The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/vmm/intel/vmx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2011 NetApp, Inc.
    5  * All rights reserved.
    6  * Copyright (c) 2018 Joyent, Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD$
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_bhyve_snapshot.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/smp.h>
   40 #include <sys/kernel.h>
   41 #include <sys/malloc.h>
   42 #include <sys/pcpu.h>
   43 #include <sys/proc.h>
   44 #include <sys/reg.h>
   45 #include <sys/smr.h>
   46 #include <sys/sysctl.h>
   47 
   48 #include <vm/vm.h>
   49 #include <vm/pmap.h>
   50 
   51 #include <machine/psl.h>
   52 #include <machine/cpufunc.h>
   53 #include <machine/md_var.h>
   54 #include <machine/segments.h>
   55 #include <machine/smp.h>
   56 #include <machine/specialreg.h>
   57 #include <machine/vmparam.h>
   58 
   59 #include <machine/vmm.h>
   60 #include <machine/vmm_dev.h>
   61 #include <machine/vmm_instruction_emul.h>
   62 #include <machine/vmm_snapshot.h>
   63 
   64 #include "vmm_lapic.h"
   65 #include "vmm_host.h"
   66 #include "vmm_ioport.h"
   67 #include "vmm_ktr.h"
   68 #include "vmm_stat.h"
   69 #include "vatpic.h"
   70 #include "vlapic.h"
   71 #include "vlapic_priv.h"
   72 
   73 #include "ept.h"
   74 #include "vmx_cpufunc.h"
   75 #include "vmx.h"
   76 #include "vmx_msr.h"
   77 #include "x86.h"
   78 #include "vmx_controls.h"
   79 
   80 #define PINBASED_CTLS_ONE_SETTING                                       \
   81         (PINBASED_EXTINT_EXITING        |                               \
   82          PINBASED_NMI_EXITING           |                               \
   83          PINBASED_VIRTUAL_NMI)
   84 #define PINBASED_CTLS_ZERO_SETTING      0
   85 
   86 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
   87         (PROCBASED_INT_WINDOW_EXITING   |                               \
   88          PROCBASED_NMI_WINDOW_EXITING)
   89 
   90 #define PROCBASED_CTLS_ONE_SETTING                                      \
   91         (PROCBASED_SECONDARY_CONTROLS   |                               \
   92          PROCBASED_MWAIT_EXITING        |                               \
   93          PROCBASED_MONITOR_EXITING      |                               \
   94          PROCBASED_IO_EXITING           |                               \
   95          PROCBASED_MSR_BITMAPS          |                               \
   96          PROCBASED_CTLS_WINDOW_SETTING  |                               \
   97          PROCBASED_CR8_LOAD_EXITING     |                               \
   98          PROCBASED_CR8_STORE_EXITING)
   99 #define PROCBASED_CTLS_ZERO_SETTING     \
  100         (PROCBASED_CR3_LOAD_EXITING |   \
  101         PROCBASED_CR3_STORE_EXITING |   \
  102         PROCBASED_IO_BITMAPS)
  103 
  104 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
  105 #define PROCBASED_CTLS2_ZERO_SETTING    0
  106 
  107 #define VM_EXIT_CTLS_ONE_SETTING                                        \
  108         (VM_EXIT_SAVE_DEBUG_CONTROLS            |                       \
  109         VM_EXIT_HOST_LMA                        |                       \
  110         VM_EXIT_SAVE_EFER                       |                       \
  111         VM_EXIT_LOAD_EFER                       |                       \
  112         VM_EXIT_ACKNOWLEDGE_INTERRUPT)
  113 
  114 #define VM_EXIT_CTLS_ZERO_SETTING       0
  115 
  116 #define VM_ENTRY_CTLS_ONE_SETTING                                       \
  117         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
  118         VM_ENTRY_LOAD_EFER)
  119 
  120 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
  121         (VM_ENTRY_INTO_SMM                      |                       \
  122         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
  123 
  124 #define HANDLED         1
  125 #define UNHANDLED       0
  126 
  127 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
  128 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
  129 
  130 bool vmx_have_msr_tsc_aux;
  131 
  132 SYSCTL_DECL(_hw_vmm);
  133 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
  134     NULL);
  135 
  136 int vmxon_enabled[MAXCPU];
  137 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
  138 
  139 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
  140 static uint32_t exit_ctls, entry_ctls;
  141 
  142 static uint64_t cr0_ones_mask, cr0_zeros_mask;
  143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
  144              &cr0_ones_mask, 0, NULL);
  145 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
  146              &cr0_zeros_mask, 0, NULL);
  147 
  148 static uint64_t cr4_ones_mask, cr4_zeros_mask;
  149 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
  150              &cr4_ones_mask, 0, NULL);
  151 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
  152              &cr4_zeros_mask, 0, NULL);
  153 
  154 static int vmx_initialized;
  155 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
  156            &vmx_initialized, 0, "Intel VMX initialized");
  157 
  158 /*
  159  * Optional capabilities
  160  */
  161 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
  162     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
  163     NULL);
  164 
  165 static int cap_halt_exit;
  166 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
  167     "HLT triggers a VM-exit");
  168 
  169 static int cap_pause_exit;
  170 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
  171     0, "PAUSE triggers a VM-exit");
  172 
  173 static int cap_wbinvd_exit;
  174 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, wbinvd_exit, CTLFLAG_RD, &cap_wbinvd_exit,
  175     0, "WBINVD triggers a VM-exit");
  176 
  177 static int cap_rdpid;
  178 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
  179     "Guests are allowed to use RDPID");
  180 
  181 static int cap_rdtscp;
  182 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
  183     "Guests are allowed to use RDTSCP");
  184 
  185 static int cap_unrestricted_guest;
  186 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
  187     &cap_unrestricted_guest, 0, "Unrestricted guests");
  188 
  189 static int cap_monitor_trap;
  190 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
  191     &cap_monitor_trap, 0, "Monitor trap flag");
  192 
  193 static int cap_invpcid;
  194 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
  195     0, "Guests are allowed to use INVPCID");
  196 
  197 static int tpr_shadowing;
  198 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD,
  199     &tpr_shadowing, 0, "TPR shadowing support");
  200 
  201 static int virtual_interrupt_delivery;
  202 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
  203     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
  204 
  205 static int posted_interrupts;
  206 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
  207     &posted_interrupts, 0, "APICv posted interrupt support");
  208 
  209 static int pirvec = -1;
  210 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
  211     &pirvec, 0, "APICv posted interrupt vector");
  212 
  213 static struct unrhdr *vpid_unr;
  214 static u_int vpid_alloc_failed;
  215 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
  216             &vpid_alloc_failed, 0, NULL);
  217 
  218 int guest_l1d_flush;
  219 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
  220     &guest_l1d_flush, 0, NULL);
  221 int guest_l1d_flush_sw;
  222 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
  223     &guest_l1d_flush_sw, 0, NULL);
  224 
  225 static struct msr_entry msr_load_list[1] __aligned(16);
  226 
  227 /*
  228  * The definitions of SDT probes for VMX.
  229  */
  230 
  231 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
  232     "struct vmx *", "int", "struct vm_exit *");
  233 
  234 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
  235     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
  236 
  237 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
  238     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
  239 
  240 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
  241     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
  242 
  243 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
  244     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
  245 
  246 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
  247     "struct vmx *", "int", "struct vm_exit *");
  248 
  249 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
  250     "struct vmx *", "int", "struct vm_exit *");
  251 
  252 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
  253     "struct vmx *", "int", "struct vm_exit *");
  254 
  255 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
  256     "struct vmx *", "int", "struct vm_exit *");
  257 
  258 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
  259     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
  260 
  261 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
  262     "struct vmx *", "int", "struct vm_exit *");
  263 
  264 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
  265     "struct vmx *", "int", "struct vm_exit *");
  266 
  267 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
  268     "struct vmx *", "int", "struct vm_exit *");
  269 
  270 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
  271     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
  272 
  273 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
  274     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
  275 
  276 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
  277     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
  278 
  279 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
  280     "struct vmx *", "int", "struct vm_exit *");
  281 
  282 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
  283     "struct vmx *", "int", "struct vm_exit *");
  284 
  285 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
  286     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
  287 
  288 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
  289     "struct vmx *", "int", "struct vm_exit *");
  290 
  291 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
  292     "struct vmx *", "int", "struct vm_exit *");
  293 
  294 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
  295     "struct vmx *", "int", "struct vm_exit *");
  296 
  297 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
  298     "struct vmx *", "int", "struct vm_exit *");
  299 
  300 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
  301     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
  302 
  303 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
  304     "struct vmx *", "int", "struct vm_exit *", "int");
  305 
  306 /*
  307  * Use the last page below 4GB as the APIC access address. This address is
  308  * occupied by the boot firmware so it is guaranteed that it will not conflict
  309  * with a page in system memory.
  310  */
  311 #define APIC_ACCESS_ADDRESS     0xFFFFF000
  312 
  313 static int vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc);
  314 static int vmx_getreg(void *vcpui, int reg, uint64_t *retval);
  315 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
  316 static void vmx_inject_pir(struct vlapic *vlapic);
  317 #ifdef BHYVE_SNAPSHOT
  318 static int vmx_restore_tsc(void *vcpui, uint64_t now);
  319 #endif
  320 
  321 static inline bool
  322 host_has_rdpid(void)
  323 {
  324         return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
  325 }
  326 
  327 static inline bool
  328 host_has_rdtscp(void)
  329 {
  330         return ((amd_feature & AMDID_RDTSCP) != 0);
  331 }
  332 
  333 #ifdef KTR
  334 static const char *
  335 exit_reason_to_str(int reason)
  336 {
  337         static char reasonbuf[32];
  338 
  339         switch (reason) {
  340         case EXIT_REASON_EXCEPTION:
  341                 return "exception";
  342         case EXIT_REASON_EXT_INTR:
  343                 return "extint";
  344         case EXIT_REASON_TRIPLE_FAULT:
  345                 return "triplefault";
  346         case EXIT_REASON_INIT:
  347                 return "init";
  348         case EXIT_REASON_SIPI:
  349                 return "sipi";
  350         case EXIT_REASON_IO_SMI:
  351                 return "iosmi";
  352         case EXIT_REASON_SMI:
  353                 return "smi";
  354         case EXIT_REASON_INTR_WINDOW:
  355                 return "intrwindow";
  356         case EXIT_REASON_NMI_WINDOW:
  357                 return "nmiwindow";
  358         case EXIT_REASON_TASK_SWITCH:
  359                 return "taskswitch";
  360         case EXIT_REASON_CPUID:
  361                 return "cpuid";
  362         case EXIT_REASON_GETSEC:
  363                 return "getsec";
  364         case EXIT_REASON_HLT:
  365                 return "hlt";
  366         case EXIT_REASON_INVD:
  367                 return "invd";
  368         case EXIT_REASON_INVLPG:
  369                 return "invlpg";
  370         case EXIT_REASON_RDPMC:
  371                 return "rdpmc";
  372         case EXIT_REASON_RDTSC:
  373                 return "rdtsc";
  374         case EXIT_REASON_RSM:
  375                 return "rsm";
  376         case EXIT_REASON_VMCALL:
  377                 return "vmcall";
  378         case EXIT_REASON_VMCLEAR:
  379                 return "vmclear";
  380         case EXIT_REASON_VMLAUNCH:
  381                 return "vmlaunch";
  382         case EXIT_REASON_VMPTRLD:
  383                 return "vmptrld";
  384         case EXIT_REASON_VMPTRST:
  385                 return "vmptrst";
  386         case EXIT_REASON_VMREAD:
  387                 return "vmread";
  388         case EXIT_REASON_VMRESUME:
  389                 return "vmresume";
  390         case EXIT_REASON_VMWRITE:
  391                 return "vmwrite";
  392         case EXIT_REASON_VMXOFF:
  393                 return "vmxoff";
  394         case EXIT_REASON_VMXON:
  395                 return "vmxon";
  396         case EXIT_REASON_CR_ACCESS:
  397                 return "craccess";
  398         case EXIT_REASON_DR_ACCESS:
  399                 return "draccess";
  400         case EXIT_REASON_INOUT:
  401                 return "inout";
  402         case EXIT_REASON_RDMSR:
  403                 return "rdmsr";
  404         case EXIT_REASON_WRMSR:
  405                 return "wrmsr";
  406         case EXIT_REASON_INVAL_VMCS:
  407                 return "invalvmcs";
  408         case EXIT_REASON_INVAL_MSR:
  409                 return "invalmsr";
  410         case EXIT_REASON_MWAIT:
  411                 return "mwait";
  412         case EXIT_REASON_MTF:
  413                 return "mtf";
  414         case EXIT_REASON_MONITOR:
  415                 return "monitor";
  416         case EXIT_REASON_PAUSE:
  417                 return "pause";
  418         case EXIT_REASON_MCE_DURING_ENTRY:
  419                 return "mce-during-entry";
  420         case EXIT_REASON_TPR:
  421                 return "tpr";
  422         case EXIT_REASON_APIC_ACCESS:
  423                 return "apic-access";
  424         case EXIT_REASON_GDTR_IDTR:
  425                 return "gdtridtr";
  426         case EXIT_REASON_LDTR_TR:
  427                 return "ldtrtr";
  428         case EXIT_REASON_EPT_FAULT:
  429                 return "eptfault";
  430         case EXIT_REASON_EPT_MISCONFIG:
  431                 return "eptmisconfig";
  432         case EXIT_REASON_INVEPT:
  433                 return "invept";
  434         case EXIT_REASON_RDTSCP:
  435                 return "rdtscp";
  436         case EXIT_REASON_VMX_PREEMPT:
  437                 return "vmxpreempt";
  438         case EXIT_REASON_INVVPID:
  439                 return "invvpid";
  440         case EXIT_REASON_WBINVD:
  441                 return "wbinvd";
  442         case EXIT_REASON_XSETBV:
  443                 return "xsetbv";
  444         case EXIT_REASON_APIC_WRITE:
  445                 return "apic-write";
  446         default:
  447                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
  448                 return (reasonbuf);
  449         }
  450 }
  451 #endif  /* KTR */
  452 
  453 static int
  454 vmx_allow_x2apic_msrs(struct vmx *vmx)
  455 {
  456         int i, error;
  457 
  458         error = 0;
  459 
  460         /*
  461          * Allow readonly access to the following x2APIC MSRs from the guest.
  462          */
  463         error += guest_msr_ro(vmx, MSR_APIC_ID);
  464         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
  465         error += guest_msr_ro(vmx, MSR_APIC_LDR);
  466         error += guest_msr_ro(vmx, MSR_APIC_SVR);
  467 
  468         for (i = 0; i < 8; i++)
  469                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
  470 
  471         for (i = 0; i < 8; i++)
  472                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
  473 
  474         for (i = 0; i < 8; i++)
  475                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
  476 
  477         error += guest_msr_ro(vmx, MSR_APIC_ESR);
  478         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
  479         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
  480         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
  481         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
  482         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
  483         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
  484         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
  485         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
  486         error += guest_msr_ro(vmx, MSR_APIC_ICR);
  487 
  488         /*
  489          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
  490          *
  491          * These registers get special treatment described in the section
  492          * "Virtualizing MSR-Based APIC Accesses".
  493          */
  494         error += guest_msr_rw(vmx, MSR_APIC_TPR);
  495         error += guest_msr_rw(vmx, MSR_APIC_EOI);
  496         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
  497 
  498         return (error);
  499 }
  500 
  501 u_long
  502 vmx_fix_cr0(u_long cr0)
  503 {
  504 
  505         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
  506 }
  507 
  508 u_long
  509 vmx_fix_cr4(u_long cr4)
  510 {
  511 
  512         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
  513 }
  514 
  515 static void
  516 vpid_free(int vpid)
  517 {
  518         if (vpid < 0 || vpid > 0xffff)
  519                 panic("vpid_free: invalid vpid %d", vpid);
  520 
  521         /*
  522          * VPIDs [0,vm_maxcpu] are special and are not allocated from
  523          * the unit number allocator.
  524          */
  525 
  526         if (vpid > vm_maxcpu)
  527                 free_unr(vpid_unr, vpid);
  528 }
  529 
  530 static uint16_t
  531 vpid_alloc(int vcpuid)
  532 {
  533         int x;
  534 
  535         /*
  536          * If the "enable vpid" execution control is not enabled then the
  537          * VPID is required to be 0 for all vcpus.
  538          */
  539         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0)
  540                 return (0);
  541 
  542         /*
  543          * Try to allocate a unique VPID for each from the unit number
  544          * allocator.
  545          */
  546         x = alloc_unr(vpid_unr);
  547 
  548         if (x == -1) {
  549                 atomic_add_int(&vpid_alloc_failed, 1);
  550 
  551                 /*
  552                  * If the unit number allocator does not have enough unique
  553                  * VPIDs then we need to allocate from the [1,vm_maxcpu] range.
  554                  *
  555                  * These VPIDs are not be unique across VMs but this does not
  556                  * affect correctness because the combined mappings are also
  557                  * tagged with the EP4TA which is unique for each VM.
  558                  *
  559                  * It is still sub-optimal because the invvpid will invalidate
  560                  * combined mappings for a particular VPID across all EP4TAs.
  561                  */
  562                 return (vcpuid + 1);
  563         }
  564 
  565         return (x);
  566 }
  567 
  568 static void
  569 vpid_init(void)
  570 {
  571         /*
  572          * VPID 0 is required when the "enable VPID" execution control is
  573          * disabled.
  574          *
  575          * VPIDs [1,vm_maxcpu] are used as the "overflow namespace" when the
  576          * unit number allocator does not have sufficient unique VPIDs to
  577          * satisfy the allocation.
  578          *
  579          * The remaining VPIDs are managed by the unit number allocator.
  580          */
  581         vpid_unr = new_unrhdr(vm_maxcpu + 1, 0xffff, NULL);
  582 }
  583 
  584 static void
  585 vmx_disable(void *arg __unused)
  586 {
  587         struct invvpid_desc invvpid_desc = { 0 };
  588         struct invept_desc invept_desc = { 0 };
  589 
  590         if (vmxon_enabled[curcpu]) {
  591                 /*
  592                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
  593                  *
  594                  * VMXON or VMXOFF are not required to invalidate any TLB
  595                  * caching structures. This prevents potential retention of
  596                  * cached information in the TLB between distinct VMX episodes.
