The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/linux32/linux32_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Tim J. Robbins
    3  * Copyright (c) 2002 Doug Rabson
    4  * Copyright (c) 2000 Marcel Moolenaar
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer
   12  *    in this position and unchanged.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. The name of the author may not be used to endorse or promote products
   17  *    derived from this software without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD: releng/10.2/sys/amd64/linux32/linux32_machdep.c 283359 2015-05-24 07:32:02Z kib $");
   33 
   34 #include <sys/param.h>
   35 #include <sys/kernel.h>
   36 #include <sys/systm.h>
   37 #include <sys/capsicum.h>
   38 #include <sys/file.h>
   39 #include <sys/fcntl.h>
   40 #include <sys/clock.h>
   41 #include <sys/imgact.h>
   42 #include <sys/limits.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mman.h>
   46 #include <sys/mutex.h>
   47 #include <sys/priv.h>
   48 #include <sys/proc.h>
   49 #include <sys/resource.h>
   50 #include <sys/resourcevar.h>
   51 #include <sys/sched.h>
   52 #include <sys/syscallsubr.h>
   53 #include <sys/sysproto.h>
   54 #include <sys/unistd.h>
   55 #include <sys/wait.h>
   56 
   57 #include <machine/frame.h>
   58 #include <machine/pcb.h>
   59 #include <machine/psl.h>
   60 #include <machine/segments.h>
   61 #include <machine/specialreg.h>
   62 
   63 #include <vm/vm.h>
   64 #include <vm/pmap.h>
   65 #include <vm/vm_map.h>
   66 
   67 #include <compat/freebsd32/freebsd32_util.h>
   68 #include <amd64/linux32/linux.h>
   69 #include <amd64/linux32/linux32_proto.h>
   70 #include <compat/linux/linux_ipc.h>
   71 #include <compat/linux/linux_misc.h>
   72 #include <compat/linux/linux_signal.h>
   73 #include <compat/linux/linux_util.h>
   74 #include <compat/linux/linux_emul.h>
   75 
   76 struct l_old_select_argv {
   77         l_int           nfds;
   78         l_uintptr_t     readfds;
   79         l_uintptr_t     writefds;
   80         l_uintptr_t     exceptfds;
   81         l_uintptr_t     timeout;
   82 } __packed;
   83 
   84 int
   85 linux_to_bsd_sigaltstack(int lsa)
   86 {
   87         int bsa = 0;
   88 
   89         if (lsa & LINUX_SS_DISABLE)
   90                 bsa |= SS_DISABLE;
   91         if (lsa & LINUX_SS_ONSTACK)
   92                 bsa |= SS_ONSTACK;
   93         return (bsa);
   94 }
   95 
   96 static int      linux_mmap_common(struct thread *td, l_uintptr_t addr,
   97                     l_size_t len, l_int prot, l_int flags, l_int fd,
   98                     l_loff_t pos);
   99 
  100 int
  101 bsd_to_linux_sigaltstack(int bsa)
  102 {
  103         int lsa = 0;
  104 
  105         if (bsa & SS_DISABLE)
  106                 lsa |= LINUX_SS_DISABLE;
  107         if (bsa & SS_ONSTACK)
  108                 lsa |= LINUX_SS_ONSTACK;
  109         return (lsa);
  110 }
  111 
  112 static void
  113 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
  114 {
  115 
  116         lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
  117         lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
  118         lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
  119         lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
  120         lru->ru_maxrss = ru->ru_maxrss;
  121         lru->ru_ixrss = ru->ru_ixrss;
  122         lru->ru_idrss = ru->ru_idrss;
  123         lru->ru_isrss = ru->ru_isrss;
  124         lru->ru_minflt = ru->ru_minflt;
  125         lru->ru_majflt = ru->ru_majflt;
  126         lru->ru_nswap = ru->ru_nswap;
  127         lru->ru_inblock = ru->ru_inblock;
  128         lru->ru_oublock = ru->ru_oublock;
  129         lru->ru_msgsnd = ru->ru_msgsnd;
  130         lru->ru_msgrcv = ru->ru_msgrcv;
  131         lru->ru_nsignals = ru->ru_nsignals;
  132         lru->ru_nvcsw = ru->ru_nvcsw;
  133         lru->ru_nivcsw = ru->ru_nivcsw;
  134 }
  135 
  136 int
  137 linux_execve(struct thread *td, struct linux_execve_args *args)
  138 {
  139         struct image_args eargs;
  140         struct vmspace *oldvmspace;
  141         char *path;
  142         int error;
  143 
  144         LCONVPATHEXIST(td, args->path, &path);
  145 
  146 #ifdef DEBUG
  147         if (ldebug(execve))
  148                 printf(ARGS(execve, "%s"), path);
  149 #endif
  150 
  151         error = pre_execve(td, &oldvmspace);
  152         if (error != 0) {
  153                 free(path, M_TEMP);
  154                 return (error);
  155         }
  156         error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
  157             args->argp, args->envp);
  158         free(path, M_TEMP);
  159         if (error == 0)
  160                 error = kern_execve(td, &eargs, NULL);
  161         if (error == 0) {
  162                 /* Linux process can execute FreeBSD one, do not attempt
  163                  * to create emuldata for such process using
  164                  * linux_proc_init, this leads to a panic on KASSERT
  165                  * because such process has p->p_emuldata == NULL.
