FreeBSD/Linux Kernel Cross Reference
sys/amd64/vmm/amd/svm.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_bhyve_snapshot.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/smp.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/pcpu.h>
40 #include <sys/proc.h>
41 #include <sys/reg.h>
42 #include <sys/smr.h>
43 #include <sys/sysctl.h>
44
45 #include <vm/vm.h>
46 #include <vm/pmap.h>
47
48 #include <machine/cpufunc.h>
49 #include <machine/psl.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <machine/smp.h>
53 #include <machine/vmm.h>
54 #include <machine/vmm_dev.h>
55 #include <machine/vmm_instruction_emul.h>
56 #include <machine/vmm_snapshot.h>
57
58 #include "vmm_lapic.h"
59 #include "vmm_stat.h"
60 #include "vmm_ktr.h"
61 #include "vmm_ioport.h"
62 #include "vatpic.h"
63 #include "vlapic.h"
64 #include "vlapic_priv.h"
65
66 #include "x86.h"
67 #include "vmcb.h"
68 #include "svm.h"
69 #include "svm_softc.h"
70 #include "svm_msr.h"
71 #include "npt.h"
72
73 SYSCTL_DECL(_hw_vmm);
74 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75 NULL);
76
77 /*
78 * SVM CPUID function 0x8000_000A, edx bit decoding.
79 */
80 #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */
81 #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */
82 #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */
83 #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */
84 #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */
85 #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */
86 #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */
87 #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */
88 #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */
89 #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */
90 #define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */
91
92 #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \
93 VMCB_CACHE_IOPM | \
94 VMCB_CACHE_I | \
95 VMCB_CACHE_TPR | \
96 VMCB_CACHE_CR2 | \
97 VMCB_CACHE_CR | \
98 VMCB_CACHE_DR | \
99 VMCB_CACHE_DT | \
100 VMCB_CACHE_SEG | \
101 VMCB_CACHE_NP)
102
103 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
104 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
105 0, NULL);
106
107 static MALLOC_DEFINE(M_SVM, "svm", "svm");
108 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
109
110 static uint32_t svm_feature = ~0U; /* AMD SVM features. */
111 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
112 "SVM features advertised by CPUID.8000000AH:EDX");
113
114 static int disable_npf_assist;
115 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
116 &disable_npf_assist, 0, NULL);
117
118 /* Maximum ASIDs supported by the processor */
119 static uint32_t nasid;
120 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
121 "Number of ASIDs supported by this processor");
122
123 /* Current ASID generation for each host cpu */
124 static struct asid asid[MAXCPU];
125
126 /*
127 * SVM host state saved area of size 4KB for each core.
128 */
129 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
130
131 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
132 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
133 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
134
135 static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc);
136 static int svm_setreg(void *vcpui, int ident, uint64_t val);
137
138 static __inline int
139 flush_by_asid(void)
140 {
141
142 return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
143 }
144
145 static __inline int
146 decode_assist(void)
147 {
148
149 return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
150 }
151
152 static void
153 svm_disable(void *arg __unused)
154 {
155 uint64_t efer;
156
157 efer = rdmsr(MSR_EFER);
158 efer &= ~EFER_SVM;
159 wrmsr(MSR_EFER, efer);
160 }
161
162 /*
163 * Disable SVM on all CPUs.
164 */
165 static int
166 svm_modcleanup(void)
167 {
168
169 smp_rendezvous(NULL, svm_disable, NULL, NULL);
170 return (0);
171 }
172
173 /*
174 * Verify that all the features required by bhyve are available.
175 */
176 static int
177 check_svm_features(void)
178 {
179 u_int regs[4];
180
181 /* CPUID Fn8000_000A is for SVM */
182 do_cpuid(0x8000000A, regs);
183 svm_feature &= regs[3];
184
185 /*
186 * The number of ASIDs can be configured to be less than what is
187 * supported by the hardware but not more.
188 */
189 if (nasid == 0 || nasid > regs[1])
190 nasid = regs[1];
191 KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
192
193 /* bhyve requires the Nested Paging feature */
194 if (!(svm_feature & AMD_CPUID_SVM_NP)) {
195 printf("SVM: Nested Paging feature not available.\n");
196 return (ENXIO);
197 }
198
199 /* bhyve requires the NRIP Save feature */
200 if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
201 printf("SVM: NRIP Save feature not available.\n");
202 return (ENXIO);
203 }
204
205 return (0);
206 }
207
208 static void
209 svm_enable(void *arg __unused)
210 {
211 uint64_t efer;
212
213 efer = rdmsr(MSR_EFER);
214 efer |= EFER_SVM;
215 wrmsr(MSR_EFER, efer);
216
217 wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
218 }
219
220 /*
221 * Return 1 if SVM is enabled on this processor and 0 otherwise.
222 */
223 static int
224 svm_available(void)
225 {
226 uint64_t msr;
227
228 /* Section 15.4 Enabling SVM from APM2. */
229 if ((amd_feature2 & AMDID2_SVM) == 0) {
230 printf("SVM: not available.\n");
231 return (0);
232 }
233
234 msr = rdmsr(MSR_VM_CR);
235 if ((msr & VM_CR_SVMDIS) != 0) {
236 printf("SVM: disabled by BIOS.\n");
237 return (0);
238 }
239
240 return (1);
241 }
242
243 static int
244 svm_modinit(int ipinum)
245 {
246 int error, cpu;
247
248 if (!svm_available())
249 return (ENXIO);
250
251 error = check_svm_features();
252 if (error)
253 return (error);
254
255 vmcb_clean &= VMCB_CACHE_DEFAULT;
256
257 for (cpu = 0; cpu < MAXCPU; cpu++) {
258 /*
259 * Initialize the host ASIDs to their "highest" valid values.
260 *
261 * The next ASID allocation will rollover both 'gen' and 'num'
262 * and start off the sequence at {1,1}.
263 */
264 asid[cpu].gen = ~0UL;
265 asid[cpu].num = nasid - 1;
266 }
267
268 svm_msr_init();
269 svm_npt_init(ipinum);
270
271 /* Enable SVM on all CPUs */
272 smp_rendezvous(NULL, svm_enable, NULL, NULL);
273
274 return (0);
275 }
276
277 static void
278 svm_modresume(void)
279 {
280
281 svm_enable(NULL);
282 }
283
284 #ifdef BHYVE_SNAPSHOT
285 void
286 svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset)
287 {
288 struct vmcb_ctrl *ctrl;
289
290 ctrl = svm_get_vmcb_ctrl(vcpu);
291 ctrl->tsc_offset = offset;
292
293 svm_set_dirty(vcpu, VMCB_CACHE_I);
294 SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset);
295
296 vm_set_tsc_offset(vcpu->vcpu, offset);
297 }
298 #endif
299
300 /* Pentium compatible MSRs */
301 #define MSR_PENTIUM_START 0
302 #define MSR_PENTIUM_END 0x1FFF
303 /* AMD 6th generation and Intel compatible MSRs */
304 #define MSR_AMD6TH_START 0xC0000000UL
305 #define MSR_AMD6TH_END 0xC0001FFFUL
306 /* AMD 7th and 8th generation compatible MSRs */
307 #define MSR_AMD7TH_START 0xC0010000UL
308 #define MSR_AMD7TH_END 0xC0011FFFUL
309
310 /*
311 * Get the index and bit position for a MSR in permission bitmap.
312 * Two bits are used for each MSR: lower bit for read and higher bit for write.
313 */
314 static int
315 svm_msr_index(uint64_t msr, int *index, int *bit)
316 {
317 uint32_t base, off;
318
319 *index = -1;
320 *bit = (msr % 4) * 2;
321 base = 0;
322
323 if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
324 *index = msr / 4;
325 return (0);
326 }
327
328 base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
329 if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
330 off = (msr - MSR_AMD6TH_START);
331 *index = (off + base) / 4;
332 return (0);
333 }
334
335 base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
336 if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
337 off = (msr - MSR_AMD7TH_START);
338 *index = (off + base) / 4;
339 return (0);
340 }
341
342 return (EINVAL);
343 }
344
345 /*
346 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
347 */
348 static void
349 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
350 {
351 int index, bit, error __diagused;
352
353 error = svm_msr_index(msr, &index, &bit);
354 KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
355 KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
356 ("%s: invalid index %d for msr %#lx", __func__, index, msr));
357 KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
358 "msr %#lx", __func__, bit, msr));
359
360 if (read)
361 perm_bitmap[index] &= ~(1UL << bit);
362
363 if (write)
364 perm_bitmap[index] &= ~(2UL << bit);
365 }
366
367 static void
368 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
369 {
370
371 svm_msr_perm(perm_bitmap, msr, true, true);
372 }
373
374 static void
375 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
376 {
377
378 svm_msr_perm(perm_bitmap, msr, true, false);
379 }
380
381 static __inline int
382 svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask)
383 {
384 struct vmcb_ctrl *ctrl;
385
386 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
387
388 ctrl = svm_get_vmcb_ctrl(vcpu);
389 return (ctrl->intercept[idx] & bitmask ? 1 : 0);
390 }
391
392 static __inline void
393 svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled)
394 {
395 struct vmcb_ctrl *ctrl;
396 uint32_t oldval;
397
398 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
399
400 ctrl = svm_get_vmcb_ctrl(vcpu);
401 oldval = ctrl->intercept[idx];
402
403 if (enabled)
404 ctrl->intercept[idx] |= bitmask;
405 else
406 ctrl->intercept[idx] &= ~bitmask;
407
408 if (ctrl->intercept[idx] != oldval) {
409 svm_set_dirty(vcpu, VMCB_CACHE_I);
410 SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx,
411 oldval, ctrl->intercept[idx]);
412 }
413 }
414
415 static __inline void
416 svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
417 {
418
419 svm_set_intercept(vcpu, off, bitmask, 0);
420 }
421
422 static __inline void
423 svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
424 {
425
426 svm_set_intercept(vcpu, off, bitmask, 1);
427 }
428
429 static void
430 vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa,
431 uint64_t msrpm_base_pa, uint64_t np_pml4)
432 {
433 struct vmcb_ctrl *ctrl;
434 struct vmcb_state *state;
435 uint32_t mask;
436 int n;
437
438 ctrl = svm_get_vmcb_ctrl(vcpu);
439 state = svm_get_vmcb_state(vcpu);
440
441 ctrl->iopm_base_pa = iopm_base_pa;
442 ctrl->msrpm_base_pa = msrpm_base_pa;
443
444 /* Enable nested paging */
445 ctrl->np_enable = 1;
446 ctrl->n_cr3 = np_pml4;
447
448 /*
449 * Intercept accesses to the control registers that are not shadowed
450 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
451 */
452 for (n = 0; n < 16; n++) {
453 mask = (BIT(n) << 16) | BIT(n);
454 if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
455 svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask);
456 else
457 svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask);
458 }
459
460 /*
461 * Intercept everything when tracing guest exceptions otherwise
462 * just intercept machine check exception.