  597                  */
  598                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
  599                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
  600                 vmxoff();
  601         }
  602         load_cr4(rcr4() & ~CR4_VMXE);
  603 }
  604 
  605 static int
  606 vmx_modcleanup(void)
  607 {
  608 
  609         if (pirvec >= 0)
  610                 lapic_ipi_free(pirvec);
  611 
  612         if (vpid_unr != NULL) {
  613                 delete_unrhdr(vpid_unr);
  614                 vpid_unr = NULL;
  615         }
  616 
  617         if (nmi_flush_l1d_sw == 1)
  618                 nmi_flush_l1d_sw = 0;
  619 
  620         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
  621 
  622         return (0);
  623 }
  624 
  625 static void
  626 vmx_enable(void *arg __unused)
  627 {
  628         int error;
  629         uint64_t feature_control;
  630 
  631         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
  632         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
  633             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
  634                 wrmsr(MSR_IA32_FEATURE_CONTROL,
  635                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
  636                     IA32_FEATURE_CONTROL_LOCK);
  637         }
  638 
  639         load_cr4(rcr4() | CR4_VMXE);
  640 
  641         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
  642         error = vmxon(vmxon_region[curcpu]);
  643         if (error == 0)
  644                 vmxon_enabled[curcpu] = 1;
  645 }
  646 
  647 static void
  648 vmx_modresume(void)
  649 {
  650 
  651         if (vmxon_enabled[curcpu])
  652                 vmxon(vmxon_region[curcpu]);
  653 }
  654 
  655 static int
  656 vmx_modinit(int ipinum)
  657 {
  658         int error;
  659         uint64_t basic, fixed0, fixed1, feature_control;
  660         uint32_t tmp, procbased2_vid_bits;
  661 
  662         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
  663         if (!(cpu_feature2 & CPUID2_VMX)) {
  664                 printf("vmx_modinit: processor does not support VMX "
  665                     "operation\n");
  666                 return (ENXIO);
  667         }
  668 
  669         /*
  670          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
  671          * are set (bits 0 and 2 respectively).
  672          */
  673         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
  674         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
  675             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
  676                 printf("vmx_modinit: VMX operation disabled by BIOS\n");
  677                 return (ENXIO);
  678         }
  679 
  680         /*
  681          * Verify capabilities MSR_VMX_BASIC:
  682          * - bit 54 indicates support for INS/OUTS decoding
  683          */
  684         basic = rdmsr(MSR_VMX_BASIC);
  685         if ((basic & (1UL << 54)) == 0) {
  686                 printf("vmx_modinit: processor does not support desired basic "
  687                     "capabilities\n");
  688                 return (EINVAL);
  689         }
  690 
  691         /* Check support for primary processor-based VM-execution controls */
  692         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
  693                                MSR_VMX_TRUE_PROCBASED_CTLS,
  694                                PROCBASED_CTLS_ONE_SETTING,
  695                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
  696         if (error) {
  697                 printf("vmx_modinit: processor does not support desired "
  698                     "primary processor-based controls\n");
  699                 return (error);
  700         }
  701 
  702         /* Clear the processor-based ctl bits that are set on demand */
  703         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
  704 
  705         /* Check support for secondary processor-based VM-execution controls */
  706         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
  707                                MSR_VMX_PROCBASED_CTLS2,
  708                                PROCBASED_CTLS2_ONE_SETTING,
  709                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
  710         if (error) {
  711                 printf("vmx_modinit: processor does not support desired "
  712                     "secondary processor-based controls\n");
  713                 return (error);
  714         }
  715 
  716         /* Check support for VPID */
  717         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
  718                                PROCBASED2_ENABLE_VPID, 0, &tmp);
  719         if (error == 0)
  720                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
  721 
  722         /* Check support for pin-based VM-execution controls */
  723         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
  724                                MSR_VMX_TRUE_PINBASED_CTLS,
  725                                PINBASED_CTLS_ONE_SETTING,
  726                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
  727         if (error) {
  728                 printf("vmx_modinit: processor does not support desired "
  729                     "pin-based controls\n");
  730                 return (error);
  731         }
  732 
  733         /* Check support for VM-exit controls */
  734         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
  735                                VM_EXIT_CTLS_ONE_SETTING,
  736                                VM_EXIT_CTLS_ZERO_SETTING,
  737                                &exit_ctls);
  738         if (error) {
  739                 printf("vmx_modinit: processor does not support desired "
  740                     "exit controls\n");
  741                 return (error);
  742         }
  743 
  744         /* Check support for VM-entry controls */
  745         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
  746             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
  747             &entry_ctls);
  748         if (error) {
  749                 printf("vmx_modinit: processor does not support desired "
  750                     "entry controls\n");
  751                 return (error);
  752         }
  753 
  754         /*
  755          * Check support for optional features by testing them
  756          * as individual bits
  757          */
  758         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
  759                                         MSR_VMX_TRUE_PROCBASED_CTLS,
  760                                         PROCBASED_HLT_EXITING, 0,
  761                                         &tmp) == 0);
  762 
  763         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
  764                                         MSR_VMX_PROCBASED_CTLS,
  765                                         PROCBASED_MTF, 0,
  766                                         &tmp) == 0);
  767 
  768         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
  769                                          MSR_VMX_TRUE_PROCBASED_CTLS,
  770                                          PROCBASED_PAUSE_EXITING, 0,
  771                                          &tmp) == 0);
  772 
  773         cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
  774                                         MSR_VMX_PROCBASED_CTLS2,
  775                                         PROCBASED2_WBINVD_EXITING,
  776                                         0,
  777                                         &tmp) == 0);
  778 
  779         /*
  780          * Check support for RDPID and/or RDTSCP.
  781          *
  782          * Support a pass-through-based implementation of these via the
  783          * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
  784          * VM-execution control.
  785          *
  786          * The "enable RDTSCP" VM-execution control applies to both RDPID
  787          * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
  788          * Instruction Behavior in VMX Non-root operation"); this is why
  789          * only this VM-execution control needs to be enabled in order to
  790          * enable passing through whichever of RDPID and/or RDTSCP are
  791          * supported by the host.
  792          *
  793          * The "RDTSC exiting" VM-execution control applies to both RDTSC
  794          * and RDTSCP (again, per SDM volume 3, section 25.3), and is
  795          * already set up for RDTSC and RDTSCP pass-through by the current
  796          * implementation of RDTSC.
  797          *
  798          * Although RDPID and RDTSCP are optional capabilities, since there
  799          * does not currently seem to be a use case for enabling/disabling
  800          * these via libvmmapi, choose not to support this and, instead,
  801          * just statically always enable or always disable this support
  802          * across all vCPUs on all VMs. (Note that there may be some
  803          * complications to providing this functionality, e.g., the MSR
  804          * bitmap is currently per-VM rather than per-vCPU while the
  805          * capability API wants to be able to control capabilities on a
  806          * per-vCPU basis).
  807          */
  808         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
  809                                MSR_VMX_PROCBASED_CTLS2,
  810                                PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
  811         cap_rdpid = error == 0 && host_has_rdpid();
  812         cap_rdtscp = error == 0 && host_has_rdtscp();
  813         if (cap_rdpid || cap_rdtscp) {
  814                 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
  815                 vmx_have_msr_tsc_aux = true;
  816         }
  817 
  818         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
  819                                         MSR_VMX_PROCBASED_CTLS2,
  820                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
  821                                         &tmp) == 0);
  822 
  823         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
  824             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
  825             &tmp) == 0);
  826 
  827         /*
  828          * Check support for TPR shadow.
  829          */
  830         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
  831             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
  832             &tmp);
  833         if (error == 0) {
  834                 tpr_shadowing = 1;
  835                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
  836                     &tpr_shadowing);
  837         }
  838 
  839         if (tpr_shadowing) {
  840                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
  841                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
  842                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
  843         }
  844 
  845         /*
  846          * Check support for virtual interrupt delivery.
  847          */
  848         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
  849             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
  850             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
  851             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
  852 
  853         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
  854             procbased2_vid_bits, 0, &tmp);
  855         if (error == 0 && tpr_shadowing) {
  856                 virtual_interrupt_delivery = 1;
  857                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
  858                     &virtual_interrupt_delivery);
  859         }
  860 
  861         if (virtual_interrupt_delivery) {
  862                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
  863                 procbased_ctls2 |= procbased2_vid_bits;
  864                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
  865 
  866                 /*
  867                  * Check for Posted Interrupts only if Virtual Interrupt
  868                  * Delivery is enabled.
  869                  */
  870                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
  871                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
  872                     &tmp);
  873                 if (error == 0) {
  874                         pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
  875                             &IDTVEC(justreturn));
  876                         if (pirvec < 0) {
  877                                 if (bootverbose) {
  878                                         printf("vmx_modinit: unable to "
  879                                             "allocate posted interrupt "
  880                                             "vector\n");
  881                                 }
  882                         } else {
  883                                 posted_interrupts = 1;
  884                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
  885                                     &posted_interrupts);
  886                         }
  887                 }
  888         }
  889 
  890         if (posted_interrupts)
  891                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
  892 
  893         /* Initialize EPT */
  894         error = ept_init(ipinum);
  895         if (error) {
  896                 printf("vmx_modinit: ept initialization failed (%d)\n", error);
  897                 return (error);
  898         }
  899 
  900         guest_l1d_flush = (cpu_ia32_arch_caps &
  901             IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
  902         TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
  903 
  904         /*
  905          * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
  906          * available.  Otherwise fall back to the software flush
  907          * method which loads enough data from the kernel text to
  908          * flush existing L1D content, both on VMX entry and on NMI
  909          * return.
  910          */
  911         if (guest_l1d_flush) {
  912                 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
  913                         guest_l1d_flush_sw = 1;
  914                         TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
  915                             &guest_l1d_flush_sw);
  916                 }
  917                 if (guest_l1d_flush_sw) {
  918                         if (nmi_flush_l1d_sw <= 1)
  919                                 nmi_flush_l1d_sw = 1;
  920                 } else {
  921                         msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
  922                         msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
  923                 }
  924         }
  925 
  926         /*
  927          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
  928          */
  929         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
  930         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
  931         cr0_ones_mask = fixed0 & fixed1;
  932         cr0_zeros_mask = ~fixed0 & ~fixed1;
  933 
  934         /*
  935          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
  936          * if unrestricted guest execution is allowed.
  937          */
  938         if (cap_unrestricted_guest)
  939                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
  940 
  941         /*
  942          * Do not allow the guest to set CR0_NW or CR0_CD.
  943          */
  944         cr0_zeros_mask |= (CR0_NW | CR0_CD);
  945 
  946         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
  947         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
  948         cr4_ones_mask = fixed0 & fixed1;
  949         cr4_zeros_mask = ~fixed0 & ~fixed1;
  950 
  951         vpid_init();
  952 
  953         vmx_msr_init();
  954 
  955         /* enable VMX operation */
  956         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
  957 
  958         vmx_initialized = 1;
  959 
  960         return (0);
  961 }
  962 
  963 static void
  964 vmx_trigger_hostintr(int vector)
  965 {
  966         uintptr_t func;
  967         struct gate_descriptor *gd;
  968 
  969         gd = &idt[vector];
  970 
  971         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
  972             "invalid vector %d", vector));
  973         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
  974             vector));
  975         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
  976             "has invalid type %d", vector, gd->gd_type));
  977         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
  978             "has invalid dpl %d", vector, gd->gd_dpl));
  979         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
  980             "for vector %d has invalid selector %d", vector, gd->gd_selector));
  981         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
  982             "IST %d", vector, gd->gd_ist));
  983 
  984         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
  985         vmx_call_isr(func);
  986 }
  987 
  988 static int
  989 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
  990 {
  991         int error, mask_ident, shadow_ident;
  992         uint64_t mask_value;
  993 
  994         if (which != 0 && which != 4)
  995                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
  996 
  997         if (which == 0) {
  998                 mask_ident = VMCS_CR0_MASK;
  999                 mask_value = cr0_ones_mask | cr0_zeros_mask;
 1000                 shadow_ident = VMCS_CR0_SHADOW;
 1001         } else {
 1002                 mask_ident = VMCS_CR4_MASK;
 1003                 mask_value = cr4_ones_mask | cr4_zeros_mask;
 1004                 shadow_ident = VMCS_CR4_SHADOW;
 1005         }
 1006 
 1007         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
 1008         if (error)
 1009                 return (error);
 1010 
 1011         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
 1012         if (error)
 1013                 return (error);
 1014 
 1015         return (0);
 1016 }
 1017 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
 1018 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
 1019 
 1020 static void *
 1021 vmx_init(struct vm *vm, pmap_t pmap)
 1022 {
 1023         int error __diagused;
 1024         struct vmx *vmx;
 1025 
 1026         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
 1027         vmx->vm = vm;
 1028 
 1029         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
 1030 
 1031         /*
 1032          * Clean up EPTP-tagged guest physical and combined mappings
 1033          *
 1034          * VMX transitions are not required to invalidate any guest physical
 1035          * mappings. So, it may be possible for stale guest physical mappings
 1036          * to be present in the processor TLBs.
 1037          *
 1038          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
 1039          */
 1040         ept_invalidate_mappings(vmx->eptp);
 1041 
 1042         vmx->msr_bitmap = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
 1043             M_WAITOK | M_ZERO);
 1044         msr_bitmap_initialize(vmx->msr_bitmap);
 1045 
 1046         /*
 1047          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
 1048          * The guest FSBASE and GSBASE are saved and restored during
 1049          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
 1050          * always restored from the vmcs host state area on vm-exit.
 1051          *
 1052          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
 1053          * how they are saved/restored so can be directly accessed by the
 1054          * guest.
 1055          *
 1056          * MSR_EFER is saved and restored in the guest VMCS area on a
 1057          * VM exit and entry respectively. It is also restored from the
 1058          * host VMCS area on a VM exit.
 1059          *
 1060          * The TSC MSR is exposed read-only. Writes are disallowed as
 1061          * that will impact the host TSC.  If the guest does a write
 1062          * the "use TSC offsetting" execution control is enabled and the
 1063          * difference between the host TSC and the guest TSC is written
 1064          * into the TSC offset in the VMCS.
 1065          *
 1066          * Guest TSC_AUX support is enabled if any of guest RDPID and/or
 1067          * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
 1068          * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
 1069          * supported). If guest TSC_AUX support is enabled, TSC_AUX is
 1070          * exposed read-only so that the VMM can do one fewer MSR read per
 1071          * exit than if this register were exposed read-write; the guest
 1072          * restore value can be updated during guest writes (expected to be
 1073          * rare) instead of during all exits (common).
 1074          */
 1075         if (guest_msr_rw(vmx, MSR_GSBASE) ||
 1076             guest_msr_rw(vmx, MSR_FSBASE) ||
 1077             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
 1078             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
 1079             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
 1080             guest_msr_rw(vmx, MSR_EFER) ||
 1081             guest_msr_ro(vmx, MSR_TSC) ||
 1082             ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
 1083                 panic("vmx_init: error setting guest msr access");
 1084 
 1085         if (virtual_interrupt_delivery) {
 1086                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
 1087                     APIC_ACCESS_ADDRESS);
 1088                 /* XXX this should really return an error to the caller */
 1089                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
 1090         }
 1091 
 1092         vmx->pmap = pmap;
 1093         return (vmx);
 1094 }
 1095 
 1096 static void *
 1097 vmx_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
 1098 {
 1099         struct vmx *vmx = vmi;
 1100         struct vmcs *vmcs;
 1101         struct vmx_vcpu *vcpu;
 1102         uint32_t exc_bitmap;
 1103         uint16_t vpid;
 1104         int error;
 1105 
 1106         vpid = vpid_alloc(vcpuid);
 1107 
 1108         vcpu = malloc(sizeof(*vcpu), M_VMX, M_WAITOK | M_ZERO);
 1109         vcpu->vmx = vmx;
 1110         vcpu->vcpu = vcpu1;
 1111         vcpu->vcpuid = vcpuid;
 1112         vcpu->vmcs = malloc_aligned(sizeof(*vmcs), PAGE_SIZE, M_VMX,
 1113             M_WAITOK | M_ZERO);
 1114         vcpu->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
 1115             M_WAITOK | M_ZERO);
 1116         vcpu->pir_desc = malloc_aligned(sizeof(*vcpu->pir_desc), 64, M_VMX,
 1117             M_WAITOK | M_ZERO);
 1118 
 1119         vmcs = vcpu->vmcs;
 1120         vmcs->identifier = vmx_revision();
 1121         error = vmclear(vmcs);
 1122         if (error != 0) {
 1123                 panic("vmx_init: vmclear error %d on vcpu %d\n",
 1124                     error, vcpuid);
 1125         }
 1126 
 1127         vmx_msr_guest_init(vmx, vcpu);
 1128 
 1129         error = vmcs_init(vmcs);
 1130         KASSERT(error == 0, ("vmcs_init error %d", error));
 1131 
 1132         VMPTRLD(vmcs);
 1133         error = 0;
 1134         error += vmwrite(VMCS_HOST_RSP, (u_long)&vcpu->ctx);
 1135         error += vmwrite(VMCS_EPTP, vmx->eptp);
 1136         error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
 1137         error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
 1138         if (vcpu_trap_wbinvd(vcpu->vcpu)) {
 1139                 KASSERT(cap_wbinvd_exit, ("WBINVD trap not available"));
 1140                 procbased_ctls2 |= PROCBASED2_WBINVD_EXITING;
 1141         }
 1142         error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
 1143         error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
 1144         error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
 1145         error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
 1146         error += vmwrite(VMCS_VPID, vpid);
 1147 
 1148         if (guest_l1d_flush && !guest_l1d_flush_sw) {
 1149                 vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
 1150                         (vm_offset_t)&msr_load_list[0]));
 1151                 vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
 1152                     nitems(msr_load_list));
 1153                 vmcs_write(VMCS_EXIT_MSR_STORE, 0);
 1154                 vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
 1155         }
 1156 
 1157         /* exception bitmap */
 1158         if (vcpu_trace_exceptions(vcpu->vcpu))
 1159                 exc_bitmap = 0xffffffff;
 1160         else
 1161                 exc_bitmap = 1 << IDT_MC;
 1162         error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
 1163 
 1164         vcpu->ctx.guest_dr6 = DBREG_DR6_RESERVED1;
 1165         error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
 1166 
 1167         if (tpr_shadowing) {
 1168                 error += vmwrite(VMCS_VIRTUAL_APIC, vtophys(vcpu->apic_page));
 1169         }
 1170 
 1171         if (virtual_interrupt_delivery) {
 1172                 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
 1173                 error += vmwrite(VMCS_EOI_EXIT0, 0);
 1174                 error += vmwrite(VMCS_EOI_EXIT1, 0);
 1175                 error += vmwrite(VMCS_EOI_EXIT2, 0);
 1176                 error += vmwrite(VMCS_EOI_EXIT3, 0);
 1177         }
 1178         if (posted_interrupts) {
 1179                 error += vmwrite(VMCS_PIR_VECTOR, pirvec);
 1180                 error += vmwrite(VMCS_PIR_DESC, vtophys(vcpu->pir_desc));
 1181         }
 1182         VMCLEAR(vmcs);
 1183         KASSERT(error == 0, ("vmx_init: error customizing the vmcs"));
 1184 
 1185         vcpu->cap.set = 0;
 1186         vcpu->cap.set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
 1187         vcpu->cap.set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
 1188         vcpu->cap.proc_ctls = procbased_ctls;
 1189         vcpu->cap.proc_ctls2 = procbased_ctls2;
 1190         vcpu->cap.exc_bitmap = exc_bitmap;
 1191 
 1192         vcpu->state.nextrip = ~0;
 1193         vcpu->state.lastcpu = NOCPU;
 1194         vcpu->state.vpid = vpid;
 1195 
 1196         /*
 1197          * Set up the CR0/4 shadows, and init the read shadow
 1198          * to the power-on register value from the Intel Sys Arch.
