The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/vmm/vmm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2011 NetApp, Inc.
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $FreeBSD$
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/kernel.h>
   35 #include <sys/module.h>
   36 #include <sys/sysctl.h>
   37 #include <sys/malloc.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/proc.h>
   42 #include <sys/rwlock.h>
   43 #include <sys/sched.h>
   44 #include <sys/smp.h>
   45 #include <sys/systm.h>
   46 
   47 #include <vm/vm.h>
   48 #include <vm/vm_object.h>
   49 #include <vm/vm_page.h>
   50 #include <vm/pmap.h>
   51 #include <vm/vm_map.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_param.h>
   54 
   55 #include <machine/cpu.h>
   56 #include <machine/vm.h>
   57 #include <machine/pcb.h>
   58 #include <machine/smp.h>
   59 #include <x86/psl.h>
   60 #include <x86/apicreg.h>
   61 #include <machine/vmparam.h>
   62 
   63 #include <machine/vmm.h>
   64 #include <machine/vmm_dev.h>
   65 #include <machine/vmm_instruction_emul.h>
   66 
   67 #include "vmm_ioport.h"
   68 #include "vmm_ktr.h"
   69 #include "vmm_host.h"
   70 #include "vmm_mem.h"
   71 #include "vmm_util.h"
   72 #include "vatpic.h"
   73 #include "vatpit.h"
   74 #include "vhpet.h"
   75 #include "vioapic.h"
   76 #include "vlapic.h"
   77 #include "vpmtmr.h"
   78 #include "vrtc.h"
   79 #include "vmm_ipi.h"
   80 #include "vmm_stat.h"
   81 #include "vmm_lapic.h"
   82 
   83 #include "io/ppt.h"
   84 #include "io/iommu.h"
   85 
   86 struct vlapic;
   87 
   88 /*
   89  * Initialization:
   90  * (a) allocated when vcpu is created
   91  * (i) initialized when vcpu is created and when it is reinitialized
   92  * (o) initialized the first time the vcpu is created
   93  * (x) initialized before use
   94  */
   95 struct vcpu {
   96         struct mtx      mtx;            /* (o) protects 'state' and 'hostcpu' */
   97         enum vcpu_state state;          /* (o) vcpu state */
   98         int             hostcpu;        /* (o) vcpu's host cpu */
   99         int             reqidle;        /* (i) request vcpu to idle */
  100         struct vlapic   *vlapic;        /* (i) APIC device model */
  101         enum x2apic_state x2apic_state; /* (i) APIC mode */
  102         uint64_t        exitintinfo;    /* (i) events pending at VM exit */
  103         int             nmi_pending;    /* (i) NMI pending */
  104         int             extint_pending; /* (i) INTR pending */
  105         int     exception_pending;      /* (i) exception pending */
  106         int     exc_vector;             /* (x) exception collateral */
  107         int     exc_errcode_valid;
  108         uint32_t exc_errcode;
  109         struct savefpu  *guestfpu;      /* (a,i) guest fpu state */
  110         uint64_t        guest_xcr0;     /* (i) guest %xcr0 register */
  111         void            *stats;         /* (a,i) statistics */
  112         struct vm_exit  exitinfo;       /* (x) exit reason and collateral */
  113         uint64_t        nextrip;        /* (x) next instruction to execute */
  114 };
  115 
  116 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
  117 #define vcpu_lock_init(v)       mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
  118 #define vcpu_lock(v)            mtx_lock_spin(&((v)->mtx))
  119 #define vcpu_unlock(v)          mtx_unlock_spin(&((v)->mtx))
  120 #define vcpu_assert_locked(v)   mtx_assert(&((v)->mtx), MA_OWNED)
  121 
  122 struct mem_seg {
  123         size_t  len;
  124         bool    sysmem;
  125         struct vm_object *object;
  126 };
  127 #define VM_MAX_MEMSEGS  2
  128 
  129 struct mem_map {
  130         vm_paddr_t      gpa;
  131         size_t          len;
  132         vm_ooffset_t    segoff;
  133         int             segid;
  134         int             prot;
  135         int             flags;
  136 };
  137 #define VM_MAX_MEMMAPS  4
  138 
  139 /*
  140  * Initialization:
  141  * (o) initialized the first time the VM is created
  142  * (i) initialized when VM is created and when it is reinitialized
  143  * (x) initialized before use
  144  */
  145 struct vm {
  146         void            *cookie;                /* (i) cpu-specific data */
  147         void            *iommu;                 /* (x) iommu-specific data */
  148         struct vhpet    *vhpet;                 /* (i) virtual HPET */
  149         struct vioapic  *vioapic;               /* (i) virtual ioapic */
  150         struct vatpic   *vatpic;                /* (i) virtual atpic */
  151         struct vatpit   *vatpit;                /* (i) virtual atpit */
  152         struct vpmtmr   *vpmtmr;                /* (i) virtual ACPI PM timer */
  153         struct vrtc     *vrtc;                  /* (o) virtual RTC */
  154         volatile cpuset_t active_cpus;          /* (i) active vcpus */
  155         int             suspend;                /* (i) stop VM execution */
  156         volatile cpuset_t suspended_cpus;       /* (i) suspended vcpus */
  157         volatile cpuset_t halted_cpus;          /* (x) cpus in a hard halt */
  158         cpuset_t        rendezvous_req_cpus;    /* (x) rendezvous requested */
  159         cpuset_t        rendezvous_done_cpus;   /* (x) rendezvous finished */
  160         void            *rendezvous_arg;        /* (x) rendezvous func/arg */
  161         vm_rendezvous_func_t rendezvous_func;
  162         struct mtx      rendezvous_mtx;         /* (o) rendezvous lock */
  163         struct mem_map  mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
  164         struct mem_seg  mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
  165         struct vmspace  *vmspace;               /* (o) guest's address space */
  166         char            name[VM_MAX_NAMELEN];   /* (o) virtual machine name */
  167         struct vcpu     vcpu[VM_MAXCPU];        /* (i) guest vcpus */
  168 };
  169 
  170 static int vmm_initialized;
  171 
  172 static struct vmm_ops *ops;
  173 #define VMM_INIT(num)   (ops != NULL ? (*ops->init)(num) : 0)
  174 #define VMM_CLEANUP()   (ops != NULL ? (*ops->cleanup)() : 0)
  175 #define VMM_RESUME()    (ops != NULL ? (*ops->resume)() : 0)
  176 
  177 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
  178 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \
  179         (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
  180 #define VMCLEANUP(vmi)  (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
  181 #define VMSPACE_ALLOC(min, max) \
  182         (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
  183 #define VMSPACE_FREE(vmspace) \
  184         (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
  185 #define VMGETREG(vmi, vcpu, num, retval)                \
  186         (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
  187 #define VMSETREG(vmi, vcpu, num, val)           \
  188         (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
  189 #define VMGETDESC(vmi, vcpu, num, desc)         \
  190         (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
  191 #define VMSETDESC(vmi, vcpu, num, desc)         \
  192         (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
  193 #define VMGETCAP(vmi, vcpu, num, retval)        \
  194         (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
  195 #define VMSETCAP(vmi, vcpu, num, val)           \
  196         (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
  197 #define VLAPIC_INIT(vmi, vcpu)                  \
  198         (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
  199 #define VLAPIC_CLEANUP(vmi, vlapic)             \
  200         (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
  201 
  202 #define fpu_start_emulating()   load_cr0(rcr0() | CR0_TS)
  203 #define fpu_stop_emulating()    clts()
  204 
  205 static MALLOC_DEFINE(M_VM, "vm", "vm");
  206 
  207 /* statistics */
  208 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
  209 
  210 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
  211 
  212 /*
  213  * Halt the guest if all vcpus are executing a HLT instruction with
  214  * interrupts disabled.