463 */
464 if (vcpu_trace_exceptions(vcpu->vcpu)) {
465 for (n = 0; n < 32; n++) {
466 /*
467 * Skip unimplemented vectors in the exception bitmap.
468 */
469 if (n == 2 || n == 9) {
470 continue;
471 }
472 svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n));
473 }
474 } else {
475 svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
476 }
477
478 /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
479 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
480 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
481 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
482 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
483 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
484 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
485 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
486 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
487 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE);
488 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
489 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
490
491 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
492 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
493
494 /*
495 * Intercept SVM instructions since AMD enables them in guests otherwise.
496 * Non-intercepted VMMCALL causes #UD, skip it.
497 */
498 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
499 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
500 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
501 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
502 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
503 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
504 if (vcpu_trap_wbinvd(vcpu->vcpu)) {
505 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT,
506 VMCB_INTCPT_WBINVD);
507 }
508
509 /*
510 * From section "Canonicalization and Consistency Checks" in APMv2
511 * the VMRUN intercept bit must be set to pass the consistency check.
512 */
513 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
514
515 /*
516 * The ASID will be set to a non-zero value just before VMRUN.
517 */
518 ctrl->asid = 0;
519
520 /*
521 * Section 15.21.1, Interrupt Masking in EFLAGS
522 * Section 15.21.2, Virtualizing APIC.TPR
523 *
524 * This must be set for %rflag and %cr8 isolation of guest and host.
525 */
526 ctrl->v_intr_masking = 1;
527
528 /* Enable Last Branch Record aka LBR for debugging */
529 ctrl->lbr_virt_en = 1;
530 state->dbgctl = BIT(0);
531
532 /* EFER_SVM must always be set when the guest is executing */
533 state->efer = EFER_SVM;
534
535 /* Set up the PAT to power-on state */
536 state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) |
537 PAT_VALUE(1, PAT_WRITE_THROUGH) |
538 PAT_VALUE(2, PAT_UNCACHED) |
539 PAT_VALUE(3, PAT_UNCACHEABLE) |
540 PAT_VALUE(4, PAT_WRITE_BACK) |
541 PAT_VALUE(5, PAT_WRITE_THROUGH) |
542 PAT_VALUE(6, PAT_UNCACHED) |
543 PAT_VALUE(7, PAT_UNCACHEABLE);
544
545 /* Set up DR6/7 to power-on state */
546 state->dr6 = DBREG_DR6_RESERVED1;
547 state->dr7 = DBREG_DR7_RESERVED1;
548 }
549
550 /*
551 * Initialize a virtual machine.
552 */
553 static void *
554 svm_init(struct vm *vm, pmap_t pmap)
555 {
556 struct svm_softc *svm_sc;
557
558 svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
559
560 svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
561 M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
562 if (svm_sc->msr_bitmap == NULL)
563 panic("contigmalloc of SVM MSR bitmap failed");
564 svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
565 M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
566 if (svm_sc->iopm_bitmap == NULL)
567 panic("contigmalloc of SVM IO bitmap failed");
568
569 svm_sc->vm = vm;
570 svm_sc->nptp = vtophys(pmap->pm_pmltop);
571
572 /*
573 * Intercept read and write accesses to all MSRs.
574 */
575 memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
576
577 /*
578 * Access to the following MSRs is redirected to the VMCB when the
579 * guest is executing. Therefore it is safe to allow the guest to
580 * read/write these MSRs directly without hypervisor involvement.
581 */
582 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
583 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
584 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
585
586 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
587 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
588 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
589 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
590 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
591 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
592 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
593 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
594
595 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
596
597 /*
598 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
599 */
600 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
601
602 /* Intercept access to all I/O ports. */
603 memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
604
605 return (svm_sc);
606 }
607
608 static void *
609 svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
610 {
611 struct svm_softc *sc = vmi;
612 struct svm_vcpu *vcpu;
613
614 vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO);
615 vcpu->sc = sc;
616 vcpu->vcpu = vcpu1;
617 vcpu->vcpuid = vcpuid;
618 vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM,
619 M_WAITOK | M_ZERO);
620 vcpu->nextrip = ~0;
621 vcpu->lastcpu = NOCPU;
622 vcpu->vmcb_pa = vtophys(vcpu->vmcb);
623 vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap),
624 sc->nptp);
625 svm_msr_guest_init(sc, vcpu);
626 return (vcpu);
627 }
628
629 /*
630 * Collateral for a generic SVM VM-exit.
631 */
632 static void
633 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
634 {
635
636 vme->exitcode = VM_EXITCODE_SVM;
637 vme->u.svm.exitcode = code;
638 vme->u.svm.exitinfo1 = info1;
639 vme->u.svm.exitinfo2 = info2;
640 }
641
642 static int
643 svm_cpl(struct vmcb_state *state)
644 {
645
646 /*
647 * From APMv2:
648 * "Retrieve the CPL from the CPL field in the VMCB, not
649 * from any segment DPL"
650 */
651 return (state->cpl);
652 }
653
654 static enum vm_cpu_mode
655 svm_vcpu_mode(struct vmcb *vmcb)
656 {
657 struct vmcb_segment seg;
658 struct vmcb_state *state;
659 int error __diagused;
660
661 state = &vmcb->state;
662
663 if (state->efer & EFER_LMA) {
664 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
665 KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
666 error));
667
668 /*
669 * Section 4.8.1 for APM2, check if Code Segment has
670 * Long attribute set in descriptor.
671 */
672 if (seg.attrib & VMCB_CS_ATTRIB_L)
673 return (CPU_MODE_64BIT);
674 else
675 return (CPU_MODE_COMPATIBILITY);
676 } else if (state->cr0 & CR0_PE) {
677 return (CPU_MODE_PROTECTED);
678 } else {
679 return (CPU_MODE_REAL);
680 }
681 }
682
683 static enum vm_paging_mode
684 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
685 {
686
687 if ((cr0 & CR0_PG) == 0)
688 return (PAGING_MODE_FLAT);
689 if ((cr4 & CR4_PAE) == 0)
690 return (PAGING_MODE_32);
691 if (efer & EFER_LME)
692 return (PAGING_MODE_64);
693 else
694 return (PAGING_MODE_PAE);
695 }
696
697 /*
698 * ins/outs utility routines
699 */
700 static uint64_t
701 svm_inout_str_index(struct svm_regctx *regs, int in)
702 {
703 uint64_t val;
704
705 val = in ? regs->sctx_rdi : regs->sctx_rsi;
706
707 return (val);
708 }
709
710 static uint64_t
711 svm_inout_str_count(struct svm_regctx *regs, int rep)
712 {
713 uint64_t val;
714
715 val = rep ? regs->sctx_rcx : 1;
716
717 return (val);
718 }
719
720 static void
721 svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in,
722 struct vm_inout_str *vis)
723 {
724 int error __diagused, s;
725
726 if (in) {
727 vis->seg_name = VM_REG_GUEST_ES;
728 } else {
729 /* The segment field has standard encoding */
730 s = (info1 >> 10) & 0x7;
731 vis->seg_name = vm_segment_name(s);
732 }
733
734 error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
735 KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
736 }
737
738 static int
739 svm_inout_str_addrsize(uint64_t info1)
740 {
741 uint32_t size;
742
743 size = (info1 >> 7) & 0x7;
744 switch (size) {
745 case 1:
746 return (2); /* 16 bit */
747 case 2:
748 return (4); /* 32 bit */
749 case 4:
750 return (8); /* 64 bit */
751 default:
752 panic("%s: invalid size encoding %d", __func__, size);
753 }
754 }
755
756 static void
757 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
758 {
759 struct vmcb_state *state;
760
761 state = &vmcb->state;
762 paging->cr3 = state->cr3;
763 paging->cpl = svm_cpl(state);
764 paging->cpu_mode = svm_vcpu_mode(vmcb);
765 paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
766 state->efer);
767 }
768
769 #define UNHANDLED 0
770
771 /*
772 * Handle guest I/O intercept.
773 */
774 static int
775 svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit)
776 {
777 struct vmcb_ctrl *ctrl;
778 struct vmcb_state *state;
779 struct svm_regctx *regs;
780 struct vm_inout_str *vis;
781 uint64_t info1;
782 int inout_string;
783
784 state = svm_get_vmcb_state(vcpu);
785 ctrl = svm_get_vmcb_ctrl(vcpu);
786 regs = svm_get_guest_regctx(vcpu);
787
788 info1 = ctrl->exitinfo1;
789 inout_string = info1 & BIT(2) ? 1 : 0;
790
791 /*
792 * The effective segment number in EXITINFO1[12:10] is populated
793 * only if the processor has the DecodeAssist capability.
794 *
795 * XXX this is not specified explicitly in APMv2 but can be verified
796 * empirically.
