1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 * Copyright (c) 2018 Joyent, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_bhyve_snapshot.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/smp.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/reg.h>
45 #include <sys/smr.h>
46 #include <sys/sysctl.h>
47
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50
51 #include <machine/psl.h>
52 #include <machine/cpufunc.h>
53 #include <machine/md_var.h>
54 #include <machine/segments.h>
55 #include <machine/smp.h>
56 #include <machine/specialreg.h>
57 #include <machine/vmparam.h>
58
59 #include <machine/vmm.h>
60 #include <machine/vmm_dev.h>
61 #include <machine/vmm_instruction_emul.h>
62 #include <machine/vmm_snapshot.h>
63
64 #include "vmm_lapic.h"
65 #include "vmm_host.h"
66 #include "vmm_ioport.h"
67 #include "vmm_ktr.h"
68 #include "vmm_stat.h"
69 #include "vatpic.h"
70 #include "vlapic.h"
71 #include "vlapic_priv.h"
72
73 #include "ept.h"
74 #include "vmx_cpufunc.h"
75 #include "vmx.h"
76 #include "vmx_msr.h"
77 #include "x86.h"
78 #include "vmx_controls.h"
79
80 #define PINBASED_CTLS_ONE_SETTING \
81 (PINBASED_EXTINT_EXITING | \
82 PINBASED_NMI_EXITING | \
83 PINBASED_VIRTUAL_NMI)
84 #define PINBASED_CTLS_ZERO_SETTING 0
85
86 #define PROCBASED_CTLS_WINDOW_SETTING \
87 (PROCBASED_INT_WINDOW_EXITING | \
88 PROCBASED_NMI_WINDOW_EXITING)
89
90 #define PROCBASED_CTLS_ONE_SETTING \
91 (PROCBASED_SECONDARY_CONTROLS | \
92 PROCBASED_MWAIT_EXITING | \
93 PROCBASED_MONITOR_EXITING | \
94 PROCBASED_IO_EXITING | \
95 PROCBASED_MSR_BITMAPS | \
96 PROCBASED_CTLS_WINDOW_SETTING | \
97 PROCBASED_CR8_LOAD_EXITING | \
98 PROCBASED_CR8_STORE_EXITING)
99 #define PROCBASED_CTLS_ZERO_SETTING \
100 (PROCBASED_CR3_LOAD_EXITING | \
101 PROCBASED_CR3_STORE_EXITING | \
102 PROCBASED_IO_BITMAPS)
103
104 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT
105 #define PROCBASED_CTLS2_ZERO_SETTING 0
106
107 #define VM_EXIT_CTLS_ONE_SETTING \
108 (VM_EXIT_SAVE_DEBUG_CONTROLS | \
109 VM_EXIT_HOST_LMA | \
110 VM_EXIT_SAVE_EFER | \
111 VM_EXIT_LOAD_EFER | \
112 VM_EXIT_ACKNOWLEDGE_INTERRUPT)
113
114 #define VM_EXIT_CTLS_ZERO_SETTING 0
115
116 #define VM_ENTRY_CTLS_ONE_SETTING \
117 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \
118 VM_ENTRY_LOAD_EFER)
119
120 #define VM_ENTRY_CTLS_ZERO_SETTING \
121 (VM_ENTRY_INTO_SMM | \
122 VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
123
124 #define HANDLED 1
125 #define UNHANDLED 0
126
127 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
128 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
129
130 bool vmx_have_msr_tsc_aux;
131
132 SYSCTL_DECL(_hw_vmm);
133 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
134 NULL);
135
136 int vmxon_enabled[MAXCPU];
137 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
138
139 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
140 static uint32_t exit_ctls, entry_ctls;
141
142 static uint64_t cr0_ones_mask, cr0_zeros_mask;
143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
144 &cr0_ones_mask, 0, NULL);
145 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
146 &cr0_zeros_mask, 0, NULL);
147
148 static uint64_t cr4_ones_mask, cr4_zeros_mask;
149 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
150 &cr4_ones_mask, 0, NULL);
151 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
152 &cr4_zeros_mask, 0, NULL);
153
154 static int vmx_initialized;
155 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
156 &vmx_initialized, 0, "Intel VMX initialized");
157
158 /*
159 * Optional capabilities
160 */
161 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
162 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
163 NULL);
164
165 static int cap_halt_exit;
166 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
167 "HLT triggers a VM-exit");
168
169 static int cap_pause_exit;
170 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
171 0, "PAUSE triggers a VM-exit");
172
173 static int cap_wbinvd_exit;
174 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, wbinvd_exit, CTLFLAG_RD, &cap_wbinvd_exit,
175 0, "WBINVD triggers a VM-exit");
176
177 static int cap_rdpid;
178 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
179 "Guests are allowed to use RDPID");
180
181 static int cap_rdtscp;
182 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
183 "Guests are allowed to use RDTSCP");
184
185 static int cap_unrestricted_guest;
186 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
187 &cap_unrestricted_guest, 0, "Unrestricted guests");
188
189 static int cap_monitor_trap;
190 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
191 &cap_monitor_trap, 0, "Monitor trap flag");
192
193 static int cap_invpcid;
194 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
195 0, "Guests are allowed to use INVPCID");
196
197 static int tpr_shadowing;
198 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD,
199 &tpr_shadowing, 0, "TPR shadowing support");
200
201 static int virtual_interrupt_delivery;
202 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
203 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
204
205 static int posted_interrupts;
206 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
207 &posted_interrupts, 0, "APICv posted interrupt support");
208
209 static int pirvec = -1;
210 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
211 &pirvec, 0, "APICv posted interrupt vector");
212
213 static struct unrhdr *vpid_unr;
214 static u_int vpid_alloc_failed;
215 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
216 &vpid_alloc_failed, 0, NULL);
217
218 int guest_l1d_flush;
219 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
220 &guest_l1d_flush, 0, NULL);
221 int guest_l1d_flush_sw;
222 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
223 &guest_l1d_flush_sw, 0, NULL);
224
225 static struct msr_entry msr_load_list[1] __aligned(16);
226
227 /*
228 * The definitions of SDT probes for VMX.
229 */
230
231 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
232 "struct vmx *", "int", "struct vm_exit *");
233
234 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
235 "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
236
237 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
238 "struct vmx *", "int", "struct vm_exit *", "uint64_t");
239
240 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
241 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
242
243 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
244 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
245
246 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
247 "struct vmx *", "int", "struct vm_exit *");
248
249 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
250 "struct vmx *", "int", "struct vm_exit *");
251
252 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
253 "struct vmx *", "int", "struct vm_exit *");
254
255 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
256 "struct vmx *", "int", "struct vm_exit *");
257
258 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
259 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
260
261 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
262 "struct vmx *", "int", "struct vm_exit *");
263
264 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
265 "struct vmx *", "int", "struct vm_exit *");
266
267 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
268 "struct vmx *", "int", "struct vm_exit *");
269
270 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
271 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
272
273 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
274 "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
275
276 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
277 "struct vmx *", "int", "struct vm_exit *", "uint64_t");
278
279 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
280 "struct vmx *", "int", "struct vm_exit *");
281
282 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
283 "struct vmx *", "int", "struct vm_exit *");
284
285 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
286 "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
287
288 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
289 "struct vmx *", "int", "struct vm_exit *");
290
291 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
292 "struct vmx *", "int", "struct vm_exit *");
293
294 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
295 "struct vmx *", "int", "struct vm_exit *");
296
297 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
298 "struct vmx *", "int", "struct vm_exit *");
299
300 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
301 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
302
303 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
304 "struct vmx *", "int", "struct vm_exit *", "int");
305
306 /*
307 * Use the last page below 4GB as the APIC access address. This address is
308 * occupied by the boot firmware so it is guaranteed that it will not conflict
309 * with a page in system memory.
310 */
311 #define APIC_ACCESS_ADDRESS 0xFFFFF000
312
313 static int vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc);
314 static int vmx_getreg(void *vcpui, int reg, uint64_t *retval);
315 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
316 static void vmx_inject_pir(struct vlapic *vlapic);
317 #ifdef BHYVE_SNAPSHOT
318 static int vmx_restore_tsc(void *vcpui, uint64_t now);
319 #endif
320
321 static inline bool
322 host_has_rdpid(void)
323 {
324 return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
325 }
326
327 static inline bool
328 host_has_rdtscp(void)
329 {
330 return ((amd_feature & AMDID_RDTSCP) != 0);
331 }
332
333 #ifdef KTR
334 static const char *
335 exit_reason_to_str(int reason)
336 {
337 static char reasonbuf[32];
338
339 switch (reason) {
340 case EXIT_REASON_EXCEPTION:
341 return "exception";
342 case EXIT_REASON_EXT_INTR:
343 return "extint";
344 case EXIT_REASON_TRIPLE_FAULT:
345 return "triplefault";
346 case EXIT_REASON_INIT:
347 return "init";
348 case EXIT_REASON_SIPI:
349 return "sipi";
350 case EXIT_REASON_IO_SMI:
351 return "iosmi";
352 case EXIT_REASON_SMI:
353 return "smi";
354 case EXIT_REASON_INTR_WINDOW:
355 return "intrwindow";
356 case EXIT_REASON_NMI_WINDOW:
357 return "nmiwindow";
358 case EXIT_REASON_TASK_SWITCH:
359 return "taskswitch";
360 case EXIT_REASON_CPUID:
361 return "cpuid";
362 case EXIT_REASON_GETSEC:
363 return "getsec";
364 case EXIT_REASON_HLT:
365 return "hlt";
366 case EXIT_REASON_INVD:
367 return "invd";
368 case EXIT_REASON_INVLPG:
369 return "invlpg";
370 case EXIT_REASON_RDPMC:
371 return "rdpmc";
372 case EXIT_REASON_RDTSC:
373 return "rdtsc";
374 case EXIT_REASON_RSM:
375 return "rsm";
376 case EXIT_REASON_VMCALL:
377 return "vmcall";
378 case EXIT_REASON_VMCLEAR:
379 return "vmclear";
380 case EXIT_REASON_VMLAUNCH:
381 return "vmlaunch";
382 case EXIT_REASON_VMPTRLD:
383 return "vmptrld";
384 case EXIT_REASON_VMPTRST:
385 return "vmptrst";
386 case EXIT_REASON_VMREAD:
387 return "vmread";
388 case EXIT_REASON_VMRESUME:
389 return "vmresume";
390 case EXIT_REASON_VMWRITE:
391 return "vmwrite";
392 case EXIT_REASON_VMXOFF:
393 return "vmxoff";
394 case EXIT_REASON_VMXON:
395 return "vmxon";
396 case EXIT_REASON_CR_ACCESS:
397 return "craccess";
398 case EXIT_REASON_DR_ACCESS:
399 return "draccess";
400 case EXIT_REASON_INOUT:
401 return "inout";
402 case EXIT_REASON_RDMSR:
403 return "rdmsr";
404 case EXIT_REASON_WRMSR:
405 return "wrmsr";
406 case EXIT_REASON_INVAL_VMCS:
407 return "invalvmcs";
408 case EXIT_REASON_INVAL_MSR:
409 return "invalmsr";
410 case EXIT_REASON_MWAIT:
411 return "mwait";
412 case EXIT_REASON_MTF:
413 return "mtf";
414 case EXIT_REASON_MONITOR:
415 return "monitor";
416 case EXIT_REASON_PAUSE:
417 return "pause";
418 case EXIT_REASON_MCE_DURING_ENTRY:
419 return "mce-during-entry";
420 case EXIT_REASON_TPR:
421 return "tpr";
422 case EXIT_REASON_APIC_ACCESS:
423 return "apic-access";
424 case EXIT_REASON_GDTR_IDTR:
425 return "gdtridtr";
426 case EXIT_REASON_LDTR_TR:
427 return "ldtrtr";
428 case EXIT_REASON_EPT_FAULT:
429 return "eptfault";
430 case EXIT_REASON_EPT_MISCONFIG:
431 return "eptmisconfig";
432 case EXIT_REASON_INVEPT:
433 return "invept";
434 case EXIT_REASON_RDTSCP:
435 return "rdtscp";
436 case EXIT_REASON_VMX_PREEMPT:
437 return "vmxpreempt";
438 case EXIT_REASON_INVVPID:
439 return "invvpid";
440 case EXIT_REASON_WBINVD:
441 return "wbinvd";
442 case EXIT_REASON_XSETBV:
443 return "xsetbv";
444 case EXIT_REASON_APIC_WRITE:
445 return "apic-write";
446 default:
447 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
448 return (reasonbuf);
449 }
450 }
451 #endif /* KTR */
452
453 static int
454 vmx_allow_x2apic_msrs(struct vmx *vmx)
455 {
456 int i, error;
457
458 error = 0;
459
460 /*
461 * Allow readonly access to the following x2APIC MSRs from the guest.
462 */
463 error += guest_msr_ro(vmx, MSR_APIC_ID);
464 error += guest_msr_ro(vmx, MSR_APIC_VERSION);
465 error += guest_msr_ro(vmx, MSR_APIC_LDR);
466 error += guest_msr_ro(vmx, MSR_APIC_SVR);
467
468 for (i = 0; i < 8; i++)
469 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
470
471 for (i = 0; i < 8; i++)
472 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
473
474 for (i = 0; i < 8; i++)
475 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
476
477 error += guest_msr_ro(vmx, MSR_APIC_ESR);
478 error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
479 error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
480 error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
481 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
482 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
483 error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
484 error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
485 error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
486 error += guest_msr_ro(vmx, MSR_APIC_ICR);
487
488 /*
489 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
490 *
491 * These registers get special treatment described in the section
492 * "Virtualizing MSR-Based APIC Accesses".
493 */
494 error += guest_msr_rw(vmx, MSR_APIC_TPR);
495 error += guest_msr_rw(vmx, MSR_APIC_EOI);
496 error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
497
498 return (error);
499 }
500
501 u_long
502 vmx_fix_cr0(u_long cr0)
503 {
504
505 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
506 }
507
508 u_long
509 vmx_fix_cr4(u_long cr4)
510 {
511
512 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
513 }
514
515 static void
516 vpid_free(int vpid)
517 {
518 if (vpid < 0 || vpid > 0xffff)
519 panic("vpid_free: invalid vpid %d", vpid);
520
521 /*
522 * VPIDs [0,vm_maxcpu] are special and are not allocated from
523 * the unit number allocator.
524 */
525
526 if (vpid > vm_maxcpu)
527 free_unr(vpid_unr, vpid);
528 }
529
530 static uint16_t
531 vpid_alloc(int vcpuid)
532 {
533 int x;
534
535 /*
536 * If the "enable vpid" execution control is not enabled then the
537 * VPID is required to be 0 for all vcpus.
538 */
539 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0)
540 return (0);
541
542 /*
543 * Try to allocate a unique VPID for each from the unit number
544 * allocator.
545 */
546 x = alloc_unr(vpid_unr);
547
548 if (x == -1) {
549 atomic_add_int(&vpid_alloc_failed, 1);
550
551 /*
552 * If the unit number allocator does not have enough unique
553 * VPIDs then we need to allocate from the [1,vm_maxcpu] range.
554 *
555 * These VPIDs are not be unique across VMs but this does not
556 * affect correctness because the combined mappings are also
557 * tagged with the EP4TA which is unique for each VM.
558 *
559 * It is still sub-optimal because the invvpid will invalidate
560 * combined mappings for a particular VPID across all EP4TAs.
561 */
562 return (vcpuid + 1);
563 }
564
565 return (x);
566 }
567
568 static void
569 vpid_init(void)
570 {
571 /*
572 * VPID 0 is required when the "enable VPID" execution control is
573 * disabled.
574 *
575 * VPIDs [1,vm_maxcpu] are used as the "overflow namespace" when the
576 * unit number allocator does not have sufficient unique VPIDs to
577 * satisfy the allocation.
578 *
579 * The remaining VPIDs are managed by the unit number allocator.
580 */
581 vpid_unr = new_unrhdr(vm_maxcpu + 1, 0xffff, NULL);
582 }
583
584 static void
585 vmx_disable(void *arg __unused)
586 {
587 struct invvpid_desc invvpid_desc = { 0 };
588 struct invept_desc invept_desc = { 0 };
589
590 if (vmxon_enabled[curcpu]) {
591 /*
592 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
593 *
594 * VMXON or VMXOFF are not required to invalidate any TLB
595 * caching structures. This prevents potential retention of
596 * cached information in the TLB between distinct VMX episodes.
