The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/linux32/linux32_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2004 Tim J. Robbins
    5  * Copyright (c) 2002 Doug Rabson
    6  * Copyright (c) 2000 Marcel Moolenaar
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer
   14  *    in this position and unchanged.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. The name of the author may not be used to endorse or promote products
   19  *    derived from this software without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_compat.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/capsicum.h>
   40 #include <sys/clock.h>
   41 #include <sys/fcntl.h>
   42 #include <sys/file.h>
   43 #include <sys/imgact.h>
   44 #include <sys/kernel.h>
   45 #include <sys/limits.h>
   46 #include <sys/lock.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mman.h>
   49 #include <sys/mutex.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/resource.h>
   53 #include <sys/resourcevar.h>
   54 #include <sys/syscallsubr.h>
   55 #include <sys/sysproto.h>
   56 #include <sys/systm.h>
   57 #include <sys/unistd.h>
   58 #include <sys/wait.h>
   59 
   60 #include <machine/frame.h>
   61 #include <machine/md_var.h>
   62 #include <machine/pcb.h>
   63 #include <machine/psl.h>
   64 #include <machine/segments.h>
   65 #include <machine/specialreg.h>
   66 #include <x86/ifunc.h>
   67 
   68 #include <vm/pmap.h>
   69 #include <vm/vm.h>
   70 #include <vm/vm_map.h>
   71 
   72 #include <security/audit/audit.h>
   73 
   74 #include <compat/freebsd32/freebsd32_util.h>
   75 #include <amd64/linux32/linux.h>
   76 #include <amd64/linux32/linux32_proto.h>
   77 #include <compat/linux/linux_emul.h>
   78 #include <compat/linux/linux_ipc.h>
   79 #include <compat/linux/linux_misc.h>
   80 #include <compat/linux/linux_mmap.h>
   81 #include <compat/linux/linux_signal.h>
   82 #include <compat/linux/linux_util.h>
   83 
   84 static void     bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);
   85 
   86 struct l_old_select_argv {
   87         l_int           nfds;
   88         l_uintptr_t     readfds;
   89         l_uintptr_t     writefds;
   90         l_uintptr_t     exceptfds;
   91         l_uintptr_t     timeout;
   92 } __packed;
   93 
   94 
   95 static void
   96 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
   97 {
   98 
   99         lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
  100         lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
  101         lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
  102         lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
  103         lru->ru_maxrss = ru->ru_maxrss;
  104         lru->ru_ixrss = ru->ru_ixrss;
  105         lru->ru_idrss = ru->ru_idrss;
  106         lru->ru_isrss = ru->ru_isrss;
  107         lru->ru_minflt = ru->ru_minflt;
  108         lru->ru_majflt = ru->ru_majflt;
  109         lru->ru_nswap = ru->ru_nswap;
  110         lru->ru_inblock = ru->ru_inblock;
  111         lru->ru_oublock = ru->ru_oublock;
  112         lru->ru_msgsnd = ru->ru_msgsnd;
  113         lru->ru_msgrcv = ru->ru_msgrcv;
  114         lru->ru_nsignals = ru->ru_nsignals;
  115         lru->ru_nvcsw = ru->ru_nvcsw;
  116         lru->ru_nivcsw = ru->ru_nivcsw;
  117 }
  118 
  119 int
  120 linux_copyout_rusage(struct rusage *ru, void *uaddr)
  121 {
  122         struct l_rusage lru;
  123 
  124         bsd_to_linux_rusage(ru, &lru);
  125 
  126         return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
  127 }
  128 
  129 int
  130 linux_execve(struct thread *td, struct linux_execve_args *args)
  131 {
  132         struct image_args eargs;
  133         char *path;
  134         int error;
  135 
  136         LCONVPATHEXIST(td, args->path, &path);
  137 
  138         error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
  139             args->argp, args->envp);
  140         free(path, M_TEMP);
  141         if (error == 0)
  142                 error = linux_common_execve(td, &eargs);
  143         AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
  144         return (error);
  145 }
  146 
  147 CTASSERT(sizeof(struct l_iovec32) == 8);
  148 
  149 int
  150 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
  151 {
  152         struct l_iovec32 iov32;
  153         struct iovec *iov;
  154         struct uio *uio;
  155         uint32_t iovlen;
  156         int error, i;