797 */
798 if (inout_string && !decode_assist())
799 return (UNHANDLED);
800
801 vmexit->exitcode = VM_EXITCODE_INOUT;
802 vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0;
803 vmexit->u.inout.string = inout_string;
804 vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0;
805 vmexit->u.inout.bytes = (info1 >> 4) & 0x7;
806 vmexit->u.inout.port = (uint16_t)(info1 >> 16);
807 vmexit->u.inout.eax = (uint32_t)(state->rax);
808
809 if (inout_string) {
810 vmexit->exitcode = VM_EXITCODE_INOUT_STR;
811 vis = &vmexit->u.inout_str;
812 svm_paging_info(svm_get_vmcb(vcpu), &vis->paging);
813 vis->rflags = state->rflags;
814 vis->cr0 = state->cr0;
815 vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
816 vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
817 vis->addrsize = svm_inout_str_addrsize(info1);
818 svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis);
819 }
820
821 return (UNHANDLED);
822 }
823
824 static int
825 npf_fault_type(uint64_t exitinfo1)
826 {
827
828 if (exitinfo1 & VMCB_NPF_INFO1_W)
829 return (VM_PROT_WRITE);
830 else if (exitinfo1 & VMCB_NPF_INFO1_ID)
831 return (VM_PROT_EXECUTE);
832 else
833 return (VM_PROT_READ);
834 }
835
836 static bool
837 svm_npf_emul_fault(uint64_t exitinfo1)
838 {
839
840 if (exitinfo1 & VMCB_NPF_INFO1_ID) {
841 return (false);
842 }
843
844 if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
845 return (false);
846 }
847
848 if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
849 return (false);
850 }
851
852 return (true);
853 }
854
855 static void
856 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
857 {
858 struct vm_guest_paging *paging;
859 struct vmcb_segment seg;
860 struct vmcb_ctrl *ctrl;
861 char *inst_bytes;
862 int error __diagused, inst_len;
863
864 ctrl = &vmcb->ctrl;
865 paging = &vmexit->u.inst_emul.paging;
866
867 vmexit->exitcode = VM_EXITCODE_INST_EMUL;
868 vmexit->u.inst_emul.gpa = gpa;
869 vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
870 svm_paging_info(vmcb, paging);
871
872 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
873 KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
874
875 switch(paging->cpu_mode) {
876 case CPU_MODE_REAL:
877 vmexit->u.inst_emul.cs_base = seg.base;
878 vmexit->u.inst_emul.cs_d = 0;
879 break;
880 case CPU_MODE_PROTECTED:
881 case CPU_MODE_COMPATIBILITY:
882 vmexit->u.inst_emul.cs_base = seg.base;
883
884 /*
885 * Section 4.8.1 of APM2, Default Operand Size or D bit.
886 */
887 vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
888 1 : 0;
889 break;
890 default:
891 vmexit->u.inst_emul.cs_base = 0;
892 vmexit->u.inst_emul.cs_d = 0;
893 break;
894 }
895
896 /*
897 * Copy the instruction bytes into 'vie' if available.
898 */
899 if (decode_assist() && !disable_npf_assist) {
900 inst_len = ctrl->inst_len;
901 inst_bytes = ctrl->inst_bytes;
902 } else {
903 inst_len = 0;
904 inst_bytes = NULL;
905 }
906 vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
907 }
908
909 #ifdef KTR
910 static const char *
911 intrtype_to_str(int intr_type)
912 {
913 switch (intr_type) {
914 case VMCB_EVENTINJ_TYPE_INTR:
915 return ("hwintr");
916 case VMCB_EVENTINJ_TYPE_NMI:
917 return ("nmi");
918 case VMCB_EVENTINJ_TYPE_INTn:
919 return ("swintr");
920 case VMCB_EVENTINJ_TYPE_EXCEPTION:
921 return ("exception");
922 default:
923 panic("%s: unknown intr_type %d", __func__, intr_type);
924 }
925 }
926 #endif
927
928 /*
929 * Inject an event to vcpu as described in section 15.20, "Event injection".
930 */
931 static void
932 svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector,
933 uint32_t error, bool ec_valid)
934 {
935 struct vmcb_ctrl *ctrl;
936
937 ctrl = svm_get_vmcb_ctrl(vcpu);
938
939 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
940 ("%s: event already pending %#lx", __func__, ctrl->eventinj));
941
942 KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
943 __func__, vector));
944
945 switch (intr_type) {
946 case VMCB_EVENTINJ_TYPE_INTR:
947 case VMCB_EVENTINJ_TYPE_NMI:
948 case VMCB_EVENTINJ_TYPE_INTn:
949 break;
950 case VMCB_EVENTINJ_TYPE_EXCEPTION:
951 if (vector >= 0 && vector <= 31 && vector != 2)
952 break;
953 /* FALLTHROUGH */
954 default:
955 panic("%s: invalid intr_type/vector: %d/%d", __func__,
956 intr_type, vector);
957 }
958 ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
959 if (ec_valid) {
960 ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
961 ctrl->eventinj |= (uint64_t)error << 32;
962 SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x",
963 intrtype_to_str(intr_type), vector, error);
964 } else {
965 SVM_CTR2(vcpu, "Injecting %s at vector %d",
966 intrtype_to_str(intr_type), vector);
967 }
968 }
969
970 static void
971 svm_update_virqinfo(struct svm_vcpu *vcpu)
972 {
973 struct vlapic *vlapic;
974 struct vmcb_ctrl *ctrl;
975
976 vlapic = vm_lapic(vcpu->vcpu);
977 ctrl = svm_get_vmcb_ctrl(vcpu);
978
979 /* Update %cr8 in the emulated vlapic */
980 vlapic_set_cr8(vlapic, ctrl->v_tpr);
981
982 /* Virtual interrupt injection is not used. */
983 KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
984 "v_intr_vector %d", __func__, ctrl->v_intr_vector));
985 }
986
987 static void
988 svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
989 {
990 struct vmcb_ctrl *ctrl;
991 uint64_t intinfo;
992
993 ctrl = svm_get_vmcb_ctrl(vcpu);
994 intinfo = ctrl->exitintinfo;
995 if (!VMCB_EXITINTINFO_VALID(intinfo))
996 return;
997
998 /*
999 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1000 *
1001 * If a #VMEXIT happened during event delivery then record the event
1002 * that was being delivered.
1003 */
1004 SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo,
1005 VMCB_EXITINTINFO_VECTOR(intinfo));
1006 vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1);
1007 vm_exit_intinfo(vcpu->vcpu, intinfo);
1008 }
1009
1010 #ifdef INVARIANTS
1011 static __inline int
1012 vintr_intercept_enabled(struct svm_vcpu *vcpu)
1013 {
1014
1015 return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR));
1016 }
1017 #endif
1018
1019 static __inline void
1020 enable_intr_window_exiting(struct svm_vcpu *vcpu)
1021 {
1022 struct vmcb_ctrl *ctrl;
1023
1024 ctrl = svm_get_vmcb_ctrl(vcpu);
1025
1026 if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1027 KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1028 KASSERT(vintr_intercept_enabled(vcpu),
1029 ("%s: vintr intercept should be enabled", __func__));
1030 return;
1031 }
1032
1033 SVM_CTR0(vcpu, "Enable intr window exiting");
1034 ctrl->v_irq = 1;
1035 ctrl->v_ign_tpr = 1;
1036 ctrl->v_intr_vector = 0;
1037 svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1038 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1039 }
1040
1041 static __inline void
1042 disable_intr_window_exiting(struct svm_vcpu *vcpu)
1043 {
1044 struct vmcb_ctrl *ctrl;
1045
1046 ctrl = svm_get_vmcb_ctrl(vcpu);
1047
1048 if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1049 KASSERT(!vintr_intercept_enabled(vcpu),
1050 ("%s: vintr intercept should be disabled", __func__));
1051 return;
1052 }
1053
1054 SVM_CTR0(vcpu, "Disable intr window exiting");
1055 ctrl->v_irq = 0;
1056 ctrl->v_intr_vector = 0;
1057 svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1058 svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1059 }
1060
1061 static int
1062 svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val)
1063 {
1064 struct vmcb_ctrl *ctrl;
1065 int oldval, newval;
1066
1067 ctrl = svm_get_vmcb_ctrl(vcpu);
1068 oldval = ctrl->intr_shadow;
1069 newval = val ? 1 : 0;
1070 if (newval != oldval) {
1071 ctrl->intr_shadow = newval;
1072 SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval);
1073 }
1074 return (0);
1075 }
1076
1077 static int
1078 svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val)
1079 {
1080 struct vmcb_ctrl *ctrl;
1081
1082 ctrl = svm_get_vmcb_ctrl(vcpu);
1083 *val = ctrl->intr_shadow;
1084 return (0);
1085 }
1086
1087 /*
1088 * Once an NMI is injected it blocks delivery of further NMIs until the handler
1089 * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1090 * to track when the vcpu is done handling the NMI.
1091 */
1092 static int
1093 nmi_blocked(struct svm_vcpu *vcpu)
1094 {
1095 int blocked;
1096
1097 blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1098 return (blocked);
1099 }
1100
1101 static void
1102 enable_nmi_blocking(struct svm_vcpu *vcpu)
1103 {
1104
1105 KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked"));
1106 SVM_CTR0(vcpu, "vNMI blocking enabled");
1107 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1108 }
1109
1110 static void
1111 clear_nmi_blocking(struct svm_vcpu *vcpu)
1112 {
1113 int error __diagused;
1114
1115 KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked"));
1116 SVM_CTR0(vcpu, "vNMI blocking cleared");
1117 /*
1118 * When the IRET intercept is cleared the vcpu will attempt to execute
1119 * the "iret" when it runs next. However, it is possible to inject
1120 * another NMI into the vcpu before the "iret" has actually executed.
1121 *
1122 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1123 * it will trap back into the hypervisor. If an NMI is pending for
1124 * the vcpu it will be injected into the guest.
