The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/linux32/linux32_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Tim J. Robbins
    3  * Copyright (c) 2002 Doug Rabson
    4  * Copyright (c) 2000 Marcel Moolenaar
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer
   12  *    in this position and unchanged.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. The name of the author may not be used to endorse or promote products
   17  *    derived from this software without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD: releng/8.0/sys/amd64/linux32/linux32_machdep.c 198951 2009-11-05 16:16:56Z jhb $");
   33 
   34 #include <sys/param.h>
   35 #include <sys/kernel.h>
   36 #include <sys/systm.h>
   37 #include <sys/file.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/clock.h>
   40 #include <sys/imgact.h>
   41 #include <sys/limits.h>
   42 #include <sys/lock.h>
   43 #include <sys/malloc.h>
   44 #include <sys/mman.h>
   45 #include <sys/mutex.h>
   46 #include <sys/priv.h>
   47 #include <sys/proc.h>
   48 #include <sys/resource.h>
   49 #include <sys/resourcevar.h>
   50 #include <sys/sched.h>
   51 #include <sys/syscallsubr.h>
   52 #include <sys/sysproto.h>
   53 #include <sys/unistd.h>
   54 
   55 #include <machine/frame.h>
   56 #include <machine/pcb.h>
   57 #include <machine/psl.h>
   58 #include <machine/segments.h>
   59 #include <machine/specialreg.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/pmap.h>
   63 #include <vm/vm_extern.h>
   64 #include <vm/vm_kern.h>
   65 #include <vm/vm_map.h>
   66 
   67 #include <amd64/linux32/linux.h>
   68 #include <amd64/linux32/linux32_proto.h>
   69 #include <compat/linux/linux_ipc.h>
   70 #include <compat/linux/linux_signal.h>
   71 #include <compat/linux/linux_util.h>
   72 #include <compat/linux/linux_emul.h>
   73 
   74 struct l_old_select_argv {
   75         l_int           nfds;
   76         l_uintptr_t     readfds;
   77         l_uintptr_t     writefds;
   78         l_uintptr_t     exceptfds;
   79         l_uintptr_t     timeout;
   80 } __packed;
   81 
   82 int
   83 linux_to_bsd_sigaltstack(int lsa)
   84 {
   85         int bsa = 0;
   86 
   87         if (lsa & LINUX_SS_DISABLE)
   88                 bsa |= SS_DISABLE;
   89         if (lsa & LINUX_SS_ONSTACK)
   90                 bsa |= SS_ONSTACK;
   91         return (bsa);
   92 }
   93 
   94 static int      linux_mmap_common(struct thread *td, l_uintptr_t addr,
   95                     l_size_t len, l_int prot, l_int flags, l_int fd,
   96                     l_loff_t pos);
   97 
   98 int
   99 bsd_to_linux_sigaltstack(int bsa)
  100 {
  101         int lsa = 0;
  102 
  103         if (bsa & SS_DISABLE)
  104                 lsa |= LINUX_SS_DISABLE;
  105         if (bsa & SS_ONSTACK)
  106                 lsa |= LINUX_SS_ONSTACK;
  107         return (lsa);
  108 }
  109 
  110 /*
  111  * Custom version of exec_copyin_args() so that we can translate
  112  * the pointers.
  113  */
  114 static int
  115 linux_exec_copyin_args(struct image_args *args, char *fname,
  116     enum uio_seg segflg, char **argv, char **envv)
  117 {
  118         char *argp, *envp;
  119         u_int32_t *p32, arg;
  120         size_t length;
  121         int error;
  122 
  123         bzero(args, sizeof(*args));
  124         if (argv == NULL)
  125                 return (EFAULT);
  126 
  127         /*
  128          * Allocate temporary demand zeroed space for argument and
  129          *      environment strings
  130          */
  131         args->buf = (char *)kmem_alloc_wait(exec_map,
  132             PATH_MAX + ARG_MAX + MAXSHELLCMDLEN);
  133         if (args->buf == NULL)
  134                 return (ENOMEM);
  135         args->begin_argv = args->buf;
  136         args->endp = args->begin_argv;
  137         args->stringspace = ARG_MAX;
  138 
  139         args->fname = args->buf + ARG_MAX;
  140 
  141         /*
  142          * Copy the file name.
  143          */
  144         error = (segflg == UIO_SYSSPACE) ?
  145             copystr(fname, args->fname, PATH_MAX, &length) :
  146             copyinstr(fname, args->fname, PATH_MAX, &length);
  147         if (error != 0)
  148                 goto err_exit;
  149 
  150         /*
  151          * extract arguments first
  152          */
  153         p32 = (u_int32_t *)argv;
  154         for (;;) {
  155                 error = copyin(p32++, &arg, sizeof(arg));
  156                 if (error)
  157                         goto err_exit;
  158                 if (arg == 0)
  159                         break;
  160                 argp = PTRIN(arg);
  161                 error = copyinstr(argp, args->endp, args->stringspace, &length);
  162                 if (error) {
  163                         if (error == ENAMETOOLONG)
  164                                 error = E2BIG;
  165 
  166                         goto err_exit;
  167                 }
  168                 args->stringspace -= length;
  169                 args->endp += length;
  170                 args->argc++;
  171         }
  172 
  173         args->begin_envv = args->endp;
  174 
  175         /*
  176          * extract environment strings
  177          */
  178         if (envv) {
  179                 p32 = (u_int32_t *)envv;
  180                 for (;;) {
  181                         error = copyin(p32++, &arg, sizeof(arg));
  182                         if (error)
  183                                 goto err_exit;
  184                         if (arg == 0)
  185                                 break;
  186                         envp = PTRIN(arg);
  187                         error = copyinstr(envp, args->endp, args->stringspace,
  188                             &length);
  189                         if (error) {
  190                                 if (error == ENAMETOOLONG)
  191                                         error = E2BIG;
  192                                 goto err_exit;
  193                         }
  194                         args->stringspace -= length;
  195                         args->endp += length;
  196                         args->envc++;
  197                 }
  198         }
  199 
  200         return (0);
  201 
  202 err_exit:
  203         kmem_free_wakeup(exec_map, (vm_offset_t)args->buf,
  204             PATH_MAX + ARG_MAX + MAXSHELLCMDLEN);
  205         args->buf = NULL;
  206         return (error);
  207 }
  208 
  209 int
  210 linux_execve(struct thread *td, struct linux_execve_args *args)
  211 {
  212         struct image_args eargs;
  213         char *path;
  214         int error;
  215 
  216         LCONVPATHEXIST(td, args->path, &path);
  217 
  218 #ifdef DEBUG
  219         if (ldebug(execve))
  220                 printf(ARGS(execve, "%s"), path);
  221 #endif
  222 
  223         error = linux_exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp,
  224             args->envp);
  225         free(path, M_TEMP);
  226         if (error == 0)
  227                 error = kern_execve(td, &eargs, NULL);
  228         if (error == 0)
  229                 /* Linux process can execute FreeBSD one, do not attempt
  230                  * to create emuldata for such process using
  231                  * linux_proc_init, this leads to a panic on KASSERT
  232                  * because such process has p->p_emuldata == NULL.