  166                  */
  167                 if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX)
  168                         error = linux_proc_init(td, 0, 0);
  169         }
  170         post_execve(td, error, oldvmspace);
  171         return (error);
  172 }
  173 
  174 CTASSERT(sizeof(struct l_iovec32) == 8);
  175 
  176 static int
  177 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
  178 {
  179         struct l_iovec32 iov32;
  180         struct iovec *iov;
  181         struct uio *uio;
  182         uint32_t iovlen;
  183         int error, i;
  184 
  185         *uiop = NULL;
  186         if (iovcnt > UIO_MAXIOV)
  187                 return (EINVAL);
  188         iovlen = iovcnt * sizeof(struct iovec);
  189         uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
  190         iov = (struct iovec *)(uio + 1);
  191         for (i = 0; i < iovcnt; i++) {
  192                 error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
  193                 if (error) {
  194                         free(uio, M_IOV);
  195                         return (error);
  196                 }
  197                 iov[i].iov_base = PTRIN(iov32.iov_base);
  198                 iov[i].iov_len = iov32.iov_len;
  199         }
  200         uio->uio_iov = iov;
  201         uio->uio_iovcnt = iovcnt;
  202         uio->uio_segflg = UIO_USERSPACE;
  203         uio->uio_offset = -1;
  204         uio->uio_resid = 0;
  205         for (i = 0; i < iovcnt; i++) {
  206                 if (iov->iov_len > INT_MAX - uio->uio_resid) {
  207                         free(uio, M_IOV);
  208                         return (EINVAL);
  209                 }
  210                 uio->uio_resid += iov->iov_len;
  211                 iov++;
  212         }
  213         *uiop = uio;
  214         return (0);
  215 }
  216 
  217 int
  218 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
  219     int error)
  220 {
  221         struct l_iovec32 iov32;
  222         struct iovec *iov;
  223         uint32_t iovlen;
  224         int i;
  225 
  226         *iovp = NULL;
  227         if (iovcnt > UIO_MAXIOV)
  228                 return (error);
  229         iovlen = iovcnt * sizeof(struct iovec);
  230         iov = malloc(iovlen, M_IOV, M_WAITOK);
  231         for (i = 0; i < iovcnt; i++) {
  232                 error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
  233                 if (error) {
  234                         free(iov, M_IOV);
  235                         return (error);
  236                 }
  237                 iov[i].iov_base = PTRIN(iov32.iov_base);
  238                 iov[i].iov_len = iov32.iov_len;
  239         }
  240         *iovp = iov;
  241         return(0);
  242 
  243 }
  244 
  245 int
  246 linux_readv(struct thread *td, struct linux_readv_args *uap)
  247 {
  248         struct uio *auio;
  249         int error;
  250 
  251         error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
  252         if (error)
  253                 return (error);
  254         error = kern_readv(td, uap->fd, auio);
  255         free(auio, M_IOV);
  256         return (error);
  257 }
  258 
  259 int
  260 linux_writev(struct thread *td, struct linux_writev_args *uap)
  261 {
  262         struct uio *auio;
  263         int error;
  264 
  265         error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
  266         if (error)
  267                 return (error);
  268         error = kern_writev(td, uap->fd, auio);
  269         free(auio, M_IOV);
  270         return (error);
  271 }
  272 
  273 struct l_ipc_kludge {
  274         l_uintptr_t msgp;
  275         l_long msgtyp;
  276 } __packed;
  277 
  278 int
  279 linux_ipc(struct thread *td, struct linux_ipc_args *args)
  280 {
  281 
  282         switch (args->what & 0xFFFF) {
  283         case LINUX_SEMOP: {
  284                 struct linux_semop_args a;
  285 
  286                 a.semid = args->arg1;
  287                 a.tsops = args->ptr;
  288                 a.nsops = args->arg2;
  289                 return (linux_semop(td, &a));
  290         }
  291         case LINUX_SEMGET: {
  292                 struct linux_semget_args a;
  293 
  294                 a.key = args->arg1;
  295                 a.nsems = args->arg2;
  296                 a.semflg = args->arg3;
  297                 return (linux_semget(td, &a));
  298         }
  299         case LINUX_SEMCTL: {
  300                 struct linux_semctl_args a;
  301                 int error;
  302 
  303                 a.semid = args->arg1;
  304                 a.semnum = args->arg2;
  305                 a.cmd = args->arg3;
  306                 error = copyin(args->ptr, &a.arg, sizeof(a.arg));
