The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/linux32/linux32_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Tim J. Robbins
    3  * Copyright (c) 2002 Doug Rabson
    4  * Copyright (c) 2000 Marcel Moolenaar
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer
   12  *    in this position and unchanged.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. The name of the author may not be used to endorse or promote products
   17  *    derived from this software without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include <sys/param.h>
   35 #include <sys/kernel.h>
   36 #include <sys/systm.h>
   37 #include <sys/file.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/clock.h>
   40 #include <sys/imgact.h>
   41 #include <sys/limits.h>
   42 #include <sys/lock.h>
   43 #include <sys/malloc.h>
   44 #include <sys/mman.h>
   45 #include <sys/mutex.h>
   46 #include <sys/priv.h>
   47 #include <sys/proc.h>
   48 #include <sys/resource.h>
   49 #include <sys/resourcevar.h>
   50 #include <sys/sched.h>
   51 #include <sys/syscallsubr.h>
   52 #include <sys/sysproto.h>
   53 #include <sys/unistd.h>
   54 #include <sys/wait.h>
   55 
   56 #include <machine/frame.h>
   57 #include <machine/pcb.h>
   58 #include <machine/psl.h>
   59 #include <machine/segments.h>
   60 #include <machine/specialreg.h>
   61 
   62 #include <vm/vm.h>
   63 #include <vm/pmap.h>
   64 #include <vm/vm_map.h>
   65 
   66 #include <compat/freebsd32/freebsd32_util.h>
   67 #include <amd64/linux32/linux.h>
   68 #include <amd64/linux32/linux32_proto.h>
   69 #include <compat/linux/linux_ipc.h>
   70 #include <compat/linux/linux_misc.h>
   71 #include <compat/linux/linux_signal.h>
   72 #include <compat/linux/linux_util.h>
   73 #include <compat/linux/linux_emul.h>
   74 
   75 struct l_old_select_argv {
   76         l_int           nfds;
   77         l_uintptr_t     readfds;
   78         l_uintptr_t     writefds;
   79         l_uintptr_t     exceptfds;
   80         l_uintptr_t     timeout;
   81 } __packed;
   82 
   83 int
   84 linux_to_bsd_sigaltstack(int lsa)
   85 {
   86         int bsa = 0;
   87 
   88         if (lsa & LINUX_SS_DISABLE)
   89                 bsa |= SS_DISABLE;
   90         if (lsa & LINUX_SS_ONSTACK)
   91                 bsa |= SS_ONSTACK;
   92         return (bsa);
   93 }
   94 
   95 static int      linux_mmap_common(struct thread *td, l_uintptr_t addr,
   96                     l_size_t len, l_int prot, l_int flags, l_int fd,
   97                     l_loff_t pos);
   98 
   99 int
  100 bsd_to_linux_sigaltstack(int bsa)
  101 {
  102         int lsa = 0;
  103 
  104         if (bsa & SS_DISABLE)
  105                 lsa |= LINUX_SS_DISABLE;
  106         if (bsa & SS_ONSTACK)
  107                 lsa |= LINUX_SS_ONSTACK;
  108         return (lsa);
  109 }
  110 
  111 static void
  112 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
  113 {
  114 
  115         lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
  116         lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
  117         lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
  118         lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
  119         lru->ru_maxrss = ru->ru_maxrss;
  120         lru->ru_ixrss = ru->ru_ixrss;
  121         lru->ru_idrss = ru->ru_idrss;
  122         lru->ru_isrss = ru->ru_isrss;
  123         lru->ru_minflt = ru->ru_minflt;
  124         lru->ru_majflt = ru->ru_majflt;
  125         lru->ru_nswap = ru->ru_nswap;
  126         lru->ru_inblock = ru->ru_inblock;
  127         lru->ru_oublock = ru->ru_oublock;
  128         lru->ru_msgsnd = ru->ru_msgsnd;
  129         lru->ru_msgrcv = ru->ru_msgrcv;
  130         lru->ru_nsignals = ru->ru_nsignals;
  131         lru->ru_nvcsw = ru->ru_nvcsw;
  132         lru->ru_nivcsw = ru->ru_nivcsw;
  133 }
  134 
  135 int
  136 linux_execve(struct thread *td, struct linux_execve_args *args)
  137 {
  138         struct image_args eargs;
  139         char *path;
  140         int error;
  141 
  142         LCONVPATHEXIST(td, args->path, &path);
  143 
  144 #ifdef DEBUG
  145         if (ldebug(execve))
  146                 printf(ARGS(execve, "%s"), path);
  147 #endif
  148 
  149         error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
  150             args->argp, args->envp);
  151         free(path, M_TEMP);
  152         if (error == 0)
  153                 error = kern_execve(td, &eargs, NULL);
  154         if (error == 0)
  155                 /* Linux process can execute FreeBSD one, do not attempt
  156                  * to create emuldata for such process using
  157                  * linux_proc_init, this leads to a panic on KASSERT
  158                  * because such process has p->p_emuldata == NULL.