  157 
  158         *uiop = NULL;
  159         if (iovcnt > UIO_MAXIOV)
  160                 return (EINVAL);
  161         iovlen = iovcnt * sizeof(struct iovec);
  162         uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
  163         iov = (struct iovec *)(uio + 1);
  164         for (i = 0; i < iovcnt; i++) {
  165                 error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
  166                 if (error) {
  167                         free(uio, M_IOV);
  168                         return (error);
  169                 }
  170                 iov[i].iov_base = PTRIN(iov32.iov_base);
  171                 iov[i].iov_len = iov32.iov_len;
  172         }
  173         uio->uio_iov = iov;
  174         uio->uio_iovcnt = iovcnt;
  175         uio->uio_segflg = UIO_USERSPACE;
  176         uio->uio_offset = -1;
  177         uio->uio_resid = 0;
  178         for (i = 0; i < iovcnt; i++) {
  179                 if (iov->iov_len > INT_MAX - uio->uio_resid) {
  180                         free(uio, M_IOV);
  181                         return (EINVAL);
  182                 }
  183                 uio->uio_resid += iov->iov_len;
  184                 iov++;
  185         }
  186         *uiop = uio;
  187         return (0);
  188 }
  189 
  190 int
  191 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
  192     int error)
  193 {
  194         struct l_iovec32 iov32;
  195         struct iovec *iov;
  196         uint32_t iovlen;
  197         int i;
  198 
  199         *iovp = NULL;
  200         if (iovcnt > UIO_MAXIOV)
  201                 return (error);
  202         iovlen = iovcnt * sizeof(struct iovec);
  203         iov = malloc(iovlen, M_IOV, M_WAITOK);
  204         for (i = 0; i < iovcnt; i++) {
  205                 error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
  206                 if (error) {
  207                         free(iov, M_IOV);
  208                         return (error);
  209                 }
  210                 iov[i].iov_base = PTRIN(iov32.iov_base);
  211                 iov[i].iov_len = iov32.iov_len;
  212         }
  213         *iovp = iov;
  214         return(0);
  215 
  216 }
  217 
  218 int
  219 linux_readv(struct thread *td, struct linux_readv_args *uap)
  220 {
  221         struct uio *auio;
  222         int error;
  223 
  224         error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
  225         if (error)
  226                 return (error);
  227         error = kern_readv(td, uap->fd, auio);
  228         free(auio, M_IOV);
  229         return (error);
  230 }
  231 
  232 int
  233 linux_writev(struct thread *td, struct linux_writev_args *uap)
  234 {
  235         struct uio *auio;
  236         int error;
  237 
  238         error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
  239         if (error)
  240                 return (error);
  241         error = kern_writev(td, uap->fd, auio);
  242         free(auio, M_IOV);
  243         return (error);
  244 }
  245 
  246 struct l_ipc_kludge {
  247         l_uintptr_t msgp;
  248         l_long msgtyp;
  249 } __packed;
  250 
  251 int
  252 linux_ipc(struct thread *td, struct linux_ipc_args *args)
  253 {
  254 
  255         switch (args->what & 0xFFFF) {
  256         case LINUX_SEMOP: {
  257                 struct linux_semop_args a;
  258 
  259                 a.semid = args->arg1;
  260                 a.tsops = PTRIN(args->ptr);
  261                 a.nsops = args->arg2;
  262                 return (linux_semop(td, &a));
  263         }
  264         case LINUX_SEMGET: {
  265                 struct linux_semget_args a;
  266 
  267                 a.key = args->arg1;
  268                 a.nsems = args->arg2;
  269                 a.semflg = args->arg3;
  270                 return (linux_semget(td, &a));
  271         }
  272         case LINUX_SEMCTL: {
  273                 struct linux_semctl_args a;
  274                 int error;
  275 
  276                 a.semid = args->arg1;
  277                 a.semnum = args->arg2;
  278                 a.cmd = args->arg3;
  279                 error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
  280                 if (error)
  281                         return (error);
  282                 return (linux_semctl(td, &a));
  283         }
  284         case LINUX_MSGSND: {
  285                 struct linux_msgsnd_args a;
  286 