  215  */
  216 static int halt_detection_enabled = 1;
  217 TUNABLE_INT("hw.vmm.halt_detection", &halt_detection_enabled);
  218 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
  219     &halt_detection_enabled, 0,
  220     "Halt VM if all vcpus execute HLT with interrupts disabled");
  221 
  222 static int vmm_ipinum;
  223 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
  224     "IPI vector used for vcpu notifications");
  225 
  226 static int trace_guest_exceptions;
  227 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
  228     &trace_guest_exceptions, 0,
  229     "Trap into hypervisor on all guest exceptions and reflect them back");
  230 
  231 static void vm_free_memmap(struct vm *vm, int ident);
  232 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
  233 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
  234 
  235 #ifdef KTR
  236 static const char *
  237 vcpu_state2str(enum vcpu_state state)
  238 {
  239 
  240         switch (state) {
  241         case VCPU_IDLE:
  242                 return ("idle");
  243         case VCPU_FROZEN:
  244                 return ("frozen");
  245         case VCPU_RUNNING:
  246                 return ("running");
  247         case VCPU_SLEEPING:
  248                 return ("sleeping");
  249         default:
  250                 return ("unknown");
  251         }
  252 }
  253 #endif
  254 
  255 static void
  256 vcpu_cleanup(struct vm *vm, int i, bool destroy)
  257 {
  258         struct vcpu *vcpu = &vm->vcpu[i];
  259 
  260         VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
  261         if (destroy) {
  262                 vmm_stat_free(vcpu->stats);     
  263                 fpu_save_area_free(vcpu->guestfpu);
  264         }
  265 }
  266 
  267 static void
  268 vcpu_init(struct vm *vm, int vcpu_id, bool create)
  269 {
  270         struct vcpu *vcpu;
  271 
  272         KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
  273             ("vcpu_init: invalid vcpu %d", vcpu_id));
  274           
  275         vcpu = &vm->vcpu[vcpu_id];
  276 
  277         if (create) {
  278                 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
  279                     "initialized", vcpu_id));
  280                 vcpu_lock_init(vcpu);
  281                 vcpu->state = VCPU_IDLE;
  282                 vcpu->hostcpu = NOCPU;
  283                 vcpu->guestfpu = fpu_save_area_alloc();
  284                 vcpu->stats = vmm_stat_alloc();
  285         }
  286 
  287         vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
  288         vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
  289         vcpu->reqidle = 0;
  290         vcpu->exitintinfo = 0;
  291         vcpu->nmi_pending = 0;
  292         vcpu->extint_pending = 0;
  293         vcpu->exception_pending = 0;
  294         vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
  295         fpu_save_area_reset(vcpu->guestfpu);
  296         vmm_stat_init(vcpu->stats);
  297 }
  298 
  299 int
  300 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
  301 {
  302 
  303         return (trace_guest_exceptions);
  304 }
  305 
  306 struct vm_exit *
  307 vm_exitinfo(struct vm *vm, int cpuid)
  308 {
  309         struct vcpu *vcpu;
  310 
  311         if (cpuid < 0 || cpuid >= VM_MAXCPU)
  312                 panic("vm_exitinfo: invalid cpuid %d", cpuid);
  313 
  314         vcpu = &vm->vcpu[cpuid];
  315 
  316         return (&vcpu->exitinfo);
  317 }
  318 
  319 static void
  320 vmm_resume(void)
  321 {
  322         VMM_RESUME();
  323 }
  324 
  325 static int
  326 vmm_init(void)
  327 {
  328         int error;
  329 
  330         vmm_host_state_init();
  331 
  332         vmm_ipinum = vmm_ipi_alloc();
  333         if (vmm_ipinum == 0)
  334                 vmm_ipinum = IPI_AST;
  335 
  336         error = vmm_mem_init();
  337         if (error)
  338                 return (error);
  339         
  340         if (vmm_is_intel())
  341                 ops = &vmm_ops_intel;
  342         else if (vmm_is_amd())
  343                 ops = &vmm_ops_amd;
  344         else
  345                 return (ENXIO);
  346 
  347         vmm_resume_p = vmm_resume;
  348 
  349         return (VMM_INIT(vmm_ipinum));
  350 }
  351 
  352 static int
  353 vmm_handler(module_t mod, int what, void *arg)
  354 {
  355         int error;
  356 
  357         switch (what) {
  358         case MOD_LOAD:
  359                 vmmdev_init();
  360                 error = vmm_init();
  361                 if (error == 0)
  362                         vmm_initialized = 1;
  363                 break;
  364         case MOD_UNLOAD:
  365                 error = vmmdev_cleanup();
  366                 if (error == 0) {
  367                         vmm_resume_p = NULL;
  368                         iommu_cleanup();
  369                         if (vmm_ipinum != IPI_AST)
  370                                 vmm_ipi_free(vmm_ipinum);
  371                         error = VMM_CLEANUP();
  372                         /*
  373                          * Something bad happened - prevent new
  374                          * VMs from being created
  375                          */
  376                         if (error)
  377                                 vmm_initialized = 0;
  378                 }
  379                 break;
  380         default:
  381                 error = 0;
  382                 break;
  383         }
  384         return (error);
  385 }
  386 
  387 static moduledata_t vmm_kmod = {
  388         "vmm",
  389         vmm_handler,
  390         NULL
  391 };
  392 
  393 /*
  394  * vmm initialization has the following dependencies:
  395  *
  396  * - VT-x initialization requires smp_rendezvous() and therefore must happen
  397  *   after SMP is fully functional (after SI_SUB_SMP).
  398  */
  399 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
  400 MODULE_VERSION(vmm, 1);
  401 
  402 static void
  403 vm_init(struct vm *vm, bool create)
  404 {
  405         int i;
  406 
  407         vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
  408         vm->iommu = NULL;
  409         vm->vioapic = vioapic_init(vm);
  410         vm->vhpet = vhpet_init(vm);
  411         vm->vatpic = vatpic_init(vm);
  412         vm->vatpit = vatpit_init(vm);
  413         vm->vpmtmr = vpmtmr_init(vm);
  414         if (create)
  415                 vm->vrtc = vrtc_init(vm);
  416 
  417         CPU_ZERO(&vm->active_cpus);
  418 
  419         vm->suspend = 0;
  420         CPU_ZERO(&vm->suspended_cpus);
  421 
  422         for (i = 0; i < VM_MAXCPU; i++)
  423                 vcpu_init(vm, i, create);
  424 }
  425 
  426 int
  427 vm_create(const char *name, struct vm **retvm)
  428 {
  429         struct vm *vm;
  430         struct vmspace *vmspace;
  431 
  432         /*
  433          * If vmm.ko could not be successfully initialized then don't attempt
  434          * to create the virtual machine.
  435          */
  436         if (!vmm_initialized)
  437                 return (ENXIO);
  438 
  439         if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
  440                 return (EINVAL);
  441 
  442         vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
  443         if (vmspace == NULL)
  444                 return (ENOMEM);
  445 
  446         vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
  447         strcpy(vm->name, name);
  448         vm->vmspace = vmspace;
  449         mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
  450 
  451         vm_init(vm, true);
  452 
  453         *retvm = vm;
  454         return (0);
  455 }
  456 
  457 static void
  458 vm_cleanup(struct vm *vm, bool destroy)
  459 {
  460         struct mem_map *mm;
  461         int i;
  462 
  463         ppt_unassign_all(vm);
  464 
  465         if (vm->iommu != NULL)
  466                 iommu_destroy_domain(vm->iommu);
  467 
  468         if (destroy)
  469                 vrtc_cleanup(vm->vrtc);
  470         else
  471                 vrtc_reset(vm->vrtc);
  472         vpmtmr_cleanup(vm->vpmtmr);
  473         vatpit_cleanup(vm->vatpit);
  474         vhpet_cleanup(vm->vhpet);
  475         vatpic_cleanup(vm->vatpic);
  476         vioapic_cleanup(vm->vioapic);
  477 
  478         for (i = 0; i < VM_MAXCPU; i++)
  479                 vcpu_cleanup(vm, i, destroy);
  480 
  481         VMCLEANUP(vm->cookie);
  482 
  483         /*
  484          * System memory is removed from the guest address space only when
  485          * the VM is destroyed. This is because the mapping remains the same
  486          * across VM reset.
  487          *
  488          * Device memory can be relocated by the guest (e.g. using PCI BARs)
  489          * so those mappings are removed on a VM reset.
  490          */
  491         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  492                 mm = &vm->mem_maps[i];
  493                 if (destroy || !sysmem_mapping(vm, mm))
  494                         vm_free_memmap(vm, i);
  495         }
  496 
  497         if (destroy) {
  498                 for (i = 0; i < VM_MAX_MEMSEGS; i++)
  499                         vm_free_memseg(vm, i);
  500 
  501                 VMSPACE_FREE(vm->vmspace);
  502                 vm->vmspace = NULL;
  503         }
  504 }
  505 
  506 void
  507 vm_destroy(struct vm *vm)
  508 {
  509         vm_cleanup(vm, true);
  510         free(vm, M_VM);
  511 }
  512 
  513 int
  514 vm_reinit(struct vm *vm)
  515 {
  516         int error;
  517 
  518         /*
  519          * A virtual machine can be reset only if all vcpus are suspended.
  520          */
  521         if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
  522                 vm_cleanup(vm, false);
  523                 vm_init(vm, false);
  524                 error = 0;
  525         } else {
  526                 error = EBUSY;
  527         }
  528 
  529         return (error);
  530 }
  531 
  532 const char *
  533 vm_name(struct vm *vm)
  534 {
  535         return (vm->name);
  536 }
  537 
  538 int
  539 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
  540 {
  541         vm_object_t obj;
  542 
  543         if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
  544                 return (ENOMEM);
  545         else
  546                 return (0);
  547 }
  548 
  549 int
  550 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
  551 {
  552 
  553         vmm_mmio_free(vm->vmspace, gpa, len);
  554         return (0);
  555 }
  556 
  557 /*
  558  * Return 'true' if 'gpa' is allocated in the guest address space.
  559  *
  560  * This function is called in the context of a running vcpu which acts as
  561  * an implicit lock on 'vm->mem_maps[]'.