597 */
598 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
599 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
600 vmxoff();
601 }
602 load_cr4(rcr4() & ~CR4_VMXE);
603 }
604
605 static int
606 vmx_modcleanup(void)
607 {
608
609 if (pirvec >= 0)
610 lapic_ipi_free(pirvec);
611
612 if (vpid_unr != NULL) {
613 delete_unrhdr(vpid_unr);
614 vpid_unr = NULL;
615 }
616
617 if (nmi_flush_l1d_sw == 1)
618 nmi_flush_l1d_sw = 0;
619
620 smp_rendezvous(NULL, vmx_disable, NULL, NULL);
621
622 return (0);
623 }
624
625 static void
626 vmx_enable(void *arg __unused)
627 {
628 int error;
629 uint64_t feature_control;
630
631 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
632 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
633 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
634 wrmsr(MSR_IA32_FEATURE_CONTROL,
635 feature_control | IA32_FEATURE_CONTROL_VMX_EN |
636 IA32_FEATURE_CONTROL_LOCK);
637 }
638
639 load_cr4(rcr4() | CR4_VMXE);
640
641 *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
642 error = vmxon(vmxon_region[curcpu]);
643 if (error == 0)
644 vmxon_enabled[curcpu] = 1;
645 }
646
647 static void
648 vmx_modresume(void)
649 {
650
651 if (vmxon_enabled[curcpu])
652 vmxon(vmxon_region[curcpu]);
653 }
654
655 static int
656 vmx_modinit(int ipinum)
657 {
658 int error;
659 uint64_t basic, fixed0, fixed1, feature_control;
660 uint32_t tmp, procbased2_vid_bits;
661
662 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
663 if (!(cpu_feature2 & CPUID2_VMX)) {
664 printf("vmx_modinit: processor does not support VMX "
665 "operation\n");
666 return (ENXIO);
667 }
668
669 /*
670 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
671 * are set (bits 0 and 2 respectively).
672 */
673 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
674 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
675 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
676 printf("vmx_modinit: VMX operation disabled by BIOS\n");
677 return (ENXIO);
678 }
679
680 /*
681 * Verify capabilities MSR_VMX_BASIC:
682 * - bit 54 indicates support for INS/OUTS decoding
683 */
684 basic = rdmsr(MSR_VMX_BASIC);
685 if ((basic & (1UL << 54)) == 0) {
686 printf("vmx_modinit: processor does not support desired basic "
687 "capabilities\n");
688 return (EINVAL);
689 }
690
691 /* Check support for primary processor-based VM-execution controls */
692 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
693 MSR_VMX_TRUE_PROCBASED_CTLS,
694 PROCBASED_CTLS_ONE_SETTING,
695 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
696 if (error) {
697 printf("vmx_modinit: processor does not support desired "
698 "primary processor-based controls\n");
699 return (error);
700 }
701
702 /* Clear the processor-based ctl bits that are set on demand */
703 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
704
705 /* Check support for secondary processor-based VM-execution controls */
706 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
707 MSR_VMX_PROCBASED_CTLS2,
708 PROCBASED_CTLS2_ONE_SETTING,
709 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
710 if (error) {
711 printf("vmx_modinit: processor does not support desired "
712 "secondary processor-based controls\n");
713 return (error);
714 }
715
716 /* Check support for VPID */
717 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
718 PROCBASED2_ENABLE_VPID, 0, &tmp);
719 if (error == 0)
720 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
721
722 /* Check support for pin-based VM-execution controls */
723 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
724 MSR_VMX_TRUE_PINBASED_CTLS,
725 PINBASED_CTLS_ONE_SETTING,
726 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
727 if (error) {
728 printf("vmx_modinit: processor does not support desired "
729 "pin-based controls\n");
730 return (error);
731 }
732
733 /* Check support for VM-exit controls */
734 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
735 VM_EXIT_CTLS_ONE_SETTING,
736 VM_EXIT_CTLS_ZERO_SETTING,
737 &exit_ctls);
738 if (error) {
739 printf("vmx_modinit: processor does not support desired "
740 "exit controls\n");
741 return (error);
742 }
743
744 /* Check support for VM-entry controls */
745 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
746 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
747 &entry_ctls);
748 if (error) {
749 printf("vmx_modinit: processor does not support desired "
750 "entry controls\n");
751 return (error);
752 }
753
754 /*
755 * Check support for optional features by testing them
756 * as individual bits
757 */
758 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
759 MSR_VMX_TRUE_PROCBASED_CTLS,
760 PROCBASED_HLT_EXITING, 0,
761 &tmp) == 0);
762
763 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
764 MSR_VMX_PROCBASED_CTLS,
765 PROCBASED_MTF, 0,
766 &tmp) == 0);
767
768 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
769 MSR_VMX_TRUE_PROCBASED_CTLS,
770 PROCBASED_PAUSE_EXITING, 0,
771 &tmp) == 0);
772
773 cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
774 MSR_VMX_PROCBASED_CTLS2,
775 PROCBASED2_WBINVD_EXITING,
776 0,
777 &tmp) == 0);
778
779 /*
780 * Check support for RDPID and/or RDTSCP.
781 *
782 * Support a pass-through-based implementation of these via the
783 * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
784 * VM-execution control.
785 *
786 * The "enable RDTSCP" VM-execution control applies to both RDPID
787 * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
788 * Instruction Behavior in VMX Non-root operation"); this is why
789 * only this VM-execution control needs to be enabled in order to
790 * enable passing through whichever of RDPID and/or RDTSCP are
791 * supported by the host.
792 *
793 * The "RDTSC exiting" VM-execution control applies to both RDTSC
794 * and RDTSCP (again, per SDM volume 3, section 25.3), and is
795 * already set up for RDTSC and RDTSCP pass-through by the current
796 * implementation of RDTSC.
797 *
798 * Although RDPID and RDTSCP are optional capabilities, since there
799 * does not currently seem to be a use case for enabling/disabling
800 * these via libvmmapi, choose not to support this and, instead,
801 * just statically always enable or always disable this support
802 * across all vCPUs on all VMs. (Note that there may be some
803 * complications to providing this functionality, e.g., the MSR
804 * bitmap is currently per-VM rather than per-vCPU while the
805 * capability API wants to be able to control capabilities on a
806 * per-vCPU basis).
807 */
808 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
809 MSR_VMX_PROCBASED_CTLS2,
810 PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
811 cap_rdpid = error == 0 && host_has_rdpid();
812 cap_rdtscp = error == 0 && host_has_rdtscp();
813 if (cap_rdpid || cap_rdtscp) {
814 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
815 vmx_have_msr_tsc_aux = true;
816 }
817
818 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
819 MSR_VMX_PROCBASED_CTLS2,
820 PROCBASED2_UNRESTRICTED_GUEST, 0,
821 &tmp) == 0);
822
823 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
824 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
825 &tmp) == 0);
826
827 /*
828 * Check support for TPR shadow.
829 */
830 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
831 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
832 &tmp);
833 if (error == 0) {
834 tpr_shadowing = 1;
835 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
836 &tpr_shadowing);
837 }
838
839 if (tpr_shadowing) {
840 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
841 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
842 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
843 }
844
845 /*
846 * Check support for virtual interrupt delivery.
847 */
848 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
849 PROCBASED2_VIRTUALIZE_X2APIC_MODE |
850 PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
851 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
852
853 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
854 procbased2_vid_bits, 0, &tmp);
855 if (error == 0 && tpr_shadowing) {
856 virtual_interrupt_delivery = 1;
857 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
858 &virtual_interrupt_delivery);
859 }
860
861 if (virtual_interrupt_delivery) {
862 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
863 procbased_ctls2 |= procbased2_vid_bits;
864 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
865
866 /*
867 * Check for Posted Interrupts only if Virtual Interrupt
868 * Delivery is enabled.
869 */
870 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
871 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
872 &tmp);
873 if (error == 0) {
874 pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
875 &IDTVEC(justreturn));
876 if (pirvec < 0) {
877 if (bootverbose) {
878 printf("vmx_modinit: unable to "
879 "allocate posted interrupt "
880 "vector\n");
881 }
882 } else {
883 posted_interrupts = 1;
884 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
885 &posted_interrupts);
886 }
887 }
888 }
889
890 if (posted_interrupts)
891 pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
892
893 /* Initialize EPT */
894 error = ept_init(ipinum);
895 if (error) {
896 printf("vmx_modinit: ept initialization failed (%d)\n", error);
897 return (error);
898 }
899
900 guest_l1d_flush = (cpu_ia32_arch_caps &
901 IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
902 TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
903
904 /*
905 * L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when
906 * available. Otherwise fall back to the software flush
907 * method which loads enough data from the kernel text to
908 * flush existing L1D content, both on VMX entry and on NMI
909 * return.
910 */
911 if (guest_l1d_flush) {
912 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
913 guest_l1d_flush_sw = 1;
914 TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
915 &guest_l1d_flush_sw);
916 }
917 if (guest_l1d_flush_sw) {
918 if (nmi_flush_l1d_sw <= 1)
919 nmi_flush_l1d_sw = 1;
920 } else {
921 msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
922 msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
923 }
924 }
925
926 /*
927 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
928 */
929 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
930 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
931 cr0_ones_mask = fixed0 & fixed1;
932 cr0_zeros_mask = ~fixed0 & ~fixed1;
933
934 /*
935 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
936 * if unrestricted guest execution is allowed.
937 */
938 if (cap_unrestricted_guest)
939 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
940
941 /*
942 * Do not allow the guest to set CR0_NW or CR0_CD.
943 */
944 cr0_zeros_mask |= (CR0_NW | CR0_CD);
945
946 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
947 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
948 cr4_ones_mask = fixed0 & fixed1;
949 cr4_zeros_mask = ~fixed0 & ~fixed1;
950
951 vpid_init();
952
953 vmx_msr_init();
954
955 /* enable VMX operation */
956 smp_rendezvous(NULL, vmx_enable, NULL, NULL);
957
958 vmx_initialized = 1;
959
960 return (0);
961 }
962
963 static void
964 vmx_trigger_hostintr(int vector)
965 {
966 uintptr_t func;
967 struct gate_descriptor *gd;
968
969 gd = &idt[vector];
970
971 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
972 "invalid vector %d", vector));
973 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
974 vector));
975 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
976 "has invalid type %d", vector, gd->gd_type));
977 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
978 "has invalid dpl %d", vector, gd->gd_dpl));
979 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
980 "for vector %d has invalid selector %d", vector, gd->gd_selector));
981 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
982 "IST %d", vector, gd->gd_ist));
983
984 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
985 vmx_call_isr(func);
986 }
987
988 static int
989 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
990 {
991 int error, mask_ident, shadow_ident;
992 uint64_t mask_value;
993
994 if (which != 0 && which != 4)
995 panic("vmx_setup_cr_shadow: unknown cr%d", which);
996
997 if (which == 0) {
998 mask_ident = VMCS_CR0_MASK;
999 mask_value = cr0_ones_mask | cr0_zeros_mask;
1000 shadow_ident = VMCS_CR0_SHADOW;
1001 } else {
1002 mask_ident = VMCS_CR4_MASK;
1003 mask_value = cr4_ones_mask | cr4_zeros_mask;
1004 shadow_ident = VMCS_CR4_SHADOW;
1005 }
1006
1007 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
1008 if (error)
1009 return (error);
1010
1011 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
1012 if (error)
1013 return (error);
1014
1015 return (0);
1016 }
1017 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
1018 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
1019
1020 static void *
1021 vmx_init(struct vm *vm, pmap_t pmap)
1022 {
1023 int error __diagused;
1024 struct vmx *vmx;
1025
1026 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
1027 vmx->vm = vm;
1028
1029 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
1030
1031 /*
1032 * Clean up EPTP-tagged guest physical and combined mappings
1033 *
1034 * VMX transitions are not required to invalidate any guest physical
1035 * mappings. So, it may be possible for stale guest physical mappings
1036 * to be present in the processor TLBs.
1037 *
1038 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
1039 */
1040 ept_invalidate_mappings(vmx->eptp);
1041
1042 vmx->msr_bitmap = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
1043 M_WAITOK | M_ZERO);
1044 msr_bitmap_initialize(vmx->msr_bitmap);
1045
1046 /*
1047 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
1048 * The guest FSBASE and GSBASE are saved and restored during
1049 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
1050 * always restored from the vmcs host state area on vm-exit.
1051 *
1052 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
1053 * how they are saved/restored so can be directly accessed by the
1054 * guest.
1055 *
1056 * MSR_EFER is saved and restored in the guest VMCS area on a
1057 * VM exit and entry respectively. It is also restored from the
1058 * host VMCS area on a VM exit.
1059 *
1060 * The TSC MSR is exposed read-only. Writes are disallowed as
1061 * that will impact the host TSC. If the guest does a write
1062 * the "use TSC offsetting" execution control is enabled and the
1063 * difference between the host TSC and the guest TSC is written
1064 * into the TSC offset in the VMCS.
1065 *
1066 * Guest TSC_AUX support is enabled if any of guest RDPID and/or
1067 * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
1068 * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
1069 * supported). If guest TSC_AUX support is enabled, TSC_AUX is
1070 * exposed read-only so that the VMM can do one fewer MSR read per
1071 * exit than if this register were exposed read-write; the guest
1072 * restore value can be updated during guest writes (expected to be
1073 * rare) instead of during all exits (common).
1074 */
1075 if (guest_msr_rw(vmx, MSR_GSBASE) ||
1076 guest_msr_rw(vmx, MSR_FSBASE) ||
1077 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1078 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1079 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1080 guest_msr_rw(vmx, MSR_EFER) ||
1081 guest_msr_ro(vmx, MSR_TSC) ||
1082 ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
1083 panic("vmx_init: error setting guest msr access");
1084
1085 if (virtual_interrupt_delivery) {
1086 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1087 APIC_ACCESS_ADDRESS);
1088 /* XXX this should really return an error to the caller */
1089 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1090 }
1091
1092 vmx->pmap = pmap;
1093 return (vmx);
1094 }
1095
1096 static void *
1097 vmx_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
1098 {
1099 struct vmx *vmx = vmi;
1100 struct vmcs *vmcs;
1101 struct vmx_vcpu *vcpu;
1102 uint32_t exc_bitmap;
1103 uint16_t vpid;
1104 int error;
1105
1106 vpid = vpid_alloc(vcpuid);
1107
1108 vcpu = malloc(sizeof(*vcpu), M_VMX, M_WAITOK | M_ZERO);
1109 vcpu->vmx = vmx;
1110 vcpu->vcpu = vcpu1;
1111 vcpu->vcpuid = vcpuid;
1112 vcpu->vmcs = malloc_aligned(sizeof(*vmcs), PAGE_SIZE, M_VMX,
1113 M_WAITOK | M_ZERO);
1114 vcpu->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
1115 M_WAITOK | M_ZERO);
1116 vcpu->pir_desc = malloc_aligned(sizeof(*vcpu->pir_desc), 64, M_VMX,
1117 M_WAITOK | M_ZERO);
1118
1119 vmcs = vcpu->vmcs;
1120 vmcs->identifier = vmx_revision();
1121 error = vmclear(vmcs);
1122 if (error != 0) {
1123 panic("vmx_init: vmclear error %d on vcpu %d\n",
1124 error, vcpuid);
1125 }
1126
1127 vmx_msr_guest_init(vmx, vcpu);
1128
1129 error = vmcs_init(vmcs);
1130 KASSERT(error == 0, ("vmcs_init error %d", error));
1131
1132 VMPTRLD(vmcs);
1133 error = 0;
1134 error += vmwrite(VMCS_HOST_RSP, (u_long)&vcpu->ctx);
1135 error += vmwrite(VMCS_EPTP, vmx->eptp);
1136 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1137 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1138 if (vcpu_trap_wbinvd(vcpu->vcpu)) {
1139 KASSERT(cap_wbinvd_exit, ("WBINVD trap not available"));
1140 procbased_ctls2 |= PROCBASED2_WBINVD_EXITING;
1141 }
1142 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1143 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1144 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1145 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1146 error += vmwrite(VMCS_VPID, vpid);
1147
1148 if (guest_l1d_flush && !guest_l1d_flush_sw) {
1149 vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1150 (vm_offset_t)&msr_load_list[0]));
1151 vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1152 nitems(msr_load_list));
1153 vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1154 vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1155 }
1156
1157 /* exception bitmap */
1158 if (vcpu_trace_exceptions(vcpu->vcpu))
1159 exc_bitmap = 0xffffffff;
1160 else
1161 exc_bitmap = 1 << IDT_MC;
1162 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1163
1164 vcpu->ctx.guest_dr6 = DBREG_DR6_RESERVED1;
1165 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1166
1167 if (tpr_shadowing) {
1168 error += vmwrite(VMCS_VIRTUAL_APIC, vtophys(vcpu->apic_page));
1169 }
1170
1171 if (virtual_interrupt_delivery) {
1172 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1173 error += vmwrite(VMCS_EOI_EXIT0, 0);
1174 error += vmwrite(VMCS_EOI_EXIT1, 0);
1175 error += vmwrite(VMCS_EOI_EXIT2, 0);
1176 error += vmwrite(VMCS_EOI_EXIT3, 0);
1177 }
1178 if (posted_interrupts) {
1179 error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1180 error += vmwrite(VMCS_PIR_DESC, vtophys(vcpu->pir_desc));
1181 }
1182 VMCLEAR(vmcs);
1183 KASSERT(error == 0, ("vmx_init: error customizing the vmcs"));
1184
1185 vcpu->cap.set = 0;
1186 vcpu->cap.set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
1187 vcpu->cap.set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
1188 vcpu->cap.proc_ctls = procbased_ctls;
1189 vcpu->cap.proc_ctls2 = procbased_ctls2;
1190 vcpu->cap.exc_bitmap = exc_bitmap;
1191
1192 vcpu->state.nextrip = ~0;
1193 vcpu->state.lastcpu = NOCPU;
1194 vcpu->state.vpid = vpid;
1195
1196 /*
1197 * Set up the CR0/4 shadows, and init the read shadow
1198 * to the power-on register value from the Intel Sys Arch.
