The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/isa/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/8.0/sys/amd64/isa/clock.c 194790 2009-06-23 23:16:37Z mav $");
   37 
   38 /*
   39  * Routines to handle clock hardware.
   40  */
   41 
   42 #include "opt_clock.h"
   43 #include "opt_isa.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/bus.h>
   48 #include <sys/lock.h>
   49 #include <sys/kdb.h>
   50 #include <sys/mutex.h>
   51 #include <sys/proc.h>
   52 #include <sys/timetc.h>
   53 #include <sys/kernel.h>
   54 #include <sys/module.h>
   55 #include <sys/sched.h>
   56 #include <sys/smp.h>
   57 #include <sys/sysctl.h>
   58 
   59 #include <machine/clock.h>
   60 #include <machine/cpu.h>
   61 #include <machine/intr_machdep.h>
   62 #include <machine/md_var.h>
   63 #include <machine/apicvar.h>
   64 #include <machine/ppireg.h>
   65 #include <machine/timerreg.h>
   66 #include <machine/smp.h>
   67 
   68 #include <isa/rtc.h>
   69 #ifdef DEV_ISA
   70 #include <isa/isareg.h>
   71 #include <isa/isavar.h>
   72 #endif
   73 
   74 #define TIMER_DIV(x) ((i8254_freq + (x) / 2) / (x))
   75 
   76 int     clkintr_pending;
   77 static int pscnt = 1;
   78 static int psdiv = 1;
   79 #ifndef TIMER_FREQ
   80 #define TIMER_FREQ   1193182
   81 #endif
   82 u_int   i8254_freq = TIMER_FREQ;
   83 TUNABLE_INT("hw.i8254.freq", &i8254_freq);
   84 int     i8254_max_count;
   85 static int i8254_real_max_count;
   86 
   87 struct mtx clock_lock;
   88 static  struct intsrc *i8254_intsrc;
   89 static  u_int32_t i8254_lastcount;
   90 static  u_int32_t i8254_offset;
   91 static  int     (*i8254_pending)(struct intsrc *);
   92 static  int     i8254_ticked;
   93 static  int     using_atrtc_timer;
   94 static  int     using_lapic_timer;
   95 
   96 /* Values for timerX_state: */
   97 #define RELEASED        0
   98 #define RELEASE_PENDING 1
   99 #define ACQUIRED        2
  100 #define ACQUIRE_PENDING 3
  101 
  102 static  u_char  timer2_state;
  103 
  104 static  unsigned i8254_get_timecount(struct timecounter *tc);
  105 static  unsigned i8254_simple_get_timecount(struct timecounter *tc);
  106 static  void    set_i8254_freq(u_int freq, int intr_freq);
  107 
  108 static struct timecounter i8254_timecounter = {
  109         i8254_get_timecount,    /* get_timecount */
  110         0,                      /* no poll_pps */
  111         ~0u,                    /* counter_mask */
  112         0,                      /* frequency */
  113         "i8254",                /* name */
  114         0                       /* quality */
  115 };
  116 
  117 int
  118 hardclockintr(struct trapframe *frame)
  119 {
  120 
  121         if (PCPU_GET(cpuid) == 0)
  122                 hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
  123         else
  124                 hardclock_cpu(TRAPF_USERMODE(frame));
  125         return (FILTER_HANDLED);
  126 }
  127 
  128 int
  129 statclockintr(struct trapframe *frame)
  130 {
  131 
  132         profclockintr(frame);
  133         statclock(TRAPF_USERMODE(frame));
  134         return (FILTER_HANDLED);
  135 }
  136 
  137 int
  138 profclockintr(struct trapframe *frame)
  139 {
  140 
  141         if (!using_atrtc_timer)
  142                 hardclockintr(frame);
  143         if (profprocs != 0)
  144                 profclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
  145         return (FILTER_HANDLED);
  146 }
  147 
  148 static int
  149 clkintr(struct trapframe *frame)
  150 {
  151 
  152         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  153                 mtx_lock_spin(&clock_lock);
  154                 if (i8254_ticked)
  155                         i8254_ticked = 0;
  156                 else {
  157                         i8254_offset += i8254_max_count;
  158                         i8254_lastcount = 0;
  159                 }
  160                 clkintr_pending = 0;
  161                 mtx_unlock_spin(&clock_lock);
  162         }
  163         KASSERT(!using_lapic_timer, ("clk interrupt enabled with lapic timer"));
  164 
  165         if (using_atrtc_timer) {
  166 #ifdef SMP
  167                 if (smp_started)
  168                         ipi_all_but_self(IPI_HARDCLOCK);
  169 #endif
  170                 hardclockintr(frame);
  171         } else {
  172                 if (--pscnt <= 0) {
  173                         pscnt = psratio;
  174 #ifdef SMP
  175                         if (smp_started)