  307                 if (error)
  308                         return (error);
  309                 return (linux_semctl(td, &a));
  310         }
  311         case LINUX_MSGSND: {
  312                 struct linux_msgsnd_args a;
  313 
  314                 a.msqid = args->arg1;
  315                 a.msgp = args->ptr;
  316                 a.msgsz = args->arg2;
  317                 a.msgflg = args->arg3;
  318                 return (linux_msgsnd(td, &a));
  319         }
  320         case LINUX_MSGRCV: {
  321                 struct linux_msgrcv_args a;
  322 
  323                 a.msqid = args->arg1;
  324                 a.msgsz = args->arg2;
  325                 a.msgflg = args->arg3;
  326                 if ((args->what >> 16) == 0) {
  327                         struct l_ipc_kludge tmp;
  328                         int error;
  329 
  330                         if (args->ptr == 0)
  331                                 return (EINVAL);
  332                         error = copyin(args->ptr, &tmp, sizeof(tmp));
  333                         if (error)
  334                                 return (error);
  335                         a.msgp = PTRIN(tmp.msgp);
  336                         a.msgtyp = tmp.msgtyp;
  337                 } else {
  338                         a.msgp = args->ptr;
  339                         a.msgtyp = args->arg5;
  340                 }
  341                 return (linux_msgrcv(td, &a));
  342         }
  343         case LINUX_MSGGET: {
  344                 struct linux_msgget_args a;
  345 
  346                 a.key = args->arg1;
  347                 a.msgflg = args->arg2;
  348                 return (linux_msgget(td, &a));
  349         }
  350         case LINUX_MSGCTL: {
  351                 struct linux_msgctl_args a;
  352 
  353                 a.msqid = args->arg1;
  354                 a.cmd = args->arg2;
  355                 a.buf = args->ptr;
  356                 return (linux_msgctl(td, &a));
  357         }
  358         case LINUX_SHMAT: {
  359                 struct linux_shmat_args a;
  360 
  361                 a.shmid = args->arg1;
  362                 a.shmaddr = args->ptr;
  363                 a.shmflg = args->arg2;
  364                 a.raddr = PTRIN((l_uint)args->arg3);
  365                 return (linux_shmat(td, &a));
  366         }
  367         case LINUX_SHMDT: {
  368                 struct linux_shmdt_args a;
  369 
  370                 a.shmaddr = args->ptr;
  371                 return (linux_shmdt(td, &a));
  372         }
  373         case LINUX_SHMGET: {
  374                 struct linux_shmget_args a;
  375 
  376                 a.key = args->arg1;
  377                 a.size = args->arg2;
  378                 a.shmflg = args->arg3;
  379                 return (linux_shmget(td, &a));
  380         }
  381         case LINUX_SHMCTL: {
  382                 struct linux_shmctl_args a;
  383 
  384                 a.shmid = args->arg1;
  385                 a.cmd = args->arg2;
  386                 a.buf = args->ptr;
  387                 return (linux_shmctl(td, &a));
  388         }
  389         default:
  390                 break;
  391         }
  392 
  393         return (EINVAL);
  394 }
  395 
  396 int
  397 linux_old_select(struct thread *td, struct linux_old_select_args *args)
  398 {
  399         struct l_old_select_argv linux_args;
  400         struct linux_select_args newsel;
  401         int error;
  402 
  403 #ifdef DEBUG
  404         if (ldebug(old_select))
  405                 printf(ARGS(old_select, "%p"), args->ptr);
  406 #endif
  407 
  408         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  409         if (error)
  410                 return (error);
  411 
  412         newsel.nfds = linux_args.nfds;
  413         newsel.readfds = PTRIN(linux_args.readfds);
  414         newsel.writefds = PTRIN(linux_args.writefds);
  415         newsel.exceptfds = PTRIN(linux_args.exceptfds);
  416         newsel.timeout = PTRIN(linux_args.timeout);
  417         return (linux_select(td, &newsel));
  418 }
  419 
  420 int
  421 linux_set_cloned_tls(struct thread *td, void *desc)
  422 {
  423         struct user_segment_descriptor sd;
  424         struct l_user_desc info;
  425         struct pcb *pcb;
  426         int error;
  427         int a[2];
  428 
  429         error = copyin(desc, &info, sizeof(struct l_user_desc));
  430         if (error) {
  431                 printf(LMSG("copyin failed!"));
  432         } else {
  433                 /* We might copy out the entry_number as GUGS32_SEL. */
  434                 info.entry_number = GUGS32_SEL;
  435                 error = copyout(&info, desc, sizeof(struct l_user_desc));
  436                 if (error)