1199 * CR0 - 0x60000010
1200 * CR4 - 0
1201 */
1202 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1203 if (error != 0)
1204 panic("vmx_setup_cr0_shadow %d", error);
1205
1206 error = vmx_setup_cr4_shadow(vmcs, 0);
1207 if (error != 0)
1208 panic("vmx_setup_cr4_shadow %d", error);
1209
1210 vcpu->ctx.pmap = vmx->pmap;
1211
1212 return (vcpu);
1213 }
1214
1215 static int
1216 vmx_handle_cpuid(struct vmx_vcpu *vcpu, struct vmxctx *vmxctx)
1217 {
1218 int handled;
1219
1220 handled = x86_emulate_cpuid(vcpu->vcpu, (uint64_t *)&vmxctx->guest_rax,
1221 (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
1222 (uint64_t *)&vmxctx->guest_rdx);
1223 return (handled);
1224 }
1225
1226 static __inline void
1227 vmx_run_trace(struct vmx_vcpu *vcpu)
1228 {
1229 VMX_CTR1(vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1230 }
1231
1232 static __inline void
1233 vmx_exit_trace(struct vmx_vcpu *vcpu, uint64_t rip, uint32_t exit_reason,
1234 int handled)
1235 {
1236 VMX_CTR3(vcpu, "%s %s vmexit at 0x%0lx",
1237 handled ? "handled" : "unhandled",
1238 exit_reason_to_str(exit_reason), rip);
1239 }
1240
1241 static __inline void
1242 vmx_astpending_trace(struct vmx_vcpu *vcpu, uint64_t rip)
1243 {
1244 VMX_CTR1(vcpu, "astpending vmexit at 0x%0lx", rip);
1245 }
1246
1247 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1248 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1249
1250 /*
1251 * Invalidate guest mappings identified by its vpid from the TLB.
1252 */
1253 static __inline void
1254 vmx_invvpid(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap, int running)
1255 {
1256 struct vmxstate *vmxstate;
1257 struct invvpid_desc invvpid_desc;
1258
1259 vmxstate = &vcpu->state;
1260 if (vmxstate->vpid == 0)
1261 return;
1262
1263 if (!running) {
1264 /*
1265 * Set the 'lastcpu' to an invalid host cpu.
1266 *
1267 * This will invalidate TLB entries tagged with the vcpu's
1268 * vpid the next time it runs via vmx_set_pcpu_defaults().
1269 */
1270 vmxstate->lastcpu = NOCPU;
1271 return;
1272 }
1273
1274 KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1275 "critical section", __func__, vcpu->vcpuid));
1276
1277 /*
1278 * Invalidate all mappings tagged with 'vpid'
1279 *
1280 * We do this because this vcpu was executing on a different host
1281 * cpu when it last ran. We do not track whether it invalidated
1282 * mappings associated with its 'vpid' during that run. So we must
1283 * assume that the mappings associated with 'vpid' on 'curcpu' are
1284 * stale and invalidate them.
1285 *
1286 * Note that we incur this penalty only when the scheduler chooses to
1287 * move the thread associated with this vcpu between host cpus.
1288 *
1289 * Note also that this will invalidate mappings tagged with 'vpid'
1290 * for "all" EP4TAs.
1291 */
1292 if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) {
1293 invvpid_desc._res1 = 0;
1294 invvpid_desc._res2 = 0;
1295 invvpid_desc.vpid = vmxstate->vpid;
1296 invvpid_desc.linear_addr = 0;
1297 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1298 vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_DONE, 1);
1299 } else {
1300 /*
1301 * The invvpid can be skipped if an invept is going to
1302 * be performed before entering the guest. The invept
1303 * will invalidate combined mappings tagged with
1304 * 'vmx->eptp' for all vpids.
1305 */
1306 vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_SAVED, 1);
1307 }
1308 }
1309
1310 static void
1311 vmx_set_pcpu_defaults(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap)
1312 {
1313 struct vmxstate *vmxstate;
1314
1315 vmxstate = &vcpu->state;
1316 if (vmxstate->lastcpu == curcpu)
1317 return;
1318
1319 vmxstate->lastcpu = curcpu;
1320
1321 vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
1322
1323 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1324 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1325 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1326 vmx_invvpid(vmx, vcpu, pmap, 1);
1327 }
1328
1329 /*
1330 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1331 */
1332 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1333
1334 static void __inline
1335 vmx_set_int_window_exiting(struct vmx_vcpu *vcpu)
1336 {
1337
1338 if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1339 vcpu->cap.proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1340 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1341 VMX_CTR0(vcpu, "Enabling interrupt window exiting");
1342 }
1343 }
1344
1345 static void __inline
1346 vmx_clear_int_window_exiting(struct vmx_vcpu *vcpu)
1347 {
1348
1349 KASSERT((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1350 ("intr_window_exiting not set: %#x", vcpu->cap.proc_ctls));
1351 vcpu->cap.proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1352 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1353 VMX_CTR0(vcpu, "Disabling interrupt window exiting");
1354 }
1355
1356 static void __inline
1357 vmx_set_nmi_window_exiting(struct vmx_vcpu *vcpu)
1358 {
1359
1360 if ((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1361 vcpu->cap.proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1362 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1363 VMX_CTR0(vcpu, "Enabling NMI window exiting");
1364 }
1365 }
1366
1367 static void __inline
1368 vmx_clear_nmi_window_exiting(struct vmx_vcpu *vcpu)
1369 {
1370
1371 KASSERT((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1372 ("nmi_window_exiting not set %#x", vcpu->cap.proc_ctls));
1373 vcpu->cap.proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1374 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1375 VMX_CTR0(vcpu, "Disabling NMI window exiting");
1376 }
1377
1378 int
1379 vmx_set_tsc_offset(struct vmx_vcpu *vcpu, uint64_t offset)
1380 {
1381 int error;
1382
1383 if ((vcpu->cap.proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1384 vcpu->cap.proc_ctls |= PROCBASED_TSC_OFFSET;
1385 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1386 VMX_CTR0(vcpu, "Enabling TSC offsetting");
1387 }
1388
1389 error = vmwrite(VMCS_TSC_OFFSET, offset);
1390 #ifdef BHYVE_SNAPSHOT
1391 if (error == 0)
1392 vm_set_tsc_offset(vcpu->vcpu, offset);
1393 #endif
1394 return (error);
1395 }
1396
1397 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \
1398 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1399 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \
1400 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1401
1402 static void
1403 vmx_inject_nmi(struct vmx_vcpu *vcpu)
1404 {
1405 uint32_t gi __diagused, info;
1406
1407 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1408 KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1409 "interruptibility-state %#x", gi));
1410
1411 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1412 KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1413 "VM-entry interruption information %#x", info));
1414
1415 /*
1416 * Inject the virtual NMI. The vector must be the NMI IDT entry
1417 * or the VMCS entry check will fail.
1418 */
1419 info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1420 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1421
1422 VMX_CTR0(vcpu, "Injecting vNMI");
1423
1424 /* Clear the request */
1425 vm_nmi_clear(vcpu->vcpu);
1426 }
1427
1428 static void
1429 vmx_inject_interrupts(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
1430 uint64_t guestrip)
1431 {
1432 int vector, need_nmi_exiting, extint_pending;
1433 uint64_t rflags, entryinfo;
1434 uint32_t gi, info;
1435
1436 if (vcpu->state.nextrip != guestrip) {
1437 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1438 if (gi & HWINTR_BLOCKING) {
1439 VMX_CTR2(vcpu, "Guest interrupt blocking "
1440 "cleared due to rip change: %#lx/%#lx",
1441 vcpu->state.nextrip, guestrip);
1442 gi &= ~HWINTR_BLOCKING;
1443 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1444 }
1445 }
1446
1447 if (vm_entry_intinfo(vcpu->vcpu, &entryinfo)) {
1448 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1449 "intinfo is not valid: %#lx", __func__, entryinfo));
1450
1451 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1452 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1453 "pending exception: %#lx/%#x", __func__, entryinfo, info));
1454
1455 info = entryinfo;
1456 vector = info & 0xff;
1457 if (vector == IDT_BP || vector == IDT_OF) {
1458 /*
1459 * VT-x requires #BP and #OF to be injected as software
1460 * exceptions.
1461 */
1462 info &= ~VMCS_INTR_T_MASK;
1463 info |= VMCS_INTR_T_SWEXCEPTION;
1464 }
1465
1466 if (info & VMCS_INTR_DEL_ERRCODE)
1467 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1468
1469 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1470 }
1471
1472 if (vm_nmi_pending(vcpu->vcpu)) {
1473 /*
1474 * If there are no conditions blocking NMI injection then
1475 * inject it directly here otherwise enable "NMI window
1476 * exiting" to inject it as soon as we can.
1477 *
1478 * We also check for STI_BLOCKING because some implementations
1479 * don't allow NMI injection in this case. If we are running
1480 * on a processor that doesn't have this restriction it will
1481 * immediately exit and the NMI will be injected in the
1482 * "NMI window exiting" handler.
1483 */
1484 need_nmi_exiting = 1;
1485 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1486 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1487 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1488 if ((info & VMCS_INTR_VALID) == 0) {
1489 vmx_inject_nmi(vcpu);
1490 need_nmi_exiting = 0;
1491 } else {
1492 VMX_CTR1(vcpu, "Cannot inject NMI "
1493 "due to VM-entry intr info %#x", info);
1494 }
1495 } else {
1496 VMX_CTR1(vcpu, "Cannot inject NMI due to "
1497 "Guest Interruptibility-state %#x", gi);
1498 }
1499
1500 if (need_nmi_exiting)
1501 vmx_set_nmi_window_exiting(vcpu);
1502 }
1503
1504 extint_pending = vm_extint_pending(vcpu->vcpu);
1505
1506 if (!extint_pending && virtual_interrupt_delivery) {
1507 vmx_inject_pir(vlapic);
1508 return;
1509 }
1510
1511 /*
1512 * If interrupt-window exiting is already in effect then don't bother
1513 * checking for pending interrupts. This is just an optimization and
1514 * not needed for correctness.
1515 */
1516 if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1517 VMX_CTR0(vcpu, "Skip interrupt injection due to "
1518 "pending int_window_exiting");
1519 return;
1520 }
1521
1522 if (!extint_pending) {
1523 /* Ask the local apic for a vector to inject */
1524 if (!vlapic_pending_intr(vlapic, &vector))
1525 return;
1526
1527 /*
1528 * From the Intel SDM, Volume 3, Section "Maskable
1529 * Hardware Interrupts":
1530 * - maskable interrupt vectors [16,255] can be delivered
1531 * through the local APIC.
1532 */
1533 KASSERT(vector >= 16 && vector <= 255,
1534 ("invalid vector %d from local APIC", vector));
1535 } else {
1536 /* Ask the legacy pic for a vector to inject */
1537 vatpic_pending_intr(vcpu->vmx->vm, &vector);
1538
1539 /*
1540 * From the Intel SDM, Volume 3, Section "Maskable
1541 * Hardware Interrupts":
1542 * - maskable interrupt vectors [0,255] can be delivered
1543 * through the INTR pin.
1544 */
1545 KASSERT(vector >= 0 && vector <= 255,
1546 ("invalid vector %d from INTR", vector));
1547 }
1548
1549 /* Check RFLAGS.IF and the interruptibility state of the guest */
1550 rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1551 if ((rflags & PSL_I) == 0) {
1552 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1553 "rflags %#lx", vector, rflags);
1554 goto cantinject;
1555 }
1556
1557 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1558 if (gi & HWINTR_BLOCKING) {
1559 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1560 "Guest Interruptibility-state %#x", vector, gi);
1561 goto cantinject;
1562 }
1563
1564 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1565 if (info & VMCS_INTR_VALID) {
1566 /*
1567 * This is expected and could happen for multiple reasons:
1568 * - A vectoring VM-entry was aborted due to astpending
1569 * - A VM-exit happened during event injection.
1570 * - An exception was injected above.
1571 * - An NMI was injected above or after "NMI window exiting"
1572 */
1573 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1574 "VM-entry intr info %#x", vector, info);
1575 goto cantinject;
1576 }
1577
1578 /* Inject the interrupt */
1579 info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1580 info |= vector;
1581 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1582
1583 if (!extint_pending) {
1584 /* Update the Local APIC ISR */
1585 vlapic_intr_accepted(vlapic, vector);
1586 } else {
1587 vm_extint_clear(vcpu->vcpu);
1588 vatpic_intr_accepted(vcpu->vmx->vm, vector);
1589
1590 /*
1591 * After we accepted the current ExtINT the PIC may
1592 * have posted another one. If that is the case, set
1593 * the Interrupt Window Exiting execution control so
1594 * we can inject that one too.
1595 *
1596 * Also, interrupt window exiting allows us to inject any
1597 * pending APIC vector that was preempted by the ExtINT
1598 * as soon as possible. This applies both for the software
1599 * emulated vlapic and the hardware assisted virtual APIC.
1600 */
1601 vmx_set_int_window_exiting(vcpu);
1602 }
1603
1604 VMX_CTR1(vcpu, "Injecting hwintr at vector %d", vector);
1605
1606 return;
1607
1608 cantinject:
1609 /*
1610 * Set the Interrupt Window Exiting execution control so we can inject
1611 * the interrupt as soon as blocking condition goes away.
1612 */
1613 vmx_set_int_window_exiting(vcpu);
1614 }
1615
1616 /*
1617 * If the Virtual NMIs execution control is '1' then the logical processor
1618 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1619 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1620 * virtual-NMI blocking.
1621 *
1622 * This unblocking occurs even if the IRET causes a fault. In this case the
1623 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1624 */
1625 static void
1626 vmx_restore_nmi_blocking(struct vmx_vcpu *vcpu)
1627 {
1628 uint32_t gi;
1629
1630 VMX_CTR0(vcpu, "Restore Virtual-NMI blocking");
1631 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1632 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1633 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1634 }
1635
1636 static void
1637 vmx_clear_nmi_blocking(struct vmx_vcpu *vcpu)
1638 {
1639 uint32_t gi;
1640
1641 VMX_CTR0(vcpu, "Clear Virtual-NMI blocking");
1642 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1643 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1644 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1645 }
1646
1647 static void
1648 vmx_assert_nmi_blocking(struct vmx_vcpu *vcpu)
1649 {
1650 uint32_t gi __diagused;
1651
1652 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1653 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1654 ("NMI blocking is not in effect %#x", gi));
1655 }
1656
1657 static int
1658 vmx_emulate_xsetbv(struct vmx *vmx, struct vmx_vcpu *vcpu,
1659 struct vm_exit *vmexit)
1660 {
1661 struct vmxctx *vmxctx;
1662 uint64_t xcrval;
1663 const struct xsave_limits *limits;
1664
1665 vmxctx = &vcpu->ctx;
1666 limits = vmm_get_xsave_limits();
1667
1668 /*
1669 * Note that the processor raises a GP# fault on its own if
1670 * xsetbv is executed for CPL != 0, so we do not have to
1671 * emulate that fault here.