  233                  */
  234                 if (td->td_proc->p_sysent == &elf_linux_sysvec)
  235                         error = linux_proc_init(td, 0, 0);
  236         return (error);
  237 }
  238 
  239 CTASSERT(sizeof(struct l_iovec32) == 8);
  240 
  241 static int
  242 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
  243 {
  244         struct l_iovec32 iov32;
  245         struct iovec *iov;
  246         struct uio *uio;
  247         uint32_t iovlen;
  248         int error, i;
  249 
  250         *uiop = NULL;
  251         if (iovcnt > UIO_MAXIOV)
  252                 return (EINVAL);
  253         iovlen = iovcnt * sizeof(struct iovec);
  254         uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
  255         iov = (struct iovec *)(uio + 1);
  256         for (i = 0; i < iovcnt; i++) {
  257                 error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
  258                 if (error) {
  259                         free(uio, M_IOV);
  260                         return (error);
  261                 }
  262                 iov[i].iov_base = PTRIN(iov32.iov_base);
  263                 iov[i].iov_len = iov32.iov_len;
  264         }
  265         uio->uio_iov = iov;
  266         uio->uio_iovcnt = iovcnt;
  267         uio->uio_segflg = UIO_USERSPACE;
  268         uio->uio_offset = -1;
  269         uio->uio_resid = 0;
  270         for (i = 0; i < iovcnt; i++) {
  271                 if (iov->iov_len > INT_MAX - uio->uio_resid) {
  272                         free(uio, M_IOV);
  273                         return (EINVAL);
  274                 }
  275                 uio->uio_resid += iov->iov_len;
  276                 iov++;
  277         }
  278         *uiop = uio;
  279         return (0);
  280 }
  281 
  282 int
  283 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
  284     int error)
  285 {
  286         struct l_iovec32 iov32;
  287         struct iovec *iov;
  288         uint32_t iovlen;
  289         int i;
  290 
  291         *iovp = NULL;
  292         if (iovcnt > UIO_MAXIOV)
  293                 return (error);
  294         iovlen = iovcnt * sizeof(struct iovec);
  295         iov = malloc(iovlen, M_IOV, M_WAITOK);
  296         for (i = 0; i < iovcnt; i++) {
  297                 error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
  298                 if (error) {
  299                         free(iov, M_IOV);
  300                         return (error);
  301                 }
  302                 iov[i].iov_base = PTRIN(iov32.iov_base);
  303                 iov[i].iov_len = iov32.iov_len;
  304         }
  305         *iovp = iov;
  306         return(0);
  307 
  308 }
  309 
  310 int
  311 linux_readv(struct thread *td, struct linux_readv_args *uap)
  312 {
  313         struct uio *auio;
  314         int error;
  315 
  316         error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
  317         if (error)
  318                 return (error);
  319         error = kern_readv(td, uap->fd, auio);
  320         free(auio, M_IOV);
  321         return (error);
  322 }
  323 
  324 int
  325 linux_writev(struct thread *td, struct linux_writev_args *uap)
  326 {
  327         struct uio *auio;
  328         int error;
  329 
  330         error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
  331         if (error)
  332                 return (error);
  333         error = kern_writev(td, uap->fd, auio);
  334         free(auio, M_IOV);
  335         return (error);
  336 }
  337 
  338 struct l_ipc_kludge {
  339         l_uintptr_t msgp;
  340         l_long msgtyp;
  341 } __packed;
  342 
  343 int
  344 linux_ipc(struct thread *td, struct linux_ipc_args *args)
  345 {
  346 
  347         switch (args->what & 0xFFFF) {
  348         case LINUX_SEMOP: {
  349                 struct linux_semop_args a;
  350 
  351                 a.semid = args->arg1;
  352                 a.tsops = args->ptr;
  353                 a.nsops = args->arg2;
  354                 return (linux_semop(td, &a));
  355         }
  356         case LINUX_SEMGET: {
  357                 struct linux_semget_args a;
  358 
  359                 a.key = args->arg1;
  360                 a.nsems = args->arg2;
  361                 a.semflg = args->arg3;
  362                 return (linux_semget(td, &a));
  363         }
  364         case LINUX_SEMCTL: {
  365                 struct linux_semctl_args a;
  366                 int error;
  367 
  368                 a.semid = args->arg1;
  369                 a.semnum = args->arg2;
  370                 a.cmd = args->arg3;
  371                 error = copyin(args->ptr, &a.arg, sizeof(a.arg));
  372                 if (error)
  373                         return (error);
  374                 return (linux_semctl(td, &a));
  375         }
  376         case LINUX_MSGSND: {
  377                 struct linux_msgsnd_args a;
  378 
  379                 a.msqid = args->arg1;
  380                 a.msgp = args->ptr;
  381                 a.msgsz = args->arg2;
  382                 a.msgflg = args->arg3;
  383                 return (linux_msgsnd(td, &a));
  384         }
  385         case LINUX_MSGRCV: {
  386                 struct linux_msgrcv_args a;
  387 
  388                 a.msqid = args->arg1;
  389                 a.msgsz = args->arg2;
  390                 a.msgflg = args->arg3;
  391                 if ((args->what >> 16) == 0) {
  392                         struct l_ipc_kludge tmp;