  176                                 ipi_all_but_self(IPI_STATCLOCK);
  177 #endif
  178                         statclockintr(frame);
  179                 } else {
  180 #ifdef SMP
  181                         if (smp_started)
  182                                 ipi_all_but_self(IPI_PROFCLOCK);
  183 #endif
  184                         profclockintr(frame);
  185                 }
  186         }
  187 
  188         return (FILTER_HANDLED);
  189 }
  190 
  191 int
  192 timer_spkr_acquire(void)
  193 {
  194         int mode;
  195 
  196         mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT;
  197 
  198         if (timer2_state != RELEASED)
  199                 return (-1);
  200         timer2_state = ACQUIRED;
  201 
  202         /*
  203          * This access to the timer registers is as atomic as possible
  204          * because it is a single instruction.  We could do better if we
  205          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  206          * and this is probably good enough for timer2, so we aren't as
  207          * careful with it as with timer0.
  208          */
  209         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  210         ppi_spkr_on();          /* enable counter2 output to speaker */
  211         return (0);
  212 }
  213 
  214 int
  215 timer_spkr_release(void)
  216 {
  217 
  218         if (timer2_state != ACQUIRED)
  219                 return (-1);
  220         timer2_state = RELEASED;
  221         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  222         ppi_spkr_off();         /* disable counter2 output to speaker */
  223         return (0);
  224 }
  225 
  226 void
  227 timer_spkr_setfreq(int freq)
  228 {
  229 
  230         freq = i8254_freq / freq;
  231         mtx_lock_spin(&clock_lock);
  232         outb(TIMER_CNTR2, freq & 0xff);
  233         outb(TIMER_CNTR2, freq >> 8);
  234         mtx_unlock_spin(&clock_lock);
  235 }
  236 
  237 /*
  238  * This routine receives statistical clock interrupts from the RTC.
  239  * As explained above, these occur at 128 interrupts per second.
  240  * When profiling, we receive interrupts at a rate of 1024 Hz.
  241  *
  242  * This does not actually add as much overhead as it sounds, because
  243  * when the statistical clock is active, the hardclock driver no longer
  244  * needs to keep (inaccurate) statistics on its own.  This decouples
  245  * statistics gathering from scheduling interrupts.
  246  *
  247  * The RTC chip requires that we read status register C (RTC_INTR)
  248  * to acknowledge an interrupt, before it will generate the next one.
  249  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  250  * the clock can tick immediately after the read from RTC_INTR.  In this
  251  * case, the mc146818A interrupt signal will not drop for long enough
  252  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  253  * clock will halt, considerably degrading system performance.  This is
  254  * why we use 'while' rather than a more straightforward 'if' below.
  255  * Stat clock ticks can still be lost, causing minor loss of accuracy
  256  * in the statistics, but the stat clock will no longer stop.
  257  */
  258 static int
  259 rtcintr(struct trapframe *frame)
  260 {
  261         int flag = 0;
  262 
  263         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  264                 flag = 1;
  265                 if (--pscnt <= 0) {
  266                         pscnt = psdiv;
  267 #ifdef SMP
  268                         if (smp_started)
  269                                 ipi_all_but_self(IPI_STATCLOCK);
  270 #endif
  271                         statclockintr(frame);
  272                 } else {
  273 #ifdef SMP
  274                         if (smp_started)
  275                                 ipi_all_but_self(IPI_PROFCLOCK);
  276 #endif
  277                         profclockintr(frame);
  278                 }
  279         }
  280         return(flag ? FILTER_HANDLED : FILTER_STRAY);
  281 }
  282 
  283 static int
  284 getit(void)
  285 {
  286         int high, low;
  287 
  288         mtx_lock_spin(&clock_lock);
  289 
  290         /* Select timer0 and latch counter value. */
  291         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  292 
  293         low = inb(TIMER_CNTR0);
  294         high = inb(TIMER_CNTR0);
  295 
  296         mtx_unlock_spin(&clock_lock);
  297         return ((high << 8) | low);
  298 }
  299 
  300 /*
  301  * Wait "n" microseconds.