1672 */
1673
1674 /* Only xcr0 is supported. */
1675 if (vmxctx->guest_rcx != 0) {
1676 vm_inject_gp(vcpu->vcpu);
1677 return (HANDLED);
1678 }
1679
1680 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1681 if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1682 vm_inject_ud(vcpu->vcpu);
1683 return (HANDLED);
1684 }
1685
1686 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1687 if ((xcrval & ~limits->xcr0_allowed) != 0) {
1688 vm_inject_gp(vcpu->vcpu);
1689 return (HANDLED);
1690 }
1691
1692 if (!(xcrval & XFEATURE_ENABLED_X87)) {
1693 vm_inject_gp(vcpu->vcpu);
1694 return (HANDLED);
1695 }
1696
1697 /* AVX (YMM_Hi128) requires SSE. */
1698 if (xcrval & XFEATURE_ENABLED_AVX &&
1699 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1700 vm_inject_gp(vcpu->vcpu);
1701 return (HANDLED);
1702 }
1703
1704 /*
1705 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1706 * ZMM_Hi256, and Hi16_ZMM.
1707 */
1708 if (xcrval & XFEATURE_AVX512 &&
1709 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1710 (XFEATURE_AVX512 | XFEATURE_AVX)) {
1711 vm_inject_gp(vcpu->vcpu);
1712 return (HANDLED);
1713 }
1714
1715 /*
1716 * Intel MPX requires both bound register state flags to be
1717 * set.
1718 */
1719 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1720 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1721 vm_inject_gp(vcpu->vcpu);
1722 return (HANDLED);
1723 }
1724
1725 /*
1726 * This runs "inside" vmrun() with the guest's FPU state, so
1727 * modifying xcr0 directly modifies the guest's xcr0, not the
1728 * host's.
1729 */
1730 load_xcr(0, xcrval);
1731 return (HANDLED);
1732 }
1733
1734 static uint64_t
1735 vmx_get_guest_reg(struct vmx_vcpu *vcpu, int ident)
1736 {
1737 const struct vmxctx *vmxctx;
1738
1739 vmxctx = &vcpu->ctx;
1740
1741 switch (ident) {
1742 case 0:
1743 return (vmxctx->guest_rax);
1744 case 1:
1745 return (vmxctx->guest_rcx);
1746 case 2:
1747 return (vmxctx->guest_rdx);
1748 case 3:
1749 return (vmxctx->guest_rbx);
1750 case 4:
1751 return (vmcs_read(VMCS_GUEST_RSP));
1752 case 5:
1753 return (vmxctx->guest_rbp);
1754 case 6:
1755 return (vmxctx->guest_rsi);
1756 case 7:
1757 return (vmxctx->guest_rdi);
1758 case 8:
1759 return (vmxctx->guest_r8);
1760 case 9:
1761 return (vmxctx->guest_r9);
1762 case 10:
1763 return (vmxctx->guest_r10);
1764 case 11:
1765 return (vmxctx->guest_r11);
1766 case 12:
1767 return (vmxctx->guest_r12);
1768 case 13:
1769 return (vmxctx->guest_r13);
1770 case 14:
1771 return (vmxctx->guest_r14);
1772 case 15:
1773 return (vmxctx->guest_r15);
1774 default:
1775 panic("invalid vmx register %d", ident);
1776 }
1777 }
1778
1779 static void
1780 vmx_set_guest_reg(struct vmx_vcpu *vcpu, int ident, uint64_t regval)
1781 {
1782 struct vmxctx *vmxctx;
1783
1784 vmxctx = &vcpu->ctx;
1785
1786 switch (ident) {
1787 case 0:
1788 vmxctx->guest_rax = regval;
1789 break;
1790 case 1:
1791 vmxctx->guest_rcx = regval;
1792 break;
1793 case 2:
1794 vmxctx->guest_rdx = regval;
1795 break;
1796 case 3:
1797 vmxctx->guest_rbx = regval;
1798 break;
1799 case 4:
1800 vmcs_write(VMCS_GUEST_RSP, regval);
1801 break;
1802 case 5:
1803 vmxctx->guest_rbp = regval;
1804 break;
1805 case 6:
1806 vmxctx->guest_rsi = regval;
1807 break;
1808 case 7:
1809 vmxctx->guest_rdi = regval;
1810 break;
1811 case 8:
1812 vmxctx->guest_r8 = regval;
1813 break;
1814 case 9:
1815 vmxctx->guest_r9 = regval;
1816 break;
1817 case 10:
1818 vmxctx->guest_r10 = regval;
1819 break;
1820 case 11:
1821 vmxctx->guest_r11 = regval;
1822 break;
1823 case 12:
1824 vmxctx->guest_r12 = regval;
1825 break;
1826 case 13:
1827 vmxctx->guest_r13 = regval;
1828 break;
1829 case 14:
1830 vmxctx->guest_r14 = regval;
1831 break;
1832 case 15:
1833 vmxctx->guest_r15 = regval;
1834 break;
1835 default:
1836 panic("invalid vmx register %d", ident);
1837 }
1838 }
1839
1840 static int
1841 vmx_emulate_cr0_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
1842 {
1843 uint64_t crval, regval;
1844
1845 /* We only handle mov to %cr0 at this time */
1846 if ((exitqual & 0xf0) != 0x00)
1847 return (UNHANDLED);
1848
1849 regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
1850
1851 vmcs_write(VMCS_CR0_SHADOW, regval);
1852
1853 crval = regval | cr0_ones_mask;
1854 crval &= ~cr0_zeros_mask;
1855 vmcs_write(VMCS_GUEST_CR0, crval);
1856
1857 if (regval & CR0_PG) {
1858 uint64_t efer, entry_ctls;
1859
1860 /*
1861 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1862 * the "IA-32e mode guest" bit in VM-entry control must be
1863 * equal.
1864 */
1865 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1866 if (efer & EFER_LME) {
1867 efer |= EFER_LMA;
1868 vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1869 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1870 entry_ctls |= VM_ENTRY_GUEST_LMA;
1871 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1872 }
1873 }
1874
1875 return (HANDLED);
1876 }
1877
1878 static int
1879 vmx_emulate_cr4_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
1880 {
1881 uint64_t crval, regval;
1882
1883 /* We only handle mov to %cr4 at this time */
1884 if ((exitqual & 0xf0) != 0x00)
1885 return (UNHANDLED);
1886
1887 regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
1888
1889 vmcs_write(VMCS_CR4_SHADOW, regval);
1890
1891 crval = regval | cr4_ones_mask;
1892 crval &= ~cr4_zeros_mask;
1893 vmcs_write(VMCS_GUEST_CR4, crval);
1894
1895 return (HANDLED);
1896 }
1897
1898 static int
1899 vmx_emulate_cr8_access(struct vmx *vmx, struct vmx_vcpu *vcpu,
1900 uint64_t exitqual)
1901 {
1902 struct vlapic *vlapic;
1903 uint64_t cr8;
1904 int regnum;
1905
1906 /* We only handle mov %cr8 to/from a register at this time. */
1907 if ((exitqual & 0xe0) != 0x00) {
1908 return (UNHANDLED);
1909 }
1910
1911 vlapic = vm_lapic(vcpu->vcpu);
1912 regnum = (exitqual >> 8) & 0xf;
1913 if (exitqual & 0x10) {
1914 cr8 = vlapic_get_cr8(vlapic);
1915 vmx_set_guest_reg(vcpu, regnum, cr8);
1916 } else {
1917 cr8 = vmx_get_guest_reg(vcpu, regnum);
1918 vlapic_set_cr8(vlapic, cr8);
1919 }
1920
1921 return (HANDLED);
1922 }
1923
1924 /*
1925 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1926 */
1927 static int
1928 vmx_cpl(void)
1929 {
1930 uint32_t ssar;
1931
1932 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1933 return ((ssar >> 5) & 0x3);
1934 }
1935
1936 static enum vm_cpu_mode
1937 vmx_cpu_mode(void)
1938 {
1939 uint32_t csar;
1940
1941 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1942 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1943 if (csar & 0x2000)
1944 return (CPU_MODE_64BIT); /* CS.L = 1 */
1945 else
1946 return (CPU_MODE_COMPATIBILITY);
1947 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1948 return (CPU_MODE_PROTECTED);
1949 } else {
1950 return (CPU_MODE_REAL);
1951 }
1952 }
1953
1954 static enum vm_paging_mode
1955 vmx_paging_mode(void)
1956 {
1957 uint64_t cr4;
1958
1959 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1960 return (PAGING_MODE_FLAT);
1961 cr4 = vmcs_read(VMCS_GUEST_CR4);
1962 if (!(cr4 & CR4_PAE))
1963 return (PAGING_MODE_32);
1964 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
1965 if (!(cr4 & CR4_LA57))
1966 return (PAGING_MODE_64);
1967 return (PAGING_MODE_64_LA57);
1968 } else
1969 return (PAGING_MODE_PAE);
1970 }
1971
1972 static uint64_t
1973 inout_str_index(struct vmx_vcpu *vcpu, int in)
1974 {
1975 uint64_t val;
1976 int error __diagused;
1977 enum vm_reg_name reg;
1978
1979 reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1980 error = vmx_getreg(vcpu, reg, &val);
1981 KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1982 return (val);
1983 }
1984
1985 static uint64_t
1986 inout_str_count(struct vmx_vcpu *vcpu, int rep)
1987 {
1988 uint64_t val;
1989 int error __diagused;
1990
1991 if (rep) {
1992 error = vmx_getreg(vcpu, VM_REG_GUEST_RCX, &val);
1993 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1994 } else {
1995 val = 1;
1996 }
1997 return (val);
1998 }
1999
2000 static int
2001 inout_str_addrsize(uint32_t inst_info)
2002 {
2003 uint32_t size;
2004
2005 size = (inst_info >> 7) & 0x7;
2006 switch (size) {
2007 case 0:
2008 return (2); /* 16 bit */
2009 case 1:
2010 return (4); /* 32 bit */
2011 case 2:
2012 return (8); /* 64 bit */
2013 default:
2014 panic("%s: invalid size encoding %d", __func__, size);
2015 }
2016 }
2017
2018 static void
2019 inout_str_seginfo(struct vmx_vcpu *vcpu, uint32_t inst_info, int in,
2020 struct vm_inout_str *vis)
2021 {
2022 int error __diagused, s;
2023
2024 if (in) {
2025 vis->seg_name = VM_REG_GUEST_ES;
2026 } else {
2027 s = (inst_info >> 15) & 0x7;
2028 vis->seg_name = vm_segment_name(s);
2029 }
2030
2031 error = vmx_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
2032 KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
2033 }
2034
2035 static void
2036 vmx_paging_info(struct vm_guest_paging *paging)
2037 {
2038 paging->cr3 = vmcs_guest_cr3();
2039 paging->cpl = vmx_cpl();
2040 paging->cpu_mode = vmx_cpu_mode();
2041 paging->paging_mode = vmx_paging_mode();
2042 }
2043
2044 static void
2045 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
2046 {
2047 struct vm_guest_paging *paging;
2048 uint32_t csar;
2049
2050 paging = &vmexit->u.inst_emul.paging;
2051
2052 vmexit->exitcode = VM_EXITCODE_INST_EMUL;
2053 vmexit->inst_length = 0;
2054 vmexit->u.inst_emul.gpa = gpa;
2055 vmexit->u.inst_emul.gla = gla;
2056 vmx_paging_info(paging);
2057 switch (paging->cpu_mode) {
2058 case CPU_MODE_REAL:
2059 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2060 vmexit->u.inst_emul.cs_d = 0;
2061 break;
2062 case CPU_MODE_PROTECTED:
2063 case CPU_MODE_COMPATIBILITY:
2064 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2065 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
2066 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
2067 break;
2068 default:
2069 vmexit->u.inst_emul.cs_base = 0;
2070 vmexit->u.inst_emul.cs_d = 0;
2071 break;
2072 }
2073 vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
2074 }
2075
2076 static int
2077 ept_fault_type(uint64_t ept_qual)
2078 {
2079 int fault_type;
2080
2081 if (ept_qual & EPT_VIOLATION_DATA_WRITE)
2082 fault_type = VM_PROT_WRITE;
2083 else if (ept_qual & EPT_VIOLATION_INST_FETCH)
2084 fault_type = VM_PROT_EXECUTE;
2085 else
2086 fault_type= VM_PROT_READ;
2087
2088 return (fault_type);
2089 }
2090
2091 static bool
2092 ept_emulation_fault(uint64_t ept_qual)
2093 {
2094 int read, write;
2095
2096 /* EPT fault on an instruction fetch doesn't make sense here */
2097 if (ept_qual & EPT_VIOLATION_INST_FETCH)
2098 return (false);
2099
2100 /* EPT fault must be a read fault or a write fault */
2101 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2102 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2103 if ((read | write) == 0)
2104 return (false);
2105
2106 /*
2107 * The EPT violation must have been caused by accessing a
2108 * guest-physical address that is a translation of a guest-linear
2109 * address.
2110 */
2111 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2112 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2113 return (false);
2114 }
2115
2116 return (true);
2117 }
2118
2119 static __inline int
2120 apic_access_virtualization(struct vmx_vcpu *vcpu)
2121 {
2122 uint32_t proc_ctls2;
2123
2124 proc_ctls2 = vcpu->cap.proc_ctls2;
2125 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2126 }
2127
2128 static __inline int
2129 x2apic_virtualization(struct vmx_vcpu *vcpu)
2130 {
2131 uint32_t proc_ctls2;
2132
2133 proc_ctls2 = vcpu->cap.proc_ctls2;
2134 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2135 }
2136
2137 static int
2138 vmx_handle_apic_write(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
2139 uint64_t qual)
2140 {
2141 int error, handled, offset;
2142 uint32_t *apic_regs, vector;
2143 bool retu;
2144
2145 handled = HANDLED;
2146 offset = APIC_WRITE_OFFSET(qual);
2147
2148 if (!apic_access_virtualization(vcpu)) {
2149 /*
2150 * In general there should not be any APIC write VM-exits
2151 * unless APIC-access virtualization is enabled.
2152 *
2153 * However self-IPI virtualization can legitimately trigger
2154 * an APIC-write VM-exit so treat it specially.
2155 */
2156 if (x2apic_virtualization(vcpu) &&
2157 offset == APIC_OFFSET_SELF_IPI) {
2158 apic_regs = (uint32_t *)(vlapic->apic_page);
2159 vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2160 vlapic_self_ipi_handler(vlapic, vector);
2161 return (HANDLED);
2162 } else
2163 return (UNHANDLED);
2164 }
2165
2166 switch (offset) {
2167 case APIC_OFFSET_ID:
2168 vlapic_id_write_handler(vlapic);
2169 break;
2170 case APIC_OFFSET_LDR:
2171 vlapic_ldr_write_handler(vlapic);
2172 break;
2173 case APIC_OFFSET_DFR:
2174 vlapic_dfr_write_handler(vlapic);
2175 break;
2176 case APIC_OFFSET_SVR:
2177 vlapic_svr_write_handler(vlapic);
2178 break;
2179 case APIC_OFFSET_ESR:
2180 vlapic_esr_write_handler(vlapic);
2181 break;
2182 case APIC_OFFSET_ICR_LOW:
2183 retu = false;
2184 error = vlapic_icrlo_write_handler(vlapic, &retu);
2185 if (error != 0 || retu)
2186 handled = UNHANDLED;
2187 break;
2188 case APIC_OFFSET_CMCI_LVT:
2189 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2190 vlapic_lvt_write_handler(vlapic, offset);
2191 break;
2192 case APIC_OFFSET_TIMER_ICR:
2193 vlapic_icrtmr_write_handler(vlapic);
2194 break;
2195 case APIC_OFFSET_TIMER_DCR:
2196 vlapic_dcr_write_handler(vlapic);
2197 break;
2198 default:
2199 handled = UNHANDLED;
2200 break;
2201 }
2202 return (handled);
2203 }
2204
2205 static bool
2206 apic_access_fault(struct vmx_vcpu *vcpu, uint64_t gpa)
2207 {
2208
2209 if (apic_access_virtualization(vcpu) &&
2210 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2211 return (true);
2212 else
2213 return (false);
2214 }
2215
2216 static int
2217 vmx_handle_apic_access(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2218 {
2219 uint64_t qual;
2220 int access_type, offset, allowed;
2221
2222 if (!apic_access_virtualization(vcpu))
2223 return (UNHANDLED);
2224
2225 qual = vmexit->u.vmx.exit_qualification;
2226 access_type = APIC_ACCESS_TYPE(qual);
2227 offset = APIC_ACCESS_OFFSET(qual);
2228
2229 allowed = 0;
2230 if (access_type == 0) {
2231 /*
2232 * Read data access to the following registers is expected.
2233 */
2234 switch (offset) {
2235 case APIC_OFFSET_APR:
2236 case APIC_OFFSET_PPR:
2237 case APIC_OFFSET_RRR:
2238 case APIC_OFFSET_CMCI_LVT:
2239 case APIC_OFFSET_TIMER_CCR:
2240 allowed = 1;
2241 break;
2242 default:
2243 break;
2244 }
2245 } else if (access_type == 1) {
2246 /*
2247 * Write data access to the following registers is expected.
