The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/5.4/sys/amd64/isa/clock.c 142758 2005-02-28 07:38:48Z obrien $");
   37 
   38 /*
   39  * Routines to handle clock hardware.
   40  */
   41 
   42 /*
   43  * inittodr, settodr and support routines written
   44  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   45  *
   46  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   47  */
   48 
   49 #include "opt_clock.h"
   50 #include "opt_isa.h"
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/bus.h>
   55 #include <sys/lock.h>
   56 #include <sys/kdb.h>
   57 #include <sys/mutex.h>
   58 #include <sys/proc.h>
   59 #include <sys/time.h>
   60 #include <sys/timetc.h>
   61 #include <sys/kernel.h>
   62 #include <sys/limits.h>
   63 #include <sys/module.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/cons.h>
   66 #include <sys/power.h>
   67 
   68 #include <machine/clock.h>
   69 #include <machine/frame.h>
   70 #include <machine/intr_machdep.h>
   71 #include <machine/md_var.h>
   72 #include <machine/psl.h>
   73 #ifdef SMP
   74 #include <machine/smp.h>
   75 #endif
   76 #include <machine/specialreg.h>
   77 
   78 #include <amd64/isa/isa.h>
   79 #include <isa/rtc.h>
   80 #ifdef DEV_ISA
   81 #include <isa/isavar.h>
   82 #endif
   83 #include <amd64/isa/timerreg.h>
   84 
   85 /*
   86  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
   87  * can use a simple formula for leap years.
   88  */
   89 #define LEAPYEAR(y) (((u_int)(y) % 4 == 0) ? 1 : 0)
   90 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
   91 
   92 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
   93 
   94 int     adjkerntz;              /* local offset from GMT in seconds */
   95 int     clkintr_pending;
   96 int     disable_rtc_set;        /* disable resettodr() if != 0 */
   97 int     pscnt = 1;
   98 int     psdiv = 1;
   99 int     statclock_disable;
  100 #ifndef TIMER_FREQ
  101 #define TIMER_FREQ   1193182
  102 #endif
  103 u_int   timer_freq = TIMER_FREQ;
  104 int     timer0_max_count;
  105 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
  106 struct mtx clock_lock;
  107 
  108 static  int     beeping = 0;
  109 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
  110 static  u_int   hardclock_max_count;
  111 static  struct intsrc *i8254_intsrc;
  112 static  u_int32_t i8254_lastcount;
  113 static  u_int32_t i8254_offset;
  114 static  int     (*i8254_pending)(struct intsrc *);
  115 static  int     i8254_ticked;
  116 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  117 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
  118 
  119 /* Values for timerX_state: */
  120 #define RELEASED        0
  121 #define RELEASE_PENDING 1
  122 #define ACQUIRED        2
  123 #define ACQUIRE_PENDING 3
  124 
  125 static  u_char  timer2_state;
  126 
  127 static  unsigned i8254_get_timecount(struct timecounter *tc);
  128 static  void    set_timer_freq(u_int freq, int intr_freq);
  129 
  130 static struct timecounter i8254_timecounter = {
  131         i8254_get_timecount,    /* get_timecount */
  132         0,                      /* no poll_pps */
  133         ~0u,                    /* counter_mask */
  134         0,                      /* frequency */
  135         "i8254",                /* name */
  136         0                       /* quality */
  137 };
  138 
  139 static void
  140 clkintr(struct clockframe *frame)
  141 {
  142 
  143         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  144                 mtx_lock_spin(&clock_lock);
  145                 if (i8254_ticked)
  146                         i8254_ticked = 0;
  147                 else {
  148                         i8254_offset += timer0_max_count;
  149                         i8254_lastcount = 0;
  150                 }
  151                 clkintr_pending = 0;
  152                 mtx_unlock_spin(&clock_lock);
  153         }
  154         hardclock(frame);
  155 #ifdef SMP
  156         forward_hardclock();
  157 #endif
  158 }
  159 
  160 int
  161 acquire_timer2(int mode)
  162 {
  163 
  164         if (timer2_state != RELEASED)
  165                 return (-1);
  166         timer2_state = ACQUIRED;
  167 
  168         /*
  169          * This access to the timer registers is as atomic as possible
  170          * because it is a single instruction.  We could do better if we
  171          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  172          * and this is probably good enough for timer2, so we aren't as
  173          * careful with it as with timer0.