  562  */
  563 bool
  564 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
  565 {
  566         struct mem_map *mm;
  567         int i;
  568 
  569 #ifdef INVARIANTS
  570         int hostcpu, state;
  571         state = vcpu_get_state(vm, vcpuid, &hostcpu);
  572         KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
  573             ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
  574 #endif
  575 
  576         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  577                 mm = &vm->mem_maps[i];
  578                 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
  579                         return (true);          /* 'gpa' is sysmem or devmem */
  580         }
  581 
  582         if (ppt_is_mmio(vm, gpa))
  583                 return (true);                  /* 'gpa' is pci passthru mmio */
  584 
  585         return (false);
  586 }
  587 
  588 int
  589 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
  590 {
  591         struct mem_seg *seg;
  592         vm_object_t obj;
  593 
  594         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  595                 return (EINVAL);
  596 
  597         if (len == 0 || (len & PAGE_MASK))
  598                 return (EINVAL);
  599 
  600         seg = &vm->mem_segs[ident];
  601         if (seg->object != NULL) {
  602                 if (seg->len == len && seg->sysmem == sysmem)
  603                         return (EEXIST);
  604                 else
  605                         return (EINVAL);
  606         }
  607 
  608         obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
  609         if (obj == NULL)
  610                 return (ENOMEM);
  611 
  612         seg->len = len;
  613         seg->object = obj;
  614         seg->sysmem = sysmem;
  615         return (0);
  616 }
  617 
  618 int
  619 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
  620     vm_object_t *objptr)
  621 {
  622         struct mem_seg *seg;
  623 
  624         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  625                 return (EINVAL);
  626 
  627         seg = &vm->mem_segs[ident];
  628         if (len)
  629                 *len = seg->len;
  630         if (sysmem)
  631                 *sysmem = seg->sysmem;
  632         if (objptr)
  633                 *objptr = seg->object;
  634         return (0);
  635 }
  636 
  637 void
  638 vm_free_memseg(struct vm *vm, int ident)
  639 {
  640         struct mem_seg *seg;
  641 
  642         KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
  643             ("%s: invalid memseg ident %d", __func__, ident));
  644 
  645         seg = &vm->mem_segs[ident];
  646         if (seg->object != NULL) {
  647                 vm_object_deallocate(seg->object);
  648                 bzero(seg, sizeof(struct mem_seg));
  649         }
  650 }
  651 
  652 int
  653 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
  654     size_t len, int prot, int flags)
  655 {
  656         struct mem_seg *seg;
  657         struct mem_map *m, *map;
  658         vm_ooffset_t last;
  659         int i, error;
  660 
  661         if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
  662                 return (EINVAL);
  663 
  664         if (flags & ~VM_MEMMAP_F_WIRED)
  665                 return (EINVAL);
  666 
  667         if (segid < 0 || segid >= VM_MAX_MEMSEGS)
  668                 return (EINVAL);
  669 
  670         seg = &vm->mem_segs[segid];
  671         if (seg->object == NULL)
  672                 return (EINVAL);
  673 
  674         last = first + len;
  675         if (first < 0 || first >= last || last > seg->len)
  676                 return (EINVAL);
  677 
  678         if ((gpa | first | last) & PAGE_MASK)
  679                 return (EINVAL);
  680 
  681         map = NULL;
  682         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  683                 m = &vm->mem_maps[i];
  684                 if (m->len == 0) {
  685                         map = m;
  686                         break;
  687                 }
  688         }
  689 
  690         if (map == NULL)
  691                 return (ENOSPC);
  692 
  693         error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
  694             len, 0, VMFS_NO_SPACE, prot, prot, 0);
  695         if (error != KERN_SUCCESS)
  696                 return (EFAULT);
  697 
  698         vm_object_reference(seg->object);
  699 
  700         if (flags & VM_MEMMAP_F_WIRED) {
  701                 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
  702                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
  703                 if (error != KERN_SUCCESS) {
  704                         vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
  705                         return (EFAULT);
  706                 }
  707         }
  708 
  709         map->gpa = gpa;
  710         map->len = len;
  711         map->segoff = first;
  712         map->segid = segid;
  713         map->prot = prot;
  714         map->flags = flags;
  715         return (0);
  716 }
  717 
  718 int
  719 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
  720     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
  721 {
  722         struct mem_map *mm, *mmnext;
  723         int i;
  724 
  725         mmnext = NULL;
  726         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  727                 mm = &vm->mem_maps[i];
  728                 if (mm->len == 0 || mm->gpa < *gpa)
  729                         continue;
  730                 if (mmnext == NULL || mm->gpa < mmnext->gpa)
  731                         mmnext = mm;
  732         }
  733 
  734         if (mmnext != NULL) {
  735                 *gpa = mmnext->gpa;
  736                 if (segid)
  737                         *segid = mmnext->segid;
  738                 if (segoff)
  739                         *segoff = mmnext->segoff;
  740                 if (len)
  741                         *len = mmnext->len;
  742                 if (prot)
  743                         *prot = mmnext->prot;
  744                 if (flags)
  745                         *flags = mmnext->flags;
  746                 return (0);
  747         } else {
  748                 return (ENOENT);
  749         }
  750 }
  751 
  752 static void
  753 vm_free_memmap(struct vm *vm, int ident)
  754 {
  755         struct mem_map *mm;
  756         int error;
  757 
  758         mm = &vm->mem_maps[ident];
  759         if (mm->len) {
  760                 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
  761                     mm->gpa + mm->len);
  762                 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
  763                     __func__, error));
  764                 bzero(mm, sizeof(struct mem_map));
  765         }
  766 }
  767 
  768 static __inline bool
  769 sysmem_mapping(struct vm *vm, struct mem_map *mm)
  770 {
  771 
  772         if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
  773                 return (true);
  774         else
  775                 return (false);
  776 }
  777 
  778 static vm_paddr_t
  779 sysmem_maxaddr(struct vm *vm)
  780 {
  781         struct mem_map *mm;
  782         vm_paddr_t maxaddr;
  783         int i;
  784 
  785         maxaddr = 0;
  786         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  787                 mm = &vm->mem_maps[i];
  788                 if (sysmem_mapping(vm, mm)) {
  789                         if (maxaddr < mm->gpa + mm->len)
  790                                 maxaddr = mm->gpa + mm->len;
  791                 }
  792         }
  793         return (maxaddr);
  794 }
  795 
  796 static void
  797 vm_iommu_modify(struct vm *vm, boolean_t map)
  798 {
  799         int i, sz;
  800         vm_paddr_t gpa, hpa;
  801         struct mem_map *mm;
  802         void *vp, *cookie, *host_domain;
  803 
  804         sz = PAGE_SIZE;
  805         host_domain = iommu_host_domain();
  806 
  807         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  808                 mm = &vm->mem_maps[i];
  809                 if (!sysmem_mapping(vm, mm))
  810                         continue;
  811 
  812                 if (map) {
  813                         KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
  814                             ("iommu map found invalid memmap %#lx/%#lx/%#x",
  815                             mm->gpa, mm->len, mm->flags));
  816                         if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
  817                                 continue;
  818                         mm->flags |= VM_MEMMAP_F_IOMMU;
  819                 } else {
  820                         if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
  821                                 continue;
  822                         mm->flags &= ~VM_MEMMAP_F_IOMMU;
  823                         KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
  824                             ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
  825                             mm->gpa, mm->len, mm->flags));
  826                 }
  827 
  828                 gpa = mm->gpa;
  829                 while (gpa < mm->gpa + mm->len) {
  830                         vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
  831                                          &cookie);
  832                         KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
  833                             vm_name(vm), gpa));
  834 
  835                         vm_gpa_release(cookie);
  836 
  837                         hpa = DMAP_TO_PHYS((uintptr_t)vp);
  838                         if (map) {
  839                                 iommu_create_mapping(vm->iommu, gpa, hpa, sz);
  840                                 iommu_remove_mapping(host_domain, hpa, sz);
  841                         } else {
  842                                 iommu_remove_mapping(vm->iommu, gpa, sz);
  843                                 iommu_create_mapping(host_domain, hpa, hpa, sz);
  844                         }
  845 
  846                         gpa += PAGE_SIZE;
  847                 }
  848         }
  849 
  850         /*
  851          * Invalidate the cached translations associated with the domain
  852          * from which pages were removed.
  853          */
  854         if (map)
  855                 iommu_invalidate_tlb(host_domain);
  856         else
  857                 iommu_invalidate_tlb(vm->iommu);
  858 }
  859 
  860 #define vm_iommu_unmap(vm)      vm_iommu_modify((vm), FALSE)
  861 #define vm_iommu_map(vm)        vm_iommu_modify((vm), TRUE)
  862 
  863 int
  864 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
  865 {
  866         int error;
  867 
  868         error = ppt_unassign_device(vm, bus, slot, func);
  869         if (error)
  870                 return (error);
  871 
  872         if (ppt_assigned_devices(vm) == 0)
  873                 vm_iommu_unmap(vm);
  874 
  875         return (0);
  876 }
  877 
  878 int
  879 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
  880 {
  881         int error;
  882         vm_paddr_t maxaddr;
  883 
  884         /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
  885         if (ppt_assigned_devices(vm) == 0) {
  886                 KASSERT(vm->iommu == NULL,
  887                     ("vm_assign_pptdev: iommu must be NULL"));
  888                 maxaddr = sysmem_maxaddr(vm);
  889                 vm->iommu = iommu_create_domain(maxaddr);
  890                 if (vm->iommu == NULL)
  891                         return (ENXIO);
  892                 vm_iommu_map(vm);
  893         }
  894 
  895         error = ppt_assign_device(vm, bus, slot, func);
  896         return (error);
  897 }
  898 
  899 void *
  900 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
  901             void **cookie)
  902 {
  903         int i, count, pageoff;
  904         struct mem_map *mm;
  905         vm_page_t m;
  906 #ifdef INVARIANTS
  907         /*
  908          * All vcpus are frozen by ioctls that modify the memory map
  909          * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
  910          * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
  911          */
  912         int state;
  913         KASSERT(vcpuid >= -1 && vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d",
  914             __func__, vcpuid));
  915         for (i = 0; i < VM_MAXCPU; i++) {
  916                 if (vcpuid != -1 && vcpuid != i)
  917                         continue;
  918                 state = vcpu_get_state(vm, i, NULL);
  919                 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
  920                     __func__, state));
  921         }
  922 #endif
  923         pageoff = gpa & PAGE_MASK;
  924         if (len > PAGE_SIZE - pageoff)
  925                 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
  926 
  927         count = 0;
  928         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  929                 mm = &vm->mem_maps[i];
  930                 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
  931                     gpa < mm->gpa + mm->len) {
  932                         count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
  933                             trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
  934                         break;
  935                 }
  936         }
  937 
  938         if (count == 1) {
  939                 *cookie = m;
  940                 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
  941         } else {
  942                 *cookie = NULL;
  943                 return (NULL);
  944         }
  945 }
  946 
  947 void
  948 vm_gpa_release(void *cookie)
  949 {
  950         vm_page_t m = cookie;
  951 
  952         vm_page_lock(m);
  953         vm_page_unhold(m);
  954         vm_page_unlock(m);
  955 }
  956 
  957 int
  958 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
  959 {
  960 
  961         if (vcpu < 0 || vcpu >= VM_MAXCPU)
  962                 return (EINVAL);
  963 
  964         if (reg >= VM_REG_LAST)
  965                 return (EINVAL);
  966 
  967         return (VMGETREG(vm->cookie, vcpu, reg, retval));
  968 }
  969 
  970 int
  971 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
  972 {
  973         struct vcpu *vcpu;
  974         int error;
  975 
  976         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
  977                 return (EINVAL);
  978 
  979         if (reg >= VM_REG_LAST)
  980                 return (EINVAL);
  981 
  982         error = VMSETREG(vm->cookie, vcpuid, reg, val);
  983         if (error || reg != VM_REG_GUEST_RIP)
  984                 return (error);
  985 
  986         /* Set 'nextrip' to match the value of %rip */
  987         VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
  988         vcpu = &vm->vcpu[vcpuid];
  989         vcpu->nextrip = val;
  990         return (0);
  991 }
  992 
  993 static boolean_t
  994 is_descriptor_table(int reg)
  995 {
  996 
  997         switch (reg) {
  998         case VM_REG_GUEST_IDTR:
  999         case VM_REG_GUEST_GDTR:
 1000                 return (TRUE);
 1001         default:
 1002                 return (FALSE);
 1003         }
 1004 }
 1005 
 1006 static boolean_t
 1007 is_segment_register(int reg)
 1008 {
 1009         
 1010         switch (reg) {
 1011         case VM_REG_GUEST_ES:
 1012         case VM_REG_GUEST_CS:
 1013         case VM_REG_GUEST_SS:
 1014         case VM_REG_GUEST_DS:
 1015         case VM_REG_GUEST_FS:
 1016         case VM_REG_GUEST_GS:
 1017         case VM_REG_GUEST_TR:
 1018         case VM_REG_GUEST_LDTR:
 1019                 return (TRUE);
 1020         default:
 1021                 return (FALSE);
 1022         }
 1023 }
 1024 
 1025 int
 1026 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
 1027                 struct seg_desc *desc)
 1028 {
 1029 
 1030         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 1031                 return (EINVAL);
 1032 
 1033         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1034                 return (EINVAL);
 1035 
 1036         return (VMGETDESC(vm->cookie, vcpu, reg, desc));
 1037 }
 1038 
 1039 int
 1040 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
 1041                 struct seg_desc *desc)
 1042 {
 1043         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 1044                 return (EINVAL);
 1045 
 1046         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1047                 return (EINVAL);
 1048 
 1049         return (VMSETDESC(vm->cookie, vcpu, reg, desc));
 1050 }
 1051 
 1052 static void
 1053 restore_guest_fpustate(struct vcpu *vcpu)
 1054 {
 1055 
 1056         /* flush host state to the pcb */
 1057         fpuexit(curthread);
 1058 
 1059         /* restore guest FPU state */
 1060         fpu_stop_emulating();
 1061         fpurestore(vcpu->guestfpu);
 1062 
 1063         /* restore guest XCR0 if XSAVE is enabled in the host */
 1064         if (rcr4() & CR4_XSAVE)
 1065                 load_xcr(0, vcpu->guest_xcr0);
 1066 
 1067         /*
 1068          * The FPU is now "dirty" with the guest's state so turn on emulation
 1069          * to trap any access to the FPU by the host.