2248 */
2249 switch (offset) {
2250 case APIC_OFFSET_VER:
2251 case APIC_OFFSET_APR:
2252 case APIC_OFFSET_PPR:
2253 case APIC_OFFSET_RRR:
2254 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2255 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2256 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2257 case APIC_OFFSET_CMCI_LVT:
2258 case APIC_OFFSET_TIMER_CCR:
2259 allowed = 1;
2260 break;
2261 default:
2262 break;
2263 }
2264 }
2265
2266 if (allowed) {
2267 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2268 VIE_INVALID_GLA);
2269 }
2270
2271 /*
2272 * Regardless of whether the APIC-access is allowed this handler
2273 * always returns UNHANDLED:
2274 * - if the access is allowed then it is handled by emulating the
2275 * instruction that caused the VM-exit (outside the critical section)
2276 * - if the access is not allowed then it will be converted to an
2277 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2278 */
2279 return (UNHANDLED);
2280 }
2281
2282 static enum task_switch_reason
2283 vmx_task_switch_reason(uint64_t qual)
2284 {
2285 int reason;
2286
2287 reason = (qual >> 30) & 0x3;
2288 switch (reason) {
2289 case 0:
2290 return (TSR_CALL);
2291 case 1:
2292 return (TSR_IRET);
2293 case 2:
2294 return (TSR_JMP);
2295 case 3:
2296 return (TSR_IDT_GATE);
2297 default:
2298 panic("%s: invalid reason %d", __func__, reason);
2299 }
2300 }
2301
2302 static int
2303 emulate_wrmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t val, bool *retu)
2304 {
2305 int error;
2306
2307 if (lapic_msr(num))
2308 error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
2309 else
2310 error = vmx_wrmsr(vcpu, num, val, retu);
2311
2312 return (error);
2313 }
2314
2315 static int
2316 emulate_rdmsr(struct vmx_vcpu *vcpu, u_int num, bool *retu)
2317 {
2318 struct vmxctx *vmxctx;
2319 uint64_t result;
2320 uint32_t eax, edx;
2321 int error;
2322
2323 if (lapic_msr(num))
2324 error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
2325 else
2326 error = vmx_rdmsr(vcpu, num, &result, retu);
2327
2328 if (error == 0) {
2329 eax = result;
2330 vmxctx = &vcpu->ctx;
2331 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2332 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2333
2334 edx = result >> 32;
2335 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2336 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2337 }
2338
2339 return (error);
2340 }
2341
2342 static int
2343 vmx_exit_process(struct vmx *vmx, struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2344 {
2345 int error, errcode, errcode_valid, handled, in;
2346 struct vmxctx *vmxctx;
2347 struct vlapic *vlapic;
2348 struct vm_inout_str *vis;
2349 struct vm_task_switch *ts;
2350 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2351 uint32_t intr_type, intr_vec, reason;
2352 uint64_t exitintinfo, qual, gpa;
2353 #ifdef KDTRACE_HOOKS
2354 int vcpuid;
2355 #endif
2356 bool retu;
2357
2358 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2359 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2360
2361 handled = UNHANDLED;
2362 vmxctx = &vcpu->ctx;
2363 #ifdef KDTRACE_HOOKS
2364 vcpuid = vcpu->vcpuid;
2365 #endif
2366
2367 qual = vmexit->u.vmx.exit_qualification;
2368 reason = vmexit->u.vmx.exit_reason;
2369 vmexit->exitcode = VM_EXITCODE_BOGUS;
2370
2371 vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
2372 SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpuid, vmexit);
2373
2374 /*
2375 * VM-entry failures during or after loading guest state.
2376 *
2377 * These VM-exits are uncommon but must be handled specially
2378 * as most VM-exit fields are not populated as usual.
2379 */
2380 if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2381 VMX_CTR0(vcpu, "Handling MCE during VM-entry");
2382 __asm __volatile("int $18");
2383 return (1);
2384 }
2385
2386 /*
2387 * VM exits that can be triggered during event delivery need to
2388 * be handled specially by re-injecting the event if the IDT
2389 * vectoring information field's valid bit is set.
2390 *
2391 * See "Information for VM Exits During Event Delivery" in Intel SDM
2392 * for details.
2393 */
2394 idtvec_info = vmcs_idt_vectoring_info();
2395 if (idtvec_info & VMCS_IDT_VEC_VALID) {
2396 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2397 exitintinfo = idtvec_info;
2398 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2399 idtvec_err = vmcs_idt_vectoring_err();
2400 exitintinfo |= (uint64_t)idtvec_err << 32;
2401 }
2402 error = vm_exit_intinfo(vcpu->vcpu, exitintinfo);
2403 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2404 __func__, error));
2405
2406 /*
2407 * If 'virtual NMIs' are being used and the VM-exit
2408 * happened while injecting an NMI during the previous
2409 * VM-entry, then clear "blocking by NMI" in the
2410 * Guest Interruptibility-State so the NMI can be
2411 * reinjected on the subsequent VM-entry.
2412 *
2413 * However, if the NMI was being delivered through a task
2414 * gate, then the new task must start execution with NMIs
2415 * blocked so don't clear NMI blocking in this case.
2416 */
2417 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2418 if (intr_type == VMCS_INTR_T_NMI) {
2419 if (reason != EXIT_REASON_TASK_SWITCH)
2420 vmx_clear_nmi_blocking(vcpu);
2421 else
2422 vmx_assert_nmi_blocking(vcpu);
2423 }
2424
2425 /*
2426 * Update VM-entry instruction length if the event being
2427 * delivered was a software interrupt or software exception.
2428 */
2429 if (intr_type == VMCS_INTR_T_SWINTR ||
2430 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2431 intr_type == VMCS_INTR_T_SWEXCEPTION) {
2432 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2433 }
2434 }
2435
2436 switch (reason) {
2437 case EXIT_REASON_TASK_SWITCH:
2438 ts = &vmexit->u.task_switch;
2439 ts->tsssel = qual & 0xffff;
2440 ts->reason = vmx_task_switch_reason(qual);
2441 ts->ext = 0;
2442 ts->errcode_valid = 0;
2443 vmx_paging_info(&ts->paging);
2444 /*
2445 * If the task switch was due to a CALL, JMP, IRET, software
2446 * interrupt (INT n) or software exception (INT3, INTO),
2447 * then the saved %rip references the instruction that caused
2448 * the task switch. The instruction length field in the VMCS
2449 * is valid in this case.
2450 *
2451 * In all other cases (e.g., NMI, hardware exception) the
2452 * saved %rip is one that would have been saved in the old TSS
2453 * had the task switch completed normally so the instruction
2454 * length field is not needed in this case and is explicitly
2455 * set to 0.
2456 */
2457 if (ts->reason == TSR_IDT_GATE) {
2458 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2459 ("invalid idtvec_info %#x for IDT task switch",
2460 idtvec_info));
2461 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2462 if (intr_type != VMCS_INTR_T_SWINTR &&
2463 intr_type != VMCS_INTR_T_SWEXCEPTION &&
2464 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2465 /* Task switch triggered by external event */
2466 ts->ext = 1;
2467 vmexit->inst_length = 0;
2468 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2469 ts->errcode_valid = 1;
2470 ts->errcode = vmcs_idt_vectoring_err();
2471 }
2472 }
2473 }
2474 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2475 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpuid, vmexit, ts);
2476 VMX_CTR4(vcpu, "task switch reason %d, tss 0x%04x, "
2477 "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2478 ts->ext ? "external" : "internal",
2479 ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2480 break;
2481 case EXIT_REASON_CR_ACCESS:
2482 vmm_stat_incr(vcpu->vcpu, VMEXIT_CR_ACCESS, 1);
2483 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpuid, vmexit, qual);
2484 switch (qual & 0xf) {
2485 case 0:
2486 handled = vmx_emulate_cr0_access(vcpu, qual);
2487 break;
2488 case 4:
2489 handled = vmx_emulate_cr4_access(vcpu, qual);
2490 break;
2491 case 8:
2492 handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2493 break;
2494 }
2495 break;
2496 case EXIT_REASON_RDMSR:
2497 vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
2498 retu = false;
2499 ecx = vmxctx->guest_rcx;
2500 VMX_CTR1(vcpu, "rdmsr 0x%08x", ecx);
2501 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpuid, vmexit, ecx);
2502 error = emulate_rdmsr(vcpu, ecx, &retu);
2503 if (error) {
2504 vmexit->exitcode = VM_EXITCODE_RDMSR;
2505 vmexit->u.msr.code = ecx;
2506 } else if (!retu) {
2507 handled = HANDLED;
2508 } else {
2509 /* Return to userspace with a valid exitcode */
2510 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2511 ("emulate_rdmsr retu with bogus exitcode"));
2512 }
2513 break;
2514 case EXIT_REASON_WRMSR:
2515 vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
2516 retu = false;
2517 eax = vmxctx->guest_rax;
2518 ecx = vmxctx->guest_rcx;
2519 edx = vmxctx->guest_rdx;
2520 VMX_CTR2(vcpu, "wrmsr 0x%08x value 0x%016lx",
2521 ecx, (uint64_t)edx << 32 | eax);
2522 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpuid, ecx,
2523 (uint64_t)edx << 32 | eax);
2524 error = emulate_wrmsr(vcpu, ecx, (uint64_t)edx << 32 | eax,
2525 &retu);
2526 if (error) {
2527 vmexit->exitcode = VM_EXITCODE_WRMSR;
2528 vmexit->u.msr.code = ecx;
2529 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2530 } else if (!retu) {
2531 handled = HANDLED;
2532 } else {
2533 /* Return to userspace with a valid exitcode */
2534 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2535 ("emulate_wrmsr retu with bogus exitcode"));
2536 }
2537 break;
2538 case EXIT_REASON_HLT:
2539 vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
2540 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpuid, vmexit);
2541 vmexit->exitcode = VM_EXITCODE_HLT;
2542 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2543 if (virtual_interrupt_delivery)
2544 vmexit->u.hlt.intr_status =
2545 vmcs_read(VMCS_GUEST_INTR_STATUS);
2546 else
2547 vmexit->u.hlt.intr_status = 0;
2548 break;
2549 case EXIT_REASON_MTF:
2550 vmm_stat_incr(vcpu->vcpu, VMEXIT_MTRAP, 1);
2551 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpuid, vmexit);
2552 vmexit->exitcode = VM_EXITCODE_MTRAP;
2553 vmexit->inst_length = 0;
2554 break;
2555 case EXIT_REASON_PAUSE:
2556 vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
2557 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpuid, vmexit);
2558 vmexit->exitcode = VM_EXITCODE_PAUSE;
2559 break;
2560 case EXIT_REASON_INTR_WINDOW:
2561 vmm_stat_incr(vcpu->vcpu, VMEXIT_INTR_WINDOW, 1);
2562 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpuid, vmexit);
2563 vmx_clear_int_window_exiting(vcpu);
2564 return (1);
2565 case EXIT_REASON_EXT_INTR:
2566 /*
2567 * External interrupts serve only to cause VM exits and allow
2568 * the host interrupt handler to run.
2569 *
2570 * If this external interrupt triggers a virtual interrupt
2571 * to a VM, then that state will be recorded by the
2572 * host interrupt handler in the VM's softc. We will inject
2573 * this virtual interrupt during the subsequent VM enter.
2574 */
2575 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2576 SDT_PROBE4(vmm, vmx, exit, interrupt,
2577 vmx, vcpuid, vmexit, intr_info);
2578
2579 /*
2580 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2581 * This appears to be a bug in VMware Fusion?
2582 */
2583 if (!(intr_info & VMCS_INTR_VALID))
2584 return (1);
2585 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2586 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2587 ("VM exit interruption info invalid: %#x", intr_info));
2588 vmx_trigger_hostintr(intr_info & 0xff);
2589
2590 /*
2591 * This is special. We want to treat this as an 'handled'
2592 * VM-exit but not increment the instruction pointer.
2593 */
2594 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
2595 return (1);
2596 case EXIT_REASON_NMI_WINDOW:
2597 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpuid, vmexit);
2598 /* Exit to allow the pending virtual NMI to be injected */
2599 if (vm_nmi_pending(vcpu->vcpu))
2600 vmx_inject_nmi(vcpu);
2601 vmx_clear_nmi_window_exiting(vcpu);
2602 vmm_stat_incr(vcpu->vcpu, VMEXIT_NMI_WINDOW, 1);
2603 return (1);
2604 case EXIT_REASON_INOUT:
2605 vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
2606 vmexit->exitcode = VM_EXITCODE_INOUT;
2607 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2608 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2609 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2610 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2611 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2612 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2613 if (vmexit->u.inout.string) {
2614 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2615 vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2616 vis = &vmexit->u.inout_str;
2617 vmx_paging_info(&vis->paging);
2618 vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2619 vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2620 vis->index = inout_str_index(vcpu, in);
2621 vis->count = inout_str_count(vcpu, vis->inout.rep);
2622 vis->addrsize = inout_str_addrsize(inst_info);
2623 inout_str_seginfo(vcpu, inst_info, in, vis);
2624 }
2625 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpuid, vmexit);
2626 break;
2627 case EXIT_REASON_CPUID:
2628 vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
2629 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpuid, vmexit);
2630 handled = vmx_handle_cpuid(vcpu, vmxctx);
2631 break;
2632 case EXIT_REASON_EXCEPTION:
2633 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
2634 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2635 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2636 ("VM exit interruption info invalid: %#x", intr_info));
2637
2638 intr_vec = intr_info & 0xff;
2639 intr_type = intr_info & VMCS_INTR_T_MASK;
2640
2641 /*
2642 * If Virtual NMIs control is 1 and the VM-exit is due to a
2643 * fault encountered during the execution of IRET then we must
2644 * restore the state of "virtual-NMI blocking" before resuming
2645 * the guest.
2646 *
2647 * See "Resuming Guest Software after Handling an Exception".
2648 * See "Information for VM Exits Due to Vectored Events".
2649 */
2650 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2651 (intr_vec != IDT_DF) &&
2652 (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2653 vmx_restore_nmi_blocking(vcpu);
2654
2655 /*
2656 * The NMI has already been handled in vmx_exit_handle_nmi().
2657 */
2658 if (intr_type == VMCS_INTR_T_NMI)
2659 return (1);
2660
2661 /*
2662 * Call the machine check handler by hand. Also don't reflect
2663 * the machine check back into the guest.
2664 */
2665 if (intr_vec == IDT_MC) {
2666 VMX_CTR0(vcpu, "Vectoring to MCE handler");
2667 __asm __volatile("int $18");
2668 return (1);
2669 }
2670
2671 /*
2672 * If the hypervisor has requested user exits for
2673 * debug exceptions, bounce them out to userland.
2674 */
2675 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2676 (vcpu->cap.set & (1 << VM_CAP_BPT_EXIT))) {
2677 vmexit->exitcode = VM_EXITCODE_BPT;
2678 vmexit->u.bpt.inst_length = vmexit->inst_length;
2679 vmexit->inst_length = 0;
2680 break;
2681 }
2682
2683 if (intr_vec == IDT_PF) {
2684 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2685 KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2686 __func__, error));
2687 }
2688
2689 /*
2690 * Software exceptions exhibit trap-like behavior. This in
2691 * turn requires populating the VM-entry instruction length
2692 * so that the %rip in the trap frame is past the INT3/INTO
2693 * instruction.
2694 */
2695 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2696 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2697
2698 /* Reflect all other exceptions back into the guest */
2699 errcode_valid = errcode = 0;
2700 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2701 errcode_valid = 1;
2702 errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2703 }
2704 VMX_CTR2(vcpu, "Reflecting exception %d/%#x into "
2705 "the guest", intr_vec, errcode);
2706 SDT_PROBE5(vmm, vmx, exit, exception,
2707 vmx, vcpuid, vmexit, intr_vec, errcode);
2708 error = vm_inject_exception(vcpu->vcpu, intr_vec,
2709 errcode_valid, errcode, 0);
2710 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2711 __func__, error));
2712 return (1);
2713
2714 case EXIT_REASON_EPT_FAULT:
2715 /*
2716 * If 'gpa' lies within the address space allocated to
2717 * memory then this must be a nested page fault otherwise
2718 * this must be an instruction that accesses MMIO space.