  393                         int error;
  394 
  395                         if (args->ptr == 0)
  396                                 return (EINVAL);
  397                         error = copyin(args->ptr, &tmp, sizeof(tmp));
  398                         if (error)
  399                                 return (error);
  400                         a.msgp = PTRIN(tmp.msgp);
  401                         a.msgtyp = tmp.msgtyp;
  402                 } else {
  403                         a.msgp = args->ptr;
  404                         a.msgtyp = args->arg5;
  405                 }
  406                 return (linux_msgrcv(td, &a));
  407         }
  408         case LINUX_MSGGET: {
  409                 struct linux_msgget_args a;
  410 
  411                 a.key = args->arg1;
  412                 a.msgflg = args->arg2;
  413                 return (linux_msgget(td, &a));
  414         }
  415         case LINUX_MSGCTL: {
  416                 struct linux_msgctl_args a;
  417 
  418                 a.msqid = args->arg1;
  419                 a.cmd = args->arg2;
  420                 a.buf = args->ptr;
  421                 return (linux_msgctl(td, &a));
  422         }
  423         case LINUX_SHMAT: {
  424                 struct linux_shmat_args a;
  425 
  426                 a.shmid = args->arg1;
  427                 a.shmaddr = args->ptr;
  428                 a.shmflg = args->arg2;
  429                 a.raddr = PTRIN((l_uint)args->arg3);
  430                 return (linux_shmat(td, &a));
  431         }
  432         case LINUX_SHMDT: {
  433                 struct linux_shmdt_args a;
  434 
  435                 a.shmaddr = args->ptr;
  436                 return (linux_shmdt(td, &a));
  437         }
  438         case LINUX_SHMGET: {
  439                 struct linux_shmget_args a;
  440 
  441                 a.key = args->arg1;
  442                 a.size = args->arg2;
  443                 a.shmflg = args->arg3;
  444                 return (linux_shmget(td, &a));
  445         }
  446         case LINUX_SHMCTL: {
  447                 struct linux_shmctl_args a;
  448 
  449                 a.shmid = args->arg1;
  450                 a.cmd = args->arg2;
  451                 a.buf = args->ptr;
  452                 return (linux_shmctl(td, &a));
  453         }
  454         default:
  455                 break;
  456         }
  457 
  458         return (EINVAL);
  459 }
  460 
  461 int
  462 linux_old_select(struct thread *td, struct linux_old_select_args *args)
  463 {
  464         struct l_old_select_argv linux_args;
  465         struct linux_select_args newsel;
  466         int error;
  467 
  468 #ifdef DEBUG
  469         if (ldebug(old_select))
  470                 printf(ARGS(old_select, "%p"), args->ptr);
  471 #endif
  472 
  473         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  474         if (error)
  475                 return (error);
  476 
  477         newsel.nfds = linux_args.nfds;
  478         newsel.readfds = PTRIN(linux_args.readfds);
  479         newsel.writefds = PTRIN(linux_args.writefds);
  480         newsel.exceptfds = PTRIN(linux_args.exceptfds);
  481         newsel.timeout = PTRIN(linux_args.timeout);
  482         return (linux_select(td, &newsel));
  483 }
  484 
  485 int
  486 linux_fork(struct thread *td, struct linux_fork_args *args)
  487 {
  488         int error;
  489         struct proc *p2;
  490         struct thread *td2;
  491 
  492 #ifdef DEBUG
  493         if (ldebug(fork))
  494                 printf(ARGS(fork, ""));
  495 #endif
  496 
  497         if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
  498                 return (error);
  499 
  500         if (error == 0) {
  501                 td->td_retval[0] = p2->p_pid;
  502                 td->td_retval[1] = 0;
  503         }
  504 
  505         if (td->td_retval[1] == 1)
  506                 td->td_retval[0] = 0;
  507         error = linux_proc_init(td, td->td_retval[0], 0);
  508         if (error)
  509                 return (error);
  510 
  511         td2 = FIRST_THREAD_IN_PROC(p2);
  512 
  513         /*
  514          * Make this runnable after we are finished with it.
  515          */
  516         thread_lock(td2);
  517         TD_SET_CAN_RUN(td2);
  518         sched_add(td2, SRQ_BORING);
  519         thread_unlock(td2);
  520 
  521         return (0);
  522 }
  523 
  524 int
  525 linux_vfork(struct thread *td, struct linux_vfork_args *args)
  526 {
  527         int error;
  528         struct proc *p2;
  529         struct thread *td2;
  530 
  531 #ifdef DEBUG
  532         if (ldebug(vfork))
  533                 printf(ARGS(vfork, ""));
  534 #endif
  535 
  536         /* Exclude RFPPWAIT */
  537         if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
  538                 return (error);
  539         if (error == 0) {
  540                 td->td_retval[0] = p2->p_pid;
  541                 td->td_retval[1] = 0;
  542         }
  543         /* Are we the child? */
  544         if (td->td_retval[1] == 1)
  545                 td->td_retval[0] = 0;
  546         error = linux_proc_init(td, td->td_retval[0], 0);
  547         if (error)
  548                 return (error);
  549 
  550         PROC_LOCK(p2);
  551         p2->p_flag |= P_PPWAIT;
  552         PROC_UNLOCK(p2);
  553 
  554         td2 = FIRST_THREAD_IN_PROC(p2);
  555 
  556         /*
  557          * Make this runnable after we are finished with it.