 1070          */
 1071         fpu_start_emulating();
 1072 }
 1073 
 1074 static void
 1075 save_guest_fpustate(struct vcpu *vcpu)
 1076 {
 1077 
 1078         if ((rcr0() & CR0_TS) == 0)
 1079                 panic("fpu emulation not enabled in host!");
 1080 
 1081         /* save guest XCR0 and restore host XCR0 */
 1082         if (rcr4() & CR4_XSAVE) {
 1083                 vcpu->guest_xcr0 = rxcr(0);
 1084                 load_xcr(0, vmm_get_host_xcr0());
 1085         }
 1086 
 1087         /* save guest FPU state */
 1088         fpu_stop_emulating();
 1089         fpusave(vcpu->guestfpu);
 1090         fpu_start_emulating();
 1091 }
 1092 
 1093 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
 1094 
 1095 static int
 1096 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 1097     bool from_idle)
 1098 {
 1099         struct vcpu *vcpu;
 1100         int error;
 1101 
 1102         vcpu = &vm->vcpu[vcpuid];
 1103         vcpu_assert_locked(vcpu);
 1104 
 1105         /*
 1106          * State transitions from the vmmdev_ioctl() must always begin from
 1107          * the VCPU_IDLE state. This guarantees that there is only a single
 1108          * ioctl() operating on a vcpu at any point.
 1109          */
 1110         if (from_idle) {
 1111                 while (vcpu->state != VCPU_IDLE) {
 1112                         vcpu->reqidle = 1;
 1113                         vcpu_notify_event_locked(vcpu, false);
 1114                         VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
 1115                             "idle requested", vcpu_state2str(vcpu->state));
 1116                         msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
 1117                 }
 1118         } else {
 1119                 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
 1120                     "vcpu idle state"));
 1121         }
 1122 
 1123         if (vcpu->state == VCPU_RUNNING) {
 1124                 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
 1125                     "mismatch for running vcpu", curcpu, vcpu->hostcpu));
 1126         } else {
 1127                 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
 1128                     "vcpu that is not running", vcpu->hostcpu));
 1129         }
 1130 
 1131         /*
 1132          * The following state transitions are allowed:
 1133          * IDLE -> FROZEN -> IDLE
 1134          * FROZEN -> RUNNING -> FROZEN
 1135          * FROZEN -> SLEEPING -> FROZEN
 1136          */
 1137         switch (vcpu->state) {
 1138         case VCPU_IDLE:
 1139         case VCPU_RUNNING:
 1140         case VCPU_SLEEPING:
 1141                 error = (newstate != VCPU_FROZEN);
 1142                 break;
 1143         case VCPU_FROZEN:
 1144                 error = (newstate == VCPU_FROZEN);
 1145                 break;
 1146         default:
 1147                 error = 1;
 1148                 break;
 1149         }
 1150 
 1151         if (error)
 1152                 return (EBUSY);
 1153 
 1154         VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
 1155             vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
 1156 
 1157         vcpu->state = newstate;
 1158         if (newstate == VCPU_RUNNING)
 1159                 vcpu->hostcpu = curcpu;
 1160         else
 1161                 vcpu->hostcpu = NOCPU;
 1162 
 1163         if (newstate == VCPU_IDLE)
 1164                 wakeup(&vcpu->state);
 1165 
 1166         return (0);
 1167 }
 1168 
 1169 static void
 1170 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1171 {
 1172         int error;
 1173 
 1174         if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
 1175                 panic("Error %d setting state to %d\n", error, newstate);
 1176 }
 1177 
 1178 static void
 1179 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1180 {
 1181         int error;
 1182 
 1183         if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
 1184                 panic("Error %d setting state to %d", error, newstate);
 1185 }
 1186 
 1187 static void
 1188 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
 1189 {
 1190 
 1191         KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
 1192 
 1193         /*
 1194          * Update 'rendezvous_func' and execute a write memory barrier to
 1195          * ensure that it is visible across all host cpus. This is not needed
 1196          * for correctness but it does ensure that all the vcpus will notice
 1197          * that the rendezvous is requested immediately.
 1198          */
 1199         vm->rendezvous_func = func;
 1200         wmb();
 1201 }
 1202 
 1203 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt)                                \
 1204         do {                                                            \
 1205                 if (vcpuid >= 0)                                        \
 1206                         VCPU_CTR0(vm, vcpuid, fmt);                     \
 1207                 else                                                    \
 1208                         VM_CTR0(vm, fmt);                               \
 1209         } while (0)
 1210 
 1211 static void
 1212 vm_handle_rendezvous(struct vm *vm, int vcpuid)
 1213 {
 1214 
 1215         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
 1216             ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
 1217 
 1218         mtx_lock(&vm->rendezvous_mtx);
 1219         while (vm->rendezvous_func != NULL) {
 1220                 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
 1221                 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
 1222 
 1223                 if (vcpuid != -1 &&
 1224                     CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
 1225                     !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
 1226                         VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
 1227                         (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
 1228                         CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
 1229                 }
 1230                 if (CPU_CMP(&vm->rendezvous_req_cpus,
 1231                     &vm->rendezvous_done_cpus) == 0) {
 1232                         VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
 1233                         vm_set_rendezvous_func(vm, NULL);
 1234                         wakeup(&vm->rendezvous_func);
 1235                         break;
 1236                 }
 1237                 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
 1238                 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
 1239                     "vmrndv", 0);
 1240         }
 1241         mtx_unlock(&vm->rendezvous_mtx);
 1242 }
 1243 
 1244 /*
 1245  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
 1246  */
 1247 static int
 1248 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
 1249 {
 1250         struct vcpu *vcpu;
 1251         const char *wmesg;
 1252         int t, vcpu_halted, vm_halted;
 1253 
 1254         KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
 1255 
 1256         vcpu = &vm->vcpu[vcpuid];
 1257         vcpu_halted = 0;
 1258         vm_halted = 0;
 1259 
 1260         vcpu_lock(vcpu);
 1261         while (1) {
 1262                 /*
 1263                  * Do a final check for pending NMI or interrupts before
 1264                  * really putting this thread to sleep. Also check for
 1265                  * software events that would cause this vcpu to wakeup.
 1266                  *
 1267                  * These interrupts/events could have happened after the
 1268                  * vcpu returned from VMRUN() and before it acquired the
 1269                  * vcpu lock above.
 1270                  */
 1271                 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
 1272                         break;
 1273                 if (vm_nmi_pending(vm, vcpuid))
 1274                         break;
 1275                 if (!intr_disabled) {
 1276                         if (vm_extint_pending(vm, vcpuid) ||
 1277                             vlapic_pending_intr(vcpu->vlapic, NULL)) {
 1278                                 break;
 1279                         }
 1280                 }
 1281 
 1282                 /* Don't go to sleep if the vcpu thread needs to yield */
 1283                 if (vcpu_should_yield(vm, vcpuid))
 1284                         break;
 1285 
 1286                 /*
 1287                  * Some Linux guests implement "halt" by having all vcpus
 1288                  * execute HLT with interrupts disabled. 'halted_cpus' keeps
 1289                  * track of the vcpus that have entered this state. When all
 1290                  * vcpus enter the halted state the virtual machine is halted.