  437                         printf(LMSG("copyout failed!"));
  438 
  439                 a[0] = LINUX_LDT_entry_a(&info);
  440                 a[1] = LINUX_LDT_entry_b(&info);
  441 
  442                 memcpy(&sd, &a, sizeof(a));
  443 #ifdef DEBUG
  444                 if (ldebug(clone))
  445                         printf("Segment created in clone with "
  446                             "CLONE_SETTLS: lobase: %x, hibase: %x, "
  447                             "lolimit: %x, hilimit: %x, type: %i, "
  448                             "dpl: %i, p: %i, xx: %i, long: %i, "
  449                             "def32: %i, gran: %i\n", sd.sd_lobase,
  450                             sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit,
  451                             sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx,
  452                             sd.sd_long, sd.sd_def32, sd.sd_gran);
  453 #endif
  454                 pcb = td->td_pcb;
  455                 pcb->pcb_gsbase = (register_t)info.base_addr;
  456 /* XXXKIB       pcb->pcb_gs32sd = sd; */
  457                 td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
  458                 set_pcb_flags(pcb, PCB_32BIT);
  459         }
  460 
  461         return (error);
  462 }
  463 
  464 int
  465 linux_set_upcall_kse(struct thread *td, register_t stack)
  466 {
  467 
  468         td->td_frame->tf_rsp = stack;
  469 
  470         return (0);
  471 }
  472 
  473 #define STACK_SIZE  (2 * 1024 * 1024)
  474 #define GUARD_SIZE  (4 * PAGE_SIZE)
  475 
  476 int
  477 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
  478 {
  479 
  480 #ifdef DEBUG
  481         if (ldebug(mmap2))
  482                 printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"),
  483                     args->addr, args->len, args->prot,
  484                     args->flags, args->fd, args->pgoff);
  485 #endif
  486 
  487         return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
  488                 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
  489                 PAGE_SIZE));
  490 }
  491 
  492 int
  493 linux_mmap(struct thread *td, struct linux_mmap_args *args)
  494 {
  495         int error;
  496         struct l_mmap_argv linux_args;
  497 
  498         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  499         if (error)
  500                 return (error);
  501 
  502 #ifdef DEBUG
  503         if (ldebug(mmap))
  504                 printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"),
  505                     linux_args.addr, linux_args.len, linux_args.prot,
  506                     linux_args.flags, linux_args.fd, linux_args.pgoff);
  507 #endif
  508 
  509         return (linux_mmap_common(td, linux_args.addr, linux_args.len,
  510             linux_args.prot, linux_args.flags, linux_args.fd,
  511             (uint32_t)linux_args.pgoff));
  512 }
  513 
  514 static int
  515 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
  516     l_int flags, l_int fd, l_loff_t pos)
  517 {
  518         struct proc *p = td->td_proc;
  519         struct mmap_args /* {
  520                 caddr_t addr;
  521                 size_t len;
  522                 int prot;
  523                 int flags;
  524                 int fd;
  525                 long pad;
  526                 off_t pos;
  527         } */ bsd_args;
  528         int error;
  529         struct file *fp;
  530         cap_rights_t rights;
  531 
  532         error = 0;
  533         bsd_args.flags = 0;
  534         fp = NULL;
  535 
  536         /*
  537          * Linux mmap(2):
  538          * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
  539          */
  540         if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
  541                 return (EINVAL);
  542 
  543         if (flags & LINUX_MAP_SHARED)
  544                 bsd_args.flags |= MAP_SHARED;
  545         if (flags & LINUX_MAP_PRIVATE)
  546                 bsd_args.flags |= MAP_PRIVATE;
  547         if (flags & LINUX_MAP_FIXED)
  548                 bsd_args.flags |= MAP_FIXED;
  549         if (flags & LINUX_MAP_ANON) {
  550                 /* Enforce pos to be on page boundary, then ignore. */
  551                 if ((pos & PAGE_MASK) != 0)
  552                         return (EINVAL);
  553                 pos = 0;
  554                 bsd_args.flags |= MAP_ANON;
  555         } else
  556                 bsd_args.flags |= MAP_NOSYNC;
  557         if (flags & LINUX_MAP_GROWSDOWN)
  558                 bsd_args.flags |= MAP_STACK;
  559 
  560         /*
  561          * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
  562          * on Linux/i386. We do this to ensure maximum compatibility.