  558          */
  559         thread_lock(td2);
  560         TD_SET_CAN_RUN(td2);
  561         sched_add(td2, SRQ_BORING);
  562         thread_unlock(td2);
  563 
  564         /* wait for the children to exit, ie. emulate vfork */
  565         PROC_LOCK(p2);
  566         while (p2->p_flag & P_PPWAIT)
  567                 cv_wait(&p2->p_pwait, &p2->p_mtx);
  568         PROC_UNLOCK(p2);
  569 
  570         return (0);
  571 }
  572 
  573 int
  574 linux_clone(struct thread *td, struct linux_clone_args *args)
  575 {
  576         int error, ff = RFPROC | RFSTOPPED;
  577         struct proc *p2;
  578         struct thread *td2;
  579         int exit_signal;
  580         struct linux_emuldata *em;
  581 
  582 #ifdef DEBUG
  583         if (ldebug(clone)) {
  584                 printf(ARGS(clone, "flags %x, stack %p, parent tid: %p, "
  585                     "child tid: %p"), (unsigned)args->flags,
  586                     args->stack, args->parent_tidptr, args->child_tidptr);
  587         }
  588 #endif
  589 
  590         exit_signal = args->flags & 0x000000ff;
  591         if (LINUX_SIG_VALID(exit_signal)) {
  592                 if (exit_signal <= LINUX_SIGTBLSZ)
  593                         exit_signal =
  594                             linux_to_bsd_signal[_SIG_IDX(exit_signal)];
  595         } else if (exit_signal != 0)
  596                 return (EINVAL);
  597 
  598         if (args->flags & LINUX_CLONE_VM)
  599                 ff |= RFMEM;
  600         if (args->flags & LINUX_CLONE_SIGHAND)
  601                 ff |= RFSIGSHARE;
  602         /*
  603          * XXX: In Linux, sharing of fs info (chroot/cwd/umask)
  604          * and open files is independant.  In FreeBSD, its in one
  605          * structure but in reality it does not cause any problems
  606          * because both of these flags are usually set together.
  607          */
  608         if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS)))
  609                 ff |= RFFDG;
  610 
  611         /*
  612          * Attempt to detect when linux_clone(2) is used for creating
  613          * kernel threads. Unfortunately despite the existence of the
  614          * CLONE_THREAD flag, version of linuxthreads package used in
  615          * most popular distros as of beginning of 2005 doesn't make
  616          * any use of it. Therefore, this detection relies on
  617          * empirical observation that linuxthreads sets certain
  618          * combination of flags, so that we can make more or less
  619          * precise detection and notify the FreeBSD kernel that several
  620          * processes are in fact part of the same threading group, so
  621          * that special treatment is necessary for signal delivery
  622          * between those processes and fd locking.
  623          */
  624         if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS)
  625                 ff |= RFTHREAD;
  626 
  627         if (args->flags & LINUX_CLONE_PARENT_SETTID)
  628                 if (args->parent_tidptr == NULL)
  629                         return (EINVAL);
  630 
  631         error = fork1(td, ff, 0, &p2);
  632         if (error)
  633                 return (error);
  634 
  635         if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) {
  636                 sx_xlock(&proctree_lock);
  637                 PROC_LOCK(p2);
  638                 proc_reparent(p2, td->td_proc->p_pptr);
  639                 PROC_UNLOCK(p2);
  640                 sx_xunlock(&proctree_lock);
  641         }
  642 
  643         /* create the emuldata */
  644         error = linux_proc_init(td, p2->p_pid, args->flags);
  645         /* reference it - no need to check this */
  646         em = em_find(p2, EMUL_DOLOCK);
  647         KASSERT(em != NULL, ("clone: emuldata not found.\n"));
  648         /* and adjust it */
  649 
  650         if (args->flags & LINUX_CLONE_THREAD) {
  651 #ifdef notyet
  652                 PROC_LOCK(p2);
  653                 p2->p_pgrp = td->td_proc->p_pgrp;
  654                 PROC_UNLOCK(p2);
  655 #endif
  656                 exit_signal = 0;
  657         }
  658 
  659         if (args->flags & LINUX_CLONE_CHILD_SETTID)
  660                 em->child_set_tid = args->child_tidptr;
  661         else
  662                 em->child_set_tid = NULL;
  663 
  664         if (args->flags & LINUX_CLONE_CHILD_CLEARTID)
  665                 em->child_clear_tid = args->child_tidptr;
  666         else
  667                 em->child_clear_tid = NULL;
  668 
  669         EMUL_UNLOCK(&emul_lock);
  670 
  671         if (args->flags & LINUX_CLONE_PARENT_SETTID) {
  672                 error = copyout(&p2->p_pid, args->parent_tidptr,
  673                     sizeof(p2->p_pid));
  674                 if (error)
  675                         printf(LMSG("copyout failed!"));
  676         }
  677 
  678         PROC_LOCK(p2);
  679         p2->p_sigparent = exit_signal;
  680         PROC_UNLOCK(p2);
  681         td2 = FIRST_THREAD_IN_PROC(p2);
  682         /*
  683          * In a case of stack = NULL, we are supposed to COW calling process
  684          * stack. This is what normal fork() does, so we just keep tf_rsp arg
  685          * intact.