 1291                  */
 1292                 if (intr_disabled) {
 1293                         wmesg = "vmhalt";
 1294                         VCPU_CTR0(vm, vcpuid, "Halted");
 1295                         if (!vcpu_halted && halt_detection_enabled) {
 1296                                 vcpu_halted = 1;
 1297                                 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
 1298                         }
 1299                         if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
 1300                                 vm_halted = 1;
 1301                                 break;
 1302                         }
 1303                 } else {
 1304                         wmesg = "vmidle";
 1305                 }
 1306 
 1307                 t = ticks;
 1308                 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1309                 /*
 1310                  * XXX msleep_spin() cannot be interrupted by signals so
 1311                  * wake up periodically to check pending signals.
 1312                  */
 1313                 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
 1314                 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1315                 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
 1316         }
 1317 
 1318         if (vcpu_halted)
 1319                 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
 1320 
 1321         vcpu_unlock(vcpu);
 1322 
 1323         if (vm_halted)
 1324                 vm_suspend(vm, VM_SUSPEND_HALT);
 1325 
 1326         return (0);
 1327 }
 1328 
 1329 static int
 1330 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
 1331 {
 1332         int rv, ftype;
 1333         struct vm_map *map;
 1334         struct vcpu *vcpu;
 1335         struct vm_exit *vme;
 1336 
 1337         vcpu = &vm->vcpu[vcpuid];
 1338         vme = &vcpu->exitinfo;
 1339 
 1340         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1341             __func__, vme->inst_length));
 1342 
 1343         ftype = vme->u.paging.fault_type;
 1344         KASSERT(ftype == VM_PROT_READ ||
 1345             ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
 1346             ("vm_handle_paging: invalid fault_type %d", ftype));
 1347 
 1348         if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
 1349                 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
 1350                     vme->u.paging.gpa, ftype);
 1351                 if (rv == 0) {
 1352                         VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
 1353                             ftype == VM_PROT_READ ? "accessed" : "dirty",
 1354                             vme->u.paging.gpa);
 1355                         goto done;
 1356                 }
 1357         }
 1358 
 1359         map = &vm->vmspace->vm_map;
 1360         rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
 1361 
 1362         VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
 1363             "ftype = %d", rv, vme->u.paging.gpa, ftype);
 1364 
 1365         if (rv != KERN_SUCCESS)
 1366                 return (EFAULT);
 1367 done:
 1368         return (0);
 1369 }
 1370 
 1371 static int
 1372 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
 1373 {
 1374         struct vie *vie;
 1375         struct vcpu *vcpu;
 1376         struct vm_exit *vme;
 1377         uint64_t gla, gpa, cs_base;
 1378         struct vm_guest_paging *paging;
 1379         mem_region_read_t mread;
 1380         mem_region_write_t mwrite;
 1381         enum vm_cpu_mode cpu_mode;
 1382         int cs_d, error, fault;
 1383 
 1384         vcpu = &vm->vcpu[vcpuid];
 1385         vme = &vcpu->exitinfo;
 1386 
 1387         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1388             __func__, vme->inst_length));
 1389 
 1390         gla = vme->u.inst_emul.gla;
 1391         gpa = vme->u.inst_emul.gpa;
 1392         cs_base = vme->u.inst_emul.cs_base;
 1393         cs_d = vme->u.inst_emul.cs_d;
 1394         vie = &vme->u.inst_emul.vie;
 1395         paging = &vme->u.inst_emul.paging;
 1396         cpu_mode = paging->cpu_mode;
 1397 
 1398         VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
 1399 
 1400         /* Fetch, decode and emulate the faulting instruction */
 1401         if (vie->num_valid == 0) {
 1402                 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
 1403                     cs_base, VIE_INST_SIZE, vie, &fault);
 1404         } else {
 1405                 /*
 1406                  * The instruction bytes have already been copied into 'vie'
 1407                  */
 1408                 error = fault = 0;
 1409         }
 1410         if (error || fault)
 1411                 return (error);
 1412 
 1413         if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
 1414                 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
 1415                     vme->rip + cs_base);
 1416                 *retu = true;       /* dump instruction bytes in userspace */
 1417                 return (0);
 1418         }
 1419 
 1420         /*
 1421          * Update 'nextrip' based on the length of the emulated instruction.
 1422          */
 1423         vme->inst_length = vie->num_processed;
 1424         vcpu->nextrip += vie->num_processed;
 1425         VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
 1426             "decoding", vcpu->nextrip);
 1427  
 1428         /* return to userland unless this is an in-kernel emulated device */
 1429         if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
 1430                 mread = lapic_mmio_read;
 1431                 mwrite = lapic_mmio_write;
 1432         } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
 1433                 mread = vioapic_mmio_read;
 1434                 mwrite = vioapic_mmio_write;
 1435         } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
 1436                 mread = vhpet_mmio_read;
 1437                 mwrite = vhpet_mmio_write;
 1438         } else {
 1439                 *retu = true;
 1440                 return (0);
 1441         }
 1442 
 1443         error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
 1444             mread, mwrite, retu);
 1445 
 1446         return (error);
 1447 }
 1448 
 1449 static int
 1450 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
 1451 {
 1452         int i, done;
 1453         struct vcpu *vcpu;
 1454 
 1455         done = 0;
 1456         vcpu = &vm->vcpu[vcpuid];
 1457 
 1458         CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
 1459 
 1460         /*
 1461          * Wait until all 'active_cpus' have suspended themselves.
 1462          *
 1463          * Since a VM may be suspended at any time including when one or
 1464          * more vcpus are doing a rendezvous we need to call the rendezvous
 1465          * handler while we are waiting to prevent a deadlock.
 1466          */
 1467         vcpu_lock(vcpu);
 1468         while (1) {
 1469                 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
 1470                         VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
 1471                         break;
 1472                 }
 1473 
 1474                 if (vm->rendezvous_func == NULL) {
 1475                         VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
 1476                         vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1477                         msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
 1478                         vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1479                 } else {
 1480                         VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
 1481                         vcpu_unlock(vcpu);
 1482                         vm_handle_rendezvous(vm, vcpuid);
 1483                         vcpu_lock(vcpu);
 1484                 }
 1485         }
 1486         vcpu_unlock(vcpu);
 1487 
 1488         /*
 1489          * Wakeup the other sleeping vcpus and return to userspace.
 1490          */
 1491         for (i = 0; i < VM_MAXCPU; i++) {
 1492                 if (CPU_ISSET(i, &vm->suspended_cpus)) {
 1493                         vcpu_notify_event(vm, i, false);
 1494                 }
 1495         }
 1496 
 1497         *retu = true;
 1498         return (0);
 1499 }
 1500 
 1501 static int
 1502 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
 1503 {
 1504         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 1505 
 1506         vcpu_lock(vcpu);
 1507         KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
 1508         vcpu->reqidle = 0;
 1509         vcpu_unlock(vcpu);
 1510         *retu = true;
 1511         return (0);
 1512 }
 1513 
 1514 int
 1515 vm_suspend(struct vm *vm, enum vm_suspend_how how)
 1516 {
 1517         int i;
 1518 
 1519         if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
 1520                 return (EINVAL);
 1521 
 1522         if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
 1523                 VM_CTR2(vm, "virtual machine already suspended %d/%d",
 1524                     vm->suspend, how);
 1525                 return (EALREADY);
 1526         }
 1527 
 1528         VM_CTR1(vm, "virtual machine successfully suspended %d", how);
 1529 
 1530         /*
 1531          * Notify all active vcpus that they are now suspended.