1125 *
1126 * XXX this needs to be fixed
1127 */
1128 svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1129
1130 /*
1131 * Set 'intr_shadow' to prevent an NMI from being injected on the
1132 * immediate VMRUN.
1133 */
1134 error = svm_modify_intr_shadow(vcpu, 1);
1135 KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1136 }
1137
1138 #define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL
1139
1140 static int
1141 svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval,
1142 bool *retu)
1143 {
1144 struct vm_exit *vme;
1145 struct vmcb_state *state;
1146 uint64_t changed, lma, oldval;
1147 int error __diagused;
1148
1149 state = svm_get_vmcb_state(vcpu);
1150
1151 oldval = state->efer;
1152 SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1153
1154 newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */
1155 changed = oldval ^ newval;
1156
1157 if (newval & EFER_MBZ_BITS)
1158 goto gpf;
1159
1160 /* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1161 if (changed & EFER_LME) {
1162 if (state->cr0 & CR0_PG)
1163 goto gpf;
1164 }
1165
1166 /* EFER.LMA = EFER.LME & CR0.PG */
1167 if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1168 lma = EFER_LMA;
1169 else
1170 lma = 0;
1171
1172 if ((newval & EFER_LMA) != lma)
1173 goto gpf;
1174
1175 if (newval & EFER_NXE) {
1176 if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE))
1177 goto gpf;
1178 }
1179
1180 /*
1181 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1182 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1183 */
1184 if (newval & EFER_LMSLE) {
1185 vme = vm_exitinfo(vcpu->vcpu);
1186 vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1187 *retu = true;
1188 return (0);
1189 }
1190
1191 if (newval & EFER_FFXSR) {
1192 if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR))
1193 goto gpf;
1194 }
1195
1196 if (newval & EFER_TCE) {
1197 if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE))
1198 goto gpf;
1199 }
1200
1201 error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval);
1202 KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1203 return (0);
1204 gpf:
1205 vm_inject_gp(vcpu->vcpu);
1206 return (0);
1207 }
1208
1209 static int
1210 emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num,
1211 uint64_t val, bool *retu)
1212 {
1213 int error;
1214
1215 if (lapic_msr(num))
1216 error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
1217 else if (num == MSR_EFER)
1218 error = svm_write_efer(sc, vcpu, val, retu);
1219 else
1220 error = svm_wrmsr(vcpu, num, val, retu);
1221
1222 return (error);
1223 }
1224
1225 static int
1226 emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu)
1227 {
1228 struct vmcb_state *state;
1229 struct svm_regctx *ctx;
1230 uint64_t result;
1231 int error;
1232
1233 if (lapic_msr(num))
1234 error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
1235 else
1236 error = svm_rdmsr(vcpu, num, &result, retu);
1237
1238 if (error == 0) {
1239 state = svm_get_vmcb_state(vcpu);
1240 ctx = svm_get_guest_regctx(vcpu);
1241 state->rax = result & 0xffffffff;
1242 ctx->sctx_rdx = result >> 32;
1243 }
1244
1245 return (error);
1246 }
1247
1248 #ifdef KTR
1249 static const char *
1250 exit_reason_to_str(uint64_t reason)
1251 {
1252 int i;
1253 static char reasonbuf[32];
1254 static const struct {
1255 int reason;
1256 const char *str;
1257 } reasons[] = {
1258 { .reason = VMCB_EXIT_INVALID, .str = "invalvmcb" },
1259 { .reason = VMCB_EXIT_SHUTDOWN, .str = "shutdown" },
1260 { .reason = VMCB_EXIT_NPF, .str = "nptfault" },
1261 { .reason = VMCB_EXIT_PAUSE, .str = "pause" },
1262 { .reason = VMCB_EXIT_HLT, .str = "hlt" },
1263 { .reason = VMCB_EXIT_CPUID, .str = "cpuid" },
1264 { .reason = VMCB_EXIT_IO, .str = "inout" },
1265 { .reason = VMCB_EXIT_MC, .str = "mchk" },
1266 { .reason = VMCB_EXIT_INTR, .str = "extintr" },
1267 { .reason = VMCB_EXIT_NMI, .str = "nmi" },
1268 { .reason = VMCB_EXIT_VINTR, .str = "vintr" },
1269 { .reason = VMCB_EXIT_MSR, .str = "msr" },
1270 { .reason = VMCB_EXIT_IRET, .str = "iret" },
1271 { .reason = VMCB_EXIT_MONITOR, .str = "monitor" },
1272 { .reason = VMCB_EXIT_MWAIT, .str = "mwait" },
1273 { .reason = VMCB_EXIT_VMRUN, .str = "vmrun" },
1274 { .reason = VMCB_EXIT_VMMCALL, .str = "vmmcall" },
1275 { .reason = VMCB_EXIT_VMLOAD, .str = "vmload" },
1276 { .reason = VMCB_EXIT_VMSAVE, .str = "vmsave" },
1277 { .reason = VMCB_EXIT_STGI, .str = "stgi" },
1278 { .reason = VMCB_EXIT_CLGI, .str = "clgi" },
1279 { .reason = VMCB_EXIT_SKINIT, .str = "skinit" },
1280 { .reason = VMCB_EXIT_ICEBP, .str = "icebp" },
1281 { .reason = VMCB_EXIT_INVD, .str = "invd" },
1282 { .reason = VMCB_EXIT_INVLPGA, .str = "invlpga" },
1283 };
1284
1285 for (i = 0; i < nitems(reasons); i++) {
1286 if (reasons[i].reason == reason)
1287 return (reasons[i].str);
1288 }
1289 snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1290 return (reasonbuf);
1291 }
1292 #endif /* KTR */
1293
1294 /*
1295 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1296 * that are due to instruction intercepts as well as MSR and IOIO intercepts
1297 * and exceptions caused by INT3, INTO and BOUND instructions.
1298 *
1299 * Return 1 if the nRIP is valid and 0 otherwise.
1300 */
1301 static int
1302 nrip_valid(uint64_t exitcode)
1303 {
1304 switch (exitcode) {
1305 case 0x00 ... 0x0F: /* read of CR0 through CR15 */
1306 case 0x10 ... 0x1F: /* write of CR0 through CR15 */
1307 case 0x20 ... 0x2F: /* read of DR0 through DR15 */
1308 case 0x30 ... 0x3F: /* write of DR0 through DR15 */
1309 case 0x43: /* INT3 */
1310 case 0x44: /* INTO */
1311 case 0x45: /* BOUND */
1312 case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1313 case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1314 return (1);
1315 default:
1316 return (0);
1317 }
1318 }
1319
1320 static int
1321 svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu,
1322 struct vm_exit *vmexit)
1323 {
1324 struct vmcb *vmcb;
1325 struct vmcb_state *state;
1326 struct vmcb_ctrl *ctrl;
1327 struct svm_regctx *ctx;
1328 uint64_t code, info1, info2, val;
1329 uint32_t eax, ecx, edx;
1330 int error __diagused, errcode_valid, handled, idtvec, reflect;
1331 bool retu;
1332
1333 ctx = svm_get_guest_regctx(vcpu);
1334 vmcb = svm_get_vmcb(vcpu);
1335 state = &vmcb->state;
1336 ctrl = &vmcb->ctrl;
1337
1338 handled = 0;
1339 code = ctrl->exitcode;
1340 info1 = ctrl->exitinfo1;
1341 info2 = ctrl->exitinfo2;
1342
1343 vmexit->exitcode = VM_EXITCODE_BOGUS;
1344 vmexit->rip = state->rip;
1345 vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1346
1347 vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
1348
1349 /*
1350 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1351 * in an inconsistent state and can trigger assertions that would
1352 * never happen otherwise.
1353 */
1354 if (code == VMCB_EXIT_INVALID) {
1355 vm_exit_svm(vmexit, code, info1, info2);
1356 return (0);
1357 }
1358
1359 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1360 "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1361
1362 KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1363 ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1364 vmexit->inst_length, code, info1, info2));
1365
1366 svm_update_virqinfo(vcpu);
1367 svm_save_intinfo(svm_sc, vcpu);
1368
1369 switch (code) {
1370 case VMCB_EXIT_IRET:
1371 /*
1372 * Restart execution at "iret" but with the intercept cleared.
1373 */
1374 vmexit->inst_length = 0;
1375 clear_nmi_blocking(vcpu);
1376 handled = 1;
1377 break;
1378 case VMCB_EXIT_VINTR: /* interrupt window exiting */
1379 vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1);
1380 handled = 1;
1381 break;
1382 case VMCB_EXIT_INTR: /* external interrupt */
1383 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
1384 handled = 1;
1385 break;
1386 case VMCB_EXIT_NMI: /* external NMI */
1387 handled = 1;
1388 break;
1389 case 0x40 ... 0x5F:
1390 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
1391 reflect = 1;
1392 idtvec = code - 0x40;
1393 switch (idtvec) {
1394 case IDT_MC:
1395 /*
1396 * Call the machine check handler by hand. Also don't
1397 * reflect the machine check back into the guest.
1398 */
1399 reflect = 0;
1400 SVM_CTR0(vcpu, "Vectoring to MCE handler");
1401 __asm __volatile("int $18");
1402 break;
1403 case IDT_PF:
1404 error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2);
1405 KASSERT(error == 0, ("%s: error %d updating cr2",
1406 __func__, error));
1407 /* fallthru */
1408 case IDT_NP:
1409 case IDT_SS:
1410 case IDT_GP:
1411 case IDT_AC:
1412 case IDT_TS:
1413 errcode_valid = 1;
1414 break;
1415
1416 case IDT_DF:
1417 errcode_valid = 1;
1418 info1 = 0;
1419 break;
1420
1421 case IDT_BP:
1422 case IDT_OF:
1423 case IDT_BR:
1424 /*
1425 * The 'nrip' field is populated for INT3, INTO and
1426 * BOUND exceptions and this also implies that
1427 * 'inst_length' is non-zero.