2719 */
2720 gpa = vmcs_gpa();
2721 if (vm_mem_allocated(vcpu->vcpu, gpa) ||
2722 apic_access_fault(vcpu, gpa)) {
2723 vmexit->exitcode = VM_EXITCODE_PAGING;
2724 vmexit->inst_length = 0;
2725 vmexit->u.paging.gpa = gpa;
2726 vmexit->u.paging.fault_type = ept_fault_type(qual);
2727 vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
2728 SDT_PROBE5(vmm, vmx, exit, nestedfault,
2729 vmx, vcpuid, vmexit, gpa, qual);
2730 } else if (ept_emulation_fault(qual)) {
2731 vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2732 vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
2733 SDT_PROBE4(vmm, vmx, exit, mmiofault,
2734 vmx, vcpuid, vmexit, gpa);
2735 }
2736 /*
2737 * If Virtual NMIs control is 1 and the VM-exit is due to an
2738 * EPT fault during the execution of IRET then we must restore
2739 * the state of "virtual-NMI blocking" before resuming.
2740 *
2741 * See description of "NMI unblocking due to IRET" in
2742 * "Exit Qualification for EPT Violations".
2743 */
2744 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2745 (qual & EXIT_QUAL_NMIUDTI) != 0)
2746 vmx_restore_nmi_blocking(vcpu);
2747 break;
2748 case EXIT_REASON_VIRTUALIZED_EOI:
2749 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2750 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2751 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpuid, vmexit);
2752 vmexit->inst_length = 0; /* trap-like */
2753 break;
2754 case EXIT_REASON_APIC_ACCESS:
2755 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpuid, vmexit);
2756 handled = vmx_handle_apic_access(vcpu, vmexit);
2757 break;
2758 case EXIT_REASON_APIC_WRITE:
2759 /*
2760 * APIC-write VM exit is trap-like so the %rip is already
2761 * pointing to the next instruction.
2762 */
2763 vmexit->inst_length = 0;
2764 vlapic = vm_lapic(vcpu->vcpu);
2765 SDT_PROBE4(vmm, vmx, exit, apicwrite,
2766 vmx, vcpuid, vmexit, vlapic);
2767 handled = vmx_handle_apic_write(vcpu, vlapic, qual);
2768 break;
2769 case EXIT_REASON_XSETBV:
2770 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpuid, vmexit);
2771 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2772 break;
2773 case EXIT_REASON_MONITOR:
2774 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpuid, vmexit);
2775 vmexit->exitcode = VM_EXITCODE_MONITOR;
2776 break;
2777 case EXIT_REASON_MWAIT:
2778 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpuid, vmexit);
2779 vmexit->exitcode = VM_EXITCODE_MWAIT;
2780 break;
2781 case EXIT_REASON_TPR:
2782 vlapic = vm_lapic(vcpu->vcpu);
2783 vlapic_sync_tpr(vlapic);
2784 vmexit->inst_length = 0;
2785 handled = HANDLED;
2786 break;
2787 case EXIT_REASON_VMCALL:
2788 case EXIT_REASON_VMCLEAR:
2789 case EXIT_REASON_VMLAUNCH:
2790 case EXIT_REASON_VMPTRLD:
2791 case EXIT_REASON_VMPTRST:
2792 case EXIT_REASON_VMREAD:
2793 case EXIT_REASON_VMRESUME:
2794 case EXIT_REASON_VMWRITE:
2795 case EXIT_REASON_VMXOFF:
2796 case EXIT_REASON_VMXON:
2797 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpuid, vmexit);
2798 vmexit->exitcode = VM_EXITCODE_VMINSN;
2799 break;
2800 case EXIT_REASON_INVD:
2801 case EXIT_REASON_WBINVD:
2802 /* ignore exit */
2803 handled = HANDLED;
2804 break;
2805 default:
2806 SDT_PROBE4(vmm, vmx, exit, unknown,
2807 vmx, vcpuid, vmexit, reason);
2808 vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
2809 break;
2810 }
2811
2812 if (handled) {
2813 /*
2814 * It is possible that control is returned to userland
2815 * even though we were able to handle the VM exit in the
2816 * kernel.
2817 *
2818 * In such a case we want to make sure that the userland
2819 * restarts guest execution at the instruction *after*
2820 * the one we just processed. Therefore we update the
2821 * guest rip in the VMCS and in 'vmexit'.
2822 */
2823 vmexit->rip += vmexit->inst_length;
2824 vmexit->inst_length = 0;
2825 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2826 } else {
2827 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2828 /*
2829 * If this VM exit was not claimed by anybody then
2830 * treat it as a generic VMX exit.
2831 */
2832 vmexit->exitcode = VM_EXITCODE_VMX;
2833 vmexit->u.vmx.status = VM_SUCCESS;
2834 vmexit->u.vmx.inst_type = 0;
2835 vmexit->u.vmx.inst_error = 0;
2836 } else {
2837 /*
2838 * The exitcode and collateral have been populated.
2839 * The VM exit will be processed further in userland.
2840 */
2841 }
2842 }
2843
2844 SDT_PROBE4(vmm, vmx, exit, return,
2845 vmx, vcpuid, vmexit, handled);
2846 return (handled);
2847 }
2848
2849 static __inline void
2850 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2851 {
2852
2853 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2854 ("vmx_exit_inst_error: invalid inst_fail_status %d",
2855 vmxctx->inst_fail_status));
2856
2857 vmexit->inst_length = 0;
2858 vmexit->exitcode = VM_EXITCODE_VMX;
2859 vmexit->u.vmx.status = vmxctx->inst_fail_status;
2860 vmexit->u.vmx.inst_error = vmcs_instruction_error();
2861 vmexit->u.vmx.exit_reason = ~0;
2862 vmexit->u.vmx.exit_qualification = ~0;
2863
2864 switch (rc) {
2865 case VMX_VMRESUME_ERROR:
2866 case VMX_VMLAUNCH_ERROR:
2867 vmexit->u.vmx.inst_type = rc;
2868 break;
2869 default:
2870 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2871 }
2872 }
2873
2874 /*
2875 * If the NMI-exiting VM execution control is set to '1' then an NMI in
2876 * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2877 * sufficient to simply vector to the NMI handler via a software interrupt.
2878 * However, this must be done before maskable interrupts are enabled
2879 * otherwise the "iret" issued by an interrupt handler will incorrectly
2880 * clear NMI blocking.
2881 */
2882 static __inline void
2883 vmx_exit_handle_nmi(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2884 {
2885 uint32_t intr_info;
2886
2887 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2888
2889 if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2890 return;
2891
2892 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2893 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2894 ("VM exit interruption info invalid: %#x", intr_info));
2895
2896 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2897 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2898 "to NMI has invalid vector: %#x", intr_info));
2899 VMX_CTR0(vcpu, "Vectoring to NMI handler");
2900 __asm __volatile("int $2");
2901 }
2902 }
2903
2904 static __inline void
2905 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2906 {
2907 register_t rflags;
2908
2909 /* Save host control debug registers. */
2910 vmxctx->host_dr7 = rdr7();
2911 vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2912
2913 /*
2914 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2915 * exceptions in the host based on the guest DRx values. The
2916 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2917 */
2918 load_dr7(0);
2919 wrmsr(MSR_DEBUGCTLMSR, 0);
2920
2921 /*
2922 * Disable single stepping the kernel to avoid corrupting the
2923 * guest DR6. A debugger might still be able to corrupt the
2924 * guest DR6 by setting a breakpoint after this point and then
2925 * single stepping.
2926 */
2927 rflags = read_rflags();
2928 vmxctx->host_tf = rflags & PSL_T;
2929 write_rflags(rflags & ~PSL_T);
2930
2931 /* Save host debug registers. */
2932 vmxctx->host_dr0 = rdr0();
2933 vmxctx->host_dr1 = rdr1();
2934 vmxctx->host_dr2 = rdr2();
2935 vmxctx->host_dr3 = rdr3();
2936 vmxctx->host_dr6 = rdr6();
2937
2938 /* Restore guest debug registers. */
2939 load_dr0(vmxctx->guest_dr0);
2940 load_dr1(vmxctx->guest_dr1);
2941 load_dr2(vmxctx->guest_dr2);
2942 load_dr3(vmxctx->guest_dr3);
2943 load_dr6(vmxctx->guest_dr6);
2944 }
2945
2946 static __inline void
2947 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2948 {
2949
2950 /* Save guest debug registers. */
2951 vmxctx->guest_dr0 = rdr0();
2952 vmxctx->guest_dr1 = rdr1();
2953 vmxctx->guest_dr2 = rdr2();
2954 vmxctx->guest_dr3 = rdr3();
2955 vmxctx->guest_dr6 = rdr6();
2956
2957 /*
2958 * Restore host debug registers. Restore DR7, DEBUGCTL, and
2959 * PSL_T last.
2960 */
2961 load_dr0(vmxctx->host_dr0);
2962 load_dr1(vmxctx->host_dr1);
2963 load_dr2(vmxctx->host_dr2);
2964 load_dr3(vmxctx->host_dr3);
2965 load_dr6(vmxctx->host_dr6);
2966 wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2967 load_dr7(vmxctx->host_dr7);
2968 write_rflags(read_rflags() | vmxctx->host_tf);
2969 }
2970
2971 static __inline void
2972 vmx_pmap_activate(struct vmx *vmx, pmap_t pmap)
2973 {
2974 long eptgen;
2975 int cpu;
2976
2977 cpu = curcpu;
2978
2979 CPU_SET_ATOMIC(cpu, &pmap->pm_active);
2980 smr_enter(pmap->pm_eptsmr);
2981 eptgen = atomic_load_long(&pmap->pm_eptgen);
2982 if (eptgen != vmx->eptgen[cpu]) {
2983 vmx->eptgen[cpu] = eptgen;
2984 invept(INVEPT_TYPE_SINGLE_CONTEXT,
2985 (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 });
2986 }
2987 }
2988
2989 static __inline void
2990 vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap)
2991 {
2992 smr_exit(pmap->pm_eptsmr);
2993 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2994 }
2995
2996 static int
2997 vmx_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
2998 {
2999 int rc, handled, launched;
3000 struct vmx *vmx;
3001 struct vmx_vcpu *vcpu;
3002 struct vmxctx *vmxctx;
3003 struct vmcs *vmcs;
3004 struct vm_exit *vmexit;
3005 struct vlapic *vlapic;
3006 uint32_t exit_reason;
3007 struct region_descriptor gdtr, idtr;
3008 uint16_t ldt_sel;
3009
3010 vcpu = vcpui;
3011 vmx = vcpu->vmx;
3012 vmcs = vcpu->vmcs;
3013 vmxctx = &vcpu->ctx;
3014 vlapic = vm_lapic(vcpu->vcpu);
3015 vmexit = vm_exitinfo(vcpu->vcpu);
3016 launched = 0;
3017
3018 KASSERT(vmxctx->pmap == pmap,
3019 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
3020
3021 vmx_msr_guest_enter(vcpu);
3022
3023 VMPTRLD(vmcs);
3024
3025 /*
3026 * XXX
3027 * We do this every time because we may setup the virtual machine
3028 * from a different process than the one that actually runs it.
3029 *
3030 * If the life of a virtual machine was spent entirely in the context
3031 * of a single process we could do this once in vmx_init().
3032 */
3033 vmcs_write(VMCS_HOST_CR3, rcr3());
3034
3035 vmcs_write(VMCS_GUEST_RIP, rip);
3036 vmx_set_pcpu_defaults(vmx, vcpu, pmap);
3037 do {
3038 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
3039 "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
3040
3041 handled = UNHANDLED;
3042 /*
3043 * Interrupts are disabled from this point on until the
3044 * guest starts executing. This is done for the following
3045 * reasons:
3046 *
3047 * If an AST is asserted on this thread after the check below,
3048 * then the IPI_AST notification will not be lost, because it
3049 * will cause a VM exit due to external interrupt as soon as
3050 * the guest state is loaded.
3051 *
3052 * A posted interrupt after 'vmx_inject_interrupts()' will
3053 * not be "lost" because it will be held pending in the host
3054 * APIC because interrupts are disabled. The pending interrupt
3055 * will be recognized as soon as the guest state is loaded.
3056 *
3057 * The same reasoning applies to the IPI generated by
3058 * pmap_invalidate_ept().
3059 */
3060 disable_intr();
3061 vmx_inject_interrupts(vcpu, vlapic, rip);
3062
3063 /*
3064 * Check for vcpu suspension after injecting events because
3065 * vmx_inject_interrupts() can suspend the vcpu due to a
3066 * triple fault.
3067 */
3068 if (vcpu_suspended(evinfo)) {
3069 enable_intr();
3070 vm_exit_suspended(vcpu->vcpu, rip);
3071 break;
3072 }
3073
3074 if (vcpu_rendezvous_pending(evinfo)) {
3075 enable_intr();
3076 vm_exit_rendezvous(vcpu->vcpu, rip);
3077 break;
3078 }
3079
3080 if (vcpu_reqidle(evinfo)) {
3081 enable_intr();
3082 vm_exit_reqidle(vcpu->vcpu, rip);
3083 break;
3084 }
3085
3086 if (vcpu_should_yield(vcpu->vcpu)) {
3087 enable_intr();
3088 vm_exit_astpending(vcpu->vcpu, rip);
3089 vmx_astpending_trace(vcpu, rip);
3090 handled = HANDLED;
3091 break;
3092 }
3093
3094 if (vcpu_debugged(vcpu->vcpu)) {
3095 enable_intr();
3096 vm_exit_debug(vcpu->vcpu, rip);
3097 break;
3098 }
3099
3100 /*
3101 * If TPR Shadowing is enabled, the TPR Threshold
3102 * must be updated right before entering the guest.
3103 */
3104 if (tpr_shadowing && !virtual_interrupt_delivery) {
3105 if ((vcpu->cap.proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
3106 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3107 }
3108 }
3109
3110 /*
3111 * VM exits restore the base address but not the
3112 * limits of GDTR and IDTR. The VMCS only stores the
3113 * base address, so VM exits set the limits to 0xffff.
3114 * Save and restore the full GDTR and IDTR to restore
3115 * the limits.
3116 *
3117 * The VMCS does not save the LDTR at all, and VM
3118 * exits clear LDTR as if a NULL selector were loaded.
3119 * The userspace hypervisor probably doesn't use a
3120 * LDT, but save and restore it to be safe.
3121 */
3122 sgdt(&gdtr);
3123 sidt(&idtr);
3124 ldt_sel = sldt();
3125
3126 /*
3127 * The TSC_AUX MSR must be saved/restored while interrupts
3128 * are disabled so that it is not possible for the guest
3129 * TSC_AUX MSR value to be overwritten by the resume
3130 * portion of the IPI_SUSPEND codepath. This is why the
3131 * transition of this MSR is handled separately from those
3132 * handled by vmx_msr_guest_{enter,exit}(), which are ok to
3133 * be transitioned with preemption disabled but interrupts
3134 * enabled.
3135 *
3136 * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
3137 * anywhere in this loop so long as they happen with
3138 * interrupts disabled. This location is chosen for
3139 * simplicity.
3140 */
3141 vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
3142
3143 vmx_dr_enter_guest(vmxctx);
3144
3145 /*
3146 * Mark the EPT as active on this host CPU and invalidate
3147 * EPTP-tagged TLB entries if required.