  159                  */
  160                 if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX)
  161                         error = linux_proc_init(td, 0, 0);
  162         return (error);
  163 }
  164 
  165 CTASSERT(sizeof(struct l_iovec32) == 8);
  166 
  167 static int
  168 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
  169 {
  170         struct l_iovec32 iov32;
  171         struct iovec *iov;
  172         struct uio *uio;
  173         uint32_t iovlen;
  174         int error, i;
  175 
  176         *uiop = NULL;
  177         if (iovcnt > UIO_MAXIOV)
  178                 return (EINVAL);
  179         iovlen = iovcnt * sizeof(struct iovec);
  180         uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
  181         iov = (struct iovec *)(uio + 1);
  182         for (i = 0; i < iovcnt; i++) {
  183                 error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
  184                 if (error) {
  185                         free(uio, M_IOV);
  186                         return (error);
  187                 }
  188                 iov[i].iov_base = PTRIN(iov32.iov_base);
  189                 iov[i].iov_len = iov32.iov_len;
  190         }
  191         uio->uio_iov = iov;
  192         uio->uio_iovcnt = iovcnt;
  193         uio->uio_segflg = UIO_USERSPACE;
  194         uio->uio_offset = -1;
  195         uio->uio_resid = 0;
  196         for (i = 0; i < iovcnt; i++) {
  197                 if (iov->iov_len > INT_MAX - uio->uio_resid) {
  198                         free(uio, M_IOV);
  199                         return (EINVAL);
  200                 }
  201                 uio->uio_resid += iov->iov_len;
  202                 iov++;
  203         }
  204         *uiop = uio;
  205         return (0);
  206 }
  207 
  208 int
  209 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
  210     int error)
  211 {
  212         struct l_iovec32 iov32;
  213         struct iovec *iov;
  214         uint32_t iovlen;
  215         int i;
  216 
  217         *iovp = NULL;
  218         if (iovcnt > UIO_MAXIOV)
  219                 return (error);
  220         iovlen = iovcnt * sizeof(struct iovec);
  221         iov = malloc(iovlen, M_IOV, M_WAITOK);
  222         for (i = 0; i < iovcnt; i++) {
  223                 error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
  224                 if (error) {
  225                         free(iov, M_IOV);
  226                         return (error);
  227                 }
  228                 iov[i].iov_base = PTRIN(iov32.iov_base);
  229                 iov[i].iov_len = iov32.iov_len;
  230         }
  231         *iovp = iov;
  232         return(0);
  233 
  234 }
  235 
  236 int
  237 linux_readv(struct thread *td, struct linux_readv_args *uap)
  238 {
  239         struct uio *auio;
  240         int error;
  241 
  242         error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
  243         if (error)
  244                 return (error);
  245         error = kern_readv(td, uap->fd, auio);
  246         free(auio, M_IOV);
  247         return (error);
  248 }
  249 
  250 int
  251 linux_writev(struct thread *td, struct linux_writev_args *uap)
  252 {
  253         struct uio *auio;
  254         int error;
  255 
  256         error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
  257         if (error)
  258                 return (error);
  259         error = kern_writev(td, uap->fd, auio);
  260         free(auio, M_IOV);
  261         return (error);
  262 }
  263 
  264 struct l_ipc_kludge {
  265         l_uintptr_t msgp;
  266         l_long msgtyp;
  267 } __packed;
  268 
  269 int
  270 linux_ipc(struct thread *td, struct linux_ipc_args *args)
  271 {
  272 
  273         switch (args->what & 0xFFFF) {
  274         case LINUX_SEMOP: {
  275                 struct linux_semop_args a;
  276 
  277                 a.semid = args->arg1;
  278                 a.tsops = args->ptr;
  279                 a.nsops = args->arg2;
  280                 return (linux_semop(td, &a));
  281         }
  282         case LINUX_SEMGET: {
  283                 struct linux_semget_args a;
  284 
  285                 a.key = args->arg1;
  286                 a.nsems = args->arg2;
  287                 a.semflg = args->arg3;
  288                 return (linux_semget(td, &a));
  289         }
  290         case LINUX_SEMCTL: {
  291                 struct linux_semctl_args a;
  292                 int error;
  293 
  294                 a.semid = args->arg1;
  295                 a.semnum = args->arg2;
  296                 a.cmd = args->arg3;
  297                 error = copyin(args->ptr, &a.arg, sizeof(a.arg));
  298                 if (error)