  287                 a.msqid = args->arg1;
  288                 a.msgp = PTRIN(args->ptr);
  289                 a.msgsz = args->arg2;
  290                 a.msgflg = args->arg3;
  291                 return (linux_msgsnd(td, &a));
  292         }
  293         case LINUX_MSGRCV: {
  294                 struct linux_msgrcv_args a;
  295 
  296                 a.msqid = args->arg1;
  297                 a.msgsz = args->arg2;
  298                 a.msgflg = args->arg3;
  299                 if ((args->what >> 16) == 0) {
  300                         struct l_ipc_kludge tmp;
  301                         int error;
  302 
  303                         if (args->ptr == 0)
  304                                 return (EINVAL);
  305                         error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
  306                         if (error)
  307                                 return (error);
  308                         a.msgp = PTRIN(tmp.msgp);
  309                         a.msgtyp = tmp.msgtyp;
  310                 } else {
  311                         a.msgp = PTRIN(args->ptr);
  312                         a.msgtyp = args->arg5;
  313                 }
  314                 return (linux_msgrcv(td, &a));
  315         }
  316         case LINUX_MSGGET: {
  317                 struct linux_msgget_args a;
  318 
  319                 a.key = args->arg1;
  320                 a.msgflg = args->arg2;
  321                 return (linux_msgget(td, &a));
  322         }
  323         case LINUX_MSGCTL: {
  324                 struct linux_msgctl_args a;
  325 
  326                 a.msqid = args->arg1;
  327                 a.cmd = args->arg2;
  328                 a.buf = PTRIN(args->ptr);
  329                 return (linux_msgctl(td, &a));
  330         }
  331         case LINUX_SHMAT: {
  332                 struct linux_shmat_args a;
  333                 l_uintptr_t addr;
  334                 int error;
  335 
  336                 a.shmid = args->arg1;
  337                 a.shmaddr = PTRIN(args->ptr);
  338                 a.shmflg = args->arg2;
  339                 error = linux_shmat(td, &a);
  340                 if (error != 0)
  341                         return (error);
  342                 addr = td->td_retval[0];
  343                 error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
  344                 td->td_retval[0] = 0;
  345                 return (error);
  346         }
  347         case LINUX_SHMDT: {
  348                 struct linux_shmdt_args a;
  349 
  350                 a.shmaddr = PTRIN(args->ptr);
  351                 return (linux_shmdt(td, &a));
  352         }
  353         case LINUX_SHMGET: {
  354                 struct linux_shmget_args a;
  355 
  356                 a.key = args->arg1;
  357                 a.size = args->arg2;
  358                 a.shmflg = args->arg3;
  359                 return (linux_shmget(td, &a));
  360         }
  361         case LINUX_SHMCTL: {
  362                 struct linux_shmctl_args a;
  363 
  364                 a.shmid = args->arg1;
  365                 a.cmd = args->arg2;
  366                 a.buf = PTRIN(args->ptr);
  367                 return (linux_shmctl(td, &a));
  368         }
  369         default:
  370                 break;
  371         }
  372 
  373         return (EINVAL);
  374 }
  375 
  376 int
  377 linux_old_select(struct thread *td, struct linux_old_select_args *args)
  378 {
  379         struct l_old_select_argv linux_args;
  380         struct linux_select_args newsel;
  381         int error;
  382 
  383         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  384         if (error)
  385                 return (error);
  386 
  387         newsel.nfds = linux_args.nfds;
  388         newsel.readfds = PTRIN(linux_args.readfds);
  389         newsel.writefds = PTRIN(linux_args.writefds);
  390         newsel.exceptfds = PTRIN(linux_args.exceptfds);
  391         newsel.timeout = PTRIN(linux_args.timeout);
  392         return (linux_select(td, &newsel));
  393 }
  394 
  395 int
  396 linux_set_cloned_tls(struct thread *td, void *desc)
  397 {
  398         struct user_segment_descriptor sd;
  399         struct l_user_desc info;
  400         struct pcb *pcb;
  401         int error;
  402         int a[2];
  403 
  404         error = copyin(desc, &info, sizeof(struct l_user_desc));
  405         if (error) {
  406                 linux_msg(td, "set_cloned_tls copyin info failed!");