 1532          */
 1533         for (i = 0; i < VM_MAXCPU; i++) {
 1534                 if (CPU_ISSET(i, &vm->active_cpus))
 1535                         vcpu_notify_event(vm, i, false);
 1536         }
 1537 
 1538         return (0);
 1539 }
 1540 
 1541 void
 1542 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
 1543 {
 1544         struct vm_exit *vmexit;
 1545 
 1546         KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
 1547             ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
 1548 
 1549         vmexit = vm_exitinfo(vm, vcpuid);
 1550         vmexit->rip = rip;
 1551         vmexit->inst_length = 0;
 1552         vmexit->exitcode = VM_EXITCODE_SUSPENDED;
 1553         vmexit->u.suspended.how = vm->suspend;
 1554 }
 1555 
 1556 void
 1557 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
 1558 {
 1559         struct vm_exit *vmexit;
 1560 
 1561         KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
 1562 
 1563         vmexit = vm_exitinfo(vm, vcpuid);
 1564         vmexit->rip = rip;
 1565         vmexit->inst_length = 0;
 1566         vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
 1567         vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
 1568 }
 1569 
 1570 void
 1571 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
 1572 {
 1573         struct vm_exit *vmexit;
 1574 
 1575         vmexit = vm_exitinfo(vm, vcpuid);
 1576         vmexit->rip = rip;
 1577         vmexit->inst_length = 0;
 1578         vmexit->exitcode = VM_EXITCODE_REQIDLE;
 1579         vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
 1580 }
 1581 
 1582 void
 1583 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
 1584 {
 1585         struct vm_exit *vmexit;
 1586 
 1587         vmexit = vm_exitinfo(vm, vcpuid);
 1588         vmexit->rip = rip;
 1589         vmexit->inst_length = 0;
 1590         vmexit->exitcode = VM_EXITCODE_BOGUS;
 1591         vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
 1592 }
 1593 
 1594 int
 1595 vm_run(struct vm *vm, struct vm_run *vmrun)
 1596 {
 1597         struct vm_eventinfo evinfo;
 1598         int error, vcpuid;
 1599         struct vcpu *vcpu;
 1600         struct pcb *pcb;
 1601         uint64_t tscval;
 1602         struct vm_exit *vme;
 1603         bool retu, intr_disabled;
 1604         pmap_t pmap;
 1605 
 1606         vcpuid = vmrun->cpuid;
 1607 
 1608         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1609                 return (EINVAL);
 1610 
 1611         if (!CPU_ISSET(vcpuid, &vm->active_cpus))
 1612                 return (EINVAL);
 1613 
 1614         if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
 1615                 return (EINVAL);
 1616 
 1617         pmap = vmspace_pmap(vm->vmspace);
 1618         vcpu = &vm->vcpu[vcpuid];
 1619         vme = &vcpu->exitinfo;
 1620         evinfo.rptr = &vm->rendezvous_func;
 1621         evinfo.sptr = &vm->suspend;
 1622         evinfo.iptr = &vcpu->reqidle;
 1623 restart:
 1624         critical_enter();
 1625 
 1626         KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
 1627             ("vm_run: absurd pm_active"));
 1628 
 1629         tscval = rdtsc();
 1630 
 1631         pcb = PCPU_GET(curpcb);
 1632         set_pcb_flags(pcb, PCB_FULL_IRET);
 1633 
 1634         restore_guest_fpustate(vcpu);
 1635 
 1636         vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
 1637         error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
 1638         vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
 1639 
 1640         save_guest_fpustate(vcpu);
 1641 
 1642         vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
 1643 
 1644         critical_exit();
 1645 
 1646         if (error == 0) {
 1647                 retu = false;
 1648                 vcpu->nextrip = vme->rip + vme->inst_length;
 1649                 switch (vme->exitcode) {
 1650                 case VM_EXITCODE_REQIDLE:
 1651                         error = vm_handle_reqidle(vm, vcpuid, &retu);
 1652                         break;
 1653                 case VM_EXITCODE_SUSPENDED:
 1654                         error = vm_handle_suspend(vm, vcpuid, &retu);
 1655                         break;
 1656                 case VM_EXITCODE_IOAPIC_EOI:
 1657                         vioapic_process_eoi(vm, vcpuid,
 1658                             vme->u.ioapic_eoi.vector);
 1659                         break;
 1660                 case VM_EXITCODE_RENDEZVOUS:
 1661                         vm_handle_rendezvous(vm, vcpuid);
 1662                         error = 0;
 1663                         break;
 1664                 case VM_EXITCODE_HLT:
 1665                         intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
 1666                         error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
 1667                         break;
 1668                 case VM_EXITCODE_PAGING:
 1669                         error = vm_handle_paging(vm, vcpuid, &retu);
 1670                         break;
 1671                 case VM_EXITCODE_INST_EMUL:
 1672                         error = vm_handle_inst_emul(vm, vcpuid, &retu);
 1673                         break;
 1674                 case VM_EXITCODE_INOUT:
 1675                 case VM_EXITCODE_INOUT_STR:
 1676                         error = vm_handle_inout(vm, vcpuid, vme, &retu);
 1677                         break;
 1678                 case VM_EXITCODE_MONITOR:
 1679                 case VM_EXITCODE_MWAIT:
 1680                         vm_inject_ud(vm, vcpuid);
 1681                         break;
 1682                 default:
 1683                         retu = true;    /* handled in userland */
 1684                         break;
 1685                 }
 1686         }
 1687 
 1688         if (error == 0 && retu == false)
 1689                 goto restart;
 1690 
 1691         VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
 1692 
 1693         /* copy the exit information */
 1694         bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
 1695         return (error);
 1696 }
 1697 
 1698 int
 1699 vm_restart_instruction(void *arg, int vcpuid)
 1700 {
 1701         struct vm *vm;
 1702         struct vcpu *vcpu;
 1703         enum vcpu_state state;
 1704         uint64_t rip;
 1705         int error;
 1706 
 1707         vm = arg;
 1708         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1709                 return (EINVAL);
 1710 
 1711         vcpu = &vm->vcpu[vcpuid];
 1712         state = vcpu_get_state(vm, vcpuid, NULL);
 1713         if (state == VCPU_RUNNING) {
 1714                 /*
 1715                  * When a vcpu is "running" the next instruction is determined
 1716                  * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
 1717                  * Thus setting 'inst_length' to zero will cause the current
 1718                  * instruction to be restarted.
 1719                  */
 1720                 vcpu->exitinfo.inst_length = 0;
 1721                 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
 1722                     "setting inst_length to zero", vcpu->exitinfo.rip);
 1723         } else if (state == VCPU_FROZEN) {
 1724                 /*
 1725                  * When a vcpu is "frozen" it is outside the critical section
 1726                  * around VMRUN() and 'nextrip' points to the next instruction.
 1727                  * Thus instruction restart is achieved by setting 'nextrip'
 1728                  * to the vcpu's %rip.
 1729                  */
 1730                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
 1731                 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
 1732                 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
 1733                     "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
 1734                 vcpu->nextrip = rip;
 1735         } else {
 1736                 panic("%s: invalid state %d", __func__, state);
 1737         }
 1738         return (0);
 1739 }
 1740 
 1741 int
 1742 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
 1743 {
 1744         struct vcpu *vcpu;
 1745         int type, vector;
 1746 
 1747         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1748                 return (EINVAL);
 1749 
 1750         vcpu = &vm->vcpu[vcpuid];
 1751 
 1752         if (info & VM_INTINFO_VALID) {
 1753                 type = info & VM_INTINFO_TYPE;
 1754                 vector = info & 0xff;
 1755                 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
 1756                         return (EINVAL);
 1757                 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
 1758                         return (EINVAL);
 1759                 if (info & VM_INTINFO_RSVD)
 1760                         return (EINVAL);
 1761         } else {
 1762                 info = 0;
 1763         }
 1764         VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
 1765         vcpu->exitintinfo = info;
 1766         return (0);
 1767 }
 1768 
 1769 enum exc_class {
 1770         EXC_BENIGN,
 1771         EXC_CONTRIBUTORY,
 1772         EXC_PAGEFAULT
 1773 };
 1774 
 1775 #define IDT_VE  20      /* Virtualization Exception (Intel specific) */
 1776 
 1777 static enum exc_class
 1778 exception_class(uint64_t info)
 1779 {
 1780         int type, vector;
 1781 
 1782         KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
 1783         type = info & VM_INTINFO_TYPE;
 1784         vector = info & 0xff;
 1785 
 1786         /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
 1787         switch (type) {
 1788         case VM_INTINFO_HWINTR:
 1789         case VM_INTINFO_SWINTR:
 1790         case VM_INTINFO_NMI:
 1791                 return (EXC_BENIGN);
 1792         default:
 1793                 /*
 1794                  * Hardware exception.
 1795                  *
 1796                  * SVM and VT-x use identical type values to represent NMI,
 1797                  * hardware interrupt and software interrupt.
 1798                  *
 1799                  * SVM uses type '3' for all exceptions. VT-x uses type '3'
 1800                  * for exceptions except #BP and #OF. #BP and #OF use a type
 1801                  * value of '5' or '6'. Therefore we don't check for explicit
 1802                  * values of 'type' to classify 'intinfo' into a hardware
 1803                  * exception.
 1804                  */
 1805                 break;
 1806         }
 1807 
 1808         switch (vector) {
 1809         case IDT_PF:
 1810         case IDT_VE:
 1811                 return (EXC_PAGEFAULT);
 1812         case IDT_DE:
 1813         case IDT_TS:
 1814         case IDT_NP:
 1815         case IDT_SS:
 1816         case IDT_GP:
 1817                 return (EXC_CONTRIBUTORY);
 1818         default:
 1819                 return (EXC_BENIGN);
 1820         }
 1821 }
 1822 
 1823 static int
 1824 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
 1825     uint64_t *retinfo)
 1826 {
 1827         enum exc_class exc1, exc2;
 1828         int type1, vector1;
 1829 
 1830         KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
 1831         KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
 1832 
 1833         /*
 1834          * If an exception occurs while attempting to call the double-fault
 1835          * handler the processor enters shutdown mode (aka triple fault).
 1836          */
 1837         type1 = info1 & VM_INTINFO_TYPE;
 1838         vector1 = info1 & 0xff;
 1839         if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
 1840                 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
 1841                     info1, info2);
 1842                 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
 1843                 *retinfo = 0;
 1844                 return (0);
 1845         }
 1846 
 1847         /*
 1848          * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
 1849          */
 1850         exc1 = exception_class(info1);
 1851         exc2 = exception_class(info2);
 1852         if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
 1853             (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
 1854                 /* Convert nested fault into a double fault. */
 1855                 *retinfo = IDT_DF;
 1856                 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1857                 *retinfo |= VM_INTINFO_DEL_ERRCODE;
 1858         } else {
 1859                 /* Handle exceptions serially */
 1860                 *retinfo = info2;
 1861         }
 1862         return (1);
 1863 }
 1864 
 1865 static uint64_t
 1866 vcpu_exception_intinfo(struct vcpu *vcpu)
 1867 {
 1868         uint64_t info = 0;
 1869 
 1870         if (vcpu->exception_pending) {
 1871                 info = vcpu->exc_vector & 0xff;
 1872                 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1873                 if (vcpu->exc_errcode_valid) {
 1874                         info |= VM_INTINFO_DEL_ERRCODE;
 1875                         info |= (uint64_t)vcpu->exc_errcode << 32;
 1876                 }
 1877         }
 1878         return (info);
 1879 }
 1880 
 1881 int
 1882 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
 1883 {
 1884         struct vcpu *vcpu;
 1885         uint64_t info1, info2;
 1886         int valid;
 1887 
 1888         KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
 1889 
 1890         vcpu = &vm->vcpu[vcpuid];
 1891 
 1892         info1 = vcpu->exitintinfo;
 1893         vcpu->exitintinfo = 0;
 1894 
 1895         info2 = 0;
 1896         if (vcpu->exception_pending) {
 1897                 info2 = vcpu_exception_intinfo(vcpu);
 1898                 vcpu->exception_pending = 0;
 1899                 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
 1900                     vcpu->exc_vector, info2);
 1901         }
 1902 
 1903         if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
 1904                 valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
 1905         } else if (info1 & VM_INTINFO_VALID) {
 1906                 *retinfo = info1;
 1907                 valid = 1;
 1908         } else if (info2 & VM_INTINFO_VALID) {
 1909                 *retinfo = info2;
 1910                 valid = 1;
 1911         } else {
 1912                 valid = 0;
 1913         }
 1914 
 1915         if (valid) {
 1916                 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
 1917                     "retinfo(%#lx)", __func__, info1, info2, *retinfo);
 1918         }
 1919 
 1920         return (valid);
 1921 }
 1922 
 1923 int
 1924 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
 1925 {
 1926         struct vcpu *vcpu;
 1927 
 1928         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1929                 return (EINVAL);
 1930 
 1931         vcpu = &vm->vcpu[vcpuid];
 1932         *info1 = vcpu->exitintinfo;
 1933         *info2 = vcpu_exception_intinfo(vcpu);
 1934         return (0);
 1935 }
 1936 
 1937 int
 1938 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
 1939     uint32_t errcode, int restart_instruction)
 1940 {
 1941         struct vcpu *vcpu;
 1942         uint64_t regval;
 1943         int error;
 1944 
 1945         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1946                 return (EINVAL);
 1947 
 1948         if (vector < 0 || vector >= 32)
 1949                 return (EINVAL);
 1950 
 1951         /*
 1952          * A double fault exception should never be injected directly into
 1953          * the guest. It is a derived exception that results from specific
 1954          * combinations of nested faults.