  299                         return (error);
  300                 return (linux_semctl(td, &a));
  301         }
  302         case LINUX_MSGSND: {
  303                 struct linux_msgsnd_args a;
  304 
  305                 a.msqid = args->arg1;
  306                 a.msgp = args->ptr;
  307                 a.msgsz = args->arg2;
  308                 a.msgflg = args->arg3;
  309                 return (linux_msgsnd(td, &a));
  310         }
  311         case LINUX_MSGRCV: {
  312                 struct linux_msgrcv_args a;
  313 
  314                 a.msqid = args->arg1;
  315                 a.msgsz = args->arg2;
  316                 a.msgflg = args->arg3;
  317                 if ((args->what >> 16) == 0) {
  318                         struct l_ipc_kludge tmp;
  319                         int error;
  320 
  321                         if (args->ptr == 0)
  322                                 return (EINVAL);
  323                         error = copyin(args->ptr, &tmp, sizeof(tmp));
  324                         if (error)
  325                                 return (error);
  326                         a.msgp = PTRIN(tmp.msgp);
  327                         a.msgtyp = tmp.msgtyp;
  328                 } else {
  329                         a.msgp = args->ptr;
  330                         a.msgtyp = args->arg5;
  331                 }
  332                 return (linux_msgrcv(td, &a));
  333         }
  334         case LINUX_MSGGET: {
  335                 struct linux_msgget_args a;
  336 
  337                 a.key = args->arg1;
  338                 a.msgflg = args->arg2;
  339                 return (linux_msgget(td, &a));
  340         }
  341         case LINUX_MSGCTL: {
  342                 struct linux_msgctl_args a;
  343 
  344                 a.msqid = args->arg1;
  345                 a.cmd = args->arg2;
  346                 a.buf = args->ptr;
  347                 return (linux_msgctl(td, &a));
  348         }
  349         case LINUX_SHMAT: {
  350                 struct linux_shmat_args a;
  351 
  352                 a.shmid = args->arg1;
  353                 a.shmaddr = args->ptr;
  354                 a.shmflg = args->arg2;
  355                 a.raddr = PTRIN((l_uint)args->arg3);
  356                 return (linux_shmat(td, &a));
  357         }
  358         case LINUX_SHMDT: {
  359                 struct linux_shmdt_args a;
  360 
  361                 a.shmaddr = args->ptr;
  362                 return (linux_shmdt(td, &a));
  363         }
  364         case LINUX_SHMGET: {
  365                 struct linux_shmget_args a;
  366 
  367                 a.key = args->arg1;
  368                 a.size = args->arg2;
  369                 a.shmflg = args->arg3;
  370                 return (linux_shmget(td, &a));
  371         }
  372         case LINUX_SHMCTL: {
  373                 struct linux_shmctl_args a;
  374 
  375                 a.shmid = args->arg1;
  376                 a.cmd = args->arg2;
  377                 a.buf = args->ptr;
  378                 return (linux_shmctl(td, &a));
  379         }
  380         default:
  381                 break;
  382         }
  383 
  384         return (EINVAL);
  385 }
  386 
  387 int
  388 linux_old_select(struct thread *td, struct linux_old_select_args *args)
  389 {
  390         struct l_old_select_argv linux_args;
  391         struct linux_select_args newsel;
  392         int error;
  393 
  394 #ifdef DEBUG
  395         if (ldebug(old_select))
  396                 printf(ARGS(old_select, "%p"), args->ptr);
  397 #endif
  398 
  399         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  400         if (error)
  401                 return (error);
  402 
  403         newsel.nfds = linux_args.nfds;
  404         newsel.readfds = PTRIN(linux_args.readfds);
  405         newsel.writefds = PTRIN(linux_args.writefds);
  406         newsel.exceptfds = PTRIN(linux_args.exceptfds);
  407         newsel.timeout = PTRIN(linux_args.timeout);
  408         return (linux_select(td, &newsel));
  409 }
  410 
  411 int
  412 linux_set_cloned_tls(struct thread *td, void *desc)
  413 {
  414         struct user_segment_descriptor sd;
  415         struct l_user_desc info;
  416         struct pcb *pcb;
  417         int error;
  418         int a[2];
  419 
  420         error = copyin(desc, &info, sizeof(struct l_user_desc));
  421         if (error) {
  422                 printf(LMSG("copyin failed!"));
  423         } else {
  424                 /* We might copy out the entry_number as GUGS32_SEL. */
  425                 info.entry_number = GUGS32_SEL;
  426                 error = copyout(&info, desc, sizeof(struct l_user_desc));
  427                 if (error)