  174          */
  175         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  176 
  177         return (0);
  178 }
  179 
  180 int
  181 release_timer2()
  182 {
  183 
  184         if (timer2_state != ACQUIRED)
  185                 return (-1);
  186         timer2_state = RELEASED;
  187         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  188         return (0);
  189 }
  190 
  191 /*
  192  * This routine receives statistical clock interrupts from the RTC.
  193  * As explained above, these occur at 128 interrupts per second.
  194  * When profiling, we receive interrupts at a rate of 1024 Hz.
  195  *
  196  * This does not actually add as much overhead as it sounds, because
  197  * when the statistical clock is active, the hardclock driver no longer
  198  * needs to keep (inaccurate) statistics on its own.  This decouples
  199  * statistics gathering from scheduling interrupts.
  200  *
  201  * The RTC chip requires that we read status register C (RTC_INTR)
  202  * to acknowledge an interrupt, before it will generate the next one.
  203  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  204  * the clock can tick immediately after the read from RTC_INTR.  In this
  205  * case, the mc146818A interrupt signal will not drop for long enough
  206  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  207  * clock will halt, considerably degrading system performance.  This is
  208  * why we use 'while' rather than a more straightforward 'if' below.
  209  * Stat clock ticks can still be lost, causing minor loss of accuracy
  210  * in the statistics, but the stat clock will no longer stop.
  211  */
  212 static void
  213 rtcintr(struct clockframe *frame)
  214 {
  215 
  216         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  217                 if (profprocs != 0) {
  218                         if (--pscnt == 0)
  219                                 pscnt = psdiv;
  220                         profclock(frame);
  221                 }
  222                 if (pscnt == psdiv)
  223                         statclock(frame);
  224 #ifdef SMP
  225                 forward_statclock();
  226 #endif
  227         }
  228 }
  229 
  230 #include "opt_ddb.h"
  231 #ifdef DDB
  232 #include <ddb/ddb.h>
  233 
  234 DB_SHOW_COMMAND(rtc, rtc)
  235 {
  236         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  237                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  238                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  239                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  240 }
  241 #endif /* DDB */
  242 
  243 static int
  244 getit(void)
  245 {
  246         int high, low;
  247 
  248         mtx_lock_spin(&clock_lock);
  249 
  250         /* Select timer0 and latch counter value. */
  251         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  252 
  253         low = inb(TIMER_CNTR0);
  254         high = inb(TIMER_CNTR0);
  255 
  256         mtx_unlock_spin(&clock_lock);
  257         return ((high << 8) | low);
  258 }
  259 
  260 /*
  261  * Wait "n" microseconds.
  262  * Relies on timer 1 counting down from (timer_freq / hz)
  263  * Note: timer had better have been programmed before this is first used!
  264  */
  265 void
  266 DELAY(int n)
  267 {
  268         int delta, prev_tick, tick, ticks_left;
  269 
  270 #ifdef DELAYDEBUG
  271         int getit_calls = 1;
  272         int n1;
  273         static int state = 0;
  274 
  275         if (state == 0) {
  276                 state = 1;
  277                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  278                         DELAY(n1);
  279                 state = 2;
  280         }
  281         if (state == 1)
  282                 printf("DELAY(%d)...", n);
  283 #endif
  284         /*
  285          * Guard against the timer being uninitialized if we are called
  286          * early for console i/o.
  287          */
  288         if (timer0_max_count == 0)
  289                 set_timer_freq(timer_freq, hz);
  290 
  291         /*
  292          * Read the counter first, so that the rest of the setup overhead is
  293          * counted.  Guess the initial overhead is 20 usec (on most systems it
  294          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  295          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  296          * multiplications and divisions to scale the count take a while).
  297          *
  298          * However, if ddb is active then use a fake counter since reading
  299          * the i8254 counter involves acquiring a lock.  ddb must not do
  300          * locking for many reasons, but it calls here for at least atkbd
  301          * input.
  302          */
  303 #ifdef KDB
  304         if (kdb_active)
  305                 prev_tick = 1;
  306         else
  307 #endif
  308                 prev_tick = getit();
  309         n -= 0;                 /* XXX actually guess no initial overhead */
  310         /*
  311          * Calculate (n * (timer_freq / 1e6)) without using floating point
  312          * and without any avoidable overflows.
  313          */
  314         if (n <= 0)
  315                 ticks_left = 0;
  316         else if (n < 256)
  317                 /*
  318                  * Use fixed point to avoid a slow division by 1000000.