 1955          */
 1956         if (vector == IDT_DF)
 1957                 return (EINVAL);
 1958 
 1959         vcpu = &vm->vcpu[vcpuid];
 1960 
 1961         if (vcpu->exception_pending) {
 1962                 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
 1963                     "pending exception %d", vector, vcpu->exc_vector);
 1964                 return (EBUSY);
 1965         }
 1966 
 1967         if (errcode_valid) {
 1968                 /*
 1969                  * Exceptions don't deliver an error code in real mode.
 1970                  */
 1971                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
 1972                 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
 1973                 if (!(regval & CR0_PE))
 1974                         errcode_valid = 0;
 1975         }
 1976 
 1977         /*
 1978          * From section 26.6.1 "Interruptibility State" in Intel SDM:
 1979          *
 1980          * Event blocking by "STI" or "MOV SS" is cleared after guest executes
 1981          * one instruction or incurs an exception.
 1982          */
 1983         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
 1984         KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
 1985             __func__, error));
 1986 
 1987         if (restart_instruction)
 1988                 vm_restart_instruction(vm, vcpuid);
 1989 
 1990         vcpu->exception_pending = 1;
 1991         vcpu->exc_vector = vector;
 1992         vcpu->exc_errcode = errcode;
 1993         vcpu->exc_errcode_valid = errcode_valid;
 1994         VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
 1995         return (0);
 1996 }
 1997 
 1998 void
 1999 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
 2000     int errcode)
 2001 {
 2002         struct vm *vm;
 2003         int error, restart_instruction;
 2004 
 2005         vm = vmarg;
 2006         restart_instruction = 1;
 2007 
 2008         error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
 2009             errcode, restart_instruction);
 2010         KASSERT(error == 0, ("vm_inject_exception error %d", error));
 2011 }
 2012 
 2013 void
 2014 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
 2015 {
 2016         struct vm *vm;
 2017         int error;
 2018 
 2019         vm = vmarg;
 2020         VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
 2021             error_code, cr2);
 2022 
 2023         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
 2024         KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
 2025 
 2026         vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
 2027 }
 2028 
 2029 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
 2030 
 2031 int
 2032 vm_inject_nmi(struct vm *vm, int vcpuid)
 2033 {
 2034         struct vcpu *vcpu;
 2035 
 2036         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2037                 return (EINVAL);
 2038 
 2039         vcpu = &vm->vcpu[vcpuid];
 2040 
 2041         vcpu->nmi_pending = 1;
 2042         vcpu_notify_event(vm, vcpuid, false);
 2043         return (0);
 2044 }
 2045 
 2046 int
 2047 vm_nmi_pending(struct vm *vm, int vcpuid)
 2048 {
 2049         struct vcpu *vcpu;
 2050 
 2051         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2052                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2053 
 2054         vcpu = &vm->vcpu[vcpuid];
 2055 
 2056         return (vcpu->nmi_pending);
 2057 }
 2058 
 2059 void
 2060 vm_nmi_clear(struct vm *vm, int vcpuid)
 2061 {
 2062         struct vcpu *vcpu;
 2063 
 2064         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2065                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2066 
 2067         vcpu = &vm->vcpu[vcpuid];
 2068 
 2069         if (vcpu->nmi_pending == 0)
 2070                 panic("vm_nmi_clear: inconsistent nmi_pending state");
 2071 
 2072         vcpu->nmi_pending = 0;
 2073         vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
 2074 }
 2075 
 2076 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
 2077 
 2078 int
 2079 vm_inject_extint(struct vm *vm, int vcpuid)
 2080 {
 2081         struct vcpu *vcpu;
 2082 
 2083         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2084                 return (EINVAL);
 2085 
 2086         vcpu = &vm->vcpu[vcpuid];
 2087 
 2088         vcpu->extint_pending = 1;
 2089         vcpu_notify_event(vm, vcpuid, false);
 2090         return (0);
 2091 }
 2092 
 2093 int
 2094 vm_extint_pending(struct vm *vm, int vcpuid)
 2095 {
 2096         struct vcpu *vcpu;
 2097 
 2098         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2099                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2100 
 2101         vcpu = &vm->vcpu[vcpuid];
 2102 
 2103         return (vcpu->extint_pending);
 2104 }
 2105 
 2106 void
 2107 vm_extint_clear(struct vm *vm, int vcpuid)
 2108 {
 2109         struct vcpu *vcpu;
 2110 
 2111         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2112                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2113 
 2114         vcpu = &vm->vcpu[vcpuid];
 2115 
 2116         if (vcpu->extint_pending == 0)
 2117                 panic("vm_extint_clear: inconsistent extint_pending state");
 2118 
 2119         vcpu->extint_pending = 0;
 2120         vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
 2121 }
 2122 
 2123 int
 2124 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
 2125 {
 2126         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 2127                 return (EINVAL);
 2128 
 2129         if (type < 0 || type >= VM_CAP_MAX)
 2130                 return (EINVAL);
 2131 
 2132         return (VMGETCAP(vm->cookie, vcpu, type, retval));
 2133 }
 2134 
 2135 int
 2136 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
 2137 {
 2138         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 2139                 return (EINVAL);
 2140 
 2141         if (type < 0 || type >= VM_CAP_MAX)
 2142                 return (EINVAL);
 2143 
 2144         return (VMSETCAP(vm->cookie, vcpu, type, val));
 2145 }
 2146 
 2147 struct vlapic *
 2148 vm_lapic(struct vm *vm, int cpu)
 2149 {
 2150         return (vm->vcpu[cpu].vlapic);
 2151 }
 2152 
 2153 struct vioapic *
 2154 vm_ioapic(struct vm *vm)
 2155 {
 2156 
 2157         return (vm->vioapic);
 2158 }
 2159 
 2160 struct vhpet *
 2161 vm_hpet(struct vm *vm)
 2162 {
 2163 
 2164         return (vm->vhpet);
 2165 }
 2166 
 2167 boolean_t
 2168 vmm_is_pptdev(int bus, int slot, int func)
 2169 {
 2170         int found, i, n;
 2171         int b, s, f;
 2172         char *val, *cp, *cp2;
 2173 
 2174         /*
 2175          * XXX
 2176          * The length of an environment variable is limited to 128 bytes which
 2177          * puts an upper limit on the number of passthru devices that may be
 2178          * specified using a single environment variable.
 2179          *
 2180          * Work around this by scanning multiple environment variable
 2181          * names instead of a single one - yuck!
 2182          */
 2183         const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
 2184 
 2185         /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
 2186         found = 0;
 2187         for (i = 0; names[i] != NULL && !found; i++) {
 2188                 cp = val = getenv(names[i]);
 2189                 while (cp != NULL && *cp != '\0') {
 2190                         if ((cp2 = strchr(cp, ' ')) != NULL)
 2191                                 *cp2 = '\0';
 2192 
 2193                         n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
 2194                         if (n == 3 && bus == b && slot == s && func == f) {
 2195                                 found = 1;
 2196                                 break;
 2197                         }
 2198                 
 2199                         if (cp2 != NULL)
 2200                                 *cp2++ = ' ';
 2201 
 2202                         cp = cp2;
 2203                 }
 2204                 freeenv(val);
 2205         }
 2206         return (found);
 2207 }
 2208 
 2209 void *
 2210 vm_iommu_domain(struct vm *vm)
 2211 {
 2212 
 2213         return (vm->iommu);
 2214 }
 2215 
 2216 int
 2217 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 2218     bool from_idle)
 2219 {
 2220         int error;
 2221         struct vcpu *vcpu;
 2222 
 2223         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2224                 panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
 2225 
 2226         vcpu = &vm->vcpu[vcpuid];
 2227 
 2228         vcpu_lock(vcpu);
 2229         error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
 2230         vcpu_unlock(vcpu);
 2231 
 2232         return (error);
 2233 }
 2234 
 2235 enum vcpu_state
 2236 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
 2237 {
 2238         struct vcpu *vcpu;
 2239         enum vcpu_state state;
 2240 
 2241         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2242                 panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
 2243 
 2244         vcpu = &vm->vcpu[vcpuid];
 2245 
 2246         vcpu_lock(vcpu);
 2247         state = vcpu->state;
 2248         if (hostcpu != NULL)
 2249                 *hostcpu = vcpu->hostcpu;
 2250         vcpu_unlock(vcpu);
 2251 
 2252         return (state);
 2253 }
 2254 
 2255 int
 2256 vm_activate_cpu(struct vm *vm, int vcpuid)
 2257 {
 2258 
 2259         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2260                 return (EINVAL);
 2261 
 2262         if (CPU_ISSET(vcpuid, &vm->active_cpus))
 2263                 return (EBUSY);
 2264 
 2265         VCPU_CTR0(vm, vcpuid, "activated");
 2266         CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
 2267         return (0);
 2268 }
 2269 
 2270 cpuset_t
 2271 vm_active_cpus(struct vm *vm)
 2272 {
 2273 
 2274         return (vm->active_cpus);
 2275 }
 2276 
 2277 cpuset_t
 2278 vm_suspended_cpus(struct vm *vm)
 2279 {
 2280 
 2281         return (vm->suspended_cpus);
 2282 }
 2283 
 2284 void *
 2285 vcpu_stats(struct vm *vm, int vcpuid)
 2286 {
 2287 
 2288         return (vm->vcpu[vcpuid].stats);
 2289 }
 2290 
 2291 int
 2292 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
 2293 {
 2294         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2295                 return (EINVAL);
 2296 
 2297         *state = vm->vcpu[vcpuid].x2apic_state;
 2298 
 2299         return (0);
 2300 }
 2301 
 2302 int
 2303 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
 2304 {
 2305         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2306                 return (EINVAL);
 2307 
 2308         if (state >= X2APIC_STATE_LAST)
 2309                 return (EINVAL);
 2310 
 2311         vm->vcpu[vcpuid].x2apic_state = state;
 2312 
 2313         vlapic_set_x2apic_state(vm, vcpuid, state);
 2314 
 2315         return (0);
 2316 }
 2317 
 2318 /*
 2319  * This function is called to ensure that a vcpu "sees" a pending event
 2320  * as soon as possible:
 2321  * - If the vcpu thread is sleeping then it is woken up.