1428 *
1429 * Reset 'inst_length' to zero so the guest %rip at
1430 * event injection is identical to what it was when
1431 * the exception originally happened.
1432 */
1433 SVM_CTR2(vcpu, "Reset inst_length from %d "
1434 "to zero before injecting exception %d",
1435 vmexit->inst_length, idtvec);
1436 vmexit->inst_length = 0;
1437 /* fallthru */
1438 default:
1439 errcode_valid = 0;
1440 info1 = 0;
1441 break;
1442 }
1443 KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1444 "when reflecting exception %d into guest",
1445 vmexit->inst_length, idtvec));
1446
1447 if (reflect) {
1448 /* Reflect the exception back into the guest */
1449 SVM_CTR2(vcpu, "Reflecting exception "
1450 "%d/%#x into the guest", idtvec, (int)info1);
1451 error = vm_inject_exception(vcpu->vcpu, idtvec,
1452 errcode_valid, info1, 0);
1453 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1454 __func__, error));
1455 }
1456 handled = 1;
1457 break;
1458 case VMCB_EXIT_MSR: /* MSR access. */
1459 eax = state->rax;
1460 ecx = ctx->sctx_rcx;
1461 edx = ctx->sctx_rdx;
1462 retu = false;
1463
1464 if (info1) {
1465 vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
1466 val = (uint64_t)edx << 32 | eax;
1467 SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val);
1468 if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1469 vmexit->exitcode = VM_EXITCODE_WRMSR;
1470 vmexit->u.msr.code = ecx;
1471 vmexit->u.msr.wval = val;
1472 } else if (!retu) {
1473 handled = 1;
1474 } else {
1475 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1476 ("emulate_wrmsr retu with bogus exitcode"));
1477 }
1478 } else {
1479 SVM_CTR1(vcpu, "rdmsr %#x", ecx);
1480 vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
1481 if (emulate_rdmsr(vcpu, ecx, &retu)) {
1482 vmexit->exitcode = VM_EXITCODE_RDMSR;
1483 vmexit->u.msr.code = ecx;
1484 } else if (!retu) {
1485 handled = 1;
1486 } else {
1487 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1488 ("emulate_rdmsr retu with bogus exitcode"));
1489 }
1490 }
1491 break;
1492 case VMCB_EXIT_IO:
1493 handled = svm_handle_io(vcpu, vmexit);
1494 vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
1495 break;
1496 case VMCB_EXIT_CPUID:
1497 vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
1498 handled = x86_emulate_cpuid(vcpu->vcpu,
1499 &state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx,
1500 &ctx->sctx_rdx);
1501 break;
1502 case VMCB_EXIT_HLT:
1503 vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
1504 vmexit->exitcode = VM_EXITCODE_HLT;
1505 vmexit->u.hlt.rflags = state->rflags;
1506 break;
1507 case VMCB_EXIT_PAUSE:
1508 vmexit->exitcode = VM_EXITCODE_PAUSE;
1509 vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
1510 break;
1511 case VMCB_EXIT_NPF:
1512 /* EXITINFO2 contains the faulting guest physical address */
1513 if (info1 & VMCB_NPF_INFO1_RSV) {
1514 SVM_CTR2(vcpu, "nested page fault with "
1515 "reserved bits set: info1(%#lx) info2(%#lx)",
1516 info1, info2);
1517 } else if (vm_mem_allocated(vcpu->vcpu, info2)) {
1518 vmexit->exitcode = VM_EXITCODE_PAGING;
1519 vmexit->u.paging.gpa = info2;
1520 vmexit->u.paging.fault_type = npf_fault_type(info1);
1521 vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
1522 SVM_CTR3(vcpu, "nested page fault "
1523 "on gpa %#lx/%#lx at rip %#lx",
1524 info2, info1, state->rip);
1525 } else if (svm_npf_emul_fault(info1)) {
1526 svm_handle_inst_emul(vmcb, info2, vmexit);
1527 vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
1528 SVM_CTR3(vcpu, "inst_emul fault "
1529 "for gpa %#lx/%#lx at rip %#lx",
1530 info2, info1, state->rip);
1531 }
1532 break;
1533 case VMCB_EXIT_MONITOR:
1534 vmexit->exitcode = VM_EXITCODE_MONITOR;
1535 break;
1536 case VMCB_EXIT_MWAIT:
1537 vmexit->exitcode = VM_EXITCODE_MWAIT;
1538 break;
1539 case VMCB_EXIT_SHUTDOWN:
1540 case VMCB_EXIT_VMRUN:
1541 case VMCB_EXIT_VMMCALL:
1542 case VMCB_EXIT_VMLOAD:
1543 case VMCB_EXIT_VMSAVE:
1544 case VMCB_EXIT_STGI:
1545 case VMCB_EXIT_CLGI:
1546 case VMCB_EXIT_SKINIT:
1547 case VMCB_EXIT_ICEBP:
1548 case VMCB_EXIT_INVLPGA:
1549 vm_inject_ud(vcpu->vcpu);
1550 handled = 1;
1551 break;
1552 case VMCB_EXIT_INVD:
1553 case VMCB_EXIT_WBINVD:
1554 /* ignore exit */
1555 handled = 1;
1556 break;
1557 default:
1558 vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
1559 break;
1560 }
1561
1562 SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d",
1563 handled ? "handled" : "unhandled", exit_reason_to_str(code),
1564 vmexit->rip, vmexit->inst_length);
1565
1566 if (handled) {
1567 vmexit->rip += vmexit->inst_length;
1568 vmexit->inst_length = 0;
1569 state->rip = vmexit->rip;
1570 } else {
1571 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1572 /*
1573 * If this VM exit was not claimed by anybody then
1574 * treat it as a generic SVM exit.
1575 */
1576 vm_exit_svm(vmexit, code, info1, info2);
1577 } else {
1578 /*
1579 * The exitcode and collateral have been populated.
1580 * The VM exit will be processed further in userland.
1581 */
1582 }
1583 }
1584 return (handled);
1585 }
1586
1587 static void
1588 svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1589 {
1590 uint64_t intinfo;
1591
1592 if (!vm_entry_intinfo(vcpu->vcpu, &intinfo))
1593 return;
1594
1595 KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1596 "valid: %#lx", __func__, intinfo));
1597
1598 svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1599 VMCB_EXITINTINFO_VECTOR(intinfo),
1600 VMCB_EXITINTINFO_EC(intinfo),
1601 VMCB_EXITINTINFO_EC_VALID(intinfo));
1602 vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1);
1603 SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo);
1604 }
1605
1606 /*
1607 * Inject event to virtual cpu.
1608 */
1609 static void
1610 svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu,
1611 struct vlapic *vlapic)
1612 {
1613 struct vmcb_ctrl *ctrl;
1614 struct vmcb_state *state;
1615 uint8_t v_tpr;
1616 int vector, need_intr_window;
1617 int extint_pending;
1618
1619 state = svm_get_vmcb_state(vcpu);
1620 ctrl = svm_get_vmcb_ctrl(vcpu);
1621
1622 need_intr_window = 0;
1623
1624 if (vcpu->nextrip != state->rip) {
1625 ctrl->intr_shadow = 0;
1626 SVM_CTR2(vcpu, "Guest interrupt blocking "
1627 "cleared due to rip change: %#lx/%#lx",
1628 vcpu->nextrip, state->rip);
1629 }
1630
1631 /*
1632 * Inject pending events or exceptions for this vcpu.
1633 *
1634 * An event might be pending because the previous #VMEXIT happened
1635 * during event delivery (i.e. ctrl->exitintinfo).
1636 *
1637 * An event might also be pending because an exception was injected
1638 * by the hypervisor (e.g. #PF during instruction emulation).
1639 */
1640 svm_inj_intinfo(sc, vcpu);
1641
1642 /* NMI event has priority over interrupts. */
1643 if (vm_nmi_pending(vcpu->vcpu)) {
1644 if (nmi_blocked(vcpu)) {
1645 /*
1646 * Can't inject another NMI if the guest has not
1647 * yet executed an "iret" after the last NMI.
1648 */
1649 SVM_CTR0(vcpu, "Cannot inject NMI due "
1650 "to NMI-blocking");
1651 } else if (ctrl->intr_shadow) {
1652 /*
1653 * Can't inject an NMI if the vcpu is in an intr_shadow.
1654 */
1655 SVM_CTR0(vcpu, "Cannot inject NMI due to "
1656 "interrupt shadow");
1657 need_intr_window = 1;
1658 goto done;
1659 } else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1660 /*
1661 * If there is already an exception/interrupt pending
1662 * then defer the NMI until after that.
1663 */
1664 SVM_CTR1(vcpu, "Cannot inject NMI due to "
1665 "eventinj %#lx", ctrl->eventinj);
1666
1667 /*
1668 * Use self-IPI to trigger a VM-exit as soon as
1669 * possible after the event injection is completed.
1670 *
1671 * This works only if the external interrupt exiting
1672 * is at a lower priority than the event injection.
1673 *
1674 * Although not explicitly specified in APMv2 the
1675 * relative priorities were verified empirically.
1676 */
1677 ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */
1678 } else {
1679 vm_nmi_clear(vcpu->vcpu);
1680
1681 /* Inject NMI, vector number is not used */
1682 svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI,
1683 IDT_NMI, 0, false);
1684
1685 /* virtual NMI blocking is now in effect */
1686 enable_nmi_blocking(vcpu);
1687
1688 SVM_CTR0(vcpu, "Injecting vNMI");
1689 }
1690 }
1691
1692 extint_pending = vm_extint_pending(vcpu->vcpu);
1693 if (!extint_pending) {
1694 if (!vlapic_pending_intr(vlapic, &vector))
1695 goto done;
1696 KASSERT(vector >= 16 && vector <= 255,
1697 ("invalid vector %d from local APIC", vector));
1698 } else {
1699 /* Ask the legacy pic for a vector to inject */
1700 vatpic_pending_intr(sc->vm, &vector);
1701 KASSERT(vector >= 0 && vector <= 255,
1702 ("invalid vector %d from INTR", vector));
1703 }
1704
1705 /*
1706 * If the guest has disabled interrupts or is in an interrupt shadow
1707 * then we cannot inject the pending interrupt.
