG) /* number of userland PD entries */
  185 
  186 /*
  187  * NDMPML4E is the maximum number of PML4 entries that will be
  188  * used to implement the direct map.  It must be a power of two,
  189  * and should generally exceed NKPML4E.  The maximum possible
  190  * value is 64; using 128 will make the direct map intrude into
  191  * the recursive page table map.
  192  */
  193 #define NDMPML4E        8
  194 
  195 /*
  196  * These values control the layout of virtual memory.  The starting address
  197  * of the direct map, which is controlled by DMPML4I, must be a multiple of
  198  * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
  199  *
  200  * Note: KPML4I is the index of the (single) level 4 page that maps
  201  * the KVA that holds KERNBASE, while KPML4BASE is the index of the
  202  * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
  203  * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
  204  * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
  205  * KERNBASE.
  206  *
  207  * (KPML4I combines with KPDPI to choose where KERNBASE starts.
  208  * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
  209  * and KPDPI provides bits 30..38.)
  210  */
  211 #define PML4PML4I       (NPML4EPG/2)    /* Index of recursive pml4 mapping */
  212 
  213 #define KPML4BASE       (NPML4EPG-NKPML4E) /* KVM at highest addresses */
  214 #define DMPML4I         rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
  215 
  216 #define KPML4I          (NPML4EPG-1)
  217 #define KPDPI           (NPDPEPG-2)     /* kernbase at -2GB */
  218 
  219 /* Large map: index of the first and max last pml4 entry */
  220 #define LMSPML4I        (PML4PML4I + 1)
  221 #define LMEPML4I        (DMPML4I - 1)
  222 
  223 /*
  224  * XXX doesn't really belong here I guess...
  225  */
  226 #define ISA_HOLE_START    0xa0000
  227 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
  228 
  229 #define PMAP_PCID_NONE          0xffffffff
  230 #define PMAP_PCID_KERN          0
  231 #define PMAP_PCID_OVERMAX       0x1000
  232 #define PMAP_PCID_OVERMAX_KERN  0x800
  233 #define PMAP_PCID_USER_PT       0x800
  234 
  235 #define PMAP_NO_CR3             (~0UL)
  236 
  237 #ifndef LOCORE
  238 
  239 #include <sys/queue.h>
  240 #include <sys/_cpuset.h>
  241 #include <sys/_lock.h>
  242 #include <sys/_mutex.h>
  243 
  244 #include <vm/_vm_radix.h>
  245 
  246 typedef u_int64_t pd_entry_t;
  247 typedef u_int64_t pt_entry_t;
  248 typedef u_int64_t pdp_entry_t;
  249 typedef u_int64_t pml4_entry_t;
  250 
  251 /*
  252  * Address of current address space page table maps and directories.
  253  */
  254 #ifdef _KERNEL
  255 #define addr_PTmap      (KVADDR(PML4PML4I, 0, 0, 0))
  256 #define addr_PDmap      (KVADDR(PML4PML4I, PML4PML4I, 0, 0))
  257 #define addr_PDPmap     (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
  258 #define addr_PML4map    (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
  259 #define addr_PML4pml4e  (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
  260 #define PTmap           ((pt_entry_t *)(addr_PTmap))
  261 #define PDmap           ((pd_entry_t *)(addr_PDmap))
  262 #define PDPmap          ((pd_entry_t *)(addr_PDPmap))
  263 #define PML4map         ((pd_entry_t *)(addr_PML4map))
  264 #define PML4pml4e       ((pd_entry_t *)(addr_PML4pml4e))
  265 
  266 extern int nkpt;                /* Initial number of kernel page tables */
  267 extern u_int64_t KPDPphys;      /* physical address of kernel level 3 */
  268 extern u_int64_t KPML4phys;     /* physical address of kernel level 4 */
  269 
  270 /*
  271  * virtual address to page table entry and
  272  * to physical address.
  273  * Note: these work recursively, thus vtopte of a pte will give
  274  * the corresponding pde that in turn maps it.