 1199          *  CR0 - 0x60000010
 1200          *  CR4 - 0
 1201          */
 1202         error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
 1203         if (error != 0)
 1204                 panic("vmx_setup_cr0_shadow %d", error);
 1205 
 1206         error = vmx_setup_cr4_shadow(vmcs, 0);
 1207         if (error != 0)
 1208                 panic("vmx_setup_cr4_shadow %d", error);
 1209 
 1210         vcpu->ctx.pmap = vmx->pmap;
 1211 
 1212         return (vcpu);
 1213 }
 1214 
 1215 static int
 1216 vmx_handle_cpuid(struct vmx_vcpu *vcpu, struct vmxctx *vmxctx)
 1217 {
 1218         int handled;
 1219 
 1220         handled = x86_emulate_cpuid(vcpu->vcpu, (uint64_t *)&vmxctx->guest_rax,
 1221             (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
 1222             (uint64_t *)&vmxctx->guest_rdx);
 1223         return (handled);
 1224 }
 1225 
 1226 static __inline void
 1227 vmx_run_trace(struct vmx_vcpu *vcpu)
 1228 {
 1229         VMX_CTR1(vcpu, "Resume execution at %#lx", vmcs_guest_rip());
 1230 }
 1231 
 1232 static __inline void
 1233 vmx_exit_trace(struct vmx_vcpu *vcpu, uint64_t rip, uint32_t exit_reason,
 1234     int handled)
 1235 {
 1236         VMX_CTR3(vcpu, "%s %s vmexit at 0x%0lx",
 1237                  handled ? "handled" : "unhandled",
 1238                  exit_reason_to_str(exit_reason), rip);
 1239 }
 1240 
 1241 static __inline void
 1242 vmx_astpending_trace(struct vmx_vcpu *vcpu, uint64_t rip)
 1243 {
 1244         VMX_CTR1(vcpu, "astpending vmexit at 0x%0lx", rip);
 1245 }
 1246 
 1247 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
 1248 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
 1249 
 1250 /*
 1251  * Invalidate guest mappings identified by its vpid from the TLB.
 1252  */
 1253 static __inline void
 1254 vmx_invvpid(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap, int running)
 1255 {
 1256         struct vmxstate *vmxstate;
 1257         struct invvpid_desc invvpid_desc;
 1258 
 1259         vmxstate = &vcpu->state;
 1260         if (vmxstate->vpid == 0)
 1261                 return;
 1262 
 1263         if (!running) {
 1264                 /*
 1265                  * Set the 'lastcpu' to an invalid host cpu.
 1266                  *
 1267                  * This will invalidate TLB entries tagged with the vcpu's
 1268                  * vpid the next time it runs via vmx_set_pcpu_defaults().
 1269                  */
 1270                 vmxstate->lastcpu = NOCPU;
 1271                 return;
 1272         }
 1273 
 1274         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
 1275             "critical section", __func__, vcpu->vcpuid));
 1276 
 1277         /*
 1278          * Invalidate all mappings tagged with 'vpid'
 1279          *
 1280          * We do this because this vcpu was executing on a different host
 1281          * cpu when it last ran. We do not track whether it invalidated
 1282          * mappings associated with its 'vpid' during that run. So we must
 1283          * assume that the mappings associated with 'vpid' on 'curcpu' are
 1284          * stale and invalidate them.
 1285          *
 1286          * Note that we incur this penalty only when the scheduler chooses to
 1287          * move the thread associated with this vcpu between host cpus.
 1288          *
 1289          * Note also that this will invalidate mappings tagged with 'vpid'
 1290          * for "all" EP4TAs.
 1291          */
 1292         if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) {
 1293                 invvpid_desc._res1 = 0;
 1294                 invvpid_desc._res2 = 0;
 1295                 invvpid_desc.vpid = vmxstate->vpid;
 1296                 invvpid_desc.linear_addr = 0;
 1297                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
 1298                 vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_DONE, 1);
 1299         } else {
 1300                 /*
 1301                  * The invvpid can be skipped if an invept is going to
 1302                  * be performed before entering the guest. The invept
 1303                  * will invalidate combined mappings tagged with
 1304                  * 'vmx->eptp' for all vpids.
 1305                  */
 1306                 vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_SAVED, 1);
 1307         }
 1308 }
 1309 
 1310 static void
 1311 vmx_set_pcpu_defaults(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap)
 1312 {
 1313         struct vmxstate *vmxstate;
 1314 
 1315         vmxstate = &vcpu->state;
 1316         if (vmxstate->lastcpu == curcpu)
 1317                 return;
 1318 
 1319         vmxstate->lastcpu = curcpu;
 1320 
 1321         vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
 1322 
 1323         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
 1324         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
 1325         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
 1326         vmx_invvpid(vmx, vcpu, pmap, 1);
 1327 }
 1328 
 1329 /*
 1330  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
 1331  */
 1332 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
 1333 
 1334 static void __inline
 1335 vmx_set_int_window_exiting(struct vmx_vcpu *vcpu)
 1336 {
 1337 
 1338         if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
 1339                 vcpu->cap.proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
 1340                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
 1341                 VMX_CTR0(vcpu, "Enabling interrupt window exiting");
 1342         }
 1343 }
 1344 
 1345 static void __inline
 1346 vmx_clear_int_window_exiting(struct vmx_vcpu *vcpu)
 1347 {
 1348 
 1349         KASSERT((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
 1350             ("intr_window_exiting not set: %#x", vcpu->cap.proc_ctls));
 1351         vcpu->cap.proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
 1352         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
 1353         VMX_CTR0(vcpu, "Disabling interrupt window exiting");
 1354 }
 1355 
 1356 static void __inline
 1357 vmx_set_nmi_window_exiting(struct vmx_vcpu *vcpu)
 1358 {
 1359 
 1360         if ((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
 1361                 vcpu->cap.proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
 1362                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
 1363                 VMX_CTR0(vcpu, "Enabling NMI window exiting");
 1364         }
 1365 }
 1366 
 1367 static void __inline
 1368 vmx_clear_nmi_window_exiting(struct vmx_vcpu *vcpu)
 1369 {
 1370 
 1371         KASSERT((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
 1372             ("nmi_window_exiting not set %#x", vcpu->cap.proc_ctls));
 1373         vcpu->cap.proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
 1374         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
 1375         VMX_CTR0(vcpu, "Disabling NMI window exiting");
 1376 }
 1377 
 1378 int
 1379 vmx_set_tsc_offset(struct vmx_vcpu *vcpu, uint64_t offset)
 1380 {
 1381         int error;
 1382 
 1383         if ((vcpu->cap.proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
 1384                 vcpu->cap.proc_ctls |= PROCBASED_TSC_OFFSET;
 1385                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
 1386                 VMX_CTR0(vcpu, "Enabling TSC offsetting");
 1387         }
 1388 
 1389         error = vmwrite(VMCS_TSC_OFFSET, offset);
 1390 #ifdef BHYVE_SNAPSHOT
 1391         if (error == 0)
 1392                 vm_set_tsc_offset(vcpu->vcpu, offset);
 1393 #endif
 1394         return (error);
 1395 }
 1396 
 1397 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
 1398                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
 1399 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
 1400                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
 1401 
 1402 static void
 1403 vmx_inject_nmi(struct vmx_vcpu *vcpu)
 1404 {
 1405         uint32_t gi __diagused, info;
 1406 
 1407         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
 1408         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
 1409             "interruptibility-state %#x", gi));
 1410 
 1411         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
 1412         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
 1413             "VM-entry interruption information %#x", info));
 1414 
 1415         /*
 1416          * Inject the virtual NMI. The vector must be the NMI IDT entry
 1417          * or the VMCS entry check will fail.
 1418          */
 1419         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
 1420         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
 1421 
 1422         VMX_CTR0(vcpu, "Injecting vNMI");
 1423 
 1424         /* Clear the request */
 1425         vm_nmi_clear(vcpu->vcpu);
 1426 }
 1427 
 1428 static void
 1429 vmx_inject_interrupts(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
 1430     uint64_t guestrip)
 1431 {
 1432         int vector, need_nmi_exiting, extint_pending;
 1433         uint64_t rflags, entryinfo;
 1434         uint32_t gi, info;
 1435 
 1436         if (vcpu->state.nextrip != guestrip) {
 1437                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
 1438                 if (gi & HWINTR_BLOCKING) {
 1439                         VMX_CTR2(vcpu, "Guest interrupt blocking "
 1440                             "cleared due to rip change: %#lx/%#lx",
 1441                             vcpu->state.nextrip, guestrip);
 1442                         gi &= ~HWINTR_BLOCKING;
 1443                         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
 1444                 }
 1445         }
 1446 
 1447         if (vm_entry_intinfo(vcpu->vcpu, &entryinfo)) {
 1448                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
 1449                     "intinfo is not valid: %#lx", __func__, entryinfo));
 1450 
 1451                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
 1452                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
 1453                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
 1454 
 1455                 info = entryinfo;
 1456                 vector = info & 0xff;
 1457                 if (vector == IDT_BP || vector == IDT_OF) {
 1458                         /*
 1459                          * VT-x requires #BP and #OF to be injected as software
 1460                          * exceptions.
 1461                          */
 1462                         info &= ~VMCS_INTR_T_MASK;
 1463                         info |= VMCS_INTR_T_SWEXCEPTION;
 1464                 }
 1465 
 1466                 if (info & VMCS_INTR_DEL_ERRCODE)
 1467                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
 1468 
 1469                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
 1470         }
 1471 
 1472         if (vm_nmi_pending(vcpu->vcpu)) {
 1473                 /*
 1474                  * If there are no conditions blocking NMI injection then
 1475                  * inject it directly here otherwise enable "NMI window
 1476                  * exiting" to inject it as soon as we can.
 1477                  *
 1478                  * We also check for STI_BLOCKING because some implementations
 1479                  * don't allow NMI injection in this case. If we are running
 1480                  * on a processor that doesn't have this restriction it will
 1481                  * immediately exit and the NMI will be injected in the
 1482                  * "NMI window exiting" handler.
 1483                  */
 1484                 need_nmi_exiting = 1;
 1485                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
 1486                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
 1487                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
 1488                         if ((info & VMCS_INTR_VALID) == 0) {
 1489                                 vmx_inject_nmi(vcpu);
 1490                                 need_nmi_exiting = 0;
 1491                         } else {
 1492                                 VMX_CTR1(vcpu, "Cannot inject NMI "
 1493                                     "due to VM-entry intr info %#x", info);
 1494                         }
 1495                 } else {
 1496                         VMX_CTR1(vcpu, "Cannot inject NMI due to "
 1497                             "Guest Interruptibility-state %#x", gi);
 1498                 }
 1499 
 1500                 if (need_nmi_exiting)
 1501                         vmx_set_nmi_window_exiting(vcpu);
 1502         }
 1503 
 1504         extint_pending = vm_extint_pending(vcpu->vcpu);
 1505 
 1506         if (!extint_pending && virtual_interrupt_delivery) {
 1507                 vmx_inject_pir(vlapic);
 1508                 return;
 1509         }
 1510 
 1511         /*
 1512          * If interrupt-window exiting is already in effect then don't bother
 1513          * checking for pending interrupts. This is just an optimization and
 1514          * not needed for correctness.
 1515          */
 1516         if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
 1517                 VMX_CTR0(vcpu, "Skip interrupt injection due to "
 1518                     "pending int_window_exiting");
 1519                 return;
 1520         }
 1521 
 1522         if (!extint_pending) {
 1523                 /* Ask the local apic for a vector to inject */
 1524                 if (!vlapic_pending_intr(vlapic, &vector))
 1525                         return;
 1526 
 1527                 /*
 1528                  * From the Intel SDM, Volume 3, Section "Maskable
 1529                  * Hardware Interrupts":
 1530                  * - maskable interrupt vectors [16,255] can be delivered
 1531                  *   through the local APIC.
 1532                 */
 1533                 KASSERT(vector >= 16 && vector <= 255,
 1534                     ("invalid vector %d from local APIC", vector));
 1535         } else {
 1536                 /* Ask the legacy pic for a vector to inject */
 1537                 vatpic_pending_intr(vcpu->vmx->vm, &vector);
 1538 
 1539                 /*
 1540                  * From the Intel SDM, Volume 3, Section "Maskable
 1541                  * Hardware Interrupts":
 1542                  * - maskable interrupt vectors [0,255] can be delivered
 1543                  *   through the INTR pin.
 1544                  */
 1545                 KASSERT(vector >= 0 && vector <= 255,
 1546                     ("invalid vector %d from INTR", vector));
 1547         }
 1548 
 1549         /* Check RFLAGS.IF and the interruptibility state of the guest */
 1550         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
 1551         if ((rflags & PSL_I) == 0) {
 1552                 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
 1553                     "rflags %#lx", vector, rflags);
 1554                 goto cantinject;
 1555         }
 1556 
 1557         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
 1558         if (gi & HWINTR_BLOCKING) {
 1559                 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
 1560                     "Guest Interruptibility-state %#x", vector, gi);
 1561                 goto cantinject;
 1562         }
 1563 
 1564         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
 1565         if (info & VMCS_INTR_VALID) {
 1566                 /*
 1567                  * This is expected and could happen for multiple reasons:
 1568                  * - A vectoring VM-entry was aborted due to astpending
 1569                  * - A VM-exit happened during event injection.
 1570                  * - An exception was injected above.
 1571                  * - An NMI was injected above or after "NMI window exiting"
 1572                  */
 1573                 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
 1574                     "VM-entry intr info %#x", vector, info);
 1575                 goto cantinject;
 1576         }
 1577 
 1578         /* Inject the interrupt */
 1579         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
 1580         info |= vector;
 1581         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
 1582 
 1583         if (!extint_pending) {
 1584                 /* Update the Local APIC ISR */
 1585                 vlapic_intr_accepted(vlapic, vector);
 1586         } else {
 1587                 vm_extint_clear(vcpu->vcpu);
 1588                 vatpic_intr_accepted(vcpu->vmx->vm, vector);
 1589 
 1590                 /*
 1591                  * After we accepted the current ExtINT the PIC may
 1592                  * have posted another one.  If that is the case, set
 1593                  * the Interrupt Window Exiting execution control so
 1594                  * we can inject that one too.
 1595                  *
 1596                  * Also, interrupt window exiting allows us to inject any
 1597                  * pending APIC vector that was preempted by the ExtINT
 1598                  * as soon as possible. This applies both for the software
 1599                  * emulated vlapic and the hardware assisted virtual APIC.
 1600                  */
 1601                 vmx_set_int_window_exiting(vcpu);
 1602         }
 1603 
 1604         VMX_CTR1(vcpu, "Injecting hwintr at vector %d", vector);
 1605 
 1606         return;
 1607 
 1608 cantinject:
 1609         /*
 1610          * Set the Interrupt Window Exiting execution control so we can inject
 1611          * the interrupt as soon as blocking condition goes away.
 1612          */
 1613         vmx_set_int_window_exiting(vcpu);
 1614 }
 1615 
 1616 /*
 1617  * If the Virtual NMIs execution control is '1' then the logical processor
 1618  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
 1619  * the VMCS. An IRET instruction in VMX non-root operation will remove any
 1620  * virtual-NMI blocking.
 1621  *
 1622  * This unblocking occurs even if the IRET causes a fault. In this case the
 1623  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
 1624  */
 1625 static void
 1626 vmx_restore_nmi_blocking(struct vmx_vcpu *vcpu)
 1627 {
 1628         uint32_t gi;
 1629 
 1630         VMX_CTR0(vcpu, "Restore Virtual-NMI blocking");
 1631         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
 1632         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
 1633         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
 1634 }
 1635 
 1636 static void
 1637 vmx_clear_nmi_blocking(struct vmx_vcpu *vcpu)
 1638 {
 1639         uint32_t gi;
 1640 
 1641         VMX_CTR0(vcpu, "Clear Virtual-NMI blocking");
 1642         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
 1643         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
 1644         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
 1645 }
 1646 
 1647 static void
 1648 vmx_assert_nmi_blocking(struct vmx_vcpu *vcpu)
 1649 {
 1650         uint32_t gi __diagused;
 1651 
 1652         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
 1653         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
 1654             ("NMI blocking is not in effect %#x", gi));
 1655 }
 1656 
 1657 static int
 1658 vmx_emulate_xsetbv(struct vmx *vmx, struct vmx_vcpu *vcpu,
 1659     struct vm_exit *vmexit)
 1660 {
 1661         struct vmxctx *vmxctx;
 1662         uint64_t xcrval;
 1663         const struct xsave_limits *limits;
 1664 
 1665         vmxctx = &vcpu->ctx;
 1666         limits = vmm_get_xsave_limits();
 1667 
 1668         /*
 1669          * Note that the processor raises a GP# fault on its own if
 1670          * xsetbv is executed for CPL != 0, so we do not have to
 1671          * emulate that fault here.
 1672          */
 1673 
 1674         /* Only xcr0 is supported. */
 1675         if (vmxctx->guest_rcx != 0) {
 1676                 vm_inject_gp(vcpu->vcpu);
 1677                 return (HANDLED);
 1678         }
 1679 
 1680         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
 1681         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
 1682                 vm_inject_ud(vcpu->vcpu);
 1683                 return (HANDLED);
 1684         }
 1685 
 1686         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
 1687         if ((xcrval & ~limits->xcr0_allowed) != 0) {
 1688                 vm_inject_gp(vcpu->vcpu);
 1689                 return (HANDLED);
 1690         }
 1691 
 1692         if (!(xcrval & XFEATURE_ENABLED_X87)) {
 1693                 vm_inject_gp(vcpu->vcpu);
 1694                 return (HANDLED);
 1695         }
 1696 
 1697         /* AVX (YMM_Hi128) requires SSE. */
 1698         if (xcrval & XFEATURE_ENABLED_AVX &&
 1699             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
 1700                 vm_inject_gp(vcpu->vcpu);
 1701                 return (HANDLED);
 1702         }
 1703 
 1704         /*
 1705          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
 1706          * ZMM_Hi256, and Hi16_ZMM.