  428                         printf(LMSG("copyout failed!"));
  429 
  430                 a[0] = LINUX_LDT_entry_a(&info);
  431                 a[1] = LINUX_LDT_entry_b(&info);
  432 
  433                 memcpy(&sd, &a, sizeof(a));
  434 #ifdef DEBUG
  435                 if (ldebug(clone))
  436                         printf("Segment created in clone with "
  437                             "CLONE_SETTLS: lobase: %x, hibase: %x, "
  438                             "lolimit: %x, hilimit: %x, type: %i, "
  439                             "dpl: %i, p: %i, xx: %i, long: %i, "
  440                             "def32: %i, gran: %i\n", sd.sd_lobase,
  441                             sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit,
  442                             sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx,
  443                             sd.sd_long, sd.sd_def32, sd.sd_gran);
  444 #endif
  445                 pcb = td->td_pcb;
  446                 pcb->pcb_gsbase = (register_t)info.base_addr;
  447 /* XXXKIB       pcb->pcb_gs32sd = sd; */
  448                 td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
  449                 set_pcb_flags(pcb, PCB_GS32BIT | PCB_32BIT);
  450         }
  451 
  452         return (error);
  453 }
  454 
  455 int
  456 linux_set_upcall_kse(struct thread *td, register_t stack)
  457 {
  458 
  459         td->td_frame->tf_rsp = stack;
  460 
  461         return (0);
  462 }
  463 
  464 #define STACK_SIZE  (2 * 1024 * 1024)
  465 #define GUARD_SIZE  (4 * PAGE_SIZE)
  466 
  467 int
  468 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
  469 {
  470 
  471 #ifdef DEBUG
  472         if (ldebug(mmap2))
  473                 printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"),
  474                     args->addr, args->len, args->prot,
  475                     args->flags, args->fd, args->pgoff);
  476 #endif
  477 
  478         return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
  479                 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
  480                 PAGE_SIZE));
  481 }
  482 
  483 int
  484 linux_mmap(struct thread *td, struct linux_mmap_args *args)
  485 {
  486         int error;
  487         struct l_mmap_argv linux_args;
  488 
  489         error = copyin(args->ptr, &linux_args, sizeof(linux_args));
  490         if (error)
  491                 return (error);
  492 
  493 #ifdef DEBUG
  494         if (ldebug(mmap))
  495                 printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"),
  496                     linux_args.addr, linux_args.len, linux_args.prot,
  497                     linux_args.flags, linux_args.fd, linux_args.pgoff);
  498 #endif
  499 
  500         return (linux_mmap_common(td, linux_args.addr, linux_args.len,
  501             linux_args.prot, linux_args.flags, linux_args.fd,
  502             (uint32_t)linux_args.pgoff));
  503 }
  504 
  505 static int
  506 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
  507     l_int flags, l_int fd, l_loff_t pos)
  508 {
  509         struct proc *p = td->td_proc;
  510         struct mmap_args /* {
  511                 caddr_t addr;
  512                 size_t len;
  513                 int prot;
  514                 int flags;
  515                 int fd;
  516                 long pad;
  517                 off_t pos;
  518         } */ bsd_args;
  519         int error;
  520         struct file *fp;
  521 
  522         error = 0;
  523         bsd_args.flags = 0;
  524         fp = NULL;
  525 
  526         /*
  527          * Linux mmap(2):
  528          * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
  529          */
  530         if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
  531                 return (EINVAL);
  532 
  533         if (flags & LINUX_MAP_SHARED)
  534                 bsd_args.flags |= MAP_SHARED;
  535         if (flags & LINUX_MAP_PRIVATE)
  536                 bsd_args.flags |= MAP_PRIVATE;
  537         if (flags & LINUX_MAP_FIXED)
  538                 bsd_args.flags |= MAP_FIXED;
  539         if (flags & LINUX_MAP_ANON) {
  540                 /* Enforce pos to be on page boundary, then ignore. */
  541                 if ((pos & PAGE_MASK) != 0)
  542                         return (EINVAL);
  543                 pos = 0;
  544                 bsd_args.flags |= MAP_ANON;
  545         } else
  546                 bsd_args.flags |= MAP_NOSYNC;
  547         if (flags & LINUX_MAP_GROWSDOWN)
  548                 bsd_args.flags |= MAP_STACK;
  549 
  550         /*
  551          * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
  552          * on Linux/i386. We do this to ensure maximum compatibility.