1708 */
1709 if ((state->rflags & PSL_I) == 0) {
1710 SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1711 "rflags %#lx", vector, state->rflags);
1712 need_intr_window = 1;
1713 goto done;
1714 }
1715
1716 if (ctrl->intr_shadow) {
1717 SVM_CTR1(vcpu, "Cannot inject vector %d due to "
1718 "interrupt shadow", vector);
1719 need_intr_window = 1;
1720 goto done;
1721 }
1722
1723 if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1724 SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1725 "eventinj %#lx", vector, ctrl->eventinj);
1726 need_intr_window = 1;
1727 goto done;
1728 }
1729
1730 svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1731
1732 if (!extint_pending) {
1733 vlapic_intr_accepted(vlapic, vector);
1734 } else {
1735 vm_extint_clear(vcpu->vcpu);
1736 vatpic_intr_accepted(sc->vm, vector);
1737 }
1738
1739 /*
1740 * Force a VM-exit as soon as the vcpu is ready to accept another
1741 * interrupt. This is done because the PIC might have another vector
1742 * that it wants to inject. Also, if the APIC has a pending interrupt
1743 * that was preempted by the ExtInt then it allows us to inject the
1744 * APIC vector as soon as possible.
1745 */
1746 need_intr_window = 1;
1747 done:
1748 /*
1749 * The guest can modify the TPR by writing to %CR8. In guest mode
1750 * the processor reflects this write to V_TPR without hypervisor
1751 * intervention.
1752 *
1753 * The guest can also modify the TPR by writing to it via the memory
1754 * mapped APIC page. In this case, the write will be emulated by the
1755 * hypervisor. For this reason V_TPR must be updated before every
1756 * VMRUN.
1757 */
1758 v_tpr = vlapic_get_cr8(vlapic);
1759 KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1760 if (ctrl->v_tpr != v_tpr) {
1761 SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x",
1762 ctrl->v_tpr, v_tpr);
1763 ctrl->v_tpr = v_tpr;
1764 svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1765 }
1766
1767 if (need_intr_window) {
1768 /*
1769 * We use V_IRQ in conjunction with the VINTR intercept to
1770 * trap into the hypervisor as soon as a virtual interrupt
1771 * can be delivered.
1772 *
1773 * Since injected events are not subject to intercept checks
1774 * we need to ensure that the V_IRQ is not actually going to
1775 * be delivered on VM entry. The KASSERT below enforces this.
1776 */
1777 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1778 (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1779 ("Bogus intr_window_exiting: eventinj (%#lx), "
1780 "intr_shadow (%u), rflags (%#lx)",
1781 ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1782 enable_intr_window_exiting(vcpu);
1783 } else {
1784 disable_intr_window_exiting(vcpu);
1785 }
1786 }
1787
1788 static __inline void
1789 restore_host_tss(void)
1790 {
1791 struct system_segment_descriptor *tss_sd;
1792
1793 /*
1794 * The TSS descriptor was in use prior to launching the guest so it
1795 * has been marked busy.
1796 *
1797 * 'ltr' requires the descriptor to be marked available so change the
1798 * type to "64-bit available TSS".
1799 */
1800 tss_sd = PCPU_GET(tss);
1801 tss_sd->sd_type = SDT_SYSTSS;
1802 ltr(GSEL(GPROC0_SEL, SEL_KPL));
1803 }
1804
1805 static void
1806 svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap)
1807 {
1808 struct vmcb_ctrl *ctrl;
1809 long eptgen;
1810 int cpu;
1811 bool alloc_asid;
1812
1813 cpu = curcpu;
1814 CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1815 smr_enter(pmap->pm_eptsmr);
1816
1817 ctrl = svm_get_vmcb_ctrl(vcpu);
1818
1819 /*
1820 * The TLB entries associated with the vcpu's ASID are not valid
1821 * if either of the following conditions is true:
1822 *
1823 * 1. The vcpu's ASID generation is different than the host cpu's
1824 * ASID generation. This happens when the vcpu migrates to a new
1825 * host cpu. It can also happen when the number of vcpus executing
1826 * on a host cpu is greater than the number of ASIDs available.
1827 *
1828 * 2. The pmap generation number is different than the value cached in
1829 * the 'vcpustate'. This happens when the host invalidates pages
1830 * belonging to the guest.
1831 *
1832 * asidgen eptgen Action
1833 * mismatch mismatch
1834 * 0 0 (a)
1835 * 0 1 (b1) or (b2)
1836 * 1 0 (c)
1837 * 1 1 (d)
1838 *
1839 * (a) There is no mismatch in eptgen or ASID generation and therefore
1840 * no further action is needed.
1841 *
1842 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1843 * retained and the TLB entries associated with this ASID
1844 * are flushed by VMRUN.
1845 *
1846 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1847 * allocated.
1848 *
1849 * (c) A new ASID is allocated.
1850 *
1851 * (d) A new ASID is allocated.
1852 */
1853
1854 alloc_asid = false;
1855 eptgen = atomic_load_long(&pmap->pm_eptgen);
1856 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1857
1858 if (vcpu->asid.gen != asid[cpu].gen) {
1859 alloc_asid = true; /* (c) and (d) */
1860 } else if (vcpu->eptgen != eptgen) {
1861 if (flush_by_asid())
1862 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */
1863 else
1864 alloc_asid = true; /* (b2) */
1865 } else {
1866 /*
1867 * This is the common case (a).
1868 */
1869 KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1870 KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1871 ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1872 }
1873
1874 if (alloc_asid) {
1875 if (++asid[cpu].num >= nasid) {
1876 asid[cpu].num = 1;
1877 if (++asid[cpu].gen == 0)
1878 asid[cpu].gen = 1;
1879 /*
1880 * If this cpu does not support "flush-by-asid"
1881 * then flush the entire TLB on a generation
1882 * bump. Subsequent ASID allocation in this
1883 * generation can be done without a TLB flush.
1884 */
1885 if (!flush_by_asid())
1886 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1887 }
1888 vcpu->asid.gen = asid[cpu].gen;
1889 vcpu->asid.num = asid[cpu].num;
1890
1891 ctrl->asid = vcpu->asid.num;
1892 svm_set_dirty(vcpu, VMCB_CACHE_ASID);
1893 /*
1894 * If this cpu supports "flush-by-asid" then the TLB
1895 * was not flushed after the generation bump. The TLB
1896 * is flushed selectively after every new ASID allocation.
1897 */
1898 if (flush_by_asid())
1899 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1900 }
1901 vcpu->eptgen = eptgen;
1902
1903 KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1904 KASSERT(ctrl->asid == vcpu->asid.num,
1905 ("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num));
1906 }
1907
1908 static void
1909 svm_pmap_deactivate(pmap_t pmap)
1910 {
1911 smr_exit(pmap->pm_eptsmr);
1912 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
1913 }
1914
1915 static __inline void
1916 disable_gintr(void)
1917 {
1918
1919 __asm __volatile("clgi");
1920 }
1921
1922 static __inline void
1923 enable_gintr(void)
1924 {
1925
1926 __asm __volatile("stgi");
1927 }
1928
1929 static __inline void
1930 svm_dr_enter_guest(struct svm_regctx *gctx)
1931 {
1932
1933 /* Save host control debug registers. */
1934 gctx->host_dr7 = rdr7();
1935 gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
1936
1937 /*
1938 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
1939 * exceptions in the host based on the guest DRx values. The
1940 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
1941 * VMCB.
1942 */
1943 load_dr7(0);
1944 wrmsr(MSR_DEBUGCTLMSR, 0);
1945
1946 /* Save host debug registers. */
1947 gctx->host_dr0 = rdr0();
1948 gctx->host_dr1 = rdr1();
1949 gctx->host_dr2 = rdr2();
1950 gctx->host_dr3 = rdr3();
1951 gctx->host_dr6 = rdr6();
1952
1953 /* Restore guest debug registers. */
1954 load_dr0(gctx->sctx_dr0);
1955 load_dr1(gctx->sctx_dr1);
1956 load_dr2(gctx->sctx_dr2);
1957 load_dr3(gctx->sctx_dr3);
1958 }
1959
1960 static __inline void
1961 svm_dr_leave_guest(struct svm_regctx *gctx)
1962 {
1963
1964 /* Save guest debug registers. */
1965 gctx->sctx_dr0 = rdr0();
1966 gctx->sctx_dr1 = rdr1();
1967 gctx->sctx_dr2 = rdr2();
1968 gctx->sctx_dr3 = rdr3();
1969
1970 /*
1971 * Restore host debug registers. Restore DR7 and DEBUGCTL
1972 * last.
1973 */
1974 load_dr0(gctx->host_dr0);
1975 load_dr1(gctx->host_dr1);
1976 load_dr2(gctx->host_dr2);
1977 load_dr3(gctx->host_dr3);
1978 load_dr6(gctx->host_dr6);
1979 wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
1980 load_dr7(gctx->host_dr7);
1981 }
1982
1983 /*
1984 * Start vcpu with specified RIP.
1985 */
1986 static int
1987 svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
1988 {
1989 struct svm_regctx *gctx;
1990 struct svm_softc *svm_sc;
1991 struct svm_vcpu *vcpu;
1992 struct vmcb_state *state;
1993 struct vmcb_ctrl *ctrl;
1994 struct vm_exit *vmexit;
1995 struct vlapic *vlapic;
1996 uint64_t vmcb_pa;
1997 int handled;
1998 uint16_t ldt_sel;
1999
2000 vcpu = vcpui;
2001 svm_sc = vcpu->sc;
2002 state = svm_get_vmcb_state(vcpu);
2003 ctrl = svm_get_vmcb_ctrl(vcpu);
2004 vmexit = vm_exitinfo(vcpu->vcpu);
2005 vlapic = vm_lapic(vcpu->vcpu);
2006
2007 gctx = svm_get_guest_regctx(vcpu);
2008 vmcb_pa = vcpu->vmcb_pa;
2009
2010 if (vcpu->lastcpu != curcpu) {
2011 /*
2012 * Force new ASID allocation by invalidating the generation.