  319                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  320                  * 2^15 is the first power of 2 that gives exact results
  321                  * for n between 0 and 256.
  322                  */
  323                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  324         else
  325                 /*
  326                  * Don't bother using fixed point, although gcc-2.7.2
  327                  * generates particularly poor code for the long long
  328                  * division, since even the slow way will complete long
  329                  * before the delay is up (unless we're interrupted).
  330                  */
  331                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  332                              / 1000000;
  333 
  334         while (ticks_left > 0) {
  335 #ifdef KDB
  336                 if (kdb_active) {
  337                         inb(0x84);
  338                         tick = prev_tick - 1;
  339                         if (tick <= 0)
  340                                 tick = timer0_max_count;
  341                 } else
  342 #endif
  343                         tick = getit();
  344 #ifdef DELAYDEBUG
  345                 ++getit_calls;
  346 #endif
  347                 delta = prev_tick - tick;
  348                 prev_tick = tick;
  349                 if (delta < 0) {
  350                         delta += timer0_max_count;
  351                         /*
  352                          * Guard against timer0_max_count being wrong.
  353                          * This shouldn't happen in normal operation,
  354                          * but it may happen if set_timer_freq() is
  355                          * traced.
  356                          */
  357                         if (delta < 0)
  358                                 delta = 0;
  359                 }
  360                 ticks_left -= delta;
  361         }
  362 #ifdef DELAYDEBUG
  363         if (state == 1)
  364                 printf(" %d calls to getit() at %d usec each\n",
  365                        getit_calls, (n + 5) / getit_calls);
  366 #endif
  367 }
  368 
  369 static void
  370 sysbeepstop(void *chan)
  371 {
  372         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
  373         release_timer2();
  374         beeping = 0;
  375 }
  376 
  377 int
  378 sysbeep(int pitch, int period)
  379 {
  380         int x = splclock();
  381 
  382         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
  383                 if (!beeping) {
  384                         /* Something else owns it. */
  385                         splx(x);
  386                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  387                 }
  388         mtx_lock_spin(&clock_lock);
  389         outb(TIMER_CNTR2, pitch);
  390         outb(TIMER_CNTR2, (pitch>>8));
  391         mtx_unlock_spin(&clock_lock);
  392         if (!beeping) {
  393                 /* enable counter2 output to speaker */
  394                 outb(IO_PPI, inb(IO_PPI) | 3);
  395                 beeping = period;
  396                 timeout(sysbeepstop, (void *)NULL, period);
  397         }
  398         splx(x);
  399         return (0);
  400 }
  401 
  402 /*
  403  * RTC support routines
  404  */
  405 
  406 int
  407 rtcin(reg)
  408         int reg;
  409 {
  410         int s;
  411         u_char val;
  412 
  413         s = splhigh();
  414         outb(IO_RTC, reg);
  415         inb(0x84);
  416         val = inb(IO_RTC + 1);
  417         inb(0x84);
  418         splx(s);
  419         return (val);
  420 }
  421 
  422 static __inline void
  423 writertc(u_char reg, u_char val)
  424 {
  425         int s;
  426 
  427         s = splhigh();
  428         inb(0x84);
  429         outb(IO_RTC, reg);
  430         inb(0x84);
  431         outb(IO_RTC + 1, val);
  432         inb(0x84);              /* XXX work around wrong order in rtcin() */
  433         splx(s);
  434 }
  435 
  436 static __inline int
  437 readrtc(int port)
  438 {
  439         return(bcd2bin(rtcin(port)));
  440 }
  441 
  442 static u_int
  443 calibrate_clocks(void)
  444 {
  445         u_int count, prev_count, tot_count;
  446         int sec, start_sec, timeout;
  447 
  448         if (bootverbose)
  449                 printf("Calibrating clock(s) ... ");
  450         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  451                 goto fail;
  452         timeout = 100000000;
  453 
  454         /* Read the mc146818A seconds counter. */
  455         for (;;) {
  456                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  457                         sec = rtcin(RTC_SEC);
  458                         break;
  459                 }
  460                 if (--timeout == 0)
  461                         goto fail;
  462         }
  463 
  464         /* Wait for the mC146818A seconds counter to change. */
  465         start_sec = sec;
  466         for (;;) {
  467                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  468                         sec = rtcin(RTC_SEC);
  469                         if (sec != start_sec)
  470                                 break;
  471                 }
  472                 if (--timeout == 0)
  473                         goto fail;
  474         }
  475 
  476         /* Start keeping track of the i8254 counter. */
  477         prev_count = getit();
  478         if (prev_count == 0 || prev_count > timer0_max_count)
  479                 goto fail;
  480         tot_count = 0;
  481 
  482         /*
  483          * Wait for the mc146818A seconds counter to change.  Read the i8254
  484          * counter for each iteration since this is convenient and only
  485          * costs a few usec of inaccuracy. The timing of the final reads
  486          * of the counters almost matches the timing of the initial reads,
  487          * so the main cause of inaccuracy is the varying latency from 
  488          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  489          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  490          * maximum inaccuracy from this cause is < 10 usec on 486's.