3148 */
3149 vmx_pmap_activate(vmx, pmap);
3150
3151 vmx_run_trace(vcpu);
3152 rc = vmx_enter_guest(vmxctx, vmx, launched);
3153
3154 vmx_pmap_deactivate(vmx, pmap);
3155 vmx_dr_leave_guest(vmxctx);
3156 vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
3157
3158 bare_lgdt(&gdtr);
3159 lidt(&idtr);
3160 lldt(ldt_sel);
3161
3162 /* Collect some information for VM exit processing */
3163 vmexit->rip = rip = vmcs_guest_rip();
3164 vmexit->inst_length = vmexit_instruction_length();
3165 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3166 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3167
3168 /* Update 'nextrip' */
3169 vcpu->state.nextrip = rip;
3170
3171 if (rc == VMX_GUEST_VMEXIT) {
3172 vmx_exit_handle_nmi(vcpu, vmexit);
3173 enable_intr();
3174 handled = vmx_exit_process(vmx, vcpu, vmexit);
3175 } else {
3176 enable_intr();
3177 vmx_exit_inst_error(vmxctx, rc, vmexit);
3178 }
3179 launched = 1;
3180 vmx_exit_trace(vcpu, rip, exit_reason, handled);
3181 rip = vmexit->rip;
3182 } while (handled);
3183
3184 /*
3185 * If a VM exit has been handled then the exitcode must be BOGUS
3186 * If a VM exit is not handled then the exitcode must not be BOGUS
3187 */
3188 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3189 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3190 panic("Mismatch between handled (%d) and exitcode (%d)",
3191 handled, vmexit->exitcode);
3192 }
3193
3194 VMX_CTR1(vcpu, "returning from vmx_run: exitcode %d",
3195 vmexit->exitcode);
3196
3197 VMCLEAR(vmcs);
3198 vmx_msr_guest_exit(vcpu);
3199
3200 return (0);
3201 }
3202
3203 static void
3204 vmx_vcpu_cleanup(void *vcpui)
3205 {
3206 struct vmx_vcpu *vcpu = vcpui;
3207
3208 vpid_free(vcpu->state.vpid);
3209 free(vcpu->pir_desc, M_VMX);
3210 free(vcpu->apic_page, M_VMX);
3211 free(vcpu->vmcs, M_VMX);
3212 free(vcpu, M_VMX);
3213 }
3214
3215 static void
3216 vmx_cleanup(void *vmi)
3217 {
3218 struct vmx *vmx = vmi;
3219
3220 if (virtual_interrupt_delivery)
3221 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3222
3223 free(vmx->msr_bitmap, M_VMX);
3224 free(vmx, M_VMX);
3225
3226 return;
3227 }
3228
3229 static register_t *
3230 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3231 {
3232
3233 switch (reg) {
3234 case VM_REG_GUEST_RAX:
3235 return (&vmxctx->guest_rax);
3236 case VM_REG_GUEST_RBX:
3237 return (&vmxctx->guest_rbx);
3238 case VM_REG_GUEST_RCX:
3239 return (&vmxctx->guest_rcx);
3240 case VM_REG_GUEST_RDX:
3241 return (&vmxctx->guest_rdx);
3242 case VM_REG_GUEST_RSI:
3243 return (&vmxctx->guest_rsi);
3244 case VM_REG_GUEST_RDI:
3245 return (&vmxctx->guest_rdi);
3246 case VM_REG_GUEST_RBP:
3247 return (&vmxctx->guest_rbp);
3248 case VM_REG_GUEST_R8:
3249 return (&vmxctx->guest_r8);
3250 case VM_REG_GUEST_R9:
3251 return (&vmxctx->guest_r9);
3252 case VM_REG_GUEST_R10:
3253 return (&vmxctx->guest_r10);
3254 case VM_REG_GUEST_R11:
3255 return (&vmxctx->guest_r11);
3256 case VM_REG_GUEST_R12:
3257 return (&vmxctx->guest_r12);
3258 case VM_REG_GUEST_R13:
3259 return (&vmxctx->guest_r13);
3260 case VM_REG_GUEST_R14:
3261 return (&vmxctx->guest_r14);
3262 case VM_REG_GUEST_R15:
3263 return (&vmxctx->guest_r15);
3264 case VM_REG_GUEST_CR2:
3265 return (&vmxctx->guest_cr2);
3266 case VM_REG_GUEST_DR0:
3267 return (&vmxctx->guest_dr0);
3268 case VM_REG_GUEST_DR1:
3269 return (&vmxctx->guest_dr1);
3270 case VM_REG_GUEST_DR2:
3271 return (&vmxctx->guest_dr2);
3272 case VM_REG_GUEST_DR3:
3273 return (&vmxctx->guest_dr3);
3274 case VM_REG_GUEST_DR6:
3275 return (&vmxctx->guest_dr6);
3276 default:
3277 break;
3278 }
3279 return (NULL);
3280 }
3281
3282 static int
3283 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3284 {
3285 register_t *regp;
3286
3287 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3288 *retval = *regp;
3289 return (0);
3290 } else
3291 return (EINVAL);
3292 }
3293
3294 static int
3295 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3296 {
3297 register_t *regp;
3298
3299 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3300 *regp = val;
3301 return (0);
3302 } else
3303 return (EINVAL);
3304 }
3305
3306 static int
3307 vmx_get_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t *retval)
3308 {
3309 uint64_t gi;
3310 int error;
3311
3312 error = vmcs_getreg(vcpu->vmcs, running,
3313 VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3314 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3315 return (error);
3316 }
3317
3318 static int
3319 vmx_modify_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t val)
3320 {
3321 struct vmcs *vmcs;
3322 uint64_t gi;
3323 int error, ident;
3324
3325 /*
3326 * Forcing the vcpu into an interrupt shadow is not supported.
3327 */
3328 if (val) {
3329 error = EINVAL;
3330 goto done;
3331 }
3332
3333 vmcs = vcpu->vmcs;
3334 ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3335 error = vmcs_getreg(vmcs, running, ident, &gi);
3336 if (error == 0) {
3337 gi &= ~HWINTR_BLOCKING;
3338 error = vmcs_setreg(vmcs, running, ident, gi);
3339 }
3340 done:
3341 VMX_CTR2(vcpu, "Setting intr_shadow to %#lx %s", val,
3342 error ? "failed" : "succeeded");
3343 return (error);
3344 }
3345
3346 static int
3347 vmx_shadow_reg(int reg)
3348 {
3349 int shreg;
3350
3351 shreg = -1;
3352
3353 switch (reg) {
3354 case VM_REG_GUEST_CR0:
3355 shreg = VMCS_CR0_SHADOW;
3356 break;
3357 case VM_REG_GUEST_CR4:
3358 shreg = VMCS_CR4_SHADOW;
3359 break;
3360 default:
3361 break;
3362 }
3363
3364 return (shreg);
3365 }
3366
3367 static int
3368 vmx_getreg(void *vcpui, int reg, uint64_t *retval)
3369 {
3370 int running, hostcpu;
3371 struct vmx_vcpu *vcpu = vcpui;
3372 struct vmx *vmx = vcpu->vmx;
3373
3374 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3375 if (running && hostcpu != curcpu)
3376 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm),
3377 vcpu->vcpuid);
3378
3379 if (reg == VM_REG_GUEST_INTR_SHADOW)
3380 return (vmx_get_intr_shadow(vcpu, running, retval));
3381
3382 if (vmxctx_getreg(&vcpu->ctx, reg, retval) == 0)
3383 return (0);
3384
3385 return (vmcs_getreg(vcpu->vmcs, running, reg, retval));
3386 }
3387
3388 static int
3389 vmx_setreg(void *vcpui, int reg, uint64_t val)
3390 {
3391 int error, hostcpu, running, shadow;
3392 uint64_t ctls;
3393 pmap_t pmap;
3394 struct vmx_vcpu *vcpu = vcpui;
3395 struct vmx *vmx = vcpu->vmx;
3396
3397 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3398 if (running && hostcpu != curcpu)
3399 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm),
3400 vcpu->vcpuid);
3401
3402 if (reg == VM_REG_GUEST_INTR_SHADOW)
3403 return (vmx_modify_intr_shadow(vcpu, running, val));
3404
3405 if (vmxctx_setreg(&vcpu->ctx, reg, val) == 0)
3406 return (0);
3407
3408 /* Do not permit user write access to VMCS fields by offset. */
3409 if (reg < 0)
3410 return (EINVAL);
3411
3412 error = vmcs_setreg(vcpu->vmcs, running, reg, val);
3413
3414 if (error == 0) {
3415 /*
3416 * If the "load EFER" VM-entry control is 1 then the
3417 * value of EFER.LMA must be identical to "IA-32e mode guest"
3418 * bit in the VM-entry control.
3419 */
3420 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3421 (reg == VM_REG_GUEST_EFER)) {
3422 vmcs_getreg(vcpu->vmcs, running,
3423 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3424 if (val & EFER_LMA)
3425 ctls |= VM_ENTRY_GUEST_LMA;
3426 else
3427 ctls &= ~VM_ENTRY_GUEST_LMA;
3428 vmcs_setreg(vcpu->vmcs, running,
3429 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3430 }
3431
3432 shadow = vmx_shadow_reg(reg);
3433 if (shadow > 0) {
3434 /*
3435 * Store the unmodified value in the shadow
3436 */
3437 error = vmcs_setreg(vcpu->vmcs, running,
3438 VMCS_IDENT(shadow), val);
3439 }
3440
3441 if (reg == VM_REG_GUEST_CR3) {
3442 /*
3443 * Invalidate the guest vcpu's TLB mappings to emulate
3444 * the behavior of updating %cr3.
3445 *
3446 * XXX the processor retains global mappings when %cr3
3447 * is updated but vmx_invvpid() does not.
3448 */
3449 pmap = vcpu->ctx.pmap;
3450 vmx_invvpid(vmx, vcpu, pmap, running);
3451 }
3452 }
3453
3454 return (error);
3455 }
3456
3457 static int
3458 vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc)
3459 {
3460 int hostcpu, running;
3461 struct vmx_vcpu *vcpu = vcpui;
3462 struct vmx *vmx = vcpu->vmx;
3463
3464 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3465 if (running && hostcpu != curcpu)
3466 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm),
3467 vcpu->vcpuid);
3468
3469 return (vmcs_getdesc(vcpu->vmcs, running, reg, desc));
3470 }
3471
3472 static int
3473 vmx_setdesc(void *vcpui, int reg, struct seg_desc *desc)
3474 {
3475 int hostcpu, running;
3476 struct vmx_vcpu *vcpu = vcpui;
3477 struct vmx *vmx = vcpu->vmx;
3478
3479 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3480 if (running && hostcpu != curcpu)
3481 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm),
3482 vcpu->vcpuid);
3483
3484 return (vmcs_setdesc(vcpu->vmcs, running, reg, desc));
3485 }
3486
3487 static int
3488 vmx_getcap(void *vcpui, int type, int *retval)
3489 {
3490 struct vmx_vcpu *vcpu = vcpui;
3491 int vcap;
3492 int ret;
3493
3494 ret = ENOENT;
3495
3496 vcap = vcpu->cap.set;
3497
3498 switch (type) {
3499 case VM_CAP_HALT_EXIT:
3500 if (cap_halt_exit)
3501 ret = 0;
3502 break;
3503 case VM_CAP_PAUSE_EXIT:
3504 if (cap_pause_exit)
3505 ret = 0;
3506 break;
3507 case VM_CAP_MTRAP_EXIT:
3508 if (cap_monitor_trap)
3509 ret = 0;
3510 break;
3511 case VM_CAP_RDPID:
3512 if (cap_rdpid)
3513 ret = 0;
3514 break;
3515 case VM_CAP_RDTSCP:
3516 if (cap_rdtscp)
3517 ret = 0;
3518 break;
3519 case VM_CAP_UNRESTRICTED_GUEST:
3520 if (cap_unrestricted_guest)
3521 ret = 0;
3522 break;
3523 case VM_CAP_ENABLE_INVPCID:
3524 if (cap_invpcid)
3525 ret = 0;
3526 break;
3527 case VM_CAP_BPT_EXIT:
3528 case VM_CAP_IPI_EXIT:
3529 ret = 0;
3530 break;
3531 default:
3532 break;
3533 }
3534
3535 if (ret == 0)
3536 *retval = (vcap & (1 << type)) ? 1 : 0;
3537
3538 return (ret);
3539 }
3540
3541 static int
3542 vmx_setcap(void *vcpui, int type, int val)
3543 {
3544 struct vmx_vcpu *vcpu = vcpui;
3545 struct vmcs *vmcs = vcpu->vmcs;
3546 struct vlapic *vlapic;
3547 uint32_t baseval;
3548 uint32_t *pptr;
3549 int error;
3550 int flag;
3551 int reg;
3552 int retval;
3553
3554 retval = ENOENT;
3555 pptr = NULL;
3556
3557 switch (type) {
3558 case VM_CAP_HALT_EXIT:
3559 if (cap_halt_exit) {
3560 retval = 0;
3561 pptr = &vcpu->cap.proc_ctls;
3562 baseval = *pptr;
3563 flag = PROCBASED_HLT_EXITING;
3564 reg = VMCS_PRI_PROC_BASED_CTLS;
3565 }
3566 break;
3567 case VM_CAP_MTRAP_EXIT:
3568 if (cap_monitor_trap) {
3569 retval = 0;
3570 pptr = &vcpu->cap.proc_ctls;
3571 baseval = *pptr;
3572 flag = PROCBASED_MTF;
3573 reg = VMCS_PRI_PROC_BASED_CTLS;
3574 }
3575 break;
3576 case VM_CAP_PAUSE_EXIT:
3577 if (cap_pause_exit) {
3578 retval = 0;
3579 pptr = &vcpu->cap.proc_ctls;
3580 baseval = *pptr;
3581 flag = PROCBASED_PAUSE_EXITING;
3582 reg = VMCS_PRI_PROC_BASED_CTLS;
3583 }
3584 break;
3585 case VM_CAP_RDPID:
3586 case VM_CAP_RDTSCP:
3587 if (cap_rdpid || cap_rdtscp)
3588 /*
3589 * Choose not to support enabling/disabling
3590 * RDPID/RDTSCP via libvmmapi since, as per the
3591 * discussion in vmx_modinit(), RDPID/RDTSCP are
3592 * either always enabled or always disabled.
3593 */
3594 error = EOPNOTSUPP;
3595 break;
3596 case VM_CAP_UNRESTRICTED_GUEST:
3597 if (cap_unrestricted_guest) {
3598 retval = 0;
3599 pptr = &vcpu->cap.proc_ctls2;
3600 baseval = *pptr;
3601 flag = PROCBASED2_UNRESTRICTED_GUEST;
3602 reg = VMCS_SEC_PROC_BASED_CTLS;
3603 }
3604 break;
3605 case VM_CAP_ENABLE_INVPCID:
3606 if (cap_invpcid) {
3607 retval = 0;
3608 pptr = &vcpu->cap.proc_ctls2;
3609 baseval = *pptr;
3610 flag = PROCBASED2_ENABLE_INVPCID;
3611 reg = VMCS_SEC_PROC_BASED_CTLS;
3612 }
3613 break;
3614 case VM_CAP_BPT_EXIT:
3615 retval = 0;
3616
3617 /* Don't change the bitmap if we are tracing all exceptions. */
3618 if (vcpu->cap.exc_bitmap != 0xffffffff) {
3619 pptr = &vcpu->cap.exc_bitmap;
3620 baseval = *pptr;
3621 flag = (1 << IDT_BP);
3622 reg = VMCS_EXCEPTION_BITMAP;
3623 }
3624 break;
3625 case VM_CAP_IPI_EXIT:
3626 retval = 0;
3627
3628 vlapic = vm_lapic(vcpu->vcpu);
3629 vlapic->ipi_exit = val;
3630 break;
3631 default:
3632 break;
3633 }
3634
3635 if (retval)
3636 return (retval);
3637
3638 if (pptr != NULL) {
3639 if (val) {
3640 baseval |= flag;
3641 } else {
3642 baseval &= ~flag;
3643 }
3644 VMPTRLD(vmcs);
3645 error = vmwrite(reg, baseval);
3646 VMCLEAR(vmcs);
3647
3648 if (error)
3649 return (error);
3650
3651 /*
3652 * Update optional stored flags, and record
3653 * setting
3654 */
3655 *pptr = baseval;
3656 }
3657
3658 if (val) {
3659 vcpu->cap.set |= (1 << type);
3660 } else {
3661 vcpu->cap.set &= ~(1 << type);
3662 }
3663
3664 return (0);
3665 }
3666
3667 static struct vmspace *
3668 vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max)
3669 {
3670 return (ept_vmspace_alloc(min, max));
3671 }
3672
3673 static void
3674 vmx_vmspace_free(struct vmspace *vmspace)
3675 {
3676 ept_vmspace_free(vmspace);
3677 }
3678
3679 struct vlapic_vtx {
3680 struct vlapic vlapic;
3681 struct pir_desc *pir_desc;
3682 struct vmx_vcpu *vcpu;
3683 u_int pending_prio;
3684 };
3685
3686 #define VPR_PRIO_BIT(vpr) (1 << ((vpr) >> 4))
3687
3688 #define VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level, msg) \
3689 do { \
3690 VLAPIC_CTR2(vlapic, msg " assert %s-triggered vector %d", \
3691 level ? "level" : "edge", vector); \
3692 VLAPIC_CTR1(vlapic, msg " pir0 0x%016lx", pir_desc->pir[0]); \
3693 VLAPIC_CTR1(vlapic, msg " pir1 0x%016lx", pir_desc->pir[1]); \
3694 VLAPIC_CTR1(vlapic, msg " pir2 0x%016lx", pir_desc->pir[2]); \
3695 VLAPIC_CTR1(vlapic, msg " pir3 0x%016lx", pir_desc->pir[3]); \
3696 VLAPIC_CTR1(vlapic, msg " notify: %s", notify ? "yes" : "no"); \
3697 } while (0)
3698
3699 /*
3700 * vlapic->ops handlers that utilize the APICv hardware assist described in
3701 * Chapter 29 of the Intel SDM.