 1707          */
 1708         if (xcrval & XFEATURE_AVX512 &&
 1709             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
 1710             (XFEATURE_AVX512 | XFEATURE_AVX)) {
 1711                 vm_inject_gp(vcpu->vcpu);
 1712                 return (HANDLED);
 1713         }
 1714 
 1715         /*
 1716          * Intel MPX requires both bound register state flags to be
 1717          * set.
 1718          */
 1719         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
 1720             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
 1721                 vm_inject_gp(vcpu->vcpu);
 1722                 return (HANDLED);
 1723         }
 1724 
 1725         /*
 1726          * This runs "inside" vmrun() with the guest's FPU state, so
 1727          * modifying xcr0 directly modifies the guest's xcr0, not the
 1728          * host's.
 1729          */
 1730         load_xcr(0, xcrval);
 1731         return (HANDLED);
 1732 }
 1733 
 1734 static uint64_t
 1735 vmx_get_guest_reg(struct vmx_vcpu *vcpu, int ident)
 1736 {
 1737         const struct vmxctx *vmxctx;
 1738 
 1739         vmxctx = &vcpu->ctx;
 1740 
 1741         switch (ident) {
 1742         case 0:
 1743                 return (vmxctx->guest_rax);
 1744         case 1:
 1745                 return (vmxctx->guest_rcx);
 1746         case 2:
 1747                 return (vmxctx->guest_rdx);
 1748         case 3:
 1749                 return (vmxctx->guest_rbx);
 1750         case 4:
 1751                 return (vmcs_read(VMCS_GUEST_RSP));
 1752         case 5:
 1753                 return (vmxctx->guest_rbp);
 1754         case 6:
 1755                 return (vmxctx->guest_rsi);
 1756         case 7:
 1757                 return (vmxctx->guest_rdi);
 1758         case 8:
 1759                 return (vmxctx->guest_r8);
 1760         case 9:
 1761                 return (vmxctx->guest_r9);
 1762         case 10:
 1763                 return (vmxctx->guest_r10);
 1764         case 11:
 1765                 return (vmxctx->guest_r11);
 1766         case 12:
 1767                 return (vmxctx->guest_r12);
 1768         case 13:
 1769                 return (vmxctx->guest_r13);
 1770         case 14:
 1771                 return (vmxctx->guest_r14);
 1772         case 15:
 1773                 return (vmxctx->guest_r15);
 1774         default:
 1775                 panic("invalid vmx register %d", ident);
 1776         }
 1777 }
 1778 
 1779 static void
 1780 vmx_set_guest_reg(struct vmx_vcpu *vcpu, int ident, uint64_t regval)
 1781 {
 1782         struct vmxctx *vmxctx;
 1783 
 1784         vmxctx = &vcpu->ctx;
 1785 
 1786         switch (ident) {
 1787         case 0:
 1788                 vmxctx->guest_rax = regval;
 1789                 break;
 1790         case 1:
 1791                 vmxctx->guest_rcx = regval;
 1792                 break;
 1793         case 2:
 1794                 vmxctx->guest_rdx = regval;
 1795                 break;
 1796         case 3:
 1797                 vmxctx->guest_rbx = regval;
 1798                 break;
 1799         case 4:
 1800                 vmcs_write(VMCS_GUEST_RSP, regval);
 1801                 break;
 1802         case 5:
 1803                 vmxctx->guest_rbp = regval;
 1804                 break;
 1805         case 6:
 1806                 vmxctx->guest_rsi = regval;
 1807                 break;
 1808         case 7:
 1809                 vmxctx->guest_rdi = regval;
 1810                 break;
 1811         case 8:
 1812                 vmxctx->guest_r8 = regval;
 1813                 break;
 1814         case 9:
 1815                 vmxctx->guest_r9 = regval;
 1816                 break;
 1817         case 10:
 1818                 vmxctx->guest_r10 = regval;
 1819                 break;
 1820         case 11:
 1821                 vmxctx->guest_r11 = regval;
 1822                 break;
 1823         case 12:
 1824                 vmxctx->guest_r12 = regval;
 1825                 break;
 1826         case 13:
 1827                 vmxctx->guest_r13 = regval;
 1828                 break;
 1829         case 14:
 1830                 vmxctx->guest_r14 = regval;
 1831                 break;
 1832         case 15:
 1833                 vmxctx->guest_r15 = regval;
 1834                 break;
 1835         default:
 1836                 panic("invalid vmx register %d", ident);
 1837         }
 1838 }
 1839 
 1840 static int
 1841 vmx_emulate_cr0_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
 1842 {
 1843         uint64_t crval, regval;
 1844 
 1845         /* We only handle mov to %cr0 at this time */
 1846         if ((exitqual & 0xf0) != 0x00)
 1847                 return (UNHANDLED);
 1848 
 1849         regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
 1850 
 1851         vmcs_write(VMCS_CR0_SHADOW, regval);
 1852 
 1853         crval = regval | cr0_ones_mask;
 1854         crval &= ~cr0_zeros_mask;
 1855         vmcs_write(VMCS_GUEST_CR0, crval);
 1856 
 1857         if (regval & CR0_PG) {
 1858                 uint64_t efer, entry_ctls;
 1859 
 1860                 /*
 1861                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
 1862                  * the "IA-32e mode guest" bit in VM-entry control must be
 1863                  * equal.
 1864                  */
 1865                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
 1866                 if (efer & EFER_LME) {
 1867                         efer |= EFER_LMA;
 1868                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
 1869                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
 1870                         entry_ctls |= VM_ENTRY_GUEST_LMA;
 1871                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
 1872                 }
 1873         }
 1874 
 1875         return (HANDLED);
 1876 }
 1877 
 1878 static int
 1879 vmx_emulate_cr4_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
 1880 {
 1881         uint64_t crval, regval;
 1882 
 1883         /* We only handle mov to %cr4 at this time */
 1884         if ((exitqual & 0xf0) != 0x00)
 1885                 return (UNHANDLED);
 1886 
 1887         regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
 1888 
 1889         vmcs_write(VMCS_CR4_SHADOW, regval);
 1890 
 1891         crval = regval | cr4_ones_mask;
 1892         crval &= ~cr4_zeros_mask;
 1893         vmcs_write(VMCS_GUEST_CR4, crval);
 1894 
 1895         return (HANDLED);
 1896 }
 1897 
 1898 static int
 1899 vmx_emulate_cr8_access(struct vmx *vmx, struct vmx_vcpu *vcpu,
 1900     uint64_t exitqual)
 1901 {
 1902         struct vlapic *vlapic;
 1903         uint64_t cr8;
 1904         int regnum;
 1905 
 1906         /* We only handle mov %cr8 to/from a register at this time. */
 1907         if ((exitqual & 0xe0) != 0x00) {
 1908                 return (UNHANDLED);
 1909         }
 1910 
 1911         vlapic = vm_lapic(vcpu->vcpu);
 1912         regnum = (exitqual >> 8) & 0xf;
 1913         if (exitqual & 0x10) {
 1914                 cr8 = vlapic_get_cr8(vlapic);
 1915                 vmx_set_guest_reg(vcpu, regnum, cr8);
 1916         } else {
 1917                 cr8 = vmx_get_guest_reg(vcpu, regnum);
 1918                 vlapic_set_cr8(vlapic, cr8);
 1919         }
 1920 
 1921         return (HANDLED);
 1922 }
 1923 
 1924 /*
 1925  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
 1926  */
 1927 static int
 1928 vmx_cpl(void)
 1929 {
 1930         uint32_t ssar;
 1931 
 1932         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
 1933         return ((ssar >> 5) & 0x3);
 1934 }
 1935 
 1936 static enum vm_cpu_mode
 1937 vmx_cpu_mode(void)
 1938 {
 1939         uint32_t csar;
 1940 
 1941         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
 1942                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
 1943                 if (csar & 0x2000)
 1944                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
 1945                 else
 1946                         return (CPU_MODE_COMPATIBILITY);
 1947         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
 1948                 return (CPU_MODE_PROTECTED);
 1949         } else {
 1950                 return (CPU_MODE_REAL);
 1951         }
 1952 }
 1953 
 1954 static enum vm_paging_mode
 1955 vmx_paging_mode(void)
 1956 {
 1957         uint64_t cr4;
 1958 
 1959         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
 1960                 return (PAGING_MODE_FLAT);
 1961         cr4 = vmcs_read(VMCS_GUEST_CR4);
 1962         if (!(cr4 & CR4_PAE))
 1963                 return (PAGING_MODE_32);
 1964         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
 1965                 if (!(cr4 & CR4_LA57))
 1966                         return (PAGING_MODE_64);
 1967                 return (PAGING_MODE_64_LA57);
 1968         } else
 1969                 return (PAGING_MODE_PAE);
 1970 }
 1971 
 1972 static uint64_t
 1973 inout_str_index(struct vmx_vcpu *vcpu, int in)
 1974 {
 1975         uint64_t val;
 1976         int error __diagused;
 1977         enum vm_reg_name reg;
 1978 
 1979         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
 1980         error = vmx_getreg(vcpu, reg, &val);
 1981         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
 1982         return (val);
 1983 }
 1984 
 1985 static uint64_t
 1986 inout_str_count(struct vmx_vcpu *vcpu, int rep)
 1987 {
 1988         uint64_t val;
 1989         int error __diagused;
 1990 
 1991         if (rep) {
 1992                 error = vmx_getreg(vcpu, VM_REG_GUEST_RCX, &val);
 1993                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
 1994         } else {
 1995                 val = 1;
 1996         }
 1997         return (val);
 1998 }
 1999 
 2000 static int
 2001 inout_str_addrsize(uint32_t inst_info)
 2002 {
 2003         uint32_t size;
 2004 
 2005         size = (inst_info >> 7) & 0x7;
 2006         switch (size) {
 2007         case 0:
 2008                 return (2);     /* 16 bit */
 2009         case 1:
 2010                 return (4);     /* 32 bit */
 2011         case 2:
 2012                 return (8);     /* 64 bit */
 2013         default:
 2014                 panic("%s: invalid size encoding %d", __func__, size);
 2015         }
 2016 }
 2017 
 2018 static void
 2019 inout_str_seginfo(struct vmx_vcpu *vcpu, uint32_t inst_info, int in,
 2020     struct vm_inout_str *vis)
 2021 {
 2022         int error __diagused, s;
 2023 
 2024         if (in) {
 2025                 vis->seg_name = VM_REG_GUEST_ES;
 2026         } else {
 2027                 s = (inst_info >> 15) & 0x7;
 2028                 vis->seg_name = vm_segment_name(s);
 2029         }
 2030 
 2031         error = vmx_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
 2032         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
 2033 }
 2034 
 2035 static void
 2036 vmx_paging_info(struct vm_guest_paging *paging)
 2037 {
 2038         paging->cr3 = vmcs_guest_cr3();
 2039         paging->cpl = vmx_cpl();
 2040         paging->cpu_mode = vmx_cpu_mode();
 2041         paging->paging_mode = vmx_paging_mode();
 2042 }
 2043 
 2044 static void
 2045 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
 2046 {
 2047         struct vm_guest_paging *paging;
 2048         uint32_t csar;
 2049 
 2050         paging = &vmexit->u.inst_emul.paging;
 2051 
 2052         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
 2053         vmexit->inst_length = 0;
 2054         vmexit->u.inst_emul.gpa = gpa;
 2055         vmexit->u.inst_emul.gla = gla;
 2056         vmx_paging_info(paging);
 2057         switch (paging->cpu_mode) {
 2058         case CPU_MODE_REAL:
 2059                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
 2060                 vmexit->u.inst_emul.cs_d = 0;
 2061                 break;
 2062         case CPU_MODE_PROTECTED:
 2063         case CPU_MODE_COMPATIBILITY:
 2064                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
 2065                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
 2066                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
 2067                 break;
 2068         default:
 2069                 vmexit->u.inst_emul.cs_base = 0;
 2070                 vmexit->u.inst_emul.cs_d = 0;
 2071                 break;
 2072         }
 2073         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
 2074 }
 2075 
 2076 static int
 2077 ept_fault_type(uint64_t ept_qual)
 2078 {
 2079         int fault_type;
 2080 
 2081         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
 2082                 fault_type = VM_PROT_WRITE;
 2083         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
 2084                 fault_type = VM_PROT_EXECUTE;
 2085         else
 2086                 fault_type= VM_PROT_READ;
 2087 
 2088         return (fault_type);
 2089 }
 2090 
 2091 static bool
 2092 ept_emulation_fault(uint64_t ept_qual)
 2093 {
 2094         int read, write;
 2095 
 2096         /* EPT fault on an instruction fetch doesn't make sense here */
 2097         if (ept_qual & EPT_VIOLATION_INST_FETCH)
 2098                 return (false);
 2099 
 2100         /* EPT fault must be a read fault or a write fault */
 2101         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
 2102         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
 2103         if ((read | write) == 0)
 2104                 return (false);
 2105 
 2106         /*
 2107          * The EPT violation must have been caused by accessing a
 2108          * guest-physical address that is a translation of a guest-linear
 2109          * address.
 2110          */
 2111         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
 2112             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
 2113                 return (false);
 2114         }
 2115 
 2116         return (true);
 2117 }
 2118 
 2119 static __inline int
 2120 apic_access_virtualization(struct vmx_vcpu *vcpu)
 2121 {
 2122         uint32_t proc_ctls2;
 2123 
 2124         proc_ctls2 = vcpu->cap.proc_ctls2;
 2125         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
 2126 }
 2127 
 2128 static __inline int
 2129 x2apic_virtualization(struct vmx_vcpu *vcpu)
 2130 {
 2131         uint32_t proc_ctls2;
 2132 
 2133         proc_ctls2 = vcpu->cap.proc_ctls2;
 2134         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
 2135 }
 2136 
 2137 static int
 2138 vmx_handle_apic_write(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
 2139     uint64_t qual)
 2140 {
 2141         int error, handled, offset;
 2142         uint32_t *apic_regs, vector;
 2143         bool retu;
 2144 
 2145         handled = HANDLED;
 2146         offset = APIC_WRITE_OFFSET(qual);
 2147 
 2148         if (!apic_access_virtualization(vcpu)) {
 2149                 /*
 2150                  * In general there should not be any APIC write VM-exits
 2151                  * unless APIC-access virtualization is enabled.
 2152                  *
 2153                  * However self-IPI virtualization can legitimately trigger
 2154                  * an APIC-write VM-exit so treat it specially.
 2155                  */
 2156                 if (x2apic_virtualization(vcpu) &&
 2157                     offset == APIC_OFFSET_SELF_IPI) {
 2158                         apic_regs = (uint32_t *)(vlapic->apic_page);
 2159                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
 2160                         vlapic_self_ipi_handler(vlapic, vector);
 2161                         return (HANDLED);
 2162                 } else
 2163                         return (UNHANDLED);
 2164         }
 2165 
 2166         switch (offset) {
 2167         case APIC_OFFSET_ID:
 2168                 vlapic_id_write_handler(vlapic);
 2169                 break;
 2170         case APIC_OFFSET_LDR:
 2171                 vlapic_ldr_write_handler(vlapic);
 2172                 break;
 2173         case APIC_OFFSET_DFR:
 2174                 vlapic_dfr_write_handler(vlapic);
 2175                 break;
 2176         case APIC_OFFSET_SVR:
 2177                 vlapic_svr_write_handler(vlapic);
 2178                 break;
 2179         case APIC_OFFSET_ESR:
 2180                 vlapic_esr_write_handler(vlapic);
 2181                 break;
 2182         case APIC_OFFSET_ICR_LOW:
 2183                 retu = false;
 2184                 error = vlapic_icrlo_write_handler(vlapic, &retu);
 2185                 if (error != 0 || retu)
 2186                         handled = UNHANDLED;
 2187                 break;
 2188         case APIC_OFFSET_CMCI_LVT:
 2189         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
 2190                 vlapic_lvt_write_handler(vlapic, offset);
 2191                 break;
 2192         case APIC_OFFSET_TIMER_ICR:
 2193                 vlapic_icrtmr_write_handler(vlapic);
 2194                 break;
 2195         case APIC_OFFSET_TIMER_DCR:
 2196                 vlapic_dcr_write_handler(vlapic);
 2197                 break;
 2198         default:
 2199                 handled = UNHANDLED;
 2200                 break;
 2201         }
 2202         return (handled);
 2203 }
 2204 
 2205 static bool
 2206 apic_access_fault(struct vmx_vcpu *vcpu, uint64_t gpa)
 2207 {
 2208 
 2209         if (apic_access_virtualization(vcpu) &&
 2210             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
 2211                 return (true);
 2212         else
 2213                 return (false);
 2214 }
 2215 
 2216 static int
 2217 vmx_handle_apic_access(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
 2218 {
 2219         uint64_t qual;
 2220         int access_type, offset, allowed;
 2221 
 2222         if (!apic_access_virtualization(vcpu))
 2223                 return (UNHANDLED);
 2224 
 2225         qual = vmexit->u.vmx.exit_qualification;
 2226         access_type = APIC_ACCESS_TYPE(qual);
 2227         offset = APIC_ACCESS_OFFSET(qual);
 2228 
 2229         allowed = 0;
 2230         if (access_type == 0) {
 2231                 /*
 2232                  * Read data access to the following registers is expected.
 2233                  */
 2234                 switch (offset) {
 2235                 case APIC_OFFSET_APR:
 2236                 case APIC_OFFSET_PPR:
 2237                 case APIC_OFFSET_RRR:
 2238                 case APIC_OFFSET_CMCI_LVT:
 2239                 case APIC_OFFSET_TIMER_CCR:
 2240                         allowed = 1;
 2241                         break;
 2242                 default:
 2243                         break;
 2244                 }
 2245         } else if (access_type == 1) {
 2246                 /*
 2247                  * Write data access to the following registers is expected.