  553          * Linux/ia64 does the same in i386 emulation mode.
  554          */
  555         bsd_args.prot = prot;
  556         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  557                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  558 
  559         /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
  560         bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
  561         if (bsd_args.fd != -1) {
  562                 /*
  563                  * Linux follows Solaris mmap(2) description:
  564                  * The file descriptor fildes is opened with
  565                  * read permission, regardless of the
  566                  * protection options specified.
  567                  */
  568 
  569                 if ((error = fget(td, bsd_args.fd, &fp)) != 0)
  570                         return (error);
  571                 if (fp->f_type != DTYPE_VNODE) {
  572                         fdrop(fp, td);
  573                         return (EINVAL);
  574                 }
  575 
  576                 /* Linux mmap() just fails for O_WRONLY files */
  577                 if (!(fp->f_flag & FREAD)) {
  578                         fdrop(fp, td);
  579                         return (EACCES);
  580                 }
  581 
  582                 fdrop(fp, td);
  583         }
  584 
  585         if (flags & LINUX_MAP_GROWSDOWN) {
  586                 /*
  587                  * The Linux MAP_GROWSDOWN option does not limit auto
  588                  * growth of the region.  Linux mmap with this option
  589                  * takes as addr the inital BOS, and as len, the initial
  590                  * region size.  It can then grow down from addr without
  591                  * limit.  However, Linux threads has an implicit internal
  592                  * limit to stack size of STACK_SIZE.  Its just not
  593                  * enforced explicitly in Linux.  But, here we impose
  594                  * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
  595                  * region, since we can do this with our mmap.
  596                  *
  597                  * Our mmap with MAP_STACK takes addr as the maximum
  598                  * downsize limit on BOS, and as len the max size of
  599                  * the region.  It then maps the top SGROWSIZ bytes,
  600                  * and auto grows the region down, up to the limit
  601                  * in addr.
  602                  *
  603                  * If we don't use the MAP_STACK option, the effect
  604                  * of this code is to allocate a stack region of a
  605                  * fixed size of (STACK_SIZE - GUARD_SIZE).
  606                  */
  607 
  608                 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
  609                         /*
  610                          * Some Linux apps will attempt to mmap
  611                          * thread stacks near the top of their
  612                          * address space.  If their TOS is greater
  613                          * than vm_maxsaddr, vm_map_growstack()
  614                          * will confuse the thread stack with the
  615                          * process stack and deliver a SEGV if they
  616                          * attempt to grow the thread stack past their
  617                          * current stacksize rlimit.  To avoid this,
  618                          * adjust vm_maxsaddr upwards to reflect
  619                          * the current stacksize rlimit rather
  620                          * than the maximum possible stacksize.
  621                          * It would be better to adjust the
  622                          * mmap'ed region, but some apps do not check
  623                          * mmap's return value.
  624                          */
  625                         PROC_LOCK(p);
  626                         p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK -
  627                             lim_cur(p, RLIMIT_STACK);
  628                         PROC_UNLOCK(p);
  629                 }
  630 
  631                 /*
  632                  * This gives us our maximum stack size and a new BOS.
  633                  * If we're using VM_STACK, then mmap will just map
  634                  * the top SGROWSIZ bytes, and let the stack grow down
  635                  * to the limit at BOS.  If we're not using VM_STACK
  636                  * we map the full stack, since we don't have a way
  637                  * to autogrow it.