  686          */
  687         if (args->stack)
  688                 td2->td_frame->tf_rsp = PTROUT(args->stack);
  689 
  690         if (args->flags & LINUX_CLONE_SETTLS) {
  691                 struct user_segment_descriptor sd;
  692                 struct l_user_desc info;
  693                 int a[2];
  694 
  695                 error = copyin((void *)td->td_frame->tf_rsi, &info,
  696                     sizeof(struct l_user_desc));
  697                 if (error) {
  698                         printf(LMSG("copyin failed!"));
  699                 } else {
  700                         /* We might copy out the entry_number as GUGS32_SEL. */
  701                         info.entry_number = GUGS32_SEL;
  702                         error = copyout(&info, (void *)td->td_frame->tf_rsi,
  703                             sizeof(struct l_user_desc));
  704                         if (error)
  705                                 printf(LMSG("copyout failed!"));
  706 
  707                         a[0] = LINUX_LDT_entry_a(&info);
  708                         a[1] = LINUX_LDT_entry_b(&info);
  709 
  710                         memcpy(&sd, &a, sizeof(a));
  711 #ifdef DEBUG
  712                         if (ldebug(clone))
  713                                 printf("Segment created in clone with "
  714                                     "CLONE_SETTLS: lobase: %x, hibase: %x, "
  715                                     "lolimit: %x, hilimit: %x, type: %i, "
  716                                     "dpl: %i, p: %i, xx: %i, long: %i, "
  717                                     "def32: %i, gran: %i\n", sd.sd_lobase,
  718                                     sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit,
  719                                     sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx,
  720                                     sd.sd_long, sd.sd_def32, sd.sd_gran);
  721 #endif
  722                         td2->td_pcb->pcb_gsbase = (register_t)info.base_addr;
  723 /* XXXKIB               td2->td_pcb->pcb_gs32sd = sd; */
  724                         td2->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
  725                         td2->td_pcb->pcb_flags |= PCB_GS32BIT | PCB_32BIT;
  726                 }
  727         }
  728 
  729 #ifdef DEBUG
  730         if (ldebug(clone))
  731                 printf(LMSG("clone: successful rfork to %d, "
  732                     "stack %p sig = %d"), (int)p2->p_pid, args->stack,
  733                     exit_signal);
  734 #endif
  735         if (args->flags & LINUX_CLONE_VFORK) {
  736                 PROC_LOCK(p2);
  737                 p2->p_flag |= P_PPWAIT;
  738                 PROC_UNLOCK(p2);
  739         }
  740 
  741         /*
  742          * Make this runnable after we are finished with it.
  743          */
  744         thread_lock(td2);
  745         TD_SET_CAN_RUN(td2);
  746         sched_add(td2, SRQ_BORING);
  747         thread_unlock(td2);
  748 
  749         td->td_retval[0] = p2->p_pid;
  750         td->td_retval[1] = 0;
  751 
  752         if (args->flags & LINUX_CLONE_VFORK) {
  753                 /* wait for the children to exit, ie. emulate vfork */
  754                 PROC_LOCK(p2);
  755                 while (p2->p_flag & P_PPWAIT)
  756                         cv_wait(&p2->p_pwait, &p2->p_mtx);
  757                 PROC_UNLOCK(p2);
  758         }
  759 
  760         return (0);
  761 }
  762 
  763 #define STACK_SIZE  (2 * 1024 * 1024)
  764 #define GUARD_SIZE  (4 * PAGE_SIZE)
  765 
  766 int
  767 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
  768 {
  769 
  770 #ifdef DEBUG
  771         if (ldebug(mmap2))
  772                 printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"),
  773                     args->addr, args->len, args->prot,
  774                     args->flags, args->fd, args->pgoff);
  775 #endif
  776 
  777         return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
  778                 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
  779                 PAGE_SIZE));
  780 }
  781 
  782 int
  783 linux_mmap(struct thread *td, struct linux_mmap_args *args)
  784 {
  785         int error;
  786         struct l_mmap_argv linux_args;
  787 
  788         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  789         if (error)
  790                 return (error);
  791 
  792 #ifdef DEBUG
  793         if (ldebug(mmap))
  794                 printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"),
  795                     linux_args.addr, linux_args.len, linux_args.prot,
  796                     linux_args.flags, linux_args.fd, linux_args.pgoff);
  797 #endif
  798 
  799         return (linux_mmap_common(td, linux_args.addr, linux_args.len,
  800             linux_args.prot, linux_args.flags, linux_args.fd,
  801             (uint32_t)linux_args.pgoff));
  802 }
  803 
  804 static int
  805 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
  806     l_int flags, l_int fd, l_loff_t pos)
  807 {
  808         struct proc *p = td->td_proc;
  809         struct mmap_args /* {
  810                 caddr_t addr;
  811                 size_t len;
  812                 int prot;
  813                 int flags;
  814                 int fd;
  815                 long pad;
  816                 off_t pos;
  817         } */ bsd_args;
  818         int error;
  819         struct file *fp;
  820 
  821         error = 0;
  822         bsd_args.flags = 0;
  823         fp = NULL;
  824 
  825         /*
  826          * Linux mmap(2):
  827          * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
  828          */
  829         if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
  830                 return (EINVAL);
  831 
  832         if (flags & LINUX_MAP_SHARED)
  833                 bsd_args.flags |= MAP_SHARED;
  834         if (flags & LINUX_MAP_PRIVATE)
  835                 bsd_args.flags |= MAP_PRIVATE;
  836         if (flags & LINUX_MAP_FIXED)
  837                 bsd_args.flags |= MAP_FIXED;
  838         if (flags & LINUX_MAP_ANON)
  839                 bsd_args.flags |= MAP_ANON;
  840         else
  841                 bsd_args.flags |= MAP_NOSYNC;
  842         if (flags & LINUX_MAP_GROWSDOWN)
  843                 bsd_args.flags |= MAP_STACK;
  844 
  845         /*
  846          * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
  847          * on Linux/i386. We do this to ensure maximum compatibility.
  848          * Linux/ia64 does the same in i386 emulation mode.
  849          */
  850         bsd_args.prot = prot;
  851         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  852                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  853 
  854         /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
  855         bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
  856         if (bsd_args.fd != -1) {
  857                 /*
  858                  * Linux follows Solaris mmap(2) description:
  859                  * The file descriptor fildes is opened with
  860                  * read permission, regardless of the
  861                  * protection options specified.