 2248                  */
 2249                 switch (offset) {
 2250                 case APIC_OFFSET_VER:
 2251                 case APIC_OFFSET_APR:
 2252                 case APIC_OFFSET_PPR:
 2253                 case APIC_OFFSET_RRR:
 2254                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
 2255                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
 2256                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
 2257                 case APIC_OFFSET_CMCI_LVT:
 2258                 case APIC_OFFSET_TIMER_CCR:
 2259                         allowed = 1;
 2260                         break;
 2261                 default:
 2262                         break;
 2263                 }
 2264         }
 2265 
 2266         if (allowed) {
 2267                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
 2268                     VIE_INVALID_GLA);
 2269         }
 2270 
 2271         /*
 2272          * Regardless of whether the APIC-access is allowed this handler
 2273          * always returns UNHANDLED:
 2274          * - if the access is allowed then it is handled by emulating the
 2275          *   instruction that caused the VM-exit (outside the critical section)
 2276          * - if the access is not allowed then it will be converted to an
 2277          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
 2278          */
 2279         return (UNHANDLED);
 2280 }
 2281 
 2282 static enum task_switch_reason
 2283 vmx_task_switch_reason(uint64_t qual)
 2284 {
 2285         int reason;
 2286 
 2287         reason = (qual >> 30) & 0x3;
 2288         switch (reason) {
 2289         case 0:
 2290                 return (TSR_CALL);
 2291         case 1:
 2292                 return (TSR_IRET);
 2293         case 2:
 2294                 return (TSR_JMP);
 2295         case 3:
 2296                 return (TSR_IDT_GATE);
 2297         default:
 2298                 panic("%s: invalid reason %d", __func__, reason);
 2299         }
 2300 }
 2301 
 2302 static int
 2303 emulate_wrmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t val, bool *retu)
 2304 {
 2305         int error;
 2306 
 2307         if (lapic_msr(num))
 2308                 error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
 2309         else
 2310                 error = vmx_wrmsr(vcpu, num, val, retu);
 2311 
 2312         return (error);
 2313 }
 2314 
 2315 static int
 2316 emulate_rdmsr(struct vmx_vcpu *vcpu, u_int num, bool *retu)
 2317 {
 2318         struct vmxctx *vmxctx;
 2319         uint64_t result;
 2320         uint32_t eax, edx;
 2321         int error;
 2322 
 2323         if (lapic_msr(num))
 2324                 error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
 2325         else
 2326                 error = vmx_rdmsr(vcpu, num, &result, retu);
 2327 
 2328         if (error == 0) {
 2329                 eax = result;
 2330                 vmxctx = &vcpu->ctx;
 2331                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
 2332                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
 2333 
 2334                 edx = result >> 32;
 2335                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
 2336                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
 2337         }
 2338 
 2339         return (error);
 2340 }
 2341 
 2342 static int
 2343 vmx_exit_process(struct vmx *vmx, struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
 2344 {
 2345         int error, errcode, errcode_valid, handled, in;
 2346         struct vmxctx *vmxctx;
 2347         struct vlapic *vlapic;
 2348         struct vm_inout_str *vis;
 2349         struct vm_task_switch *ts;
 2350         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
 2351         uint32_t intr_type, intr_vec, reason;
 2352         uint64_t exitintinfo, qual, gpa;
 2353 #ifdef KDTRACE_HOOKS
 2354         int vcpuid;
 2355 #endif
 2356         bool retu;
 2357 
 2358         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
 2359         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
 2360 
 2361         handled = UNHANDLED;
 2362         vmxctx = &vcpu->ctx;
 2363 #ifdef KDTRACE_HOOKS
 2364         vcpuid = vcpu->vcpuid;
 2365 #endif
 2366 
 2367         qual = vmexit->u.vmx.exit_qualification;
 2368         reason = vmexit->u.vmx.exit_reason;
 2369         vmexit->exitcode = VM_EXITCODE_BOGUS;
 2370 
 2371         vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
 2372         SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpuid, vmexit);
 2373 
 2374         /*
 2375          * VM-entry failures during or after loading guest state.
 2376          *
 2377          * These VM-exits are uncommon but must be handled specially
 2378          * as most VM-exit fields are not populated as usual.
 2379          */
 2380         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
 2381                 VMX_CTR0(vcpu, "Handling MCE during VM-entry");
 2382                 __asm __volatile("int $18");
 2383                 return (1);
 2384         }
 2385 
 2386         /*
 2387          * VM exits that can be triggered during event delivery need to
 2388          * be handled specially by re-injecting the event if the IDT
 2389          * vectoring information field's valid bit is set.
 2390          *
 2391          * See "Information for VM Exits During Event Delivery" in Intel SDM
 2392          * for details.
 2393          */
 2394         idtvec_info = vmcs_idt_vectoring_info();
 2395         if (idtvec_info & VMCS_IDT_VEC_VALID) {
 2396                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
 2397                 exitintinfo = idtvec_info;
 2398                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
 2399                         idtvec_err = vmcs_idt_vectoring_err();
 2400                         exitintinfo |= (uint64_t)idtvec_err << 32;
 2401                 }
 2402                 error = vm_exit_intinfo(vcpu->vcpu, exitintinfo);
 2403                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
 2404                     __func__, error));
 2405 
 2406                 /*
 2407                  * If 'virtual NMIs' are being used and the VM-exit
 2408                  * happened while injecting an NMI during the previous
 2409                  * VM-entry, then clear "blocking by NMI" in the
 2410                  * Guest Interruptibility-State so the NMI can be
 2411                  * reinjected on the subsequent VM-entry.
 2412                  *
 2413                  * However, if the NMI was being delivered through a task
 2414                  * gate, then the new task must start execution with NMIs
 2415                  * blocked so don't clear NMI blocking in this case.
 2416                  */
 2417                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
 2418                 if (intr_type == VMCS_INTR_T_NMI) {
 2419                         if (reason != EXIT_REASON_TASK_SWITCH)
 2420                                 vmx_clear_nmi_blocking(vcpu);
 2421                         else
 2422                                 vmx_assert_nmi_blocking(vcpu);
 2423                 }
 2424 
 2425                 /*
 2426                  * Update VM-entry instruction length if the event being
 2427                  * delivered was a software interrupt or software exception.
 2428                  */
 2429                 if (intr_type == VMCS_INTR_T_SWINTR ||
 2430                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
 2431                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
 2432                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
 2433                 }
 2434         }
 2435 
 2436         switch (reason) {
 2437         case EXIT_REASON_TASK_SWITCH:
 2438                 ts = &vmexit->u.task_switch;
 2439                 ts->tsssel = qual & 0xffff;
 2440                 ts->reason = vmx_task_switch_reason(qual);
 2441                 ts->ext = 0;
 2442                 ts->errcode_valid = 0;
 2443                 vmx_paging_info(&ts->paging);
 2444                 /*
 2445                  * If the task switch was due to a CALL, JMP, IRET, software
 2446                  * interrupt (INT n) or software exception (INT3, INTO),
 2447                  * then the saved %rip references the instruction that caused
 2448                  * the task switch. The instruction length field in the VMCS
 2449                  * is valid in this case.
 2450                  *
 2451                  * In all other cases (e.g., NMI, hardware exception) the
 2452                  * saved %rip is one that would have been saved in the old TSS
 2453                  * had the task switch completed normally so the instruction
 2454                  * length field is not needed in this case and is explicitly
 2455                  * set to 0.
 2456                  */
 2457                 if (ts->reason == TSR_IDT_GATE) {
 2458                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
 2459                             ("invalid idtvec_info %#x for IDT task switch",
 2460                             idtvec_info));
 2461                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
 2462                         if (intr_type != VMCS_INTR_T_SWINTR &&
 2463                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
 2464                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
 2465                                 /* Task switch triggered by external event */
 2466                                 ts->ext = 1;
 2467                                 vmexit->inst_length = 0;
 2468                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
 2469                                         ts->errcode_valid = 1;
 2470                                         ts->errcode = vmcs_idt_vectoring_err();
 2471                                 }
 2472                         }
 2473                 }
 2474                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
 2475                 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpuid, vmexit, ts);
 2476                 VMX_CTR4(vcpu, "task switch reason %d, tss 0x%04x, "
 2477                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
 2478                     ts->ext ? "external" : "internal",
 2479                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
 2480                 break;
 2481         case EXIT_REASON_CR_ACCESS:
 2482                 vmm_stat_incr(vcpu->vcpu, VMEXIT_CR_ACCESS, 1);
 2483                 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpuid, vmexit, qual);
 2484                 switch (qual & 0xf) {
 2485                 case 0:
 2486                         handled = vmx_emulate_cr0_access(vcpu, qual);
 2487                         break;
 2488                 case 4:
 2489                         handled = vmx_emulate_cr4_access(vcpu, qual);
 2490                         break;
 2491                 case 8:
 2492                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
 2493                         break;
 2494                 }
 2495                 break;
 2496         case EXIT_REASON_RDMSR:
 2497                 vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
 2498                 retu = false;
 2499                 ecx = vmxctx->guest_rcx;
 2500                 VMX_CTR1(vcpu, "rdmsr 0x%08x", ecx);
 2501                 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpuid, vmexit, ecx);
 2502                 error = emulate_rdmsr(vcpu, ecx, &retu);
 2503                 if (error) {
 2504                         vmexit->exitcode = VM_EXITCODE_RDMSR;
 2505                         vmexit->u.msr.code = ecx;
 2506                 } else if (!retu) {
 2507                         handled = HANDLED;
 2508                 } else {
 2509                         /* Return to userspace with a valid exitcode */
 2510                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
 2511                             ("emulate_rdmsr retu with bogus exitcode"));
 2512                 }
 2513                 break;
 2514         case EXIT_REASON_WRMSR:
 2515                 vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
 2516                 retu = false;
 2517                 eax = vmxctx->guest_rax;
 2518                 ecx = vmxctx->guest_rcx;
 2519                 edx = vmxctx->guest_rdx;
 2520                 VMX_CTR2(vcpu, "wrmsr 0x%08x value 0x%016lx",
 2521                     ecx, (uint64_t)edx << 32 | eax);
 2522                 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpuid, ecx,
 2523                     (uint64_t)edx << 32 | eax);
 2524                 error = emulate_wrmsr(vcpu, ecx, (uint64_t)edx << 32 | eax,
 2525                     &retu);
 2526                 if (error) {
 2527                         vmexit->exitcode = VM_EXITCODE_WRMSR;
 2528                         vmexit->u.msr.code = ecx;
 2529                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
 2530                 } else if (!retu) {
 2531                         handled = HANDLED;
 2532                 } else {
 2533                         /* Return to userspace with a valid exitcode */
 2534                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
 2535                             ("emulate_wrmsr retu with bogus exitcode"));
 2536                 }
 2537                 break;
 2538         case EXIT_REASON_HLT:
 2539                 vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
 2540                 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpuid, vmexit);
 2541                 vmexit->exitcode = VM_EXITCODE_HLT;
 2542                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
 2543                 if (virtual_interrupt_delivery)
 2544                         vmexit->u.hlt.intr_status =
 2545                             vmcs_read(VMCS_GUEST_INTR_STATUS);
 2546                 else
 2547                         vmexit->u.hlt.intr_status = 0;
 2548                 break;
 2549         case EXIT_REASON_MTF:
 2550                 vmm_stat_incr(vcpu->vcpu, VMEXIT_MTRAP, 1);
 2551                 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpuid, vmexit);
 2552                 vmexit->exitcode = VM_EXITCODE_MTRAP;
 2553                 vmexit->inst_length = 0;
 2554                 break;
 2555         case EXIT_REASON_PAUSE:
 2556                 vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
 2557                 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpuid, vmexit);
 2558                 vmexit->exitcode = VM_EXITCODE_PAUSE;
 2559                 break;
 2560         case EXIT_REASON_INTR_WINDOW:
 2561                 vmm_stat_incr(vcpu->vcpu, VMEXIT_INTR_WINDOW, 1);
 2562                 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpuid, vmexit);
 2563                 vmx_clear_int_window_exiting(vcpu);
 2564                 return (1);
 2565         case EXIT_REASON_EXT_INTR:
 2566                 /*
 2567                  * External interrupts serve only to cause VM exits and allow
 2568                  * the host interrupt handler to run.
 2569                  *
 2570                  * If this external interrupt triggers a virtual interrupt
 2571                  * to a VM, then that state will be recorded by the
 2572                  * host interrupt handler in the VM's softc. We will inject
 2573                  * this virtual interrupt during the subsequent VM enter.
 2574                  */
 2575                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
 2576                 SDT_PROBE4(vmm, vmx, exit, interrupt,
 2577                     vmx, vcpuid, vmexit, intr_info);
 2578 
 2579                 /*
 2580                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
 2581                  * This appears to be a bug in VMware Fusion?
 2582                  */
 2583                 if (!(intr_info & VMCS_INTR_VALID))
 2584                         return (1);
 2585                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
 2586                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
 2587                     ("VM exit interruption info invalid: %#x", intr_info));
 2588                 vmx_trigger_hostintr(intr_info & 0xff);
 2589 
 2590                 /*
 2591                  * This is special. We want to treat this as an 'handled'
 2592                  * VM-exit but not increment the instruction pointer.
 2593                  */
 2594                 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
 2595                 return (1);
 2596         case EXIT_REASON_NMI_WINDOW:
 2597                 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpuid, vmexit);
 2598                 /* Exit to allow the pending virtual NMI to be injected */
 2599                 if (vm_nmi_pending(vcpu->vcpu))
 2600                         vmx_inject_nmi(vcpu);
 2601                 vmx_clear_nmi_window_exiting(vcpu);
 2602                 vmm_stat_incr(vcpu->vcpu, VMEXIT_NMI_WINDOW, 1);
 2603                 return (1);
 2604         case EXIT_REASON_INOUT:
 2605                 vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
 2606                 vmexit->exitcode = VM_EXITCODE_INOUT;
 2607                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
 2608                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
 2609                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
 2610                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
 2611                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
 2612                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
 2613                 if (vmexit->u.inout.string) {
 2614                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
 2615                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
 2616                         vis = &vmexit->u.inout_str;
 2617                         vmx_paging_info(&vis->paging);
 2618                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
 2619                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
 2620                         vis->index = inout_str_index(vcpu, in);
 2621                         vis->count = inout_str_count(vcpu, vis->inout.rep);
 2622                         vis->addrsize = inout_str_addrsize(inst_info);
 2623                         inout_str_seginfo(vcpu, inst_info, in, vis);
 2624                 }
 2625                 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpuid, vmexit);
 2626                 break;
 2627         case EXIT_REASON_CPUID:
 2628                 vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
 2629                 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpuid, vmexit);
 2630                 handled = vmx_handle_cpuid(vcpu, vmxctx);
 2631                 break;
 2632         case EXIT_REASON_EXCEPTION:
 2633                 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
 2634                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
 2635                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
 2636                     ("VM exit interruption info invalid: %#x", intr_info));
 2637 
 2638                 intr_vec = intr_info & 0xff;
 2639                 intr_type = intr_info & VMCS_INTR_T_MASK;
 2640 
 2641                 /*
 2642                  * If Virtual NMIs control is 1 and the VM-exit is due to a
 2643                  * fault encountered during the execution of IRET then we must
 2644                  * restore the state of "virtual-NMI blocking" before resuming
 2645                  * the guest.
 2646                  *
 2647                  * See "Resuming Guest Software after Handling an Exception".
 2648                  * See "Information for VM Exits Due to Vectored Events".
 2649                  */
 2650                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
 2651                     (intr_vec != IDT_DF) &&
 2652                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
 2653                         vmx_restore_nmi_blocking(vcpu);
 2654 
 2655                 /*
 2656                  * The NMI has already been handled in vmx_exit_handle_nmi().
 2657                  */
 2658                 if (intr_type == VMCS_INTR_T_NMI)
 2659                         return (1);
 2660 
 2661                 /*
 2662                  * Call the machine check handler by hand. Also don't reflect
 2663                  * the machine check back into the guest.
 2664                  */
 2665                 if (intr_vec == IDT_MC) {
 2666                         VMX_CTR0(vcpu, "Vectoring to MCE handler");
 2667                         __asm __volatile("int $18");
 2668                         return (1);
 2669                 }
 2670 
 2671                 /*
 2672                  * If the hypervisor has requested user exits for
 2673                  * debug exceptions, bounce them out to userland.
 2674                  */
 2675                 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
 2676                     (vcpu->cap.set & (1 << VM_CAP_BPT_EXIT))) {
 2677                         vmexit->exitcode = VM_EXITCODE_BPT;
 2678                         vmexit->u.bpt.inst_length = vmexit->inst_length;
 2679                         vmexit->inst_length = 0;
 2680                         break;
 2681                 }
 2682 
 2683                 if (intr_vec == IDT_PF) {
 2684                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
 2685                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
 2686                             __func__, error));
 2687                 }
 2688 
 2689                 /*
 2690                  * Software exceptions exhibit trap-like behavior. This in
 2691                  * turn requires populating the VM-entry instruction length
 2692                  * so that the %rip in the trap frame is past the INT3/INTO
 2693                  * instruction.
 2694                  */
 2695                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
 2696                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
 2697 
 2698                 /* Reflect all other exceptions back into the guest */
 2699                 errcode_valid = errcode = 0;
 2700                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
 2701                         errcode_valid = 1;
 2702                         errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
 2703                 }
 2704                 VMX_CTR2(vcpu, "Reflecting exception %d/%#x into "
 2705                     "the guest", intr_vec, errcode);
 2706                 SDT_PROBE5(vmm, vmx, exit, exception,
 2707                     vmx, vcpuid, vmexit, intr_vec, errcode);
 2708                 error = vm_inject_exception(vcpu->vcpu, intr_vec,
 2709                     errcode_valid, errcode, 0);
 2710                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
 2711                     __func__, error));
 2712                 return (1);
 2713 
 2714         case EXIT_REASON_EPT_FAULT:
 2715                 /*
 2716                  * If 'gpa' lies within the address space allocated to
 2717                  * memory then this must be a nested page fault otherwise
 2718                  * this must be an instruction that accesses MMIO space.
 2719                  */
 2720                 gpa = vmcs_gpa();
 2721                 if (vm_mem_allocated(vcpu->vcpu, gpa) ||
 2722                     apic_access_fault(vcpu, gpa)) {
 2723                         vmexit->exitcode = VM_EXITCODE_PAGING;
 2724                         vmexit->inst_length = 0;
 2725                         vmexit->u.paging.gpa = gpa;
 2726                         vmexit->u.paging.fault_type = ept_fault_type(qual);
 2727                         vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
 2728                         SDT_PROBE5(vmm, vmx, exit, nestedfault,
 2729                             vmx, vcpuid, vmexit, gpa, qual);
 2730                 } else if (ept_emulation_fault(qual)) {
 2731                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
 2732                         vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
 2733                         SDT_PROBE4(vmm, vmx, exit, mmiofault,
 2734                             vmx, vcpuid, vmexit, gpa);
 2735                 }
 2736                 /*
 2737                  * If Virtual NMIs control is 1 and the VM-exit is due to an
 2738                  * EPT fault during the execution of IRET then we must restore
 2739                  * the state of "virtual-NMI blocking" before resuming.