  638                  */
  639                 if (len > STACK_SIZE - GUARD_SIZE) {
  640                         bsd_args.addr = (caddr_t)PTRIN(addr);
  641                         bsd_args.len = len;
  642                 } else {
  643                         bsd_args.addr = (caddr_t)PTRIN(addr) -
  644                             (STACK_SIZE - GUARD_SIZE - len);
  645                         bsd_args.len = STACK_SIZE - GUARD_SIZE;
  646                 }
  647         } else {
  648                 bsd_args.addr = (caddr_t)PTRIN(addr);
  649                 bsd_args.len  = len;
  650         }
  651         bsd_args.pos = pos;
  652 
  653 #ifdef DEBUG
  654         if (ldebug(mmap))
  655                 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
  656                     __func__,
  657                     (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
  658                     bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
  659 #endif
  660         error = mmap(td, &bsd_args);
  661 #ifdef DEBUG
  662         if (ldebug(mmap))
  663                 printf("-> %s() return: 0x%x (0x%08x)\n",
  664                         __func__, error, (u_int)td->td_retval[0]);
  665 #endif
  666         return (error);
  667 }
  668 
  669 int
  670 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
  671 {
  672         struct mprotect_args bsd_args;
  673 
  674         bsd_args.addr = uap->addr;
  675         bsd_args.len = uap->len;
  676         bsd_args.prot = uap->prot;
  677         if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
  678                 bsd_args.prot |= PROT_READ | PROT_EXEC;
  679         return (mprotect(td, &bsd_args));
  680 }
  681 
  682 int
  683 linux_iopl(struct thread *td, struct linux_iopl_args *args)
  684 {
  685         int error;
  686 
  687         if (args->level < 0 || args->level > 3)
  688                 return (EINVAL);
  689         if ((error = priv_check(td, PRIV_IO)) != 0)
  690                 return (error);
  691         if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
  692                 return (error);
  693         td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
  694             (args->level * (PSL_IOPL / 3));
  695 
  696         return (0);
  697 }
  698 
  699 int
  700 linux_pipe(struct thread *td, struct linux_pipe_args *args)
  701 {
  702         int error;
  703         int fildes[2];
  704 
  705 #ifdef DEBUG
  706         if (ldebug(pipe))
  707                 printf(ARGS(pipe, "*"));
  708 #endif
  709 
  710         error = kern_pipe(td, fildes);
  711         if (error)
  712                 return (error);
  713 
  714         /* XXX: Close descriptors on error. */
  715         return (copyout(fildes, args->pipefds, sizeof fildes));
  716 }
  717 
  718 int
  719 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
  720 {
  721         l_osigaction_t osa;
  722         l_sigaction_t act, oact;
  723         int error;
  724 
  725 #ifdef DEBUG
  726         if (ldebug(sigaction))
  727                 printf(ARGS(sigaction, "%d, %p, %p"),
  728                     args->sig, (void *)args->nsa, (void *)args->osa);
  729 #endif
  730 
  731         if (args->nsa != NULL) {
  732                 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
  733                 if (error)
  734                         return (error);
  735                 act.lsa_handler = osa.lsa_handler;
  736                 act.lsa_flags = osa.lsa_flags;
  737                 act.lsa_restorer = osa.lsa_restorer;
  738                 LINUX_SIGEMPTYSET(act.lsa_mask);
  739                 act.lsa_mask.__bits[0] = osa.lsa_mask;
  740         }
  741 
  742         error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
  743             args->osa ? &oact : NULL);
  744 
  745         if (args->osa != NULL && !error) {
  746                 osa.lsa_handler = oact.lsa_handler;
  747                 osa.lsa_flags = oact.lsa_flags;
  748                 osa.lsa_restorer = oact.lsa_restorer;
  749                 osa.lsa_mask = oact.lsa_mask.__bits[0];
  750                 error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
  751         }
  752 
  753         return (error);
  754 }
  755 
  756 /*
  757  * Linux has two extra args, restart and oldmask.  We don't use these,
  758  * but it seems that "restart" is actually a context pointer that
  759  * enables the signal to happen with a different register set.
  760  */
  761 int
  762 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
  763 {
  764         sigset_t sigmask;
  765         l_sigset_t mask;
  766 
  767 #ifdef DEBUG
  768         if (ldebug(sigsuspend))
  769                 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
  770 #endif
  771 
  772         LINUX_SIGEMPTYSET(mask);
  773         mask.__bits[0] = args->mask;
  774         linux_to_bsd_sigset(&mask, &sigmask);
  775         return (kern_sigsuspend(td, sigmask));
  776 }
  777 
  778 int
  779 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
  780 {
  781         l_sigset_t lmask;
  782         sigset_t sigmask;
  783         int error;
  784 
  785 #ifdef DEBUG
  786         if (ldebug(rt_sigsuspend))
  787                 printf(ARGS(rt_sigsuspend, "%p, %d"),
  788                     (void *)uap->newset, uap->sigsetsize);
  789 #endif
  790 
  791         if (uap->sigsetsize != sizeof(l_sigset_t))
  792                 return (EINVAL);
  793 
  794         error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
  795         if (error)
  796                 return (error);
  797 
  798         linux_to_bsd_sigset(&lmask, &sigmask);
  799         return (kern_sigsuspend(td, sigmask));
  800 }
  801 
  802 int
  803 linux_pause(struct thread *td, struct linux_pause_args *args)
  804 {
  805         struct proc *p = td->td_proc;
  806         sigset_t sigmask;
  807 
  808 #ifdef DEBUG