2013 */
2014 vcpu->asid.gen = 0;
2015
2016 /*
2017 * Invalidate the VMCB state cache by marking all fields dirty.
2018 */
2019 svm_set_dirty(vcpu, 0xffffffff);
2020
2021 /*
2022 * XXX
2023 * Setting 'vcpu->lastcpu' here is bit premature because
2024 * we may return from this function without actually executing
2025 * the VMRUN instruction. This could happen if a rendezvous
2026 * or an AST is pending on the first time through the loop.
2027 *
2028 * This works for now but any new side-effects of vcpu
2029 * migration should take this case into account.
2030 */
2031 vcpu->lastcpu = curcpu;
2032 vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
2033 }
2034
2035 svm_msr_guest_enter(vcpu);
2036
2037 /* Update Guest RIP */
2038 state->rip = rip;
2039
2040 do {
2041 /*
2042 * Disable global interrupts to guarantee atomicity during
2043 * loading of guest state. This includes not only the state
2044 * loaded by the "vmrun" instruction but also software state
2045 * maintained by the hypervisor: suspended and rendezvous
2046 * state, NPT generation number, vlapic interrupts etc.
2047 */
2048 disable_gintr();
2049
2050 if (vcpu_suspended(evinfo)) {
2051 enable_gintr();
2052 vm_exit_suspended(vcpu->vcpu, state->rip);
2053 break;
2054 }
2055
2056 if (vcpu_rendezvous_pending(evinfo)) {
2057 enable_gintr();
2058 vm_exit_rendezvous(vcpu->vcpu, state->rip);
2059 break;
2060 }
2061
2062 if (vcpu_reqidle(evinfo)) {
2063 enable_gintr();
2064 vm_exit_reqidle(vcpu->vcpu, state->rip);
2065 break;
2066 }
2067
2068 /* We are asked to give the cpu by scheduler. */
2069 if (vcpu_should_yield(vcpu->vcpu)) {
2070 enable_gintr();
2071 vm_exit_astpending(vcpu->vcpu, state->rip);
2072 break;
2073 }
2074
2075 if (vcpu_debugged(vcpu->vcpu)) {
2076 enable_gintr();
2077 vm_exit_debug(vcpu->vcpu, state->rip);
2078 break;
2079 }
2080
2081 /*
2082 * #VMEXIT resumes the host with the guest LDTR, so
2083 * save the current LDT selector so it can be restored
2084 * after an exit. The userspace hypervisor probably
2085 * doesn't use a LDT, but save and restore it to be
2086 * safe.
2087 */
2088 ldt_sel = sldt();
2089
2090 svm_inj_interrupts(svm_sc, vcpu, vlapic);
2091
2092 /*
2093 * Check the pmap generation and the ASID generation to
2094 * ensure that the vcpu does not use stale TLB mappings.
2095 */
2096 svm_pmap_activate(vcpu, pmap);
2097
2098 ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty;
2099 vcpu->dirty = 0;
2100 SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2101
2102 /* Launch Virtual Machine. */
2103 SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip);
2104 svm_dr_enter_guest(gctx);
2105 svm_launch(vmcb_pa, gctx, get_pcpu());
2106 svm_dr_leave_guest(gctx);
2107
2108 svm_pmap_deactivate(pmap);
2109
2110 /*
2111 * The host GDTR and IDTR is saved by VMRUN and restored
2112 * automatically on #VMEXIT. However, the host TSS needs
2113 * to be restored explicitly.
2114 */
2115 restore_host_tss();
2116
2117 /* Restore host LDTR. */
2118 lldt(ldt_sel);
2119
2120 /* #VMEXIT disables interrupts so re-enable them here. */
2121 enable_gintr();
2122
2123 /* Update 'nextrip' */
2124 vcpu->nextrip = state->rip;
2125
2126 /* Handle #VMEXIT and if required return to user space. */
2127 handled = svm_vmexit(svm_sc, vcpu, vmexit);
2128 } while (handled);
2129
2130 svm_msr_guest_exit(vcpu);
2131
2132 return (0);
2133 }
2134
2135 static void
2136 svm_vcpu_cleanup(void *vcpui)
2137 {
2138 struct svm_vcpu *vcpu = vcpui;
2139
2140 free(vcpu->vmcb, M_SVM);
2141 free(vcpu, M_SVM);
2142 }
2143
2144 static void
2145 svm_cleanup(void *vmi)
2146 {
2147 struct svm_softc *sc = vmi;
2148
2149 contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2150 contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2151 free(sc, M_SVM);
2152 }
2153
2154 static register_t *
2155 swctx_regptr(struct svm_regctx *regctx, int reg)
2156 {
2157
2158 switch (reg) {
2159 case VM_REG_GUEST_RBX:
2160 return (®ctx->sctx_rbx);
2161 case VM_REG_GUEST_RCX:
2162 return (®ctx->sctx_rcx);
2163 case VM_REG_GUEST_RDX:
2164 return (®ctx->sctx_rdx);
2165 case VM_REG_GUEST_RDI:
2166 return (®ctx->sctx_rdi);
2167 case VM_REG_GUEST_RSI:
2168 return (®ctx->sctx_rsi);
2169 case VM_REG_GUEST_RBP:
2170 return (®ctx->sctx_rbp);
2171 case VM_REG_GUEST_R8:
2172 return (®ctx->sctx_r8);
2173 case VM_REG_GUEST_R9:
2174 return (®ctx->sctx_r9);
2175 case VM_REG_GUEST_R10:
2176 return (®ctx->sctx_r10);
2177 case VM_REG_GUEST_R11:
2178 return (®ctx->sctx_r11);
2179 case VM_REG_GUEST_R12:
2180 return (®ctx->sctx_r12);
2181 case VM_REG_GUEST_R13:
2182 return (®ctx->sctx_r13);
2183 case VM_REG_GUEST_R14:
2184 return (®ctx->sctx_r14);
2185 case VM_REG_GUEST_R15:
2186 return (®ctx->sctx_r15);
2187 case VM_REG_GUEST_DR0:
2188 return (®ctx->sctx_dr0);
2189 case VM_REG_GUEST_DR1:
2190 return (®ctx->sctx_dr1);
2191 case VM_REG_GUEST_DR2:
2192 return (®ctx->sctx_dr2);
2193 case VM_REG_GUEST_DR3:
2194 return (®ctx->sctx_dr3);
2195 default:
2196 return (NULL);
2197 }
2198 }
2199
2200 static int
2201 svm_getreg(void *vcpui, int ident, uint64_t *val)
2202 {
2203 struct svm_vcpu *vcpu;
2204 register_t *reg;
2205
2206 vcpu = vcpui;
2207
2208 if (ident == VM_REG_GUEST_INTR_SHADOW) {
2209 return (svm_get_intr_shadow(vcpu, val));
2210 }
2211
2212 if (vmcb_read(vcpu, ident, val) == 0) {
2213 return (0);
2214 }
2215
2216 reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2217
2218 if (reg != NULL) {
2219 *val = *reg;
2220 return (0);
2221 }
2222
2223 SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident);
2224 return (EINVAL);
2225 }
2226
2227 static int
2228 svm_setreg(void *vcpui, int ident, uint64_t val)
2229 {
2230 struct svm_vcpu *vcpu;
2231 register_t *reg;
2232
2233 vcpu = vcpui;
2234
2235 if (ident == VM_REG_GUEST_INTR_SHADOW) {
2236 return (svm_modify_intr_shadow(vcpu, val));
2237 }
2238
2239 /* Do not permit user write access to VMCB fields by offset. */
2240 if (!VMCB_ACCESS_OK(ident)) {
2241 if (vmcb_write(vcpu, ident, val) == 0) {
2242 return (0);
2243 }
2244 }
2245
2246 reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2247
2248 if (reg != NULL) {
2249 *reg = val;
2250 return (0);
2251 }
2252
2253 if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2254 /* Ignore. */
2255 return (0);
2256 }
2257
2258 /*
2259 * XXX deal with CR3 and invalidate TLB entries tagged with the
2260 * vcpu's ASID. This needs to be treated differently depending on
2261 * whether 'running' is true/false.