  407         } else {
  408 
  409                 /* We might copy out the entry_number as GUGS32_SEL. */
  410                 info.entry_number = GUGS32_SEL;
  411                 error = copyout(&info, desc, sizeof(struct l_user_desc));
  412                 if (error)
  413                         linux_msg(td, "set_cloned_tls copyout info failed!");
  414 
  415                 a[0] = LINUX_LDT_entry_a(&info);
  416                 a[1] = LINUX_LDT_entry_b(&info);
  417 
  418                 memcpy(&sd, &a, sizeof(a));
  419                 pcb = td->td_pcb;
  420                 pcb->pcb_gsbase = (register_t)info.base_addr;
  421                 td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
  422                 set_pcb_flags(pcb, PCB_32BIT);
  423         }
  424 
  425         return (error);
  426 }
  427 
  428 int
  429 linux_set_upcall_kse(struct thread *td, register_t stack)
  430 {
  431 
  432         if (stack)
  433                 td->td_frame->tf_rsp = stack;
  434 
  435         /*
  436          * The newly created Linux thread returns
  437          * to the user space by the same path that a parent do.
  438          */
  439         td->td_frame->tf_rax = 0;
  440         return (0);
  441 }
  442 
  443 int
  444 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
  445 {
  446 
  447         return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
  448                 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
  449                 PAGE_SIZE));
  450 }
  451 
  452 int
  453 linux_mmap(struct thread *td, struct linux_mmap_args *args)
  454 {
  455         int error;
  456         struct l_mmap_argv linux_args;
  457 
  458         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  459         if (error)
  460                 return (error);
  461 
  462         return (linux_mmap_common(td, linux_args.addr, linux_args.len,
  463             linux_args.prot, linux_args.flags, linux_args.fd,
  464             (uint32_t)linux_args.pgoff));
  465 }
  466 
  467 int
  468 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
  469 {
  470 
  471         return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
  472 }
  473 
  474 int
  475 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
  476 {
  477 
  478         return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav));
  479 }
  480 
  481 int
  482 linux_iopl(struct thread *td, struct linux_iopl_args *args)
  483 {
  484         int error;
  485 
  486         if (args->level < 0 || args->level > 3)
  487                 return (EINVAL);
  488         if ((error = priv_check(td, PRIV_IO)) != 0)
  489                 return (error);
  490         if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
  491                 return (error);
  492         td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
  493             (args->level * (PSL_IOPL / 3));
  494 
  495         return (0);
  496 }
  497 
  498 int
  499 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
  500 {
  501         l_osigaction_t osa;
  502         l_sigaction_t act, oact;
  503         int error;
  504 
  505         if (args->nsa != NULL) {
  506                 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
  507                 if (error)
  508                         return (error);
  509                 act.lsa_handler = osa.lsa_handler;
  510                 act.lsa_flags = osa.lsa_flags;
  511                 act.lsa_restorer = osa.lsa_restorer;
  512                 LINUX_SIGEMPTYSET(act.lsa_mask);
  513                 act.lsa_mask.__mask = osa.lsa_mask;
  514         }
  515 
  516         error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
  517             args->osa ? &oact : NULL);
  518 
  519         if (args->osa != NULL && !error) {
  520                 osa.lsa_handler = oact.lsa_handler;
  521                 osa.lsa_flags = oact.lsa_flags;
  522                 osa.lsa_restorer = oact.lsa_restorer;
  523                 osa.lsa_mask = oact.lsa_mask.__mask;
  524                 error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
  525         }
  526 
  527         return (error);
  528 }
  529 
  530 /*
  531  * Linux has two extra args, restart and oldmask.  We don't use these,
  532  * but it seems that "restart" is actually a context pointer that
  533  * enables the signal to happen with a different register set.