  563          * Linux/ia64 does the same in i386 emulation mode.
  564          */
  565         bsd_args.prot = prot;
  566         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  567                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  568 
  569         /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
  570         bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
  571         if (bsd_args.fd != -1) {
  572                 /*
  573                  * Linux follows Solaris mmap(2) description:
  574                  * The file descriptor fildes is opened with
  575                  * read permission, regardless of the
  576                  * protection options specified.
  577                  */
  578 
  579                 error = fget(td, bsd_args.fd,
  580                     cap_rights_init(&rights, CAP_MMAP), &fp);
  581                 if (error != 0)
  582                         return (error);
  583                 if (fp->f_type != DTYPE_VNODE) {
  584                         fdrop(fp, td);
  585                         return (EINVAL);
  586                 }
  587 
  588                 /* Linux mmap() just fails for O_WRONLY files */
  589                 if (!(fp->f_flag & FREAD)) {
  590                         fdrop(fp, td);
  591                         return (EACCES);
  592                 }
  593 
  594                 fdrop(fp, td);
  595         }
  596 
  597         if (flags & LINUX_MAP_GROWSDOWN) {
  598                 /*
  599                  * The Linux MAP_GROWSDOWN option does not limit auto
  600                  * growth of the region.  Linux mmap with this option
  601                  * takes as addr the inital BOS, and as len, the initial
  602                  * region size.  It can then grow down from addr without
  603                  * limit.  However, Linux threads has an implicit internal
  604                  * limit to stack size of STACK_SIZE.  Its just not
  605                  * enforced explicitly in Linux.  But, here we impose
  606                  * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
  607                  * region, since we can do this with our mmap.
  608                  *
  609                  * Our mmap with MAP_STACK takes addr as the maximum
  610                  * downsize limit on BOS, and as len the max size of
  611                  * the region.  It then maps the top SGROWSIZ bytes,
  612                  * and auto grows the region down, up to the limit
  613                  * in addr.
  614                  *
  615                  * If we don't use the MAP_STACK option, the effect
  616                  * of this code is to allocate a stack region of a
  617                  * fixed size of (STACK_SIZE - GUARD_SIZE).
  618                  */
  619 
  620                 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
  621                         /*
  622                          * Some Linux apps will attempt to mmap
  623                          * thread stacks near the top of their
  624                          * address space.  If their TOS is greater
  625                          * than vm_maxsaddr, vm_map_growstack()
  626                          * will confuse the thread stack with the
  627                          * process stack and deliver a SEGV if they
  628                          * attempt to grow the thread stack past their
  629                          * current stacksize rlimit.  To avoid this,
  630                          * adjust vm_maxsaddr upwards to reflect
  631                          * the current stacksize rlimit rather
  632                          * than the maximum possible stacksize.
  633                          * It would be better to adjust the
  634                          * mmap'ed region, but some apps do not check
  635                          * mmap's return value.
  636                          */
  637                         PROC_LOCK(p);
  638                         p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK -
  639                             lim_cur(p, RLIMIT_STACK);
  640                         PROC_UNLOCK(p);
  641                 }
  642 
  643                 /*
  644                  * This gives us our maximum stack size and a new BOS.
  645                  * If we're using VM_STACK, then mmap will just map
  646                  * the top SGROWSIZ bytes, and let the stack grow down
  647                  * to the limit at BOS.  If we're not using VM_STACK
  648                  * we map the full stack, since we don't have a way
  649                  * to autogrow it.