  491          */
  492         start_sec = sec;
  493         for (;;) {
  494                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  495                         sec = rtcin(RTC_SEC);
  496                 count = getit();
  497                 if (count == 0 || count > timer0_max_count)
  498                         goto fail;
  499                 if (count > prev_count)
  500                         tot_count += prev_count - (count - timer0_max_count);
  501                 else
  502                         tot_count += prev_count - count;
  503                 prev_count = count;
  504                 if (sec != start_sec)
  505                         break;
  506                 if (--timeout == 0)
  507                         goto fail;
  508         }
  509 
  510         if (bootverbose) {
  511                 printf("i8254 clock: %u Hz\n", tot_count);
  512         }
  513         return (tot_count);
  514 
  515 fail:
  516         if (bootverbose)
  517                 printf("failed, using default i8254 clock of %u Hz\n",
  518                        timer_freq);
  519         return (timer_freq);
  520 }
  521 
  522 static void
  523 set_timer_freq(u_int freq, int intr_freq)
  524 {
  525         int new_timer0_max_count;
  526 
  527         mtx_lock_spin(&clock_lock);
  528         timer_freq = freq;
  529         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
  530         if (new_timer0_max_count != timer0_max_count) {
  531                 timer0_max_count = new_timer0_max_count;
  532                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  533                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  534                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  535         }
  536         mtx_unlock_spin(&clock_lock);
  537 }
  538 
  539 /*
  540  * Initialize 8254 timer 0 early so that it can be used in DELAY().
  541  * XXX initialization of other timers is unintentionally left blank.
  542  */
  543 void
  544 startrtclock()
  545 {
  546         u_int delta, freq;
  547 
  548         writertc(RTC_STATUSA, rtc_statusa);
  549         writertc(RTC_STATUSB, RTCSB_24HR);
  550 
  551         set_timer_freq(timer_freq, hz);
  552         freq = calibrate_clocks();
  553 #ifdef CLK_CALIBRATION_LOOP
  554         if (bootverbose) {
  555                 printf(
  556                 "Press a key on the console to abort clock calibration\n");
  557                 while (cncheckc() == -1)
  558                         calibrate_clocks();
  559         }
  560 #endif
  561 
  562         /*
  563          * Use the calibrated i8254 frequency if it seems reasonable.
  564          * Otherwise use the default, and don't use the calibrated i586
  565          * frequency.
  566          */
  567         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  568         if (delta < timer_freq / 100) {
  569 #ifndef CLK_USE_I8254_CALIBRATION
  570                 if (bootverbose)
  571                         printf(
  572 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  573                 freq = timer_freq;
  574 #endif
  575                 timer_freq = freq;
  576         } else {
  577                 if (bootverbose)
  578                         printf(
  579                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  580                                freq, timer_freq);
  581         }
  582 
  583         set_timer_freq(timer_freq, hz);
  584         i8254_timecounter.tc_frequency = timer_freq;
  585         tc_init(&i8254_timecounter);
  586 
  587         init_TSC();
  588 }
  589 
  590 /*
  591  * Initialize the time of day register, based on the time base which is, e.g.
  592  * from a filesystem.