  275  */
  276 pt_entry_t *vtopte(vm_offset_t);
  277 #define vtophys(va)     pmap_kextract(((vm_offset_t) (va)))
  278 
  279 #define pte_load_store(ptep, pte)       atomic_swap_long(ptep, pte)
  280 #define pte_load_clear(ptep)            atomic_swap_long(ptep, 0)
  281 #define pte_store(ptep, pte) do { \
  282         *(u_long *)(ptep) = (u_long)(pte); \
  283 } while (0)
  284 #define pte_clear(ptep)                 pte_store(ptep, 0)
  285 
  286 #define pde_store(pdep, pde)            pte_store(pdep, pde)
  287 
  288 extern pt_entry_t pg_nx;
  289 
  290 #endif /* _KERNEL */
  291 
  292 /*
  293  * Pmap stuff
  294  */
  295 struct  pv_entry;
  296 struct  pv_chunk;
  297 
  298 /*
  299  * Locks
  300  * (p) PV list lock
  301  */
  302 struct md_page {
  303         TAILQ_HEAD(, pv_entry)  pv_list;  /* (p) */
  304         int                     pv_gen;   /* (p) */
  305         int                     pat_mode;
  306 };
  307 
  308 enum pmap_type {
  309         PT_X86,                 /* regular x86 page tables */
  310         PT_EPT,                 /* Intel's nested page tables */
  311         PT_RVI,                 /* AMD's nested page tables */
  312 };
  313 
  314 struct pmap_pcids {
  315         uint32_t        pm_pcid;
  316         uint32_t        pm_gen;
  317 };
  318 
  319 /*
  320  * The kernel virtual address (KVA) of the level 4 page table page is always
  321  * within the direct map (DMAP) region.
  322  */
  323 struct pmap {
  324         struct mtx              pm_mtx;
  325         pml4_entry_t            *pm_pml4;       /* KVA of level 4 page table */
  326         pml4_entry_t            *pm_pml4u;      /* KVA of user l4 page table */
  327         uint64_t                pm_cr3;
  328         uint64_t                pm_ucr3;
  329         TAILQ_HEAD(,pv_chunk)   pm_pvchunk;     /* list of mappings in pmap */
  330         cpuset_t                pm_active;      /* active on cpus */
  331         enum pmap_type          pm_type;        /* regular or nested tables */
  332         struct pmap_statistics  pm_stats;       /* pmap statistics */
  333         struct vm_radix         pm_root;        /* spare page table pages */
  334         long                    pm_eptgen;      /* EPT pmap generation id */
  335         int                     pm_flags;
  336         struct pmap_pcids       pm_pcids[MAXCPU];
  337 };
  338 
  339 /* flags */
  340 #define PMAP_NESTED_IPIMASK     0xff
  341 #define PMAP_PDE_SUPERPAGE      (1 << 8)        /* supports 2MB superpages */
  342 #define PMAP_EMULATE_AD_BITS    (1 << 9)        /* needs A/D bits emulation */
  343 #define PMAP_SUPPORTS_EXEC_ONLY (1 << 10)       /* execute only mappings ok */
  344 
  345 typedef struct pmap     *pmap_t;
  346 
  347 #ifdef _KERNEL
  348 extern struct pmap      kernel_pmap_store;
  349 #define kernel_pmap     (&kernel_pmap_store)
  350 
  351 #define PMAP_LOCK(pmap)         mtx_lock(&(pmap)->pm_mtx)
  352 #define PMAP_LOCK_ASSERT(pmap, type) \
  353                                 mtx_assert(&(pmap)->pm_mtx, (type))
  354 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
  355 #define PMAP_LOCK_INIT(pmap)    mtx_init(&(pmap)->pm_mtx, "pmap", \
  356                                     NULL, MTX_DEF | MTX_DUPOK)
  357 #define PMAP_LOCKED(pmap)       mtx_owned(&(pmap)->pm_mtx)
  358 #define PMAP_MTX(pmap)          (&(pmap)->pm_mtx)
  359 #define PMAP_TRYLOCK(pmap)      mtx_trylock(&(pmap)->pm_mtx)
  360 #define PMAP_UNLOCK(pmap)       mtx_unlock(&(pmap)->pm_mtx)
  361 
  362 int     pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
  363 int     pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
  364 #endif
  365 
  366 /*
  367  * For each vm_page_t, there is a list of all currently valid virtual
  368  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
  369  */
  370 typedef struct pv_entry {
  371         vm_offset_t     pv_va;          /* virtual address for mapping */
  372         TAILQ_ENTRY(pv_entry)   pv_next;
  373 } *pv_entry_t;
  374 
  375 /*
  376  * pv_entries are allocated in chunks per-process.  This avoids the
  377  * need to track per-pmap assignments.