  302  * Relies on timer 1 counting down from (i8254_freq / hz)
  303  * Note: timer had better have been programmed before this is first used!
  304  */
  305 void
  306 DELAY(int n)
  307 {
  308         int delta, prev_tick, tick, ticks_left;
  309 
  310 #ifdef DELAYDEBUG
  311         int getit_calls = 1;
  312         int n1;
  313         static int state = 0;
  314 #endif
  315 
  316         if (tsc_freq != 0 && !tsc_is_broken) {
  317                 uint64_t start, end, now;
  318 
  319                 sched_pin();
  320                 start = rdtsc();
  321                 end = start + (tsc_freq * n) / 1000000;
  322                 do {
  323                         cpu_spinwait();
  324                         now = rdtsc();
  325                 } while (now < end || (now > start && end < start));
  326                 sched_unpin();
  327                 return;
  328         }
  329 #ifdef DELAYDEBUG
  330         if (state == 0) {
  331                 state = 1;
  332                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  333                         DELAY(n1);
  334                 state = 2;
  335         }
  336         if (state == 1)
  337                 printf("DELAY(%d)...", n);
  338 #endif
  339         /*
  340          * Read the counter first, so that the rest of the setup overhead is
  341          * counted.  Guess the initial overhead is 20 usec (on most systems it
  342          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  343          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  344          * multiplications and divisions to scale the count take a while).
  345          *
  346          * However, if ddb is active then use a fake counter since reading
  347          * the i8254 counter involves acquiring a lock.  ddb must not do
  348          * locking for many reasons, but it calls here for at least atkbd
  349          * input.
  350          */
  351 #ifdef KDB
  352         if (kdb_active)
  353                 prev_tick = 1;
  354         else
  355 #endif
  356                 prev_tick = getit();
  357         n -= 0;                 /* XXX actually guess no initial overhead */
  358         /*
  359          * Calculate (n * (i8254_freq / 1e6)) without using floating point
  360          * and without any avoidable overflows.
  361          */
  362         if (n <= 0)
  363                 ticks_left = 0;
  364         else if (n < 256)
  365                 /*
  366                  * Use fixed point to avoid a slow division by 1000000.
  367                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  368                  * 2^15 is the first power of 2 that gives exact results
  369                  * for n between 0 and 256.
  370                  */
  371                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  372         else
  373                 /*
  374                  * Don't bother using fixed point, although gcc-2.7.2
  375                  * generates particularly poor code for the long long
  376                  * division, since even the slow way will complete long
  377                  * before the delay is up (unless we're interrupted).
  378                  */
  379                 ticks_left = ((u_int)n * (long long)i8254_freq + 999999)
  380                              / 1000000;
  381 
  382         while (ticks_left > 0) {
  383 #ifdef KDB
  384                 if (kdb_active) {
  385                         inb(0x84);
  386                         tick = prev_tick - 1;
  387                         if (tick <= 0)
  388                                 tick = i8254_max_count;
  389                 } else
  390 #endif
  391                         tick = getit();
  392 #ifdef DELAYDEBUG
  393                 ++getit_calls;
  394 #endif
  395                 delta = prev_tick - tick;
  396                 prev_tick = tick;
  397                 if (delta < 0) {
  398                         delta += i8254_max_count;
  399                         /*
  400                          * Guard against i8254_max_count being wrong.
  401                          * This shouldn't happen in normal operation,
  402                          * but it may happen if set_i8254_freq() is
  403                          * traced.