  593  */
  594 void
  595 inittodr(time_t base)
  596 {
  597         unsigned long   sec, days;
  598         int             year, month;
  599         int             y, m, s;
  600         struct timespec ts;
  601 
  602         if (base) {
  603                 s = splclock();
  604                 ts.tv_sec = base;
  605                 ts.tv_nsec = 0;
  606                 tc_setclock(&ts);
  607                 splx(s);
  608         }
  609 
  610         /* Look if we have a RTC present and the time is valid */
  611         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  612                 goto wrong_time;
  613 
  614         /* wait for time update to complete */
  615         /* If RTCSA_TUP is zero, we have at least 244us before next update */
  616         s = splhigh();
  617         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
  618                 splx(s);
  619                 s = splhigh();
  620         }
  621 
  622         days = 0;
  623 #ifdef USE_RTC_CENTURY
  624         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
  625 #else
  626         year = readrtc(RTC_YEAR) + 1900;
  627         if (year < 1970)
  628                 year += 100;
  629 #endif
  630         if (year < 1970) {
  631                 splx(s);
  632                 goto wrong_time;
  633         }
  634         month = readrtc(RTC_MONTH);
  635         for (m = 1; m < month; m++)
  636                 days += daysinmonth[m-1];
  637         if ((month > 2) && LEAPYEAR(year))
  638                 days ++;
  639         days += readrtc(RTC_DAY) - 1;
  640         for (y = 1970; y < year; y++)
  641                 days += DAYSPERYEAR + LEAPYEAR(y);
  642         sec = ((( days * 24 +
  643                   readrtc(RTC_HRS)) * 60 +
  644                   readrtc(RTC_MIN)) * 60 +
  645                   readrtc(RTC_SEC));
  646         /* sec now contains the number of seconds, since Jan 1 1970,
  647            in the local time zone */
  648 
  649         sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  650 
  651         y = time_second - sec;
  652         if (y <= -2 || y >= 2) {
  653                 /* badly off, adjust it */
  654                 ts.tv_sec = sec;
  655                 ts.tv_nsec = 0;
  656                 tc_setclock(&ts);
  657         }
  658         splx(s);
  659         return;
  660 
  661 wrong_time:
  662         printf("Invalid time in real time clock.\n");
  663         printf("Check and reset the date immediately!\n");
  664 }
  665 
  666 /*
  667  * Write system time back to RTC
  668  */
  669 void
  670 resettodr()
  671 {
  672         unsigned long   tm;
  673         int             y, m, s;
  674 
  675         if (disable_rtc_set)
  676                 return;
  677 
  678         s = splclock();
  679         tm = time_second;
  680         splx(s);
  681 
  682         /* Disable RTC updates and interrupts. */
  683         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
  684 
  685         /* Calculate local time to put in RTC */
  686 
  687         tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
  688 
  689         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
  690         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
  691         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
  692 
  693         /* We have now the days since 01-01-1970 in tm */
  694         writertc(RTC_WDAY, (tm + 4) % 7 + 1);           /* Write back Weekday */
  695         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
  696              tm >= m;
  697              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
  698              tm -= m;
  699 
  700         /* Now we have the years in y and the day-of-the-year in tm */
  701         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
  702 #ifdef USE_RTC_CENTURY
  703         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
  704 #endif
  705         for (m = 0; ; m++) {
  706                 int ml;
  707 
  708                 ml = daysinmonth[m];
  709                 if (m == 1 && LEAPYEAR(y))
  710                         ml++;
  711                 if (tm < ml)
  712                         break;
  713                 tm -= ml;
  714         }
  715 
  716         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
  717         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
  718 
  719         /* Reenable RTC updates and interrupts. */
  720         writertc(RTC_STATUSB, rtc_statusb);
  721         rtcin(RTC_INTR);
  722 }
  723 
  724 
  725 /*
  726  * Start both clocks running.
  727  */
  728 void
  729 cpu_initclocks()
  730 {
  731         int diag;
  732 
  733         if (statclock_disable) {
  734                 /*
  735                  * The stat interrupt mask is different without the
  736                  * statistics clock.  Also, don't set the interrupt
  737                  * flag which would normally cause the RTC to generate
  738                  * interrupts.