  534  */
  535 int
  536 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
  537 {
  538         sigset_t sigmask;
  539         l_sigset_t mask;
  540 
  541         LINUX_SIGEMPTYSET(mask);
  542         mask.__mask = args->mask;
  543         linux_to_bsd_sigset(&mask, &sigmask);
  544         return (kern_sigsuspend(td, sigmask));
  545 }
  546 
  547 int
  548 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
  549 {
  550         l_sigset_t lmask;
  551         sigset_t sigmask;
  552         int error;
  553 
  554         if (uap->sigsetsize != sizeof(l_sigset_t))
  555                 return (EINVAL);
  556 
  557         error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
  558         if (error)
  559                 return (error);
  560 
  561         linux_to_bsd_sigset(&lmask, &sigmask);
  562         return (kern_sigsuspend(td, sigmask));
  563 }
  564 
  565 int
  566 linux_pause(struct thread *td, struct linux_pause_args *args)
  567 {
  568         struct proc *p = td->td_proc;
  569         sigset_t sigmask;
  570 
  571         PROC_LOCK(p);
  572         sigmask = td->td_sigmask;
  573         PROC_UNLOCK(p);
  574         return (kern_sigsuspend(td, sigmask));
  575 }
  576 
  577 int
  578 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
  579 {
  580         stack_t ss, oss;
  581         l_stack_t lss;
  582         int error;
  583 
  584         if (uap->uss != NULL) {
  585                 error = copyin(uap->uss, &lss, sizeof(l_stack_t));
  586                 if (error)
  587                         return (error);
  588 
  589                 ss.ss_sp = PTRIN(lss.ss_sp);
  590                 ss.ss_size = lss.ss_size;
  591                 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
  592         }
  593         error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
  594             (uap->uoss != NULL) ? &oss : NULL);
  595         if (!error && uap->uoss != NULL) {
  596                 lss.ss_sp = PTROUT(oss.ss_sp);
  597                 lss.ss_size = oss.ss_size;
  598                 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
  599                 error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
  600         }
  601 
  602         return (error);
  603 }
  604 
  605 int
  606 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
  607 {
  608         struct timeval atv;
  609         l_timeval atv32;
  610         struct timezone rtz;
  611         int error = 0;
  612 
  613         if (uap->tp) {
  614                 microtime(&atv);
  615                 atv32.tv_sec = atv.tv_sec;
  616                 atv32.tv_usec = atv.tv_usec;
  617                 error = copyout(&atv32, uap->tp, sizeof(atv32));
  618         }
  619         if (error == 0 && uap->tzp != NULL) {
  620                 rtz.tz_minuteswest = tz_minuteswest;
  621                 rtz.tz_dsttime = tz_dsttime;
  622                 error = copyout(&rtz, uap->tzp, sizeof(rtz));
  623         }
  624         return (error);
  625 }
  626 
  627 int
  628 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
  629 {
  630         l_timeval atv32;
  631         struct timeval atv, *tvp;
  632         struct timezone atz, *tzp;
  633         int error;
  634 
  635         if (uap->tp) {
  636                 error = copyin(uap->tp, &atv32, sizeof(atv32));
  637                 if (error)
  638                         return (error);
  639                 atv.tv_sec = atv32.tv_sec;
  640                 atv.tv_usec = atv32.tv_usec;
  641                 tvp = &atv;
  642         } else
  643                 tvp = NULL;
  644         if (uap->tzp) {
  645                 error = copyin(uap->tzp, &atz, sizeof(atz));
  646                 if (error)
  647                         return (error);
  648                 tzp = &atz;
  649         } else
  650                 tzp = NULL;
  651         return (kern_settimeofday(td, tvp, tzp));
  652 }
  653 
  654 int
  655 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
  656 {
  657         struct rusage s;
  658         int error;
  659 
  660         error = kern_getrusage(td, uap->who, &s);
  661         if (error != 0)
  662                 return (error);
  663         if (uap->rusage != NULL)
  664                 error = linux_copyout_rusage(&s, uap->rusage);
  665         return (error);
  666 }
  667 
  668 int
  669 linux_set_thread_area(struct thread *td,
  670     struct linux_set_thread_area_args *args)
  671 {
  672         struct l_user_desc info;
  673         struct user_segment_descriptor sd;
  674         struct pcb *pcb;
  675         int a[2];
  676         int error;
  677 
  678         error = copyin(args->desc, &info, sizeof(struct l_user_desc));
  679         if (error)
  680                 return (error);
  681 
  682         /*
  683          * Semantics of Linux version: every thread in the system has array
  684          * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
  685          * This syscall loads one of the selected TLS decriptors with a value
  686          * and also loads GDT descriptors 6, 7 and 8 with the content of
  687          * the per-thread descriptors.