  862                  */
  863 
  864                 if ((error = fget(td, bsd_args.fd, &fp)) != 0)
  865                         return (error);
  866                 if (fp->f_type != DTYPE_VNODE) {
  867                         fdrop(fp, td);
  868                         return (EINVAL);
  869                 }
  870 
  871                 /* Linux mmap() just fails for O_WRONLY files */
  872                 if (!(fp->f_flag & FREAD)) {
  873                         fdrop(fp, td);
  874                         return (EACCES);
  875                 }
  876 
  877                 fdrop(fp, td);
  878         }
  879 
  880         if (flags & LINUX_MAP_GROWSDOWN) {
  881                 /*
  882                  * The Linux MAP_GROWSDOWN option does not limit auto
  883                  * growth of the region.  Linux mmap with this option
  884                  * takes as addr the inital BOS, and as len, the initial
  885                  * region size.  It can then grow down from addr without
  886                  * limit.  However, Linux threads has an implicit internal
  887                  * limit to stack size of STACK_SIZE.  Its just not
  888                  * enforced explicitly in Linux.  But, here we impose
  889                  * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
  890                  * region, since we can do this with our mmap.
  891                  *
  892                  * Our mmap with MAP_STACK takes addr as the maximum
  893                  * downsize limit on BOS, and as len the max size of
  894                  * the region.  It then maps the top SGROWSIZ bytes,
  895                  * and auto grows the region down, up to the limit
  896                  * in addr.
  897                  *
  898                  * If we don't use the MAP_STACK option, the effect
  899                  * of this code is to allocate a stack region of a
  900                  * fixed size of (STACK_SIZE - GUARD_SIZE).
  901                  */
  902 
  903                 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
  904                         /*
  905                          * Some Linux apps will attempt to mmap
  906                          * thread stacks near the top of their
  907                          * address space.  If their TOS is greater
  908                          * than vm_maxsaddr, vm_map_growstack()
  909                          * will confuse the thread stack with the
  910                          * process stack and deliver a SEGV if they
  911                          * attempt to grow the thread stack past their
  912                          * current stacksize rlimit.  To avoid this,
  913                          * adjust vm_maxsaddr upwards to reflect
  914                          * the current stacksize rlimit rather
  915                          * than the maximum possible stacksize.
  916                          * It would be better to adjust the
  917                          * mmap'ed region, but some apps do not check
  918                          * mmap's return value.
  919                          */
  920                         PROC_LOCK(p);
  921                         p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK -
  922                             lim_cur(p, RLIMIT_STACK);
  923                         PROC_UNLOCK(p);
  924                 }
  925 
  926                 /*
  927                  * This gives us our maximum stack size and a new BOS.
  928                  * If we're using VM_STACK, then mmap will just map
  929                  * the top SGROWSIZ bytes, and let the stack grow down
  930                  * to the limit at BOS.  If we're not using VM_STACK
  931                  * we map the full stack, since we don't have a way
  932                  * to autogrow it.
  933                  */
  934                 if (len > STACK_SIZE - GUARD_SIZE) {
  935                         bsd_args.addr = (caddr_t)PTRIN(addr);
  936                         bsd_args.len = len;
  937                 } else {
  938                         bsd_args.addr = (caddr_t)PTRIN(addr) -
  939                             (STACK_SIZE - GUARD_SIZE - len);
  940                         bsd_args.len = STACK_SIZE - GUARD_SIZE;
  941                 }
  942         } else {
  943                 bsd_args.addr = (caddr_t)PTRIN(addr);
  944                 bsd_args.len  = len;
  945         }
  946         bsd_args.pos = pos;
  947 
  948 #ifdef DEBUG
  949         if (ldebug(mmap))
  950                 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
  951                     __func__,
  952                     (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
  953                     bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
  954 #endif
  955         error = mmap(td, &bsd_args);
  956 #ifdef DEBUG
  957         if (ldebug(mmap))
  958                 printf("-> %s() return: 0x%x (0x%08x)\n",
  959                         __func__, error, (u_int)td->td_retval[0]);
  960 #endif
  961         return (error);
  962 }
  963 
  964 int
  965 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
  966 {
  967         struct mprotect_args bsd_args;
  968 
  969         bsd_args.addr = uap->addr;
  970         bsd_args.len = uap->len;
  971         bsd_args.prot = uap->prot;
  972         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  973                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  974         return (mprotect(td, &bsd_args));
  975 }
  976 
  977 int
  978 linux_iopl(struct thread *td, struct linux_iopl_args *args)
  979 {
  980         int error;
  981 
  982         if (args->level < 0 || args->level > 3)
  983                 return (EINVAL);
  984         if ((error = priv_check(td, PRIV_IO)) != 0)
  985                 return (error);
  986         if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
  987                 return (error);
  988         td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
  989             (args->level * (PSL_IOPL / 3));
  990 
  991         return (0);
  992 }
  993 
  994 int
  995 linux_pipe(struct thread *td, struct linux_pipe_args *args)
  996 {
  997         int error;
  998         int fildes[2];
  999 
 1000 #ifdef DEBUG
 1001         if (ldebug(pipe))
 1002                 printf(ARGS(pipe, "*"));
 1003 #endif
 1004 
 1005         error = kern_pipe(td, fildes);
 1006         if (error)
 1007                 return (error);
 1008 
 1009         /* XXX: Close descriptors on error. */
 1010         return (copyout(fildes, args->pipefds, sizeof fildes));
 1011 }
 1012 
 1013 int
 1014 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
 1015 {
 1016         l_osigaction_t osa;
 1017         l_sigaction_t act, oact;
 1018         int error;
 1019 
 1020 #ifdef DEBUG
 1021         if (ldebug(sigaction))
 1022                 printf(ARGS(sigaction, "%d, %p, %p"),
 1023                     args->sig, (void *)args->nsa, (void *)args->osa);
 1024 #endif
 1025 
 1026         if (args->nsa != NULL) {
 1027                 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
 1028                 if (error)
 1029                         return (error);
 1030                 act.lsa_handler = osa.lsa_handler;
 1031                 act.lsa_flags = osa.lsa_flags;
 1032                 act.lsa_restorer = osa.lsa_restorer;
 1033                 LINUX_SIGEMPTYSET(act.lsa_mask);
 1034                 act.lsa_mask.__bits[0] = osa.lsa_mask;
 1035         }
 1036 
 1037         error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
 1038             args->osa ? &oact : NULL);
 1039 
 1040         if (args->osa != NULL && !error) {
 1041                 osa.lsa_handler = oact.lsa_handler;
 1042                 osa.lsa_flags = oact.lsa_flags;
 1043                 osa.lsa_restorer = oact.lsa_restorer;
 1044                 osa.lsa_mask = oact.lsa_mask.__bits[0];
 1045                 error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
 1046         }
 1047 
 1048         return (error);
 1049 }
 1050 
 1051 /*
 1052  * Linux has two extra args, restart and oldmask.  We don't use these,
 1053  * but it seems that "restart" is actually a context pointer that
 1054  * enables the signal to happen with a different register set.