 2740                  *
 2741                  * See description of "NMI unblocking due to IRET" in
 2742                  * "Exit Qualification for EPT Violations".
 2743                  */
 2744                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
 2745                     (qual & EXIT_QUAL_NMIUDTI) != 0)
 2746                         vmx_restore_nmi_blocking(vcpu);
 2747                 break;
 2748         case EXIT_REASON_VIRTUALIZED_EOI:
 2749                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
 2750                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
 2751                 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpuid, vmexit);
 2752                 vmexit->inst_length = 0;        /* trap-like */
 2753                 break;
 2754         case EXIT_REASON_APIC_ACCESS:
 2755                 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpuid, vmexit);
 2756                 handled = vmx_handle_apic_access(vcpu, vmexit);
 2757                 break;
 2758         case EXIT_REASON_APIC_WRITE:
 2759                 /*
 2760                  * APIC-write VM exit is trap-like so the %rip is already
 2761                  * pointing to the next instruction.
 2762                  */
 2763                 vmexit->inst_length = 0;
 2764                 vlapic = vm_lapic(vcpu->vcpu);
 2765                 SDT_PROBE4(vmm, vmx, exit, apicwrite,
 2766                     vmx, vcpuid, vmexit, vlapic);
 2767                 handled = vmx_handle_apic_write(vcpu, vlapic, qual);
 2768                 break;
 2769         case EXIT_REASON_XSETBV:
 2770                 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpuid, vmexit);
 2771                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
 2772                 break;
 2773         case EXIT_REASON_MONITOR:
 2774                 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpuid, vmexit);
 2775                 vmexit->exitcode = VM_EXITCODE_MONITOR;
 2776                 break;
 2777         case EXIT_REASON_MWAIT:
 2778                 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpuid, vmexit);
 2779                 vmexit->exitcode = VM_EXITCODE_MWAIT;
 2780                 break;
 2781         case EXIT_REASON_TPR:
 2782                 vlapic = vm_lapic(vcpu->vcpu);
 2783                 vlapic_sync_tpr(vlapic);
 2784                 vmexit->inst_length = 0;
 2785                 handled = HANDLED;
 2786                 break;
 2787         case EXIT_REASON_VMCALL:
 2788         case EXIT_REASON_VMCLEAR:
 2789         case EXIT_REASON_VMLAUNCH:
 2790         case EXIT_REASON_VMPTRLD:
 2791         case EXIT_REASON_VMPTRST:
 2792         case EXIT_REASON_VMREAD:
 2793         case EXIT_REASON_VMRESUME:
 2794         case EXIT_REASON_VMWRITE:
 2795         case EXIT_REASON_VMXOFF:
 2796         case EXIT_REASON_VMXON:
 2797                 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpuid, vmexit);
 2798                 vmexit->exitcode = VM_EXITCODE_VMINSN;
 2799                 break;
 2800         case EXIT_REASON_INVD:
 2801         case EXIT_REASON_WBINVD:
 2802                 /* ignore exit */
 2803                 handled = HANDLED;
 2804                 break;
 2805         default:
 2806                 SDT_PROBE4(vmm, vmx, exit, unknown,
 2807                     vmx, vcpuid, vmexit, reason);
 2808                 vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
 2809                 break;
 2810         }
 2811 
 2812         if (handled) {
 2813                 /*
 2814                  * It is possible that control is returned to userland
 2815                  * even though we were able to handle the VM exit in the
 2816                  * kernel.
 2817                  *
 2818                  * In such a case we want to make sure that the userland
 2819                  * restarts guest execution at the instruction *after*
 2820                  * the one we just processed. Therefore we update the
 2821                  * guest rip in the VMCS and in 'vmexit'.
 2822                  */
 2823                 vmexit->rip += vmexit->inst_length;
 2824                 vmexit->inst_length = 0;
 2825                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
 2826         } else {
 2827                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
 2828                         /*
 2829                          * If this VM exit was not claimed by anybody then
 2830                          * treat it as a generic VMX exit.
 2831                          */
 2832                         vmexit->exitcode = VM_EXITCODE_VMX;
 2833                         vmexit->u.vmx.status = VM_SUCCESS;
 2834                         vmexit->u.vmx.inst_type = 0;
 2835                         vmexit->u.vmx.inst_error = 0;
 2836                 } else {
 2837                         /*
 2838                          * The exitcode and collateral have been populated.
 2839                          * The VM exit will be processed further in userland.
 2840                          */
 2841                 }
 2842         }
 2843 
 2844         SDT_PROBE4(vmm, vmx, exit, return,
 2845             vmx, vcpuid, vmexit, handled);
 2846         return (handled);
 2847 }
 2848 
 2849 static __inline void
 2850 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
 2851 {
 2852 
 2853         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
 2854             ("vmx_exit_inst_error: invalid inst_fail_status %d",
 2855             vmxctx->inst_fail_status));
 2856 
 2857         vmexit->inst_length = 0;
 2858         vmexit->exitcode = VM_EXITCODE_VMX;
 2859         vmexit->u.vmx.status = vmxctx->inst_fail_status;
 2860         vmexit->u.vmx.inst_error = vmcs_instruction_error();
 2861         vmexit->u.vmx.exit_reason = ~0;
 2862         vmexit->u.vmx.exit_qualification = ~0;
 2863 
 2864         switch (rc) {
 2865         case VMX_VMRESUME_ERROR:
 2866         case VMX_VMLAUNCH_ERROR:
 2867                 vmexit->u.vmx.inst_type = rc;
 2868                 break;
 2869         default:
 2870                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
 2871         }
 2872 }
 2873 
 2874 /*
 2875  * If the NMI-exiting VM execution control is set to '1' then an NMI in
 2876  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
 2877  * sufficient to simply vector to the NMI handler via a software interrupt.
 2878  * However, this must be done before maskable interrupts are enabled
 2879  * otherwise the "iret" issued by an interrupt handler will incorrectly
 2880  * clear NMI blocking.
 2881  */
 2882 static __inline void
 2883 vmx_exit_handle_nmi(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
 2884 {
 2885         uint32_t intr_info;
 2886 
 2887         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
 2888 
 2889         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
 2890                 return;
 2891 
 2892         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
 2893         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
 2894             ("VM exit interruption info invalid: %#x", intr_info));
 2895 
 2896         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
 2897                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
 2898                     "to NMI has invalid vector: %#x", intr_info));
 2899                 VMX_CTR0(vcpu, "Vectoring to NMI handler");
 2900                 __asm __volatile("int $2");
 2901         }
 2902 }
 2903 
 2904 static __inline void
 2905 vmx_dr_enter_guest(struct vmxctx *vmxctx)
 2906 {
 2907         register_t rflags;
 2908 
 2909         /* Save host control debug registers. */
 2910         vmxctx->host_dr7 = rdr7();
 2911         vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
 2912 
 2913         /*
 2914          * Disable debugging in DR7 and DEBUGCTL to avoid triggering
 2915          * exceptions in the host based on the guest DRx values.  The
 2916          * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
 2917          */
 2918         load_dr7(0);
 2919         wrmsr(MSR_DEBUGCTLMSR, 0);
 2920 
 2921         /*
 2922          * Disable single stepping the kernel to avoid corrupting the
 2923          * guest DR6.  A debugger might still be able to corrupt the
 2924          * guest DR6 by setting a breakpoint after this point and then
 2925          * single stepping.
 2926          */
 2927         rflags = read_rflags();
 2928         vmxctx->host_tf = rflags & PSL_T;
 2929         write_rflags(rflags & ~PSL_T);
 2930 
 2931         /* Save host debug registers. */
 2932         vmxctx->host_dr0 = rdr0();
 2933         vmxctx->host_dr1 = rdr1();
 2934         vmxctx->host_dr2 = rdr2();
 2935         vmxctx->host_dr3 = rdr3();
 2936         vmxctx->host_dr6 = rdr6();
 2937 
 2938         /* Restore guest debug registers. */
 2939         load_dr0(vmxctx->guest_dr0);
 2940         load_dr1(vmxctx->guest_dr1);
 2941         load_dr2(vmxctx->guest_dr2);
 2942         load_dr3(vmxctx->guest_dr3);
 2943         load_dr6(vmxctx->guest_dr6);
 2944 }
 2945 
 2946 static __inline void
 2947 vmx_dr_leave_guest(struct vmxctx *vmxctx)
 2948 {
 2949 
 2950         /* Save guest debug registers. */
 2951         vmxctx->guest_dr0 = rdr0();
 2952         vmxctx->guest_dr1 = rdr1();
 2953         vmxctx->guest_dr2 = rdr2();
 2954         vmxctx->guest_dr3 = rdr3();
 2955         vmxctx->guest_dr6 = rdr6();
 2956 
 2957         /*
 2958          * Restore host debug registers.  Restore DR7, DEBUGCTL, and
 2959          * PSL_T last.
 2960          */
 2961         load_dr0(vmxctx->host_dr0);
 2962         load_dr1(vmxctx->host_dr1);
 2963         load_dr2(vmxctx->host_dr2);
 2964         load_dr3(vmxctx->host_dr3);
 2965         load_dr6(vmxctx->host_dr6);
 2966         wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
 2967         load_dr7(vmxctx->host_dr7);
 2968         write_rflags(read_rflags() | vmxctx->host_tf);
 2969 }
 2970 
 2971 static __inline void
 2972 vmx_pmap_activate(struct vmx *vmx, pmap_t pmap)
 2973 {
 2974         long eptgen;
 2975         int cpu;
 2976 
 2977         cpu = curcpu;
 2978 
 2979         CPU_SET_ATOMIC(cpu, &pmap->pm_active);
 2980         smr_enter(pmap->pm_eptsmr);
 2981         eptgen = atomic_load_long(&pmap->pm_eptgen);
 2982         if (eptgen != vmx->eptgen[cpu]) {
 2983                 vmx->eptgen[cpu] = eptgen;
 2984                 invept(INVEPT_TYPE_SINGLE_CONTEXT,
 2985                     (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 });
 2986         }
 2987 }
 2988 
 2989 static __inline void
 2990 vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap)
 2991 {
 2992         smr_exit(pmap->pm_eptsmr);
 2993         CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
 2994 }
 2995 
 2996 static int
 2997 vmx_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
 2998 {
 2999         int rc, handled, launched;
 3000         struct vmx *vmx;
 3001         struct vmx_vcpu *vcpu;
 3002         struct vmxctx *vmxctx;
 3003         struct vmcs *vmcs;
 3004         struct vm_exit *vmexit;
 3005         struct vlapic *vlapic;
 3006         uint32_t exit_reason;
 3007         struct region_descriptor gdtr, idtr;
 3008         uint16_t ldt_sel;
 3009 
 3010         vcpu = vcpui;
 3011         vmx = vcpu->vmx;
 3012         vmcs = vcpu->vmcs;
 3013         vmxctx = &vcpu->ctx;
 3014         vlapic = vm_lapic(vcpu->vcpu);
 3015         vmexit = vm_exitinfo(vcpu->vcpu);
 3016         launched = 0;
 3017 
 3018         KASSERT(vmxctx->pmap == pmap,
 3019             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
 3020 
 3021         vmx_msr_guest_enter(vcpu);
 3022 
 3023         VMPTRLD(vmcs);
 3024 
 3025         /*
 3026          * XXX
 3027          * We do this every time because we may setup the virtual machine
 3028          * from a different process than the one that actually runs it.
 3029          *
 3030          * If the life of a virtual machine was spent entirely in the context
 3031          * of a single process we could do this once in vmx_init().
 3032          */
 3033         vmcs_write(VMCS_HOST_CR3, rcr3());
 3034 
 3035         vmcs_write(VMCS_GUEST_RIP, rip);
 3036         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
 3037         do {
 3038                 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
 3039                     "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
 3040 
 3041                 handled = UNHANDLED;
 3042                 /*
 3043                  * Interrupts are disabled from this point on until the
 3044                  * guest starts executing. This is done for the following
 3045                  * reasons:
 3046                  *
 3047                  * If an AST is asserted on this thread after the check below,
 3048                  * then the IPI_AST notification will not be lost, because it
 3049                  * will cause a VM exit due to external interrupt as soon as
 3050                  * the guest state is loaded.
 3051                  *
 3052                  * A posted interrupt after 'vmx_inject_interrupts()' will
 3053                  * not be "lost" because it will be held pending in the host
 3054                  * APIC because interrupts are disabled. The pending interrupt
 3055                  * will be recognized as soon as the guest state is loaded.
 3056                  *
 3057                  * The same reasoning applies to the IPI generated by
 3058                  * pmap_invalidate_ept().
 3059                  */
 3060                 disable_intr();
 3061                 vmx_inject_interrupts(vcpu, vlapic, rip);
 3062 
 3063                 /*
 3064                  * Check for vcpu suspension after injecting events because
 3065                  * vmx_inject_interrupts() can suspend the vcpu due to a
 3066                  * triple fault.
 3067                  */
 3068                 if (vcpu_suspended(evinfo)) {
 3069                         enable_intr();
 3070                         vm_exit_suspended(vcpu->vcpu, rip);
 3071                         break;
 3072                 }
 3073 
 3074                 if (vcpu_rendezvous_pending(evinfo)) {
 3075                         enable_intr();
 3076                         vm_exit_rendezvous(vcpu->vcpu, rip);
 3077                         break;
 3078                 }
 3079 
 3080                 if (vcpu_reqidle(evinfo)) {
 3081                         enable_intr();
 3082                         vm_exit_reqidle(vcpu->vcpu, rip);
 3083                         break;
 3084                 }
 3085 
 3086                 if (vcpu_should_yield(vcpu->vcpu)) {
 3087                         enable_intr();
 3088                         vm_exit_astpending(vcpu->vcpu, rip);
 3089                         vmx_astpending_trace(vcpu, rip);
 3090                         handled = HANDLED;
 3091                         break;
 3092                 }
 3093 
 3094                 if (vcpu_debugged(vcpu->vcpu)) {
 3095                         enable_intr();
 3096                         vm_exit_debug(vcpu->vcpu, rip);
 3097                         break;
 3098                 }
 3099 
 3100                 /*
 3101                  * If TPR Shadowing is enabled, the TPR Threshold
 3102                  * must be updated right before entering the guest.
 3103                  */
 3104                 if (tpr_shadowing && !virtual_interrupt_delivery) {
 3105                         if ((vcpu->cap.proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
 3106                                 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
 3107                         }
 3108                 }
 3109 
 3110                 /*
 3111                  * VM exits restore the base address but not the
 3112                  * limits of GDTR and IDTR.  The VMCS only stores the
 3113                  * base address, so VM exits set the limits to 0xffff.
 3114                  * Save and restore the full GDTR and IDTR to restore
 3115                  * the limits.
 3116                  *
 3117                  * The VMCS does not save the LDTR at all, and VM
 3118                  * exits clear LDTR as if a NULL selector were loaded.
 3119                  * The userspace hypervisor probably doesn't use a
 3120                  * LDT, but save and restore it to be safe.
 3121                  */
 3122                 sgdt(&gdtr);
 3123                 sidt(&idtr);
 3124                 ldt_sel = sldt();
 3125 
 3126                 /*
 3127                  * The TSC_AUX MSR must be saved/restored while interrupts
 3128                  * are disabled so that it is not possible for the guest
 3129                  * TSC_AUX MSR value to be overwritten by the resume
 3130                  * portion of the IPI_SUSPEND codepath. This is why the
 3131                  * transition of this MSR is handled separately from those
 3132                  * handled by vmx_msr_guest_{enter,exit}(), which are ok to
 3133                  * be transitioned with preemption disabled but interrupts
 3134                  * enabled.
 3135                  *
 3136                  * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
 3137                  * anywhere in this loop so long as they happen with
 3138                  * interrupts disabled. This location is chosen for
 3139                  * simplicity.
 3140                  */
 3141                 vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
 3142 
 3143                 vmx_dr_enter_guest(vmxctx);
 3144 
 3145                 /*
 3146                  * Mark the EPT as active on this host CPU and invalidate
 3147                  * EPTP-tagged TLB entries if required.