  688          *
  689          * Semantics of FreeBSD version: I think we can ignore that Linux has
  690          * three per-thread descriptors and use just the first one.
  691          * The tls_array[] is used only in [gs]et_thread_area() syscalls and
  692          * for loading the GDT descriptors. We use just one GDT descriptor
  693          * for TLS, so we will load just one.
  694          *
  695          * XXX: This doesn't work when a user space process tries to use more
  696          * than one TLS segment. Comment in the Linux source says wine might
  697          * do this.
  698          */
  699 
  700         /*
  701          * GLIBC reads current %gs and call set_thread_area() with it.
  702          * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
  703          * we use these segments.
  704          */
  705         switch (info.entry_number) {
  706         case GUGS32_SEL:
  707         case GUDATA_SEL:
  708         case 6:
  709         case -1:
  710                 info.entry_number = GUGS32_SEL;
  711                 break;
  712         default:
  713                 return (EINVAL);
  714         }
  715 
  716         /*
  717          * We have to copy out the GDT entry we use.
  718          *
  719          * XXX: What if a user space program does not check the return value
  720          * and tries to use 6, 7 or 8?
  721          */
  722         error = copyout(&info, args->desc, sizeof(struct l_user_desc));
  723         if (error)
  724                 return (error);
  725 
  726         if (LINUX_LDT_empty(&info)) {
  727                 a[0] = 0;
  728                 a[1] = 0;
  729         } else {
  730                 a[0] = LINUX_LDT_entry_a(&info);
  731                 a[1] = LINUX_LDT_entry_b(&info);
  732         }
  733 
  734         memcpy(&sd, &a, sizeof(a));
  735         pcb = td->td_pcb;
  736         pcb->pcb_gsbase = (register_t)info.base_addr;
  737         set_pcb_flags(pcb, PCB_32BIT);
  738         update_gdt_gsbase(td, info.base_addr);
  739 
  740         return (0);
  741 }
  742 
  743 int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
  744 int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
  745 DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *), static)
  746 {
  747 
  748         return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
  749             futex_xchgl_smap : futex_xchgl_nosmap);
  750 }
  751 
  752 int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
  753 int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
  754 DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *), static)
  755 {
  756 
  757         return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
  758             futex_addl_smap : futex_addl_nosmap);
  759 }
  760 
  761 int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
  762 int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
  763 DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *), static)
  764 {
  765 
  766         return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
  767             futex_orl_smap : futex_orl_nosmap);
  768 }
  769 
  770 int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
  771 int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
  772 DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *), static)
  773 {
  774 
  775         return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
  776             futex_andl_smap : futex_andl_nosmap);
  777 }
  778 
  779 int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
  780 int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
  781 DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *), static)
  782 {
  783 
  784         return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
  785             futex_xorl_smap : futex_xorl_nosmap);
  786 }

Cache object: 69c0b0722ee7f587641ec8c8b9526235


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.