 1055  */
 1056 int
 1057 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
 1058 {
 1059         sigset_t sigmask;
 1060         l_sigset_t mask;
 1061 
 1062 #ifdef DEBUG
 1063         if (ldebug(sigsuspend))
 1064                 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
 1065 #endif
 1066 
 1067         LINUX_SIGEMPTYSET(mask);
 1068         mask.__bits[0] = args->mask;
 1069         linux_to_bsd_sigset(&mask, &sigmask);
 1070         return (kern_sigsuspend(td, sigmask));
 1071 }
 1072 
 1073 int
 1074 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
 1075 {
 1076         l_sigset_t lmask;
 1077         sigset_t sigmask;
 1078         int error;
 1079 
 1080 #ifdef DEBUG
 1081         if (ldebug(rt_sigsuspend))
 1082                 printf(ARGS(rt_sigsuspend, "%p, %d"),
 1083                     (void *)uap->newset, uap->sigsetsize);
 1084 #endif
 1085 
 1086         if (uap->sigsetsize != sizeof(l_sigset_t))
 1087                 return (EINVAL);
 1088 
 1089         error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
 1090         if (error)
 1091                 return (error);
 1092 
 1093         linux_to_bsd_sigset(&lmask, &sigmask);
 1094         return (kern_sigsuspend(td, sigmask));
 1095 }
 1096 
 1097 int
 1098 linux_pause(struct thread *td, struct linux_pause_args *args)
 1099 {
 1100         struct proc *p = td->td_proc;
 1101         sigset_t sigmask;
 1102 
 1103 #ifdef DEBUG
 1104         if (ldebug(pause))
 1105                 printf(ARGS(pause, ""));
 1106 #endif
 1107 
 1108         PROC_LOCK(p);
 1109         sigmask = td->td_sigmask;
 1110         PROC_UNLOCK(p);
 1111         return (kern_sigsuspend(td, sigmask));
 1112 }
 1113 
 1114 int
 1115 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
 1116 {
 1117         stack_t ss, oss;
 1118         l_stack_t lss;
 1119         int error;
 1120 
 1121 #ifdef DEBUG
 1122         if (ldebug(sigaltstack))
 1123                 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
 1124 #endif
 1125 
 1126         if (uap->uss != NULL) {
 1127                 error = copyin(uap->uss, &lss, sizeof(l_stack_t));
 1128                 if (error)
 1129                         return (error);
 1130 
 1131                 ss.ss_sp = PTRIN(lss.ss_sp);
 1132                 ss.ss_size = lss.ss_size;
 1133                 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
 1134         }
 1135         error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
 1136             (uap->uoss != NULL) ? &oss : NULL);
 1137         if (!error && uap->uoss != NULL) {
 1138                 lss.ss_sp = PTROUT(oss.ss_sp);
 1139                 lss.ss_size = oss.ss_size;
 1140                 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
 1141                 error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
 1142         }
 1143 
 1144         return (error);
 1145 }
 1146 
 1147 int
 1148 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
 1149 {
 1150         struct ftruncate_args sa;
 1151 
 1152 #ifdef DEBUG
 1153         if (ldebug(ftruncate64))
 1154                 printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
 1155                     (intmax_t)args->length);
 1156 #endif
 1157 
 1158         sa.fd = args->fd;
 1159         sa.length = args->length;
 1160         return ftruncate(td, &sa);
 1161 }
 1162 
 1163 int
 1164 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
 1165 {
 1166         struct timeval atv;
 1167         l_timeval atv32;
 1168         struct timezone rtz;
 1169         int error = 0;
 1170 
 1171         if (uap->tp) {
 1172                 microtime(&atv);
 1173                 atv32.tv_sec = atv.tv_sec;
 1174                 atv32.tv_usec = atv.tv_usec;
 1175                 error = copyout(&atv32, uap->tp, sizeof(atv32));
 1176         }
 1177         if (error == 0 && uap->tzp != NULL) {
 1178                 rtz.tz_minuteswest = tz_minuteswest;
 1179                 rtz.tz_dsttime = tz_dsttime;
 1180                 error = copyout(&rtz, uap->tzp, sizeof(rtz));
 1181         }
 1182         return (error);
 1183 }
 1184 
 1185 int
 1186 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
 1187 {
 1188         l_timeval atv32;
 1189         struct timeval atv, *tvp;
 1190         struct timezone atz, *tzp;
 1191         int error;
 1192 
 1193         if (uap->tp) {
 1194                 error = copyin(uap->tp, &atv32, sizeof(atv32));
 1195                 if (error)
 1196                         return (error);
 1197                 atv.tv_sec = atv32.tv_sec;
 1198                 atv.tv_usec = atv32.tv_usec;
 1199                 tvp = &atv;
 1200         } else
 1201                 tvp = NULL;
 1202         if (uap->tzp) {
 1203                 error = copyin(uap->tzp, &atz, sizeof(atz));
 1204                 if (error)
 1205                         return (error);
 1206                 tzp = &atz;
 1207         } else
 1208                 tzp = NULL;
 1209         return (kern_settimeofday(td, tvp, tzp));
 1210 }
 1211 
 1212 int
 1213 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
 1214 {
 1215         struct l_rusage s32;
 1216         struct rusage s;
 1217         int error;
 1218 
 1219         error = kern_getrusage(td, uap->who, &s);
 1220         if (error != 0)
 1221                 return (error);
 1222         if (uap->rusage != NULL) {
 1223                 s32.ru_utime.tv_sec = s.ru_utime.tv_sec;
 1224                 s32.ru_utime.tv_usec = s.ru_utime.tv_usec;
 1225                 s32.ru_stime.tv_sec = s.ru_stime.tv_sec;