 3148                  */
 3149                 vmx_pmap_activate(vmx, pmap);
 3150 
 3151                 vmx_run_trace(vcpu);
 3152                 rc = vmx_enter_guest(vmxctx, vmx, launched);
 3153 
 3154                 vmx_pmap_deactivate(vmx, pmap);
 3155                 vmx_dr_leave_guest(vmxctx);
 3156                 vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
 3157 
 3158                 bare_lgdt(&gdtr);
 3159                 lidt(&idtr);
 3160                 lldt(ldt_sel);
 3161 
 3162                 /* Collect some information for VM exit processing */
 3163                 vmexit->rip = rip = vmcs_guest_rip();
 3164                 vmexit->inst_length = vmexit_instruction_length();
 3165                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
 3166                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
 3167 
 3168                 /* Update 'nextrip' */
 3169                 vcpu->state.nextrip = rip;
 3170 
 3171                 if (rc == VMX_GUEST_VMEXIT) {
 3172                         vmx_exit_handle_nmi(vcpu, vmexit);
 3173                         enable_intr();
 3174                         handled = vmx_exit_process(vmx, vcpu, vmexit);
 3175                 } else {
 3176                         enable_intr();
 3177                         vmx_exit_inst_error(vmxctx, rc, vmexit);
 3178                 }
 3179                 launched = 1;
 3180                 vmx_exit_trace(vcpu, rip, exit_reason, handled);
 3181                 rip = vmexit->rip;
 3182         } while (handled);
 3183 
 3184         /*
 3185          * If a VM exit has been handled then the exitcode must be BOGUS
 3186          * If a VM exit is not handled then the exitcode must not be BOGUS
 3187          */
 3188         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
 3189             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
 3190                 panic("Mismatch between handled (%d) and exitcode (%d)",
 3191                       handled, vmexit->exitcode);
 3192         }
 3193 
 3194         VMX_CTR1(vcpu, "returning from vmx_run: exitcode %d",
 3195             vmexit->exitcode);
 3196 
 3197         VMCLEAR(vmcs);
 3198         vmx_msr_guest_exit(vcpu);
 3199 
 3200         return (0);
 3201 }
 3202 
 3203 static void
 3204 vmx_vcpu_cleanup(void *vcpui)
 3205 {
 3206         struct vmx_vcpu *vcpu = vcpui;
 3207 
 3208         vpid_free(vcpu->state.vpid);
 3209         free(vcpu->pir_desc, M_VMX);
 3210         free(vcpu->apic_page, M_VMX);
 3211         free(vcpu->vmcs, M_VMX);
 3212         free(vcpu, M_VMX);
 3213 }
 3214 
 3215 static void
 3216 vmx_cleanup(void *vmi)
 3217 {
 3218         struct vmx *vmx = vmi;
 3219 
 3220         if (virtual_interrupt_delivery)
 3221                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
 3222 
 3223         free(vmx->msr_bitmap, M_VMX);
 3224         free(vmx, M_VMX);
 3225 
 3226         return;
 3227 }
 3228 
 3229 static register_t *
 3230 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
 3231 {
 3232 
 3233         switch (reg) {
 3234         case VM_REG_GUEST_RAX:
 3235                 return (&vmxctx->guest_rax);
 3236         case VM_REG_GUEST_RBX:
 3237                 return (&vmxctx->guest_rbx);
 3238         case VM_REG_GUEST_RCX:
 3239                 return (&vmxctx->guest_rcx);
 3240         case VM_REG_GUEST_RDX:
 3241                 return (&vmxctx->guest_rdx);
 3242         case VM_REG_GUEST_RSI:
 3243                 return (&vmxctx->guest_rsi);
 3244         case VM_REG_GUEST_RDI:
 3245                 return (&vmxctx->guest_rdi);
 3246         case VM_REG_GUEST_RBP:
 3247                 return (&vmxctx->guest_rbp);
 3248         case VM_REG_GUEST_R8:
 3249                 return (&vmxctx->guest_r8);
 3250         case VM_REG_GUEST_R9:
 3251                 return (&vmxctx->guest_r9);
 3252         case VM_REG_GUEST_R10:
 3253                 return (&vmxctx->guest_r10);
 3254         case VM_REG_GUEST_R11:
 3255                 return (&vmxctx->guest_r11);
 3256         case VM_REG_GUEST_R12:
 3257                 return (&vmxctx->guest_r12);
 3258         case VM_REG_GUEST_R13:
 3259                 return (&vmxctx->guest_r13);
 3260         case VM_REG_GUEST_R14:
 3261                 return (&vmxctx->guest_r14);
 3262         case VM_REG_GUEST_R15:
 3263                 return (&vmxctx->guest_r15);
 3264         case VM_REG_GUEST_CR2:
 3265                 return (&vmxctx->guest_cr2);
 3266         case VM_REG_GUEST_DR0:
 3267                 return (&vmxctx->guest_dr0);
 3268         case VM_REG_GUEST_DR1:
 3269                 return (&vmxctx->guest_dr1);
 3270         case VM_REG_GUEST_DR2:
 3271                 return (&vmxctx->guest_dr2);
 3272         case VM_REG_GUEST_DR3:
 3273                 return (&vmxctx->guest_dr3);
 3274         case VM_REG_GUEST_DR6:
 3275                 return (&vmxctx->guest_dr6);
 3276         default:
 3277                 break;
 3278         }
 3279         return (NULL);
 3280 }
 3281 
 3282 static int
 3283 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
 3284 {
 3285         register_t *regp;
 3286 
 3287         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
 3288                 *retval = *regp;
 3289                 return (0);
 3290         } else
 3291                 return (EINVAL);
 3292 }
 3293 
 3294 static int
 3295 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
 3296 {
 3297         register_t *regp;
 3298 
 3299         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
 3300                 *regp = val;
 3301                 return (0);
 3302         } else
 3303                 return (EINVAL);
 3304 }
 3305 
 3306 static int
 3307 vmx_get_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t *retval)
 3308 {
 3309         uint64_t gi;
 3310         int error;
 3311 
 3312         error = vmcs_getreg(vcpu->vmcs, running,
 3313             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
 3314         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
 3315         return (error);
 3316 }
 3317 
 3318 static int
 3319 vmx_modify_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t val)
 3320 {
 3321         struct vmcs *vmcs;
 3322         uint64_t gi;
 3323         int error, ident;
 3324 
 3325         /*
 3326          * Forcing the vcpu into an interrupt shadow is not supported.
 3327          */
 3328         if (val) {
 3329                 error = EINVAL;
 3330                 goto done;
 3331         }
 3332 
 3333         vmcs = vcpu->vmcs;
 3334         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
 3335         error = vmcs_getreg(vmcs, running, ident, &gi);
 3336         if (error == 0) {
 3337                 gi &= ~HWINTR_BLOCKING;
 3338                 error = vmcs_setreg(vmcs, running, ident, gi);
 3339         }
 3340 done:
 3341         VMX_CTR2(vcpu, "Setting intr_shadow to %#lx %s", val,
 3342             error ? "failed" : "succeeded");
 3343         return (error);
 3344 }
 3345 
 3346 static int
 3347 vmx_shadow_reg(int reg)
 3348 {
 3349         int shreg;
 3350 
 3351         shreg = -1;
 3352 
 3353         switch (reg) {
 3354         case VM_REG_GUEST_CR0:
 3355                 shreg = VMCS_CR0_SHADOW;
 3356                 break;
 3357         case VM_REG_GUEST_CR4:
 3358                 shreg = VMCS_CR4_SHADOW;
 3359                 break;
 3360         default:
 3361                 break;
 3362         }
 3363 
 3364         return (shreg);
 3365 }
 3366 
 3367 static int
 3368 vmx_getreg(void *vcpui, int reg, uint64_t *retval)
 3369 {
 3370         int running, hostcpu;
 3371         struct vmx_vcpu *vcpu = vcpui;
 3372         struct vmx *vmx = vcpu->vmx;
 3373 
 3374         running = vcpu_is_running(vcpu->vcpu, &hostcpu);
 3375         if (running && hostcpu != curcpu)
 3376                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm),
 3377                     vcpu->vcpuid);
 3378 
 3379         if (reg == VM_REG_GUEST_INTR_SHADOW)
 3380                 return (vmx_get_intr_shadow(vcpu, running, retval));
 3381 
 3382         if (vmxctx_getreg(&vcpu->ctx, reg, retval) == 0)
 3383                 return (0);
 3384 
 3385         return (vmcs_getreg(vcpu->vmcs, running, reg, retval));
 3386 }
 3387 
 3388 static int
 3389 vmx_setreg(void *vcpui, int reg, uint64_t val)
 3390 {
 3391         int error, hostcpu, running, shadow;
 3392         uint64_t ctls;
 3393         pmap_t pmap;
 3394         struct vmx_vcpu *vcpu = vcpui;
 3395         struct vmx *vmx = vcpu->vmx;
 3396 
 3397         running = vcpu_is_running(vcpu->vcpu, &hostcpu);
 3398         if (running && hostcpu != curcpu)
 3399                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm),
 3400                     vcpu->vcpuid);
 3401 
 3402         if (reg == VM_REG_GUEST_INTR_SHADOW)
 3403                 return (vmx_modify_intr_shadow(vcpu, running, val));
 3404 
 3405         if (vmxctx_setreg(&vcpu->ctx, reg, val) == 0)
 3406                 return (0);
 3407 
 3408         /* Do not permit user write access to VMCS fields by offset. */
 3409         if (reg < 0)
 3410                 return (EINVAL);
 3411 
 3412         error = vmcs_setreg(vcpu->vmcs, running, reg, val);
 3413 
 3414         if (error == 0) {
 3415                 /*
 3416                  * If the "load EFER" VM-entry control is 1 then the
 3417                  * value of EFER.LMA must be identical to "IA-32e mode guest"
 3418                  * bit in the VM-entry control.
 3419                  */
 3420                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
 3421                     (reg == VM_REG_GUEST_EFER)) {
 3422                         vmcs_getreg(vcpu->vmcs, running,
 3423                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
 3424                         if (val & EFER_LMA)
 3425                                 ctls |= VM_ENTRY_GUEST_LMA;
 3426                         else
 3427                                 ctls &= ~VM_ENTRY_GUEST_LMA;
 3428                         vmcs_setreg(vcpu->vmcs, running,
 3429                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
 3430                 }
 3431 
 3432                 shadow = vmx_shadow_reg(reg);
 3433                 if (shadow > 0) {
 3434                         /*
 3435                          * Store the unmodified value in the shadow
 3436                          */
 3437                         error = vmcs_setreg(vcpu->vmcs, running,
 3438                                     VMCS_IDENT(shadow), val);
 3439                 }
 3440 
 3441                 if (reg == VM_REG_GUEST_CR3) {
 3442                         /*
 3443                          * Invalidate the guest vcpu's TLB mappings to emulate
 3444                          * the behavior of updating %cr3.
 3445                          *
 3446                          * XXX the processor retains global mappings when %cr3
 3447                          * is updated but vmx_invvpid() does not.
 3448                          */
 3449                         pmap = vcpu->ctx.pmap;
 3450                         vmx_invvpid(vmx, vcpu, pmap, running);
 3451                 }
 3452         }
 3453 
 3454         return (error);
 3455 }
 3456 
 3457 static int
 3458 vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc)
 3459 {
 3460         int hostcpu, running;
 3461         struct vmx_vcpu *vcpu = vcpui;
 3462         struct vmx *vmx = vcpu->vmx;
 3463 
 3464         running = vcpu_is_running(vcpu->vcpu, &hostcpu);
 3465         if (running && hostcpu != curcpu)
 3466                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm),
 3467                     vcpu->vcpuid);
 3468 
 3469         return (vmcs_getdesc(vcpu->vmcs, running, reg, desc));
 3470 }
 3471 
 3472 static int
 3473 vmx_setdesc(void *vcpui, int reg, struct seg_desc *desc)
 3474 {
 3475         int hostcpu, running;
 3476         struct vmx_vcpu *vcpu = vcpui;
 3477         struct vmx *vmx = vcpu->vmx;
 3478 
 3479         running = vcpu_is_running(vcpu->vcpu, &hostcpu);
 3480         if (running && hostcpu != curcpu)
 3481                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm),
 3482                     vcpu->vcpuid);
 3483 
 3484         return (vmcs_setdesc(vcpu->vmcs, running, reg, desc));
 3485 }
 3486 
 3487 static int
 3488 vmx_getcap(void *vcpui, int type, int *retval)
 3489 {
 3490         struct vmx_vcpu *vcpu = vcpui;
 3491         int vcap;
 3492         int ret;
 3493 
 3494         ret = ENOENT;
 3495 
 3496         vcap = vcpu->cap.set;
 3497 
 3498         switch (type) {
 3499         case VM_CAP_HALT_EXIT:
 3500                 if (cap_halt_exit)
 3501                         ret = 0;
 3502                 break;
 3503         case VM_CAP_PAUSE_EXIT:
 3504                 if (cap_pause_exit)
 3505                         ret = 0;
 3506                 break;
 3507         case VM_CAP_MTRAP_EXIT:
 3508                 if (cap_monitor_trap)
 3509                         ret = 0;
 3510                 break;
 3511         case VM_CAP_RDPID:
 3512                 if (cap_rdpid)
 3513                         ret = 0;
 3514                 break;
 3515         case VM_CAP_RDTSCP:
 3516                 if (cap_rdtscp)
 3517                         ret = 0;
 3518                 break;
 3519         case VM_CAP_UNRESTRICTED_GUEST:
 3520                 if (cap_unrestricted_guest)
 3521                         ret = 0;
 3522                 break;
 3523         case VM_CAP_ENABLE_INVPCID:
 3524                 if (cap_invpcid)
 3525                         ret = 0;
 3526                 break;
 3527         case VM_CAP_BPT_EXIT:
 3528         case VM_CAP_IPI_EXIT:
 3529                 ret = 0;
 3530                 break;
 3531         default:
 3532                 break;
 3533         }
 3534 
 3535         if (ret == 0)
 3536                 *retval = (vcap & (1 << type)) ? 1 : 0;
 3537 
 3538         return (ret);
 3539 }
 3540 
 3541 static int
 3542 vmx_setcap(void *vcpui, int type, int val)
 3543 {
 3544         struct vmx_vcpu *vcpu = vcpui;
 3545         struct vmcs *vmcs = vcpu->vmcs;
 3546         struct vlapic *vlapic;
 3547         uint32_t baseval;
 3548         uint32_t *pptr;
 3549         int error;
 3550         int flag;
 3551         int reg;
 3552         int retval;
 3553 
 3554         retval = ENOENT;
 3555         pptr = NULL;
 3556 
 3557         switch (type) {
 3558         case VM_CAP_HALT_EXIT:
 3559                 if (cap_halt_exit) {
 3560                         retval = 0;
 3561                         pptr = &vcpu->cap.proc_ctls;
 3562                         baseval = *pptr;
 3563                         flag = PROCBASED_HLT_EXITING;
 3564                         reg = VMCS_PRI_PROC_BASED_CTLS;
 3565                 }
 3566                 break;
 3567         case VM_CAP_MTRAP_EXIT:
 3568                 if (cap_monitor_trap) {
 3569                         retval = 0;
 3570                         pptr = &vcpu->cap.proc_ctls;
 3571                         baseval = *pptr;
 3572                         flag = PROCBASED_MTF;
 3573                         reg = VMCS_PRI_PROC_BASED_CTLS;
 3574                 }
 3575                 break;
 3576         case VM_CAP_PAUSE_EXIT:
 3577                 if (cap_pause_exit) {
 3578                         retval = 0;
 3579                         pptr = &vcpu->cap.proc_ctls;
 3580                         baseval = *pptr;
 3581                         flag = PROCBASED_PAUSE_EXITING;
 3582                         reg = VMCS_PRI_PROC_BASED_CTLS;
 3583                 }
 3584                 break;
 3585         case VM_CAP_RDPID:
 3586         case VM_CAP_RDTSCP:
 3587                 if (cap_rdpid || cap_rdtscp)
 3588                         /*
 3589                          * Choose not to support enabling/disabling
 3590                          * RDPID/RDTSCP via libvmmapi since, as per the
 3591                          * discussion in vmx_modinit(), RDPID/RDTSCP are
 3592                          * either always enabled or always disabled.
 3593                          */
 3594                         error = EOPNOTSUPP;
 3595                 break;
 3596         case VM_CAP_UNRESTRICTED_GUEST:
 3597                 if (cap_unrestricted_guest) {
 3598                         retval = 0;
 3599                         pptr = &vcpu->cap.proc_ctls2;
 3600                         baseval = *pptr;
 3601                         flag = PROCBASED2_UNRESTRICTED_GUEST;
 3602                         reg = VMCS_SEC_PROC_BASED_CTLS;
 3603                 }
 3604                 break;
 3605         case VM_CAP_ENABLE_INVPCID:
 3606                 if (cap_invpcid) {
 3607                         retval = 0;
 3608                         pptr = &vcpu->cap.proc_ctls2;
 3609                         baseval = *pptr;
 3610                         flag = PROCBASED2_ENABLE_INVPCID;
 3611                         reg = VMCS_SEC_PROC_BASED_CTLS;
 3612                 }
 3613                 break;
 3614         case VM_CAP_BPT_EXIT:
 3615                 retval = 0;
 3616 
 3617                 /* Don't change the bitmap if we are tracing all exceptions. */
 3618                 if (vcpu->cap.exc_bitmap != 0xffffffff) {
 3619                         pptr = &vcpu->cap.exc_bitmap;
 3620                         baseval = *pptr;
 3621                         flag = (1 << IDT_BP);
 3622                         reg = VMCS_EXCEPTION_BITMAP;
 3623                 }
 3624                 break;
 3625         case VM_CAP_IPI_EXIT:
 3626                 retval = 0;
 3627 
 3628                 vlapic = vm_lapic(vcpu->vcpu);
 3629                 vlapic->ipi_exit = val;
 3630                 break;
 3631         default:
 3632                 break;
 3633         }
 3634 
 3635         if (retval)
 3636                 return (retval);
 3637 
 3638         if (pptr != NULL) {
 3639                 if (val) {
 3640                         baseval |= flag;
 3641                 } else {
 3642                         baseval &= ~flag;
 3643                 }
 3644                 VMPTRLD(vmcs);
 3645                 error = vmwrite(reg, baseval);
 3646                 VMCLEAR(vmcs);
 3647 
 3648                 if (error)
 3649                         return (error);
 3650 
 3651                 /*
 3652                  * Update optional stored flags, and record
 3653                  * setting
 3654                  */
 3655                 *pptr = baseval;
 3656         }
 3657 
 3658         if (val) {
 3659                 vcpu->cap.set |= (1 << type);
 3660         } else {
 3661                 vcpu->cap.set &= ~(1 << type);
 3662         }
 3663 
 3664         return (0);
 3665 }
 3666 
 3667 static struct vmspace *
 3668 vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max)
 3669 {
 3670         return (ept_vmspace_alloc(min, max));
 3671 }
 3672 
 3673 static void
 3674 vmx_vmspace_free(struct vmspace *vmspace)
 3675 {
 3676         ept_vmspace_free(vmspace);
 3677 }
 3678 
 3679 struct vlapic_vtx {
 3680         struct vlapic   vlapic;
 3681         struct pir_desc *pir_desc;
 3682         struct vmx_vcpu *vcpu;
 3683         u_int   pending_prio;
 3684 };
 3685 
 3686 #define VPR_PRIO_BIT(vpr)       (1 << ((vpr) >> 4))
 3687 
 3688 #define VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level, msg)       \
 3689 do {                                                                    \
 3690         VLAPIC_CTR2(vlapic, msg " assert %s-triggered vector %d",       \
 3691             level ? "level" : "edge", vector);                          \
 3692         VLAPIC_CTR1(vlapic, msg " pir0 0x%016lx", pir_desc->pir[0]);    \
 3693         VLAPIC_CTR1(vlapic, msg " pir1 0x%016lx", pir_desc->pir[1]);    \
 3694         VLAPIC_CTR1(vlapic, msg " pir2 0x%016lx", pir_desc->pir[2]);    \
 3695         VLAPIC_CTR1(vlapic, msg " pir3 0x%016lx", pir_desc->pir[3]);    \
 3696         VLAPIC_CTR1(vlapic, msg " notify: %s", notify ? "yes" : "no");  \
 3697 } while (0)
 3698 
 3699 /*
 3700  * vlapic->ops handlers that utilize the APICv hardware assist described in
 3701  * Chapter 29 of the Intel SDM.
 3702  */
 3703 static int
 3704 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
 3705 {
 3706         struct vlapic_vtx *vlapic_vtx;
 3707         struct pir_desc *pir_desc;
 3708         uint64_t mask;
 3709         int idx, notify = 0;
 3710 
 3711         vlapic_vtx = (struct vlapic_vtx *)vlapic;
 3712         pir_desc = vlapic_vtx->pir_desc;
 3713 
 3714         /*
 3715          * Keep track of interrupt requests in the PIR descriptor. This is
 3716          * because the virtual APIC page pointed to by the VMCS cannot be
 3717          * modified if the vcpu is running.