  739                  */
  740                 rtc_statusb = RTCSB_24HR;
  741         } else {
  742                 /* Setting stathz to nonzero early helps avoid races. */
  743                 stathz = RTC_NOPROFRATE;
  744                 profhz = RTC_PROFRATE;
  745         }
  746 
  747         /* Finish initializing 8254 timer 0. */
  748         intr_add_handler("clk", 0, (driver_intr_t *)clkintr, NULL,
  749             INTR_TYPE_CLK | INTR_FAST, NULL);
  750         i8254_intsrc = intr_lookup_source(0);
  751         if (i8254_intsrc != NULL)
  752                 i8254_pending = i8254_intsrc->is_pic->pic_source_pending;
  753 
  754         /* Initialize RTC. */
  755         writertc(RTC_STATUSA, rtc_statusa);
  756         writertc(RTC_STATUSB, RTCSB_24HR);
  757 
  758         /* Don't bother enabling the statistics clock. */
  759         if (!statclock_disable) {
  760                 diag = rtcin(RTC_DIAG);
  761                 if (diag != 0)
  762                         printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
  763 
  764                 intr_add_handler("rtc", 8, (driver_intr_t *)rtcintr, NULL,
  765                     INTR_TYPE_CLK | INTR_FAST, NULL);
  766 
  767                 writertc(RTC_STATUSB, rtc_statusb);
  768                 rtcin(RTC_INTR);
  769         }
  770 
  771         init_TSC_tc();
  772 }
  773 
  774 void
  775 cpu_startprofclock(void)
  776 {
  777 
  778         rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
  779         writertc(RTC_STATUSA, rtc_statusa);
  780         psdiv = pscnt = psratio;
  781 }
  782 
  783 void
  784 cpu_stopprofclock(void)
  785 {
  786 
  787         rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  788         writertc(RTC_STATUSA, rtc_statusa);
  789         psdiv = pscnt = 1;
  790 }
  791 
  792 static int
  793 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  794 {
  795         int error;
  796         u_int freq;
  797 
  798         /*
  799          * Use `i8254' instead of `timer' in external names because `timer'
  800          * is is too generic.  Should use it everywhere.
  801          */
  802         freq = timer_freq;
  803         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
  804         if (error == 0 && req->newptr != NULL) {
  805                 set_timer_freq(freq, hz);
  806                 i8254_timecounter.tc_frequency = freq;
  807         }
  808         return (error);
  809 }
  810 
  811 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  812     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
  813 
  814 static unsigned
  815 i8254_get_timecount(struct timecounter *tc)
  816 {
  817         u_int count;
  818         u_int high, low;
  819         u_long rflags;
  820 
  821         rflags = read_rflags();
  822         mtx_lock_spin(&clock_lock);
  823 
  824         /* Select timer0 and latch counter value. */
  825         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  826 
  827         low = inb(TIMER_CNTR0);
  828         high = inb(TIMER_CNTR0);
  829         count = timer0_max_count - ((high << 8) | low);
  830         if (count < i8254_lastcount ||
  831             (!i8254_ticked && (clkintr_pending ||
  832             ((count < 20 || (!(rflags & PSL_I) && count < timer0_max_count / 2u)) &&
  833             i8254_intsrc != NULL && i8254_pending(i8254_intsrc))))) {
  834                 i8254_ticked = 1;
  835                 i8254_offset += timer0_max_count;
  836         }
  837         i8254_lastcount = count;
  838         count += i8254_offset;
  839         mtx_unlock_spin(&clock_lock);
  840         return (count);
  841 }
  842 
  843 #ifdef DEV_ISA
  844 /*
  845  * Attach to the ISA PnP descriptors for the timer and realtime clock.
  846  */
  847 static struct isa_pnp_id attimer_ids[] = {
  848         { 0x0001d041 /* PNP0100 */, "AT timer" },
  849         { 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
  850         { 0 }
  851 };
  852 
  853 static int
  854 attimer_probe(device_t dev)
  855 {
  856         int result;
  857         
  858         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
  859                 device_quiet(dev);
  860         return(result);
  861 }
  862 
  863 static int
  864 attimer_attach(device_t dev)
  865 {
  866         return(0);
  867 }
  868 
  869 static device_method_t attimer_methods[] = {
  870         /* Device interface */
  871         DEVMETHOD(device_probe,         attimer_probe),
  872         DEVMETHOD(device_attach,        attimer_attach),
  873         DEVMETHOD(device_detach,        bus_generic_detach),
  874         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  875         DEVMETHOD(device_suspend,       bus_generic_suspend),   /* XXX stop statclock? */
  876         DEVMETHOD(device_resume,        bus_generic_resume),    /* XXX restart statclock? */
  877         { 0, 0 }
  878 };
  879 
  880 static driver_t attimer_driver = {
  881         "attimer",
  882         attimer_methods,
  883         1,              /* no softc */
  884 };
  885 
  886 static devclass_t attimer_devclass;
  887 
  888 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
  889 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
  890 #endif /* DEV_ISA */

Cache object: d835836f157a7d4931c949712fc99c44


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.