2262 */
2263
2264 SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident);
2265 return (EINVAL);
2266 }
2267
2268 static int
2269 svm_getdesc(void *vcpui, int reg, struct seg_desc *desc)
2270 {
2271 return (vmcb_getdesc(vcpui, reg, desc));
2272 }
2273
2274 static int
2275 svm_setdesc(void *vcpui, int reg, struct seg_desc *desc)
2276 {
2277 return (vmcb_setdesc(vcpui, reg, desc));
2278 }
2279
2280 #ifdef BHYVE_SNAPSHOT
2281 static int
2282 svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta)
2283 {
2284 int ret;
2285 uint64_t val;
2286
2287 if (meta->op == VM_SNAPSHOT_SAVE) {
2288 ret = svm_getreg(vcpui, ident, &val);
2289 if (ret != 0)
2290 goto done;
2291
2292 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2293 } else if (meta->op == VM_SNAPSHOT_RESTORE) {
2294 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2295
2296 ret = svm_setreg(vcpui, ident, val);
2297 if (ret != 0)
2298 goto done;
2299 } else {
2300 ret = EINVAL;
2301 goto done;
2302 }
2303
2304 done:
2305 return (ret);
2306 }
2307 #endif
2308
2309 static int
2310 svm_setcap(void *vcpui, int type, int val)
2311 {
2312 struct svm_vcpu *vcpu;
2313 struct vlapic *vlapic;
2314 int error;
2315
2316 vcpu = vcpui;
2317 error = 0;
2318
2319 switch (type) {
2320 case VM_CAP_HALT_EXIT:
2321 svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2322 VMCB_INTCPT_HLT, val);
2323 break;
2324 case VM_CAP_PAUSE_EXIT:
2325 svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2326 VMCB_INTCPT_PAUSE, val);
2327 break;
2328 case VM_CAP_UNRESTRICTED_GUEST:
2329 /* Unrestricted guest execution cannot be disabled in SVM */
2330 if (val == 0)
2331 error = EINVAL;
2332 break;
2333 case VM_CAP_IPI_EXIT:
2334 vlapic = vm_lapic(vcpu->vcpu);
2335 vlapic->ipi_exit = val;
2336 break;
2337 default:
2338 error = ENOENT;
2339 break;
2340 }
2341 return (error);
2342 }
2343
2344 static int
2345 svm_getcap(void *vcpui, int type, int *retval)
2346 {
2347 struct svm_vcpu *vcpu;
2348 struct vlapic *vlapic;
2349 int error;
2350
2351 vcpu = vcpui;
2352 error = 0;
2353
2354 switch (type) {
2355 case VM_CAP_HALT_EXIT:
2356 *retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2357 VMCB_INTCPT_HLT);
2358 break;
2359 case VM_CAP_PAUSE_EXIT:
2360 *retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2361 VMCB_INTCPT_PAUSE);
2362 break;
2363 case VM_CAP_UNRESTRICTED_GUEST:
2364 *retval = 1; /* unrestricted guest is always enabled */
2365 break;
2366 case VM_CAP_IPI_EXIT:
2367 vlapic = vm_lapic(vcpu->vcpu);
2368 *retval = vlapic->ipi_exit;
2369 break;
2370 default:
2371 error = ENOENT;
2372 break;
2373 }
2374 return (error);
2375 }
2376
2377 static struct vmspace *
2378 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2379 {
2380 return (svm_npt_alloc(min, max));
2381 }
2382
2383 static void
2384 svm_vmspace_free(struct vmspace *vmspace)
2385 {
2386 svm_npt_free(vmspace);
2387 }
2388
2389 static struct vlapic *
2390 svm_vlapic_init(void *vcpui)
2391 {
2392 struct svm_vcpu *vcpu;
2393 struct vlapic *vlapic;
2394
2395 vcpu = vcpui;
2396 vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2397 vlapic->vm = vcpu->sc->vm;
2398 vlapic->vcpu = vcpu->vcpu;
2399 vlapic->vcpuid = vcpu->vcpuid;
2400 vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC,
2401 M_WAITOK | M_ZERO);
2402
2403 vlapic_init(vlapic);
2404
2405 return (vlapic);
2406 }
2407
2408 static void
2409 svm_vlapic_cleanup(struct vlapic *vlapic)
2410 {
2411
2412 vlapic_cleanup(vlapic);
2413 free(vlapic->apic_page, M_SVM_VLAPIC);
2414 free(vlapic, M_SVM_VLAPIC);
2415 }
2416
2417 #ifdef BHYVE_SNAPSHOT
2418 static int
2419 svm_snapshot(void *vmi, struct vm_snapshot_meta *meta)
2420 {
2421 if (meta->op == VM_SNAPSHOT_RESTORE)
2422 flush_by_asid();
2423
2424 return (0);
2425 }
2426
2427 static int
2428 svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
2429 {
2430 struct svm_vcpu *vcpu;
2431 int err, running, hostcpu;
2432
2433 vcpu = vcpui;
2434 err = 0;
2435
2436 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
2437 if (running && hostcpu != curcpu) {
2438 printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm),
2439 vcpu->vcpuid);
2440 return (EINVAL);
2441 }
2442
2443 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta);
2444 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta);
2445 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta);
2446 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta);
2447
2448 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta);
2449 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta);
2450
2451 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta);
2452
2453 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta);
2454 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta);
2455 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta);
2456
2457 /* Guest segments */
2458 /* ES */
2459 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta);
2460 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta);
2461
2462 /* CS */
2463 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta);
2464 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta);
2465
2466 /* SS */
2467 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta);
2468 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta);
2469
2470 /* DS */
2471 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta);
2472 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta);
2473
2474 /* FS */
2475 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta);
2476 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta);
2477
2478 /* GS */
2479 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta);
2480 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta);
2481
2482 /* TR */
2483 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta);
2484 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta);
2485
2486 /* LDTR */
2487 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta);
2488 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta);
2489
2490 /* EFER */
2491 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta);
2492
2493 /* IDTR and GDTR */
2494 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta);
2495 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta);
2496
2497 /* Specific AMD registers */
2498 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2499
2500 err += vmcb_snapshot_any(vcpu,
2501 VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2502 err += vmcb_snapshot_any(vcpu,
2503 VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2504 err += vmcb_snapshot_any(vcpu,
2505 VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2506 err += vmcb_snapshot_any(vcpu,
2507 VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2508 err += vmcb_snapshot_any(vcpu,
2509 VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2510
2511 err += vmcb_snapshot_any(vcpu,
2512 VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta);
2513 err += vmcb_snapshot_any(vcpu,
2514 VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta);
2515
2516 err += vmcb_snapshot_any(vcpu,
2517 VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2518
2519 err += vmcb_snapshot_any(vcpu,
2520 VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2521
2522 err += vmcb_snapshot_any(vcpu,
2523 VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2524
2525 err += vmcb_snapshot_any(vcpu,
2526 VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2527 err += vmcb_snapshot_any(vcpu,
2528 VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2529 err += vmcb_snapshot_any(vcpu,
2530 VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2531 err += vmcb_snapshot_any(vcpu,
2532 VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2533
2534 err += vmcb_snapshot_any(vcpu,
2535 VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta);
2536
2537 err += vmcb_snapshot_any(vcpu,
2538 VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2539 err += vmcb_snapshot_any(vcpu,
2540 VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2541 err += vmcb_snapshot_any(vcpu,
2542 VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2543 err += vmcb_snapshot_any(vcpu,
2544 VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2545
2546 err += vmcb_snapshot_any(vcpu,
2547 VMCB_ACCESS(VMCB_OFF_CPL, 1), meta);
2548
2549 err += vmcb_snapshot_any(vcpu,
2550 VMCB_ACCESS(VMCB_OFF_STAR, 8), meta);
2551 err += vmcb_snapshot_any(vcpu,
2552 VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta);
2553 err += vmcb_snapshot_any(vcpu,
2554 VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta);
2555
2556 err += vmcb_snapshot_any(vcpu,
2557 VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta);
2558
2559 err += vmcb_snapshot_any(vcpu,
2560 VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta);
2561
2562 err += vmcb_snapshot_any(vcpu,
2563 VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2564 err += vmcb_snapshot_any(vcpu,
2565 VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2566 err += vmcb_snapshot_any(vcpu,
2567 VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2568
2569 err += vmcb_snapshot_any(vcpu,
2570 VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2571
2572 err += vmcb_snapshot_any(vcpu,
2573 VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta);
2574 err += vmcb_snapshot_any(vcpu,
2575 VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta);
2576 err += vmcb_snapshot_any(vcpu,
2577 VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta);
2578 err += vmcb_snapshot_any(vcpu,
2579 VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta);
2580 err += vmcb_snapshot_any(vcpu,
2581 VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta);
2582 if (err != 0)
2583 goto done;
2584
2585 /* Snapshot swctx for virtual cpu */
2586 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done);
2587 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done);
2588 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done);
2589 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done);
2590 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done);
2591 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done);
2592 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done);
2593 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done);
2594 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done);
2595 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done);
2596 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done);
2597 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done);
2598 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done);
2599 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done);
2600 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done);
2601 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done);
2602 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done);
2603 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done);
2604
2605 /* Restore other svm_vcpu struct fields */
2606
2607 /* Restore NEXTRIP field */
2608 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done);
2609
2610 /* Restore lastcpu field */
2611 SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done);
2612 SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done);
2613
2614 /* Restore EPTGEN field - EPT is Extended Page Table */
2615 SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done);
2616
2617 SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done);
2618 SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done);
2619
2620 /* Set all caches dirty */
2621 if (meta->op == VM_SNAPSHOT_RESTORE)
2622 svm_set_dirty(vcpu, 0xffffffff);
2623
2624 done:
2625 return (err);
2626 }
2627
2628 static int
2629 svm_restore_tsc(void *vcpui, uint64_t offset)
2630 {
2631 struct svm_vcpu *vcpu = vcpui;
2632
2633 svm_set_tsc_offset(vcpu, offset);
2634
2635 return (0);
2636 }
2637 #endif
2638
2639 const struct vmm_ops vmm_ops_amd = {
2640 .modinit = svm_modinit,
2641 .modcleanup = svm_modcleanup,
2642 .modresume = svm_modresume,
2643 .init = svm_init,
2644 .run = svm_run,
2645 .cleanup = svm_cleanup,
2646 .vcpu_init = svm_vcpu_init,
2647 .vcpu_cleanup = svm_vcpu_cleanup,
2648 .getreg = svm_getreg,
2649 .setreg = svm_setreg,
2650 .getdesc = svm_getdesc,
2651 .setdesc = svm_setdesc,
2652 .getcap = svm_getcap,
2653 .setcap = svm_setcap,
2654 .vmspace_alloc = svm_vmspace_alloc,
2655 .vmspace_free = svm_vmspace_free,
2656 .vlapic_init = svm_vlapic_init,
2657 .vlapic_cleanup = svm_vlapic_cleanup,
2658 #ifdef BHYVE_SNAPSHOT
2659 .snapshot = svm_snapshot,
2660 .vcpu_snapshot = svm_vcpu_snapshot,
2661 .restore_tsc = svm_restore_tsc,
2662 #endif
2663 };
Cache object: 5cd65c924927c4d422bc545772931581
|