  404                          */
  405                         if (delta < 0)
  406                                 delta = 0;
  407                 }
  408                 ticks_left -= delta;
  409         }
  410 #ifdef DELAYDEBUG
  411         if (state == 1)
  412                 printf(" %d calls to getit() at %d usec each\n",
  413                        getit_calls, (n + 5) / getit_calls);
  414 #endif
  415 }
  416 
  417 static void
  418 set_i8254_freq(u_int freq, int intr_freq)
  419 {
  420         int new_i8254_real_max_count;
  421 
  422         i8254_timecounter.tc_frequency = freq;
  423         mtx_lock_spin(&clock_lock);
  424         i8254_freq = freq;
  425         if (using_lapic_timer)
  426                 new_i8254_real_max_count = 0x10000;
  427         else
  428                 new_i8254_real_max_count = TIMER_DIV(intr_freq);
  429         if (new_i8254_real_max_count != i8254_real_max_count) {
  430                 i8254_real_max_count = new_i8254_real_max_count;
  431                 if (i8254_real_max_count == 0x10000)
  432                         i8254_max_count = 0xffff;
  433                 else
  434                         i8254_max_count = i8254_real_max_count;
  435                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  436                 outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
  437                 outb(TIMER_CNTR0, i8254_real_max_count >> 8);
  438         }
  439         mtx_unlock_spin(&clock_lock);
  440 }
  441 
  442 static void
  443 i8254_restore(void)
  444 {
  445 
  446         mtx_lock_spin(&clock_lock);
  447         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  448         outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
  449         outb(TIMER_CNTR0, i8254_real_max_count >> 8);
  450         mtx_unlock_spin(&clock_lock);
  451 }
  452 
  453 /* This is separate from startrtclock() so that it can be called early. */
  454 void
  455 i8254_init(void)
  456 {
  457 
  458         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
  459         set_i8254_freq(i8254_freq, hz);
  460 }
  461 
  462 void
  463 startrtclock()
  464 {
  465 
  466         atrtc_start();
  467 
  468         set_i8254_freq(i8254_freq, hz);
  469         tc_init(&i8254_timecounter);
  470 
  471         init_TSC();
  472 }
  473 
  474 /*
  475  * Start both clocks running.
  476  */
  477 void
  478 cpu_initclocks()
  479 {
  480 
  481         using_lapic_timer = lapic_setup_clock();
  482         /*
  483          * If we aren't using the local APIC timer to drive the kernel
  484          * clocks, setup the interrupt handler for the 8254 timer 0 so
  485          * that it can drive hardclock().  Otherwise, change the 8254
  486          * timecounter to user a simpler algorithm.
  487          */
  488         if (!using_lapic_timer) {
  489                 intr_add_handler("clk", 0, (driver_filter_t *)clkintr, NULL,
  490                     NULL, INTR_TYPE_CLK, NULL);
  491                 i8254_intsrc = intr_lookup_source(0);
  492                 if (i8254_intsrc != NULL)
  493                         i8254_pending =
  494                             i8254_intsrc->is_pic->pic_source_pending;
  495         } else {
  496                 i8254_timecounter.tc_get_timecount =
  497                     i8254_simple_get_timecount;
  498                 i8254_timecounter.tc_counter_mask = 0xffff;
  499                 set_i8254_freq(i8254_freq, hz);
  500         }
  501 
  502         /* Initialize RTC. */
  503         atrtc_start();
  504 
  505         /*
  506          * If the separate statistics clock hasn't been explicility disabled
  507          * and we aren't already using the local APIC timer to drive the
  508          * kernel clocks, then setup the RTC to periodically interrupt to
  509          * drive statclock() and profclock().