 3718          */
 3719         idx = vector / 64;
 3720         mask = 1UL << (vector % 64);
 3721         atomic_set_long(&pir_desc->pir[idx], mask);
 3722 
 3723         /*
 3724          * A notification is required whenever the 'pending' bit makes a
 3725          * transition from 0->1.
 3726          *
 3727          * Even if the 'pending' bit is already asserted, notification about
 3728          * the incoming interrupt may still be necessary.  For example, if a
 3729          * vCPU is HLTed with a high PPR, a low priority interrupt would cause
 3730          * the 0->1 'pending' transition with a notification, but the vCPU
 3731          * would ignore the interrupt for the time being.  The same vCPU would
 3732          * need to then be notified if a high-priority interrupt arrived which
 3733          * satisfied the PPR.
 3734          *
 3735          * The priorities of interrupts injected while 'pending' is asserted
 3736          * are tracked in a custom bitfield 'pending_prio'.  Should the
 3737          * to-be-injected interrupt exceed the priorities already present, the
 3738          * notification is sent.  The priorities recorded in 'pending_prio' are
 3739          * cleared whenever the 'pending' bit makes another 0->1 transition.
 3740          */
 3741         if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
 3742                 notify = 1;
 3743                 vlapic_vtx->pending_prio = 0;
 3744         } else {
 3745                 const u_int old_prio = vlapic_vtx->pending_prio;
 3746                 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
 3747 
 3748                 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
 3749                         atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
 3750                         notify = 1;
 3751                 }
 3752         }
 3753 
 3754         VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level,
 3755             "vmx_set_intr_ready");
 3756         return (notify);
 3757 }
 3758 
 3759 static int
 3760 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
 3761 {
 3762         struct vlapic_vtx *vlapic_vtx;
 3763         struct pir_desc *pir_desc;
 3764         struct LAPIC *lapic;
 3765         uint64_t pending, pirval;
 3766         uint32_t ppr, vpr;
 3767         int i;
 3768 
 3769         /*
 3770          * This function is only expected to be called from the 'HLT' exit
 3771          * handler which does not care about the vector that is pending.
 3772          */
 3773         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
 3774 
 3775         vlapic_vtx = (struct vlapic_vtx *)vlapic;
 3776         pir_desc = vlapic_vtx->pir_desc;
 3777 
 3778         pending = atomic_load_acq_long(&pir_desc->pending);
 3779         if (!pending) {
 3780                 /*
 3781                  * While a virtual interrupt may have already been
 3782                  * processed the actual delivery maybe pending the
 3783                  * interruptibility of the guest.  Recognize a pending
 3784                  * interrupt by reevaluating virtual interrupts
 3785                  * following Section 29.2.1 in the Intel SDM Volume 3.
 3786                  */
 3787                 struct vm_exit *vmexit;
 3788                 uint8_t rvi, ppr;
 3789 
 3790                 vmexit = vm_exitinfo(vlapic->vcpu);
 3791                 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
 3792                     ("vmx_pending_intr: exitcode not 'HLT'"));
 3793                 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
 3794                 lapic = vlapic->apic_page;
 3795                 ppr = lapic->ppr & APIC_TPR_INT;
 3796                 if (rvi > ppr) {
 3797                         return (1);
 3798                 }
 3799 
 3800                 return (0);
 3801         }
 3802 
 3803         /*
 3804          * If there is an interrupt pending then it will be recognized only
 3805          * if its priority is greater than the processor priority.
 3806          *
 3807          * Special case: if the processor priority is zero then any pending
 3808          * interrupt will be recognized.
 3809          */
 3810         lapic = vlapic->apic_page;
 3811         ppr = lapic->ppr & APIC_TPR_INT;
 3812         if (ppr == 0)
 3813                 return (1);
 3814 
 3815         VLAPIC_CTR1(vlapic, "HLT with non-zero PPR %d", lapic->ppr);
 3816 
 3817         vpr = 0;
 3818         for (i = 3; i >= 0; i--) {
 3819                 pirval = pir_desc->pir[i];
 3820                 if (pirval != 0) {
 3821                         vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
 3822                         break;
 3823                 }
 3824         }
 3825 
 3826         /*
 3827          * If the highest-priority pending interrupt falls short of the
 3828          * processor priority of this vCPU, ensure that 'pending_prio' does not
 3829          * have any stale bits which would preclude a higher-priority interrupt
 3830          * from incurring a notification later.
 3831          */
 3832         if (vpr <= ppr) {
 3833                 const u_int prio_bit = VPR_PRIO_BIT(vpr);
 3834                 const u_int old = vlapic_vtx->pending_prio;
 3835 
 3836                 if (old > prio_bit && (old & prio_bit) == 0) {
 3837                         vlapic_vtx->pending_prio = prio_bit;
 3838                 }
 3839                 return (0);
 3840         }
 3841         return (1);
 3842 }
 3843 
 3844 static void
 3845 vmx_intr_accepted(struct vlapic *vlapic, int vector)
 3846 {
 3847 
 3848         panic("vmx_intr_accepted: not expected to be called");
 3849 }
 3850 
 3851 static void
 3852 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
 3853 {
 3854         struct vlapic_vtx *vlapic_vtx;
 3855         struct vmcs *vmcs;
 3856         uint64_t mask, val;
 3857 
 3858         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
 3859         KASSERT(!vcpu_is_running(vlapic->vcpu, NULL),
 3860             ("vmx_set_tmr: vcpu cannot be running"));
 3861 
 3862         vlapic_vtx = (struct vlapic_vtx *)vlapic;
 3863         vmcs = vlapic_vtx->vcpu->vmcs;
 3864         mask = 1UL << (vector % 64);
 3865 
 3866         VMPTRLD(vmcs);
 3867         val = vmcs_read(VMCS_EOI_EXIT(vector));
 3868         if (level)
 3869                 val |= mask;
 3870         else
 3871                 val &= ~mask;
 3872         vmcs_write(VMCS_EOI_EXIT(vector), val);
 3873         VMCLEAR(vmcs);
 3874 }
 3875 
 3876 static void
 3877 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
 3878 {
 3879         struct vlapic_vtx *vlapic_vtx;
 3880         struct vmx_vcpu *vcpu;
 3881         struct vmcs *vmcs;
 3882         uint32_t proc_ctls;
 3883 
 3884         vlapic_vtx = (struct vlapic_vtx *)vlapic;
 3885         vcpu = vlapic_vtx->vcpu;
 3886         vmcs = vcpu->vmcs;
 3887 
 3888         proc_ctls = vcpu->cap.proc_ctls;
 3889         proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
 3890         proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
 3891         proc_ctls |= PROCBASED_CR8_STORE_EXITING;
 3892         vcpu->cap.proc_ctls = proc_ctls;
 3893 
 3894         VMPTRLD(vmcs);
 3895         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
 3896         VMCLEAR(vmcs);
 3897 }
 3898 
 3899 static void
 3900 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
 3901 {
 3902         struct vlapic_vtx *vlapic_vtx;
 3903         struct vmx *vmx;
 3904         struct vmx_vcpu *vcpu;
 3905         struct vmcs *vmcs;
 3906         uint32_t proc_ctls2;
 3907         int error __diagused;
 3908 
 3909         vlapic_vtx = (struct vlapic_vtx *)vlapic;
 3910         vcpu = vlapic_vtx->vcpu;
 3911         vmx = vcpu->vmx;
 3912         vmcs = vcpu->vmcs;
 3913 
 3914         proc_ctls2 = vcpu->cap.proc_ctls2;
 3915         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
 3916             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
 3917 
 3918         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
 3919         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
 3920         vcpu->cap.proc_ctls2 = proc_ctls2;
 3921 
 3922         VMPTRLD(vmcs);
 3923         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
 3924         VMCLEAR(vmcs);
 3925 
 3926         if (vlapic->vcpuid == 0) {
 3927                 /*
 3928                  * The nested page table mappings are shared by all vcpus
 3929                  * so unmap the APIC access page just once.
 3930                  */
 3931                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
 3932                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
 3933                     __func__, error));
 3934 
 3935                 /*
 3936                  * The MSR bitmap is shared by all vcpus so modify it only
 3937                  * once in the context of vcpu 0.
 3938                  */
 3939                 error = vmx_allow_x2apic_msrs(vmx);
 3940                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
 3941                     __func__, error));
 3942         }
 3943 }
 3944 
 3945 static void
 3946 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
 3947 {
 3948 
 3949         ipi_cpu(hostcpu, pirvec);
 3950 }
 3951 
 3952 /*
 3953  * Transfer the pending interrupts in the PIR descriptor to the IRR
 3954  * in the virtual APIC page.
 3955  */
 3956 static void
 3957 vmx_inject_pir(struct vlapic *vlapic)
 3958 {
 3959         struct vlapic_vtx *vlapic_vtx;
 3960         struct pir_desc *pir_desc;
 3961         struct LAPIC *lapic;
 3962         uint64_t val, pirval;
 3963         int rvi, pirbase = -1;
 3964         uint16_t intr_status_old, intr_status_new;
 3965 
 3966         vlapic_vtx = (struct vlapic_vtx *)vlapic;
 3967         pir_desc = vlapic_vtx->pir_desc;
 3968         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
 3969                 VLAPIC_CTR0(vlapic, "vmx_inject_pir: "
 3970                     "no posted interrupt pending");
 3971                 return;
 3972         }
 3973 
 3974         pirval = 0;
 3975         pirbase = -1;
 3976         lapic = vlapic->apic_page;
 3977 
 3978         val = atomic_readandclear_long(&pir_desc->pir[0]);
 3979         if (val != 0) {
 3980                 lapic->irr0 |= val;
 3981                 lapic->irr1 |= val >> 32;
 3982                 pirbase = 0;
 3983                 pirval = val;
 3984         }
 3985 
 3986         val = atomic_readandclear_long(&pir_desc->pir[1]);
 3987         if (val != 0) {
 3988                 lapic->irr2 |= val;
 3989                 lapic->irr3 |= val >> 32;
 3990                 pirbase = 64;
 3991                 pirval = val;
 3992         }
 3993 
 3994         val = atomic_readandclear_long(&pir_desc->pir[2]);
 3995         if (val != 0) {
 3996                 lapic->irr4 |= val;
 3997                 lapic->irr5 |= val >> 32;
 3998                 pirbase = 128;
 3999                 pirval = val;
 4000         }
 4001 
 4002         val = atomic_readandclear_long(&pir_desc->pir[3]);
 4003         if (val != 0) {
 4004                 lapic->irr6 |= val;
 4005                 lapic->irr7 |= val >> 32;
 4006                 pirbase = 192;
 4007                 pirval = val;
 4008         }
 4009 
 4010         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
 4011 
 4012         /*
 4013          * Update RVI so the processor can evaluate pending virtual
 4014          * interrupts on VM-entry.
 4015          *
 4016          * It is possible for pirval to be 0 here, even though the
 4017          * pending bit has been set. The scenario is:
 4018          * CPU-Y is sending a posted interrupt to CPU-X, which
 4019          * is running a guest and processing posted interrupts in h/w.
 4020          * CPU-X will eventually exit and the state seen in s/w is
 4021          * the pending bit set, but no PIR bits set.
 4022          *
 4023          *      CPU-X                      CPU-Y
 4024          *   (vm running)                (host running)
 4025          *   rx posted interrupt
 4026          *   CLEAR pending bit
 4027          *                               SET PIR bit
 4028          *   READ/CLEAR PIR bits
 4029          *                               SET pending bit
 4030          *   (vm exit)
 4031          *   pending bit set, PIR 0
 4032          */
 4033         if (pirval != 0) {
 4034                 rvi = pirbase + flsl(pirval) - 1;
 4035                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
 4036                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
 4037                 if (intr_status_new > intr_status_old) {
 4038                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
 4039                         VLAPIC_CTR2(vlapic, "vmx_inject_pir: "
 4040                             "guest_intr_status changed from 0x%04x to 0x%04x",
 4041                             intr_status_old, intr_status_new);
 4042                 }
 4043         }
 4044 }
 4045 
 4046 static struct vlapic *
 4047 vmx_vlapic_init(void *vcpui)
 4048 {
 4049         struct vmx *vmx;
 4050         struct vmx_vcpu *vcpu;
 4051         struct vlapic *vlapic;
 4052         struct vlapic_vtx *vlapic_vtx;
 4053 
 4054         vcpu = vcpui;
 4055         vmx = vcpu->vmx;
 4056 
 4057         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
 4058         vlapic->vm = vmx->vm;
 4059         vlapic->vcpu = vcpu->vcpu;
 4060         vlapic->vcpuid = vcpu->vcpuid;
 4061         vlapic->apic_page = (struct LAPIC *)vcpu->apic_page;
 4062 
 4063         vlapic_vtx = (struct vlapic_vtx *)vlapic;
 4064         vlapic_vtx->pir_desc = vcpu->pir_desc;
 4065         vlapic_vtx->vcpu = vcpu;
 4066 
 4067         if (tpr_shadowing) {
 4068                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
 4069         }
 4070 
 4071         if (virtual_interrupt_delivery) {
 4072                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
 4073                 vlapic->ops.pending_intr = vmx_pending_intr;
 4074                 vlapic->ops.intr_accepted = vmx_intr_accepted;
 4075                 vlapic->ops.set_tmr = vmx_set_tmr;
 4076                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
 4077         }
 4078 
 4079         if (posted_interrupts)
 4080                 vlapic->ops.post_intr = vmx_post_intr;
 4081 
 4082         vlapic_init(vlapic);
 4083 
 4084         return (vlapic);
 4085 }
 4086 
 4087 static void
 4088 vmx_vlapic_cleanup(struct vlapic *vlapic)
 4089 {
 4090 
 4091         vlapic_cleanup(vlapic);
 4092         free(vlapic, M_VLAPIC);
 4093 }
 4094 
 4095 #ifdef BHYVE_SNAPSHOT
 4096 static int
 4097 vmx_snapshot(void *vmi, struct vm_snapshot_meta *meta)
 4098 {
 4099         return (0);
 4100 }
 4101 
 4102 static int
 4103 vmx_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
 4104 {
 4105         struct vmcs *vmcs;
 4106         struct vmx *vmx;
 4107         struct vmx_vcpu *vcpu;
 4108         struct vmxctx *vmxctx;
 4109         int err, run, hostcpu;
 4110 
 4111         err = 0;
 4112         vcpu = vcpui;
 4113         vmx = vcpu->vmx;
 4114         vmcs = vcpu->vmcs;
 4115 
 4116         run = vcpu_is_running(vcpu->vcpu, &hostcpu);
 4117         if (run && hostcpu != curcpu) {
 4118                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
 4119                     vcpu->vcpuid);
 4120                 return (EINVAL);
 4121         }
 4122 
 4123         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
 4124         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
 4125         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
 4126         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
 4127         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
 4128         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
 4129         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
 4130 
 4131         /* Guest segments */
 4132         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
 4133         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
 4134 
 4135         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
 4136         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
 4137 
 4138         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
 4139         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
 4140 
 4141         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
 4142         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
 4143 
 4144         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
 4145         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
 4146 
 4147         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
 4148         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
 4149 
 4150         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
 4151         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
 4152 
 4153         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
 4154         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
 4155 
 4156         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
 4157 
 4158         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
 4159         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
 4160 
 4161         /* Guest page tables */
 4162         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
 4163         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
 4164         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
 4165         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
 4166 
 4167         /* Other guest state */
 4168         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
 4169         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
 4170         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
 4171         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
 4172         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
 4173         err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
 4174         err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
 4175         if (err != 0)
 4176                 goto done;
 4177 
 4178         SNAPSHOT_BUF_OR_LEAVE(vcpu->guest_msrs,
 4179             sizeof(vcpu->guest_msrs), meta, err, done);
 4180 
 4181         vmxctx = &vcpu->ctx;
 4182         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, err, done);
 4183         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, err, done);
 4184         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, err, done);
 4185         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, err, done);
 4186         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, err, done);
 4187         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, err, done);
 4188         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, err, done);
 4189         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, err, done);
 4190         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, err, done);
 4191         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, err, done);
 4192         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, err, done);
 4193         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, err, done);
 4194         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, err, done);
 4195         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, err, done);
 4196         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, err, done);
 4197         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, err, done);
 4198         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, err, done);
 4199         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, err, done);
 4200         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, err, done);
 4201         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, err, done);
 4202         SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, err, done);
 4203 
 4204 done:
 4205         return (err);
 4206 }
 4207 
 4208 static int
 4209 vmx_restore_tsc(void *vcpui, uint64_t offset)
 4210 {
 4211         struct vmx_vcpu *vcpu = vcpui;
 4212         struct vmcs *vmcs;
 4213         struct vmx *vmx;
 4214         int error, running, hostcpu;
 4215 
 4216         vmx = vcpu->vmx;
 4217         vmcs = vcpu->vmcs;
 4218 
 4219         running = vcpu_is_running(vcpu->vcpu, &hostcpu);
 4220         if (running && hostcpu != curcpu) {
 4221                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
 4222                     vcpu->vcpuid);
 4223                 return (EINVAL);
 4224         }
 4225 
 4226         if (!running)
 4227                 VMPTRLD(vmcs);
 4228 
 4229         error = vmx_set_tsc_offset(vcpu, offset);
 4230 
 4231         if (!running)
 4232                 VMCLEAR(vmcs);
 4233         return (error);
 4234 }
 4235 #endif
 4236 
 4237 const struct vmm_ops vmm_ops_intel = {
 4238         .modinit        = vmx_modinit,
 4239         .modcleanup     = vmx_modcleanup,
 4240         .modresume      = vmx_modresume,
 4241         .init           = vmx_init,
 4242         .run            = vmx_run,
 4243         .cleanup        = vmx_cleanup,
 4244         .vcpu_init      = vmx_vcpu_init,
 4245         .vcpu_cleanup   = vmx_vcpu_cleanup,
 4246         .getreg         = vmx_getreg,
 4247         .setreg         = vmx_setreg,
 4248         .getdesc        = vmx_getdesc,
 4249         .setdesc        = vmx_setdesc,
 4250         .getcap         = vmx_getcap,
 4251         .setcap         = vmx_setcap,
 4252         .vmspace_alloc  = vmx_vmspace_alloc,
 4253         .vmspace_free   = vmx_vmspace_free,
 4254         .vlapic_init    = vmx_vlapic_init,
 4255         .vlapic_cleanup = vmx_vlapic_cleanup,
 4256 #ifdef BHYVE_SNAPSHOT
 4257         .snapshot       = vmx_snapshot,
 4258         .vcpu_snapshot  = vmx_vcpu_snapshot,
 4259         .restore_tsc    = vmx_restore_tsc,
 4260 #endif
 4261 };

Cache object: 97bcaedff03dba04135d65420a089912


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.