  650                  */
  651                 if (len > STACK_SIZE - GUARD_SIZE) {
  652                         bsd_args.addr = (caddr_t)PTRIN(addr);
  653                         bsd_args.len = len;
  654                 } else {
  655                         bsd_args.addr = (caddr_t)PTRIN(addr) -
  656                             (STACK_SIZE - GUARD_SIZE - len);
  657                         bsd_args.len = STACK_SIZE - GUARD_SIZE;
  658                 }
  659         } else {
  660                 bsd_args.addr = (caddr_t)PTRIN(addr);
  661                 bsd_args.len  = len;
  662         }
  663         bsd_args.pos = pos;
  664 
  665 #ifdef DEBUG
  666         if (ldebug(mmap))
  667                 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
  668                     __func__,
  669                     (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
  670                     bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
  671 #endif
  672         error = sys_mmap(td, &bsd_args);
  673 #ifdef DEBUG
  674         if (ldebug(mmap))
  675                 printf("-> %s() return: 0x%x (0x%08x)\n",
  676                         __func__, error, (u_int)td->td_retval[0]);
  677 #endif
  678         return (error);
  679 }
  680 
  681 int
  682 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
  683 {
  684         struct mprotect_args bsd_args;
  685 
  686         bsd_args.addr = uap->addr;
  687         bsd_args.len = uap->len;
  688         bsd_args.prot = uap->prot;
  689         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  690                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  691         return (sys_mprotect(td, &bsd_args));
  692 }
  693 
  694 int
  695 linux_iopl(struct thread *td, struct linux_iopl_args *args)
  696 {
  697         int error;
  698 
  699         if (args->level < 0 || args->level > 3)
  700                 return (EINVAL);
  701         if ((error = priv_check(td, PRIV_IO)) != 0)
  702                 return (error);
  703         if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
  704                 return (error);
  705         td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
  706             (args->level * (PSL_IOPL / 3));
  707 
  708         return (0);
  709 }
  710 
  711 int
  712 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
  713 {
  714         l_osigaction_t osa;
  715         l_sigaction_t act, oact;
  716         int error;
  717 
  718 #ifdef DEBUG
  719         if (ldebug(sigaction))
  720                 printf(ARGS(sigaction, "%d, %p, %p"),
  721                     args->sig, (void *)args->nsa, (void *)args->osa);
  722 #endif
  723 
  724         if (args->nsa != NULL) {
  725                 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
  726                 if (error)
  727                         return (error);
  728                 act.lsa_handler = osa.lsa_handler;
  729                 act.lsa_flags = osa.lsa_flags;
  730                 act.lsa_restorer = osa.lsa_restorer;
  731                 LINUX_SIGEMPTYSET(act.lsa_mask);
  732                 act.lsa_mask.__bits[0] = osa.lsa_mask;
  733         }
  734 
  735         error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
  736             args->osa ? &oact : NULL);
  737 
  738         if (args->osa != NULL && !error) {
  739                 osa.lsa_handler = oact.lsa_handler;
  740                 osa.lsa_flags = oact.lsa_flags;
  741                 osa.lsa_restorer = oact.lsa_restorer;
  742                 osa.lsa_mask = oact.lsa_mask.__bits[0];
  743                 error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
  744         }
  745 
  746         return (error);
  747 }
  748 
  749 /*
  750  * Linux has two extra args, restart and oldmask.  We don't use these,
  751  * but it seems that "restart" is actually a context pointer that
  752  * enables the signal to happen with a different register set.
  753  */
  754 int
  755 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
  756 {
  757         sigset_t sigmask;
  758         l_sigset_t mask;
  759 
  760 #ifdef DEBUG
  761         if (ldebug(sigsuspend))
  762                 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
  763 #endif
  764 
  765         LINUX_SIGEMPTYSET(mask);
  766         mask.__bits[0] = args->mask;
  767         linux_to_bsd_sigset(&mask, &sigmask);
  768         return (kern_sigsuspend(td, sigmask));
  769 }
  770 
  771 int
  772 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
  773 {
  774         l_sigset_t lmask;
  775         sigset_t sigmask;
  776         int error;
  777 
  778 #ifdef DEBUG
  779         if (ldebug(rt_sigsuspend))
  780                 printf(ARGS(rt_sigsuspend, "%p, %d"),
  781                     (void *)uap->newset, uap->sigsetsize);
  782 #endif
  783 
  784         if (uap->sigsetsize != sizeof(l_sigset_t))
  785                 return (EINVAL);
  786 
  787         error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
  788         if (error)
  789                 return (error);
  790 
  791         linux_to_bsd_sigset(&lmask, &sigmask);
  792         return (kern_sigsuspend(td, sigmask));
  793 }
  794 
  795 int
  796 linux_pause(struct thread *td, struct linux_pause_args *args)
  797 {
  798         struct proc *p = td->td_proc;
  799         sigset_t sigmask;
  800 
  801 #ifdef DEBUG
  802         if (ldebug(pause))
  803                 printf(ARGS(pause, ""));
  804 #endif
  805 
  806         PROC_LOCK(p);
  807         sigmask = td->td_sigmask;
  808         PROC_UNLOCK(p);
  809         return (kern_sigsuspend(td, sigmask));