  809         if (ldebug(pause))
  810                 printf(ARGS(pause, ""));
  811 #endif
  812 
  813         PROC_LOCK(p);
  814         sigmask = td->td_sigmask;
  815         PROC_UNLOCK(p);
  816         return (kern_sigsuspend(td, sigmask));
  817 }
  818 
  819 int
  820 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
  821 {
  822         stack_t ss, oss;
  823         l_stack_t lss;
  824         int error;
  825 
  826 #ifdef DEBUG
  827         if (ldebug(sigaltstack))
  828                 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
  829 #endif
  830 
  831         if (uap->uss != NULL) {
  832                 error = copyin(uap->uss, &lss, sizeof(l_stack_t));
  833                 if (error)
  834                         return (error);
  835 
  836                 ss.ss_sp = PTRIN(lss.ss_sp);
  837                 ss.ss_size = lss.ss_size;
  838                 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
  839         }
  840         error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
  841             (uap->uoss != NULL) ? &oss : NULL);
  842         if (!error && uap->uoss != NULL) {
  843                 lss.ss_sp = PTROUT(oss.ss_sp);
  844                 lss.ss_size = oss.ss_size;
  845                 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
  846                 error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
  847         }
  848 
  849         return (error);
  850 }
  851 
  852 int
  853 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
  854 {
  855         struct ftruncate_args sa;
  856 
  857 #ifdef DEBUG
  858         if (ldebug(ftruncate64))
  859                 printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
  860                     (intmax_t)args->length);
  861 #endif
  862 
  863         sa.fd = args->fd;
  864         sa.length = args->length;
  865         return ftruncate(td, &sa);
  866 }
  867 
  868 int
  869 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
  870 {
  871         struct timeval atv;
  872         l_timeval atv32;
  873         struct timezone rtz;
  874         int error = 0;
  875 
  876         if (uap->tp) {
  877                 microtime(&atv);
  878                 atv32.tv_sec = atv.tv_sec;
  879                 atv32.tv_usec = atv.tv_usec;
  880                 error = copyout(&atv32, uap->tp, sizeof(atv32));
  881         }
  882         if (error == 0 && uap->tzp != NULL) {
  883                 rtz.tz_minuteswest = tz_minuteswest;
  884                 rtz.tz_dsttime = tz_dsttime;
  885                 error = copyout(&rtz, uap->tzp, sizeof(rtz));
  886         }
  887         return (error);
  888 }
  889 
  890 int
  891 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
  892 {
  893         l_timeval atv32;
  894         struct timeval atv, *tvp;
  895         struct timezone atz, *tzp;
  896         int error;
  897 
  898         if (uap->tp) {
  899                 error = copyin(uap->tp, &atv32, sizeof(atv32));
  900                 if (error)
  901                         return (error);
  902                 atv.tv_sec = atv32.tv_sec;
  903                 atv.tv_usec = atv32.tv_usec;
  904                 tvp = &atv;
  905         } else
  906                 tvp = NULL;
  907         if (uap->tzp) {
  908                 error = copyin(uap->tzp, &atz, sizeof(atz));
  909                 if (error)
  910                         return (error);
  911                 tzp = &atz;
  912         } else
  913                 tzp = NULL;
  914         return (kern_settimeofday(td, tvp, tzp));
  915 }
  916 
  917 int
  918 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
  919 {
  920         struct l_rusage s32;
  921         struct rusage s;
  922         int error;
  923 
  924         error = kern_getrusage(td, uap->who, &s);
  925         if (error != 0)
  926                 return (error);
  927         if (uap->rusage != NULL) {
  928                 bsd_to_linux_rusage(&s, &s32);
  929                 error = copyout(&s32, uap->rusage, sizeof(s32));
  930         }
  931         return (error);
  932 }
  933 
  934 int
  935 linux_sched_rr_get_interval(struct thread *td,
  936     struct linux_sched_rr_get_interval_args *uap)
  937 {
  938         struct timespec ts;
  939         struct l_timespec ts32;
  940         int error;
  941 
  942         error = kern_sched_rr_get_interval(td, uap->pid, &ts);
  943         if (error != 0)
  944                 return (error);
  945         ts32.tv_sec = ts.tv_sec;
  946         ts32.tv_nsec = ts.tv_nsec;
  947         return (copyout(&ts32, uap->interval, sizeof(ts32)));
  948 }
  949 
  950 int
  951 linux_set_thread_area(struct thread *td,
  952     struct linux_set_thread_area_args *args)
  953 {
  954         struct l_user_desc info;
  955         struct user_segment_descriptor sd;
  956         struct pcb *pcb;
  957         int a[2];
  958         int error;
  959 
  960         error = copyin(args->desc, &info, sizeof(struct l_user_desc));
  961         if (error)
  962                 return (error);
  963 
  964 #ifdef DEBUG
  965         if (ldebug(set_thread_area))
  966                 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, "
  967                     "%i, %i, %i"), info.entry_number, info.base_addr,
  968                     info.limit, info.seg_32bit, info.contents,
  969                     info.read_exec_only, info.limit_in_pages,
  970                     info.seg_not_present, info.useable);
  971 #endif
  972 
  973         /*
  974          * Semantics of Linux version: every thread in the system has array
  975          * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
  976          * This syscall loads one of the selected TLS decriptors with a value
  977          * and also loads GDT descriptors 6, 7 and 8 with the content of
  978          * the per-thread descriptors.