  510          */
  511         if (!using_lapic_timer) {
  512                 using_atrtc_timer = atrtc_setup_clock();
  513                 if (using_atrtc_timer) {
  514                         /* Enable periodic interrupts from the RTC. */
  515                         intr_add_handler("rtc", 8,
  516                             (driver_filter_t *)rtcintr, NULL, NULL,
  517                             INTR_TYPE_CLK, NULL);
  518                         atrtc_enable_intr();
  519                 } else {
  520                         profhz = hz;
  521                         if (hz < 128)
  522                                 stathz = hz;
  523                         else
  524                                 stathz = hz / (hz / 128);
  525                 }
  526         }
  527 
  528         init_TSC_tc();
  529 }
  530 
  531 void
  532 cpu_startprofclock(void)
  533 {
  534 
  535         if (using_lapic_timer || !using_atrtc_timer)
  536                 return;
  537         atrtc_rate(RTCSA_PROF);
  538         psdiv = pscnt = psratio;
  539 }
  540 
  541 void
  542 cpu_stopprofclock(void)
  543 {
  544 
  545         if (using_lapic_timer || !using_atrtc_timer)
  546                 return;
  547         atrtc_rate(RTCSA_NOPROF);
  548         psdiv = pscnt = 1;
  549 }
  550 
  551 static int
  552 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
  553 {
  554         int error;
  555         u_int freq;
  556 
  557         /*
  558          * Use `i8254' instead of `timer' in external names because `timer'
  559          * is is too generic.  Should use it everywhere.
  560          */
  561         freq = i8254_freq;
  562         error = sysctl_handle_int(oidp, &freq, 0, req);
  563         if (error == 0 && req->newptr != NULL)
  564                 set_i8254_freq(freq, hz);
  565         return (error);
  566 }
  567 
  568 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
  569     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
  570 
  571 static unsigned
  572 i8254_simple_get_timecount(struct timecounter *tc)
  573 {
  574 
  575         return (i8254_max_count - getit());
  576 }
  577 
  578 static unsigned
  579 i8254_get_timecount(struct timecounter *tc)
  580 {
  581         u_int count;
  582         u_int high, low;
  583         u_long rflags;
  584 
  585         rflags = read_rflags();
  586         mtx_lock_spin(&clock_lock);
  587 
  588         /* Select timer0 and latch counter value. */
  589         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  590 
  591         low = inb(TIMER_CNTR0);
  592         high = inb(TIMER_CNTR0);
  593         count = i8254_max_count - ((high << 8) | low);
  594         if (count < i8254_lastcount ||
  595             (!i8254_ticked && (clkintr_pending ||
  596             ((count < 20 || (!(rflags & PSL_I) &&
  597             count < i8254_max_count / 2u)) &&
  598             i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
  599                 i8254_ticked = 1;
  600                 i8254_offset += i8254_max_count;
  601         }
  602         i8254_lastcount = count;
  603         count += i8254_offset;
  604         mtx_unlock_spin(&clock_lock);
  605         return (count);
  606 }
  607 
  608 #ifdef DEV_ISA
  609 /*
  610  * Attach to the ISA PnP descriptors for the timer
  611  */
  612 static struct isa_pnp_id attimer_ids[] = {
  613         { 0x0001d041 /* PNP0100 */, "AT timer" },
  614         { 0 }
  615 };
  616 
  617 static int
  618 attimer_probe(device_t dev)
  619 {
  620         int result;
  621         
  622         result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids);
  623         if (result <= 0)
  624                 device_quiet(dev);
  625         return(result);
  626 }
  627 
  628 static int
  629 attimer_attach(device_t dev)
  630 {
  631         return(0);
  632 }
  633 
  634 static int
  635 attimer_resume(device_t dev)
  636 {
  637 
  638         i8254_restore();
  639         return(0);
  640 }
  641 
  642 static device_method_t attimer_methods[] = {
  643         /* Device interface */
  644         DEVMETHOD(device_probe,         attimer_probe),
  645         DEVMETHOD(device_attach,        attimer_attach),
  646         DEVMETHOD(device_detach,        bus_generic_detach),
  647         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  648         DEVMETHOD(device_suspend,       bus_generic_suspend),
  649         DEVMETHOD(device_resume,        attimer_resume),
  650         { 0, 0 }
  651 };
  652 
  653 static driver_t attimer_driver = {
  654         "attimer",
  655         attimer_methods,
  656         1,              /* no softc */
  657 };
  658 
  659 static devclass_t attimer_devclass;
  660 
  661 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
  662 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
  663 
  664 #endif /* DEV_ISA */

Cache object: 36f6a838a514d763c0d39a682d0b7a43


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.