  810 }
  811 
  812 int
  813 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
  814 {
  815         stack_t ss, oss;
  816         l_stack_t lss;
  817         int error;
  818 
  819 #ifdef DEBUG
  820         if (ldebug(sigaltstack))
  821                 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
  822 #endif
  823 
  824         if (uap->uss != NULL) {
  825                 error = copyin(uap->uss, &lss, sizeof(l_stack_t));
  826                 if (error)
  827                         return (error);
  828 
  829                 ss.ss_sp = PTRIN(lss.ss_sp);
  830                 ss.ss_size = lss.ss_size;
  831                 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
  832         }
  833         error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
  834             (uap->uoss != NULL) ? &oss : NULL);
  835         if (!error && uap->uoss != NULL) {
  836                 lss.ss_sp = PTROUT(oss.ss_sp);
  837                 lss.ss_size = oss.ss_size;
  838                 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
  839                 error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
  840         }
  841 
  842         return (error);
  843 }
  844 
  845 int
  846 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
  847 {
  848         struct ftruncate_args sa;
  849 
  850 #ifdef DEBUG
  851         if (ldebug(ftruncate64))
  852                 printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
  853                     (intmax_t)args->length);
  854 #endif
  855 
  856         sa.fd = args->fd;
  857         sa.length = args->length;
  858         return sys_ftruncate(td, &sa);
  859 }
  860 
  861 int
  862 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
  863 {
  864         struct timeval atv;
  865         l_timeval atv32;
  866         struct timezone rtz;
  867         int error = 0;
  868 
  869         if (uap->tp) {
  870                 microtime(&atv);
  871                 atv32.tv_sec = atv.tv_sec;
  872                 atv32.tv_usec = atv.tv_usec;
  873                 error = copyout(&atv32, uap->tp, sizeof(atv32));
  874         }
  875         if (error == 0 && uap->tzp != NULL) {
  876                 rtz.tz_minuteswest = tz_minuteswest;
  877                 rtz.tz_dsttime = tz_dsttime;
  878                 error = copyout(&rtz, uap->tzp, sizeof(rtz));
  879         }
  880         return (error);
  881 }
  882 
  883 int
  884 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
  885 {
  886         l_timeval atv32;
  887         struct timeval atv, *tvp;
  888         struct timezone atz, *tzp;
  889         int error;
  890 
  891         if (uap->tp) {
  892                 error = copyin(uap->tp, &atv32, sizeof(atv32));
  893                 if (error)
  894                         return (error);
  895                 atv.tv_sec = atv32.tv_sec;
  896                 atv.tv_usec = atv32.tv_usec;
  897                 tvp = &atv;
  898         } else
  899                 tvp = NULL;
  900         if (uap->tzp) {
  901                 error = copyin(uap->tzp, &atz, sizeof(atz));
  902                 if (error)
  903                         return (error);
  904                 tzp = &atz;
  905         } else
  906                 tzp = NULL;
  907         return (kern_settimeofday(td, tvp, tzp));
  908 }
  909 
  910 int
  911 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
  912 {
  913         struct l_rusage s32;
  914         struct rusage s;
  915         int error;
  916 
  917         error = kern_getrusage(td, uap->who, &s);
  918         if (error != 0)
  919                 return (error);
  920         if (uap->rusage != NULL) {
  921                 bsd_to_linux_rusage(&s, &s32);
  922                 error = copyout(&s32, uap->rusage, sizeof(s32));
  923         }
  924         return (error);
  925 }
  926 
  927 int
  928 linux_sched_rr_get_interval(struct thread *td,
  929     struct linux_sched_rr_get_interval_args *uap)
  930 {
  931         struct timespec ts;
  932         struct l_timespec ts32;
  933         int error;
  934 
  935         error = kern_sched_rr_get_interval(td, uap->pid, &ts);
  936         if (error != 0)
  937                 return (error);
  938         ts32.tv_sec = ts.tv_sec;
  939         ts32.tv_nsec = ts.tv_nsec;
  940         return (copyout(&ts32, uap->interval, sizeof(ts32)));
  941 }
  942 
  943 int
  944 linux_set_thread_area(struct thread *td,
  945     struct linux_set_thread_area_args *args)
  946 {
  947         struct l_user_desc info;
  948         struct user_segment_descriptor sd;
  949         struct pcb *pcb;
  950         int a[2];
  951         int error;
  952 
  953         error = copyin(args->desc, &info, sizeof(struct l_user_desc));
  954         if (error)
  955                 return (error);
  956 
  957 #ifdef DEBUG
  958         if (ldebug(set_thread_area))
  959                 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, "
  960                     "%i, %i, %i"), info.entry_number, info.base_addr,
  961                     info.limit, info.seg_32bit, info.contents,
  962                     info.read_exec_only, info.limit_in_pages,
  963                     info.seg_not_present, info.useable);
  964 #endif
  965 
  966         /*
  967          * Semantics of Linux version: every thread in the system has array
  968          * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
  969          * This syscall loads one of the selected TLS decriptors with a value
  970          * and also loads GDT descriptors 6, 7 and 8 with the content of
  971          * the per-thread descriptors.