  979          *
  980          * Semantics of FreeBSD version: I think we can ignore that Linux has
  981          * three per-thread descriptors and use just the first one.
  982          * The tls_array[] is used only in [gs]et_thread_area() syscalls and
  983          * for loading the GDT descriptors. We use just one GDT descriptor
  984          * for TLS, so we will load just one.
  985          *
  986          * XXX: This doesn't work when a user space process tries to use more
  987          * than one TLS segment. Comment in the Linux source says wine might
  988          * do this.
  989          */
  990 
  991         /*
  992          * GLIBC reads current %gs and call set_thread_area() with it.
  993          * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
  994          * we use these segments.
  995          */
  996         switch (info.entry_number) {
  997         case GUGS32_SEL:
  998         case GUDATA_SEL:
  999         case 6:
 1000         case -1:
 1001                 info.entry_number = GUGS32_SEL;
 1002                 break;
 1003         default:
 1004                 return (EINVAL);
 1005         }
 1006 
 1007         /*
 1008          * We have to copy out the GDT entry we use.
 1009          *
 1010          * XXX: What if a user space program does not check the return value
 1011          * and tries to use 6, 7 or 8?
 1012          */
 1013         error = copyout(&info, args->desc, sizeof(struct l_user_desc));
 1014         if (error)
 1015                 return (error);
 1016 
 1017         if (LINUX_LDT_empty(&info)) {
 1018                 a[0] = 0;
 1019                 a[1] = 0;
 1020         } else {
 1021                 a[0] = LINUX_LDT_entry_a(&info);
 1022                 a[1] = LINUX_LDT_entry_b(&info);
 1023         }
 1024 
 1025         memcpy(&sd, &a, sizeof(a));
 1026 #ifdef DEBUG
 1027         if (ldebug(set_thread_area))
 1028                 printf("Segment created in set_thread_area: "
 1029                     "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, "
 1030                     "type: %i, dpl: %i, p: %i, xx: %i, long: %i, "
 1031                     "def32: %i, gran: %i\n",
 1032                     sd.sd_lobase,
 1033                     sd.sd_hibase,
 1034                     sd.sd_lolimit,
 1035                     sd.sd_hilimit,
 1036                     sd.sd_type,
 1037                     sd.sd_dpl,
 1038                     sd.sd_p,
 1039                     sd.sd_xx,
 1040                     sd.sd_long,
 1041                     sd.sd_def32,
 1042                     sd.sd_gran);
 1043 #endif
 1044 
 1045         pcb = td->td_pcb;
 1046         pcb->pcb_gsbase = (register_t)info.base_addr;
 1047         set_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
 1048         update_gdt_gsbase(td, info.base_addr);
 1049 
 1050         return (0);
 1051 }
 1052 
 1053 int
 1054 linux_wait4(struct thread *td, struct linux_wait4_args *args)
 1055 {
 1056         int error, options;
 1057         struct rusage ru, *rup;
 1058         struct l_rusage lru;
 1059 
 1060 #ifdef DEBUG
 1061         if (ldebug(wait4))
 1062                 printf(ARGS(wait4, "%d, %p, %d, %p"),
 1063                     args->pid, (void *)args->status, args->options,
 1064                     (void *)args->rusage);
 1065 #endif
 1066 
 1067         options = (args->options & (WNOHANG | WUNTRACED));
 1068         /* WLINUXCLONE should be equal to __WCLONE, but we make sure */
 1069         if (args->options & __WCLONE)
 1070                 options |= WLINUXCLONE;
 1071 
 1072         if (args->rusage != NULL)
 1073                 rup = &ru;
 1074         else
 1075                 rup = NULL;
 1076         error = linux_common_wait(td, args->pid, args->status, options, rup);
 1077         if (error)
 1078                 return (error);
 1079         if (args->rusage != NULL) {
 1080                 bsd_to_linux_rusage(rup, &lru);
 1081                 error = copyout(&lru, args->rusage, sizeof(lru));
 1082         }
 1083 
 1084         return (error);
 1085 }

Cache object: 787465a30bfc29533895a47661153800


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.