 1226                 s32.ru_stime.tv_usec = s.ru_stime.tv_usec;
 1227                 s32.ru_maxrss = s.ru_maxrss;
 1228                 s32.ru_ixrss = s.ru_ixrss;
 1229                 s32.ru_idrss = s.ru_idrss;
 1230                 s32.ru_isrss = s.ru_isrss;
 1231                 s32.ru_minflt = s.ru_minflt;
 1232                 s32.ru_majflt = s.ru_majflt;
 1233                 s32.ru_nswap = s.ru_nswap;
 1234                 s32.ru_inblock = s.ru_inblock;
 1235                 s32.ru_oublock = s.ru_oublock;
 1236                 s32.ru_msgsnd = s.ru_msgsnd;
 1237                 s32.ru_msgrcv = s.ru_msgrcv;
 1238                 s32.ru_nsignals = s.ru_nsignals;
 1239                 s32.ru_nvcsw = s.ru_nvcsw;
 1240                 s32.ru_nivcsw = s.ru_nivcsw;
 1241                 error = copyout(&s32, uap->rusage, sizeof(s32));
 1242         }
 1243         return (error);
 1244 }
 1245 
 1246 int
 1247 linux_sched_rr_get_interval(struct thread *td,
 1248     struct linux_sched_rr_get_interval_args *uap)
 1249 {
 1250         struct timespec ts;
 1251         struct l_timespec ts32;
 1252         int error;
 1253 
 1254         error = kern_sched_rr_get_interval(td, uap->pid, &ts);
 1255         if (error != 0)
 1256                 return (error);
 1257         ts32.tv_sec = ts.tv_sec;
 1258         ts32.tv_nsec = ts.tv_nsec;
 1259         return (copyout(&ts32, uap->interval, sizeof(ts32)));
 1260 }
 1261 
 1262 int
 1263 linux_set_thread_area(struct thread *td,
 1264     struct linux_set_thread_area_args *args)
 1265 {
 1266         struct l_user_desc info;
 1267         struct user_segment_descriptor sd;
 1268         int a[2];
 1269         int error;
 1270 
 1271         error = copyin(args->desc, &info, sizeof(struct l_user_desc));
 1272         if (error)
 1273                 return (error);
 1274 
 1275 #ifdef DEBUG
 1276         if (ldebug(set_thread_area))
 1277                 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, "
 1278                     "%i, %i, %i"), info.entry_number, info.base_addr,
 1279                     info.limit, info.seg_32bit, info.contents,
 1280                     info.read_exec_only, info.limit_in_pages,
 1281                     info.seg_not_present, info.useable);
 1282 #endif
 1283 
 1284         /*
 1285          * Semantics of Linux version: every thread in the system has array
 1286          * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
 1287          * This syscall loads one of the selected TLS decriptors with a value
 1288          * and also loads GDT descriptors 6, 7 and 8 with the content of
 1289          * the per-thread descriptors.
 1290          *
 1291          * Semantics of FreeBSD version: I think we can ignore that Linux has
 1292          * three per-thread descriptors and use just the first one.
 1293          * The tls_array[] is used only in [gs]et_thread_area() syscalls and
 1294          * for loading the GDT descriptors. We use just one GDT descriptor
 1295          * for TLS, so we will load just one.
 1296          *
 1297          * XXX: This doesn't work when a user space process tries to use more
 1298          * than one TLS segment. Comment in the Linux source says wine might
 1299          * do this.
 1300          */
 1301 
 1302         /*
 1303          * GLIBC reads current %gs and call set_thread_area() with it.
 1304          * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
 1305          * we use these segments.
 1306          */
 1307         switch (info.entry_number) {
 1308         case GUGS32_SEL:
 1309         case GUDATA_SEL:
 1310         case 6:
 1311         case -1:
 1312                 info.entry_number = GUGS32_SEL;
 1313                 break;
 1314         default:
 1315                 return (EINVAL);
 1316         }
 1317 
 1318         /*
 1319          * We have to copy out the GDT entry we use.
 1320          *
 1321          * XXX: What if a user space program does not check the return value
 1322          * and tries to use 6, 7 or 8?
 1323          */
 1324         error = copyout(&info, args->desc, sizeof(struct l_user_desc));
 1325         if (error)
 1326                 return (error);
 1327 
 1328         if (LINUX_LDT_empty(&info)) {
 1329                 a[0] = 0;
 1330                 a[1] = 0;
 1331         } else {
 1332                 a[0] = LINUX_LDT_entry_a(&info);
 1333                 a[1] = LINUX_LDT_entry_b(&info);
 1334         }
 1335 
 1336         memcpy(&sd, &a, sizeof(a));
 1337 #ifdef DEBUG
 1338         if (ldebug(set_thread_area))
 1339                 printf("Segment created in set_thread_area: "
 1340                     "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, "
 1341                     "type: %i, dpl: %i, p: %i, xx: %i, long: %i, "
 1342                     "def32: %i, gran: %i\n",
 1343                     sd.sd_lobase,
 1344                     sd.sd_hibase,
 1345                     sd.sd_lolimit,
 1346                     sd.sd_hilimit,
 1347                     sd.sd_type,
 1348                     sd.sd_dpl,
 1349                     sd.sd_p,
 1350                     sd.sd_xx,
 1351                     sd.sd_long,
 1352                     sd.sd_def32,
 1353                     sd.sd_gran);
 1354 #endif
 1355 
 1356         td->td_pcb->pcb_gsbase = (register_t)info.base_addr;
 1357         td->td_pcb->pcb_flags |= PCB_32BIT | PCB_GS32BIT;
 1358         update_gdt_gsbase(td, info.base_addr);
 1359 
 1360         return (0);
 1361 }

Cache object: ed3564178ac201a66b47ebfcfc3f0e2d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.