 2322  * - If the vcpu is running on a different host_cpu then an IPI will be directed
 2323  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
 2324  */
 2325 static void
 2326 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
 2327 {
 2328         int hostcpu;
 2329 
 2330         hostcpu = vcpu->hostcpu;
 2331         if (vcpu->state == VCPU_RUNNING) {
 2332                 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
 2333                 if (hostcpu != curcpu) {
 2334                         if (lapic_intr) {
 2335                                 vlapic_post_intr(vcpu->vlapic, hostcpu,
 2336                                     vmm_ipinum);
 2337                         } else {
 2338                                 ipi_cpu(hostcpu, vmm_ipinum);
 2339                         }
 2340                 } else {
 2341                         /*
 2342                          * If the 'vcpu' is running on 'curcpu' then it must
 2343                          * be sending a notification to itself (e.g. SELF_IPI).
 2344                          * The pending event will be picked up when the vcpu
 2345                          * transitions back to guest context.
 2346                          */
 2347                 }
 2348         } else {
 2349                 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
 2350                     "with hostcpu %d", vcpu->state, hostcpu));
 2351                 if (vcpu->state == VCPU_SLEEPING)
 2352                         wakeup_one(vcpu);
 2353         }
 2354 }
 2355 
 2356 void
 2357 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
 2358 {
 2359         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 2360 
 2361         vcpu_lock(vcpu);
 2362         vcpu_notify_event_locked(vcpu, lapic_intr);
 2363         vcpu_unlock(vcpu);
 2364 }
 2365 
 2366 struct vmspace *
 2367 vm_get_vmspace(struct vm *vm)
 2368 {
 2369 
 2370         return (vm->vmspace);
 2371 }
 2372 
 2373 int
 2374 vm_apicid2vcpuid(struct vm *vm, int apicid)
 2375 {
 2376         /*
 2377          * XXX apic id is assumed to be numerically identical to vcpu id
 2378          */
 2379         return (apicid);
 2380 }
 2381 
 2382 void
 2383 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
 2384     vm_rendezvous_func_t func, void *arg)
 2385 {
 2386         int i;
 2387 
 2388         /*
 2389          * Enforce that this function is called without any locks
 2390          */
 2391         WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
 2392         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
 2393             ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
 2394 
 2395 restart:
 2396         mtx_lock(&vm->rendezvous_mtx);
 2397         if (vm->rendezvous_func != NULL) {
 2398                 /*
 2399                  * If a rendezvous is already in progress then we need to
 2400                  * call the rendezvous handler in case this 'vcpuid' is one
 2401                  * of the targets of the rendezvous.
 2402                  */
 2403                 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
 2404                 mtx_unlock(&vm->rendezvous_mtx);
 2405                 vm_handle_rendezvous(vm, vcpuid);
 2406                 goto restart;
 2407         }
 2408         KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
 2409             "rendezvous is still in progress"));
 2410 
 2411         RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
 2412         vm->rendezvous_req_cpus = dest;
 2413         CPU_ZERO(&vm->rendezvous_done_cpus);
 2414         vm->rendezvous_arg = arg;
 2415         vm_set_rendezvous_func(vm, func);
 2416         mtx_unlock(&vm->rendezvous_mtx);
 2417 
 2418         /*
 2419          * Wake up any sleeping vcpus and trigger a VM-exit in any running
 2420          * vcpus so they handle the rendezvous as soon as possible.
 2421          */
 2422         for (i = 0; i < VM_MAXCPU; i++) {
 2423                 if (CPU_ISSET(i, &dest))
 2424                         vcpu_notify_event(vm, i, false);
 2425         }
 2426 
 2427         vm_handle_rendezvous(vm, vcpuid);
 2428 }
 2429 
 2430 struct vatpic *
 2431 vm_atpic(struct vm *vm)
 2432 {
 2433         return (vm->vatpic);
 2434 }
 2435 
 2436 struct vatpit *
 2437 vm_atpit(struct vm *vm)
 2438 {
 2439         return (vm->vatpit);
 2440 }
 2441 
 2442 struct vpmtmr *
 2443 vm_pmtmr(struct vm *vm)
 2444 {
 2445 
 2446         return (vm->vpmtmr);
 2447 }
 2448 
 2449 struct vrtc *
 2450 vm_rtc(struct vm *vm)
 2451 {
 2452 
 2453         return (vm->vrtc);
 2454 }
 2455 
 2456 enum vm_reg_name
 2457 vm_segment_name(int seg)
 2458 {
 2459         static enum vm_reg_name seg_names[] = {
 2460                 VM_REG_GUEST_ES,
 2461                 VM_REG_GUEST_CS,
 2462                 VM_REG_GUEST_SS,
 2463                 VM_REG_GUEST_DS,
 2464                 VM_REG_GUEST_FS,
 2465                 VM_REG_GUEST_GS
 2466         };
 2467 
 2468         KASSERT(seg >= 0 && seg < nitems(seg_names),
 2469             ("%s: invalid segment encoding %d", __func__, seg));
 2470         return (seg_names[seg]);
 2471 }
 2472 
 2473 void
 2474 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
 2475     int num_copyinfo)
 2476 {
 2477         int idx;
 2478 
 2479         for (idx = 0; idx < num_copyinfo; idx++) {
 2480                 if (copyinfo[idx].cookie != NULL)
 2481                         vm_gpa_release(copyinfo[idx].cookie);
 2482         }
 2483         bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
 2484 }
 2485 
 2486 int
 2487 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
 2488     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
 2489     int num_copyinfo, int *fault)
 2490 {
 2491         int error, idx, nused;
 2492         size_t n, off, remaining;
 2493         void *hva, *cookie;
 2494         uint64_t gpa;
 2495 
 2496         bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
 2497 
 2498         nused = 0;
 2499         remaining = len;
 2500         while (remaining > 0) {
 2501                 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
 2502                 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
 2503                 if (error || *fault)
 2504                         return (error);
 2505                 off = gpa & PAGE_MASK;
 2506                 n = min(remaining, PAGE_SIZE - off);
 2507                 copyinfo[nused].gpa = gpa;
 2508                 copyinfo[nused].len = n;
 2509                 remaining -= n;
 2510                 gla += n;
 2511                 nused++;
 2512         }
 2513 
 2514         for (idx = 0; idx < nused; idx++) {
 2515                 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
 2516                     copyinfo[idx].len, prot, &cookie);
 2517                 if (hva == NULL)
 2518                         break;
 2519                 copyinfo[idx].hva = hva;
 2520                 copyinfo[idx].cookie = cookie;
 2521         }
 2522 
 2523         if (idx != nused) {
 2524                 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
 2525                 return (EFAULT);
 2526         } else {
 2527                 *fault = 0;
 2528                 return (0);
 2529         }
 2530 }
 2531 
 2532 void
 2533 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
 2534     size_t len)
 2535 {
 2536         char *dst;
 2537         int idx;
 2538         
 2539         dst = kaddr;
 2540         idx = 0;
 2541         while (len > 0) {
 2542                 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
 2543                 len -= copyinfo[idx].len;
 2544                 dst += copyinfo[idx].len;
 2545                 idx++;
 2546         }
 2547 }
 2548 
 2549 void
 2550 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
 2551     struct vm_copyinfo *copyinfo, size_t len)
 2552 {
 2553         const char *src;
 2554         int idx;
 2555 
 2556         src = kaddr;
 2557         idx = 0;
 2558         while (len > 0) {
 2559                 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
 2560                 len -= copyinfo[idx].len;
 2561                 src += copyinfo[idx].len;
 2562                 idx++;
 2563         }
 2564 }
 2565 
 2566 /*
 2567  * Return the amount of in-use and wired memory for the VM. Since
 2568  * these are global stats, only return the values with for vCPU 0
 2569  */
 2570 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
 2571 VMM_STAT_DECLARE(VMM_MEM_WIRED);
 2572 
 2573 static void
 2574 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2575 {
 2576 
 2577         if (vcpu == 0) {
 2578                 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
 2579                     PAGE_SIZE * vmspace_resident_count(vm->vmspace));
 2580         }       
 2581 }
 2582 
 2583 static void
 2584 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2585 {
 2586 
 2587         if (vcpu == 0) {
 2588                 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
 2589                     PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
 2590         }       
 2591 }
 2592 
 2593 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
 2594 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);

Cache object: ce795ff293fc51b597774895ea494cf2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.