3702 */
3703 static int
3704 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3705 {
3706 struct vlapic_vtx *vlapic_vtx;
3707 struct pir_desc *pir_desc;
3708 uint64_t mask;
3709 int idx, notify = 0;
3710
3711 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3712 pir_desc = vlapic_vtx->pir_desc;
3713
3714 /*
3715 * Keep track of interrupt requests in the PIR descriptor. This is
3716 * because the virtual APIC page pointed to by the VMCS cannot be
3717 * modified if the vcpu is running.
3718 */
3719 idx = vector / 64;
3720 mask = 1UL << (vector % 64);
3721 atomic_set_long(&pir_desc->pir[idx], mask);
3722
3723 /*
3724 * A notification is required whenever the 'pending' bit makes a
3725 * transition from 0->1.
3726 *
3727 * Even if the 'pending' bit is already asserted, notification about
3728 * the incoming interrupt may still be necessary. For example, if a
3729 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3730 * the 0->1 'pending' transition with a notification, but the vCPU
3731 * would ignore the interrupt for the time being. The same vCPU would
3732 * need to then be notified if a high-priority interrupt arrived which
3733 * satisfied the PPR.
3734 *
3735 * The priorities of interrupts injected while 'pending' is asserted
3736 * are tracked in a custom bitfield 'pending_prio'. Should the
3737 * to-be-injected interrupt exceed the priorities already present, the
3738 * notification is sent. The priorities recorded in 'pending_prio' are
3739 * cleared whenever the 'pending' bit makes another 0->1 transition.
3740 */
3741 if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3742 notify = 1;
3743 vlapic_vtx->pending_prio = 0;
3744 } else {
3745 const u_int old_prio = vlapic_vtx->pending_prio;
3746 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3747
3748 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3749 atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3750 notify = 1;
3751 }
3752 }
3753
3754 VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level,
3755 "vmx_set_intr_ready");
3756 return (notify);
3757 }
3758
3759 static int
3760 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3761 {
3762 struct vlapic_vtx *vlapic_vtx;
3763 struct pir_desc *pir_desc;
3764 struct LAPIC *lapic;
3765 uint64_t pending, pirval;
3766 uint32_t ppr, vpr;
3767 int i;
3768
3769 /*
3770 * This function is only expected to be called from the 'HLT' exit
3771 * handler which does not care about the vector that is pending.
3772 */
3773 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3774
3775 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3776 pir_desc = vlapic_vtx->pir_desc;
3777
3778 pending = atomic_load_acq_long(&pir_desc->pending);
3779 if (!pending) {
3780 /*
3781 * While a virtual interrupt may have already been
3782 * processed the actual delivery maybe pending the
3783 * interruptibility of the guest. Recognize a pending
3784 * interrupt by reevaluating virtual interrupts
3785 * following Section 29.2.1 in the Intel SDM Volume 3.
3786 */
3787 struct vm_exit *vmexit;
3788 uint8_t rvi, ppr;
3789
3790 vmexit = vm_exitinfo(vlapic->vcpu);
3791 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3792 ("vmx_pending_intr: exitcode not 'HLT'"));
3793 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3794 lapic = vlapic->apic_page;
3795 ppr = lapic->ppr & APIC_TPR_INT;
3796 if (rvi > ppr) {
3797 return (1);
3798 }
3799
3800 return (0);
3801 }
3802
3803 /*
3804 * If there is an interrupt pending then it will be recognized only
3805 * if its priority is greater than the processor priority.
3806 *
3807 * Special case: if the processor priority is zero then any pending
3808 * interrupt will be recognized.
3809 */
3810 lapic = vlapic->apic_page;
3811 ppr = lapic->ppr & APIC_TPR_INT;
3812 if (ppr == 0)
3813 return (1);
3814
3815 VLAPIC_CTR1(vlapic, "HLT with non-zero PPR %d", lapic->ppr);
3816
3817 vpr = 0;
3818 for (i = 3; i >= 0; i--) {
3819 pirval = pir_desc->pir[i];
3820 if (pirval != 0) {
3821 vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3822 break;
3823 }
3824 }
3825
3826 /*
3827 * If the highest-priority pending interrupt falls short of the
3828 * processor priority of this vCPU, ensure that 'pending_prio' does not
3829 * have any stale bits which would preclude a higher-priority interrupt
3830 * from incurring a notification later.
3831 */
3832 if (vpr <= ppr) {
3833 const u_int prio_bit = VPR_PRIO_BIT(vpr);
3834 const u_int old = vlapic_vtx->pending_prio;
3835
3836 if (old > prio_bit && (old & prio_bit) == 0) {
3837 vlapic_vtx->pending_prio = prio_bit;
3838 }
3839 return (0);
3840 }
3841 return (1);
3842 }
3843
3844 static void
3845 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3846 {
3847
3848 panic("vmx_intr_accepted: not expected to be called");
3849 }
3850
3851 static void
3852 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3853 {
3854 struct vlapic_vtx *vlapic_vtx;
3855 struct vmcs *vmcs;
3856 uint64_t mask, val;
3857
3858 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3859 KASSERT(!vcpu_is_running(vlapic->vcpu, NULL),
3860 ("vmx_set_tmr: vcpu cannot be running"));
3861
3862 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3863 vmcs = vlapic_vtx->vcpu->vmcs;
3864 mask = 1UL << (vector % 64);
3865
3866 VMPTRLD(vmcs);
3867 val = vmcs_read(VMCS_EOI_EXIT(vector));
3868 if (level)
3869 val |= mask;
3870 else
3871 val &= ~mask;
3872 vmcs_write(VMCS_EOI_EXIT(vector), val);
3873 VMCLEAR(vmcs);
3874 }
3875
3876 static void
3877 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3878 {
3879 struct vlapic_vtx *vlapic_vtx;
3880 struct vmx_vcpu *vcpu;
3881 struct vmcs *vmcs;
3882 uint32_t proc_ctls;
3883
3884 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3885 vcpu = vlapic_vtx->vcpu;
3886 vmcs = vcpu->vmcs;
3887
3888 proc_ctls = vcpu->cap.proc_ctls;
3889 proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3890 proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3891 proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3892 vcpu->cap.proc_ctls = proc_ctls;
3893
3894 VMPTRLD(vmcs);
3895 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3896 VMCLEAR(vmcs);
3897 }
3898
3899 static void
3900 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3901 {
3902 struct vlapic_vtx *vlapic_vtx;
3903 struct vmx *vmx;
3904 struct vmx_vcpu *vcpu;
3905 struct vmcs *vmcs;
3906 uint32_t proc_ctls2;
3907 int error __diagused;
3908
3909 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3910 vcpu = vlapic_vtx->vcpu;
3911 vmx = vcpu->vmx;
3912 vmcs = vcpu->vmcs;
3913
3914 proc_ctls2 = vcpu->cap.proc_ctls2;
3915 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3916 ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3917
3918 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3919 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3920 vcpu->cap.proc_ctls2 = proc_ctls2;
3921
3922 VMPTRLD(vmcs);
3923 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3924 VMCLEAR(vmcs);
3925
3926 if (vlapic->vcpuid == 0) {
3927 /*
3928 * The nested page table mappings are shared by all vcpus
3929 * so unmap the APIC access page just once.
3930 */
3931 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3932 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3933 __func__, error));
3934
3935 /*
3936 * The MSR bitmap is shared by all vcpus so modify it only
3937 * once in the context of vcpu 0.
3938 */
3939 error = vmx_allow_x2apic_msrs(vmx);
3940 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3941 __func__, error));
3942 }
3943 }
3944
3945 static void
3946 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3947 {
3948
3949 ipi_cpu(hostcpu, pirvec);
3950 }
3951
3952 /*
3953 * Transfer the pending interrupts in the PIR descriptor to the IRR
3954 * in the virtual APIC page.
3955 */
3956 static void
3957 vmx_inject_pir(struct vlapic *vlapic)
3958 {
3959 struct vlapic_vtx *vlapic_vtx;
3960 struct pir_desc *pir_desc;
3961 struct LAPIC *lapic;
3962 uint64_t val, pirval;
3963 int rvi, pirbase = -1;
3964 uint16_t intr_status_old, intr_status_new;
3965
3966 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3967 pir_desc = vlapic_vtx->pir_desc;
3968 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3969 VLAPIC_CTR0(vlapic, "vmx_inject_pir: "
3970 "no posted interrupt pending");
3971 return;
3972 }
3973
3974 pirval = 0;
3975 pirbase = -1;
3976 lapic = vlapic->apic_page;
3977
3978 val = atomic_readandclear_long(&pir_desc->pir[0]);
3979 if (val != 0) {
3980 lapic->irr0 |= val;
3981 lapic->irr1 |= val >> 32;
3982 pirbase = 0;
3983 pirval = val;
3984 }
3985
3986 val = atomic_readandclear_long(&pir_desc->pir[1]);
3987 if (val != 0) {
3988 lapic->irr2 |= val;
3989 lapic->irr3 |= val >> 32;
3990 pirbase = 64;
3991 pirval = val;
3992 }
3993
3994 val = atomic_readandclear_long(&pir_desc->pir[2]);
3995 if (val != 0) {
3996 lapic->irr4 |= val;
3997 lapic->irr5 |= val >> 32;
3998 pirbase = 128;
3999 pirval = val;
4000 }
4001
4002 val = atomic_readandclear_long(&pir_desc->pir[3]);
4003 if (val != 0) {
4004 lapic->irr6 |= val;
4005 lapic->irr7 |= val >> 32;
4006 pirbase = 192;
4007 pirval = val;
4008 }
4009
4010 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
4011
4012 /*
4013 * Update RVI so the processor can evaluate pending virtual
4014 * interrupts on VM-entry.
4015 *
4016 * It is possible for pirval to be 0 here, even though the
4017 * pending bit has been set. The scenario is:
4018 * CPU-Y is sending a posted interrupt to CPU-X, which
4019 * is running a guest and processing posted interrupts in h/w.
4020 * CPU-X will eventually exit and the state seen in s/w is
4021 * the pending bit set, but no PIR bits set.
4022 *
4023 * CPU-X CPU-Y
4024 * (vm running) (host running)
4025 * rx posted interrupt
4026 * CLEAR pending bit
4027 * SET PIR bit
4028 * READ/CLEAR PIR bits
4029 * SET pending bit
4030 * (vm exit)
4031 * pending bit set, PIR 0
4032 */
4033 if (pirval != 0) {
4034 rvi = pirbase + flsl(pirval) - 1;
4035 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
4036 intr_status_new = (intr_status_old & 0xFF00) | rvi;
4037 if (intr_status_new > intr_status_old) {
4038 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
4039 VLAPIC_CTR2(vlapic, "vmx_inject_pir: "
4040 "guest_intr_status changed from 0x%04x to 0x%04x",
4041 intr_status_old, intr_status_new);
4042 }
4043 }
4044 }
4045
4046 static struct vlapic *
4047 vmx_vlapic_init(void *vcpui)
4048 {
4049 struct vmx *vmx;
4050 struct vmx_vcpu *vcpu;
4051 struct vlapic *vlapic;
4052 struct vlapic_vtx *vlapic_vtx;
4053
4054 vcpu = vcpui;
4055 vmx = vcpu->vmx;
4056
4057 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
4058 vlapic->vm = vmx->vm;
4059 vlapic->vcpu = vcpu->vcpu;
4060 vlapic->vcpuid = vcpu->vcpuid;
4061 vlapic->apic_page = (struct LAPIC *)vcpu->apic_page;
4062
4063 vlapic_vtx = (struct vlapic_vtx *)vlapic;
4064 vlapic_vtx->pir_desc = vcpu->pir_desc;
4065 vlapic_vtx->vcpu = vcpu;
4066
4067 if (tpr_shadowing) {
4068 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
4069 }
4070
4071 if (virtual_interrupt_delivery) {
4072 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
4073 vlapic->ops.pending_intr = vmx_pending_intr;
4074 vlapic->ops.intr_accepted = vmx_intr_accepted;
4075 vlapic->ops.set_tmr = vmx_set_tmr;
4076 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
4077 }
4078
4079 if (posted_interrupts)
4080 vlapic->ops.post_intr = vmx_post_intr;
4081
4082 vlapic_init(vlapic);
4083
4084 return (vlapic);
4085 }
4086
4087 static void
4088 vmx_vlapic_cleanup(struct vlapic *vlapic)
4089 {
4090
4091 vlapic_cleanup(vlapic);
4092 free(vlapic, M_VLAPIC);
4093 }
4094
4095 #ifdef BHYVE_SNAPSHOT
4096 static int
4097 vmx_snapshot(void *vmi, struct vm_snapshot_meta *meta)
4098 {
4099 return (0);
4100 }
4101
4102 static int
4103 vmx_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
4104 {
4105 struct vmcs *vmcs;
4106 struct vmx *vmx;
4107 struct vmx_vcpu *vcpu;
4108 struct vmxctx *vmxctx;
4109 int err, run, hostcpu;
4110
4111 err = 0;
4112 vcpu = vcpui;
4113 vmx = vcpu->vmx;
4114 vmcs = vcpu->vmcs;
4115
4116 run = vcpu_is_running(vcpu->vcpu, &hostcpu);
4117 if (run && hostcpu != curcpu) {
4118 printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
4119 vcpu->vcpuid);
4120 return (EINVAL);
4121 }
4122
4123 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
4124 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
4125 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
4126 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
4127 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
4128 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
4129 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
4130
4131 /* Guest segments */
4132 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
4133 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
4134
4135 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
4136 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
4137
4138 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
4139 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
4140
4141 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
4142 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
4143
4144 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
4145 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
4146
4147 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
4148 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
4149
4150 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
4151 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
4152
4153 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
4154 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
4155
4156 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
4157
4158 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
4159 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
4160
4161 /* Guest page tables */
4162 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
4163 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
4164 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
4165 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
4166
4167 /* Other guest state */
4168 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
4169 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4170 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4171 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4172 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4173 err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4174 err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4175 if (err != 0)
4176 goto done;
4177
4178 SNAPSHOT_BUF_OR_LEAVE(vcpu->guest_msrs,
4179 sizeof(vcpu->guest_msrs), meta, err, done);
4180
4181 vmxctx = &vcpu->ctx;
4182 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, err, done);
4183 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, err, done);
4184 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, err, done);
4185 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, err, done);
4186 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, err, done);
4187 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, err, done);
4188 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, err, done);
4189 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, err, done);
4190 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, err, done);
4191 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, err, done);
4192 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, err, done);
4193 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, err, done);
4194 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, err, done);
4195 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, err, done);
4196 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, err, done);
4197 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, err, done);
4198 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, err, done);
4199 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, err, done);
4200 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, err, done);
4201 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, err, done);
4202 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, err, done);
4203
4204 done:
4205 return (err);
4206 }
4207
4208 static int
4209 vmx_restore_tsc(void *vcpui, uint64_t offset)
4210 {
4211 struct vmx_vcpu *vcpu = vcpui;
4212 struct vmcs *vmcs;
4213 struct vmx *vmx;
4214 int error, running, hostcpu;
4215
4216 vmx = vcpu->vmx;
4217 vmcs = vcpu->vmcs;
4218
4219 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
4220 if (running && hostcpu != curcpu) {
4221 printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
4222 vcpu->vcpuid);
4223 return (EINVAL);
4224 }
4225
4226 if (!running)
4227 VMPTRLD(vmcs);
4228
4229 error = vmx_set_tsc_offset(vcpu, offset);
4230
4231 if (!running)
4232 VMCLEAR(vmcs);
4233 return (error);
4234 }
4235 #endif
4236
4237 const struct vmm_ops vmm_ops_intel = {
4238 .modinit = vmx_modinit,
4239 .modcleanup = vmx_modcleanup,
4240 .modresume = vmx_modresume,
4241 .init = vmx_init,
4242 .run = vmx_run,
4243 .cleanup = vmx_cleanup,
4244 .vcpu_init = vmx_vcpu_init,
4245 .vcpu_cleanup = vmx_vcpu_cleanup,
4246 .getreg = vmx_getreg,
4247 .setreg = vmx_setreg,
4248 .getdesc = vmx_getdesc,
4249 .setdesc = vmx_setdesc,
4250 .getcap = vmx_getcap,
4251 .setcap = vmx_setcap,
4252 .vmspace_alloc = vmx_vmspace_alloc,
4253 .vmspace_free = vmx_vmspace_free,
4254 .vlapic_init = vmx_vlapic_init,
4255 .vlapic_cleanup = vmx_vlapic_cleanup,
4256 #ifdef BHYVE_SNAPSHOT
4257 .snapshot = vmx_snapshot,
4258 .vcpu_snapshot = vmx_vcpu_snapshot,
4259 .restore_tsc = vmx_restore_tsc,
4260 #endif
4261 };
Cache object: 97bcaedff03dba04135d65420a089912
|