  972          *
  973          * Semantics of FreeBSD version: I think we can ignore that Linux has
  974          * three per-thread descriptors and use just the first one.
  975          * The tls_array[] is used only in [gs]et_thread_area() syscalls and
  976          * for loading the GDT descriptors. We use just one GDT descriptor
  977          * for TLS, so we will load just one.
  978          *
  979          * XXX: This doesn't work when a user space process tries to use more
  980          * than one TLS segment. Comment in the Linux source says wine might
  981          * do this.
  982          */
  983 
  984         /*
  985          * GLIBC reads current %gs and call set_thread_area() with it.
  986          * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
  987          * we use these segments.
  988          */
  989         switch (info.entry_number) {
  990         case GUGS32_SEL:
  991         case GUDATA_SEL:
  992         case 6:
  993         case -1:
  994                 info.entry_number = GUGS32_SEL;
  995                 break;
  996         default:
  997                 return (EINVAL);
  998         }
  999 
 1000         /*
 1001          * We have to copy out the GDT entry we use.
 1002          *
 1003          * XXX: What if a user space program does not check the return value
 1004          * and tries to use 6, 7 or 8?
 1005          */
 1006         error = copyout(&info, args->desc, sizeof(struct l_user_desc));
 1007         if (error)
 1008                 return (error);
 1009 
 1010         if (LINUX_LDT_empty(&info)) {
 1011                 a[0] = 0;
 1012                 a[1] = 0;
 1013         } else {
 1014                 a[0] = LINUX_LDT_entry_a(&info);
 1015                 a[1] = LINUX_LDT_entry_b(&info);
 1016         }
 1017 
 1018         memcpy(&sd, &a, sizeof(a));
 1019 #ifdef DEBUG
 1020         if (ldebug(set_thread_area))
 1021                 printf("Segment created in set_thread_area: "
 1022                     "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, "
 1023                     "type: %i, dpl: %i, p: %i, xx: %i, long: %i, "
 1024                     "def32: %i, gran: %i\n",
 1025                     sd.sd_lobase,
 1026                     sd.sd_hibase,
 1027                     sd.sd_lolimit,
 1028                     sd.sd_hilimit,
 1029                     sd.sd_type,
 1030                     sd.sd_dpl,
 1031                     sd.sd_p,
 1032                     sd.sd_xx,
 1033                     sd.sd_long,
 1034                     sd.sd_def32,
 1035                     sd.sd_gran);
 1036 #endif
 1037 
 1038         pcb = td->td_pcb;
 1039         pcb->pcb_gsbase = (register_t)info.base_addr;
 1040         set_pcb_flags(pcb, PCB_32BIT);
 1041         update_gdt_gsbase(td, info.base_addr);
 1042 
 1043         return (0);
 1044 }
 1045 
 1046 int
 1047 linux_wait4(struct thread *td, struct linux_wait4_args *args)
 1048 {
 1049         int error, options;
 1050         struct rusage ru, *rup;
 1051         struct l_rusage lru;
 1052 
 1053 #ifdef DEBUG
 1054         if (ldebug(wait4))
 1055                 printf(ARGS(wait4, "%d, %p, %d, %p"),
 1056                     args->pid, (void *)args->status, args->options,
 1057                     (void *)args->rusage);
 1058 #endif
 1059 
 1060         options = (args->options & (WNOHANG | WUNTRACED));
 1061         /* WLINUXCLONE should be equal to __WCLONE, but we make sure */
 1062         if (args->options & __WCLONE)
 1063                 options |= WLINUXCLONE;
 1064 
 1065         if (args->rusage != NULL)
 1066                 rup = &ru;
 1067         else
 1068                 rup = NULL;
 1069         error = linux_common_wait(td, args->pid, args->status, options, rup);
 1070         if (error)
 1071                 return (error);
 1072         if (args->rusage != NULL) {
 1073                 bsd_to_linux_rusage(rup, &lru);
 1074                 error = copyout(&lru, args->rusage, sizeof(lru));
 1075         }
 1076 
 1077         return (error);
 1078 }

Cache object: b41292d5e4a81bc06b66c0889d9bc5f6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.