  378  */
  379 #define _NPCM   3
  380 #define _NPCPV  168
  381 #define PV_CHUNK_HEADER                                                 \
  382         pmap_t                  pc_pmap;                                \
  383         TAILQ_ENTRY(pv_chunk)   pc_list;                                \
  384         uint64_t                pc_map[_NPCM];  /* bitmap; 1 = free */  \
  385         TAILQ_ENTRY(pv_chunk)   pc_lru;
  386 
  387 struct pv_chunk_header {
  388         PV_CHUNK_HEADER
  389 };
  390 
  391 struct pv_chunk {
  392         PV_CHUNK_HEADER
  393         struct pv_entry         pc_pventry[_NPCPV];
  394 };
  395 
  396 #ifdef  _KERNEL
  397 
  398 extern caddr_t  CADDR1;
  399 extern pt_entry_t *CMAP1;
  400 extern vm_paddr_t phys_avail[];
  401 extern vm_paddr_t dump_avail[];
  402 extern vm_offset_t virtual_avail;
  403 extern vm_offset_t virtual_end;
  404 extern vm_paddr_t dmaplimit;
  405 extern int pmap_pcid_enabled;
  406 extern int invpcid_works;
  407 
  408 #define pmap_page_get_memattr(m)        ((vm_memattr_t)(m)->md.pat_mode)
  409 #define pmap_page_is_write_mapped(m)    (((m)->aflags & PGA_WRITEABLE) != 0)
  410 #define pmap_unmapbios(va, sz)  pmap_unmapdev((va), (sz))
  411 
  412 struct thread;
  413 
  414 void    pmap_activate_boot(pmap_t pmap);
  415 void    pmap_activate_sw(struct thread *);
  416 void    pmap_bootstrap(vm_paddr_t *);
  417 int     pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde);
  418 int     pmap_change_attr(vm_offset_t, vm_size_t, int);
  419 void    pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
  420 void    pmap_flush_cache_range(vm_offset_t, vm_offset_t);
  421 void    pmap_flush_cache_phys_range(vm_paddr_t, vm_paddr_t, vm_memattr_t);
  422 void    pmap_init_pat(void);
  423 void    pmap_kenter(vm_offset_t va, vm_paddr_t pa);
  424 void    *pmap_kenter_temporary(vm_paddr_t pa, int i);
  425 vm_paddr_t pmap_kextract(vm_offset_t);
  426 void    pmap_kremove(vm_offset_t);
  427 int     pmap_large_map(vm_paddr_t, vm_size_t, void **, vm_memattr_t);
  428 void    pmap_large_map_wb(void *sva, vm_size_t len);
  429 void    pmap_large_unmap(void *sva, vm_size_t len);
  430 void    *pmap_mapbios(vm_paddr_t, vm_size_t);
  431 void    *pmap_mapdev(vm_paddr_t, vm_size_t);
  432 void    *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
  433 void    *pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size);
  434 boolean_t pmap_page_is_mapped(vm_page_t m);
  435 void    pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
  436 void    pmap_pinit_pml4(vm_page_t);
  437 bool    pmap_ps_enabled(pmap_t pmap);
  438 void    pmap_unmapdev(vm_offset_t, vm_size_t);
  439 void    pmap_invalidate_page(pmap_t, vm_offset_t);
  440 void    pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
  441 void    pmap_invalidate_all(pmap_t);
  442 void    pmap_invalidate_cache(void);
  443 void    pmap_invalidate_cache_pages(vm_page_t *pages, int count);
  444 void    pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
  445 void    pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
  446 void    pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
  447 boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
  448 void    pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
  449 void    pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec);
  450 void    pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva);
  451 void    pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3);
  452 void    pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va);
  453 void    pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva,
  454             vm_offset_t eva);
  455 #endif /* _KERNEL */
  456 
  457 /* Return various clipped indexes for a given VA */
  458 static __inline vm_pindex_t
  459 pmap_pte_index(vm_offset_t va)
  460 {
  461 
  462         return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
  463 }
  464 
  465 static __inline vm_pindex_t
  466 pmap_pde_index(vm_offset_t va)
  467 {
  468 
  469         return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
  470 }
  471 
  472 static __inline vm_pindex_t
  473 pmap_pdpe_index(vm_offset_t va)
  474 {
  475 
  476         return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
  477 }
  478 
  479 static __inline vm_pindex_t
  480 pmap_pml4e_index(vm_offset_t va)
  481 {
  482 
  483         return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
  484 }
  485 
  486 #endif /* !LOCORE */
  487 
  488 #endif /* !_MACHINE_PMAP_H_ */

Cache object: e977ea3eb292dc14be6